JP2005048958A - Power transmitting shaft - Google Patents

Power transmitting shaft Download PDF

Info

Publication number
JP2005048958A
JP2005048958A JP2004282167A JP2004282167A JP2005048958A JP 2005048958 A JP2005048958 A JP 2005048958A JP 2004282167 A JP2004282167 A JP 2004282167A JP 2004282167 A JP2004282167 A JP 2004282167A JP 2005048958 A JP2005048958 A JP 2005048958A
Authority
JP
Japan
Prior art keywords
power transmission
shaft
transmission shaft
less
power transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004282167A
Other languages
Japanese (ja)
Inventor
Kazuya Wakita
和哉 脇田
Katsuyuki Ikei
勝幸 池井
Hisaaki Kura
久昭 藏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004282167A priority Critical patent/JP2005048958A/en
Publication of JP2005048958A publication Critical patent/JP2005048958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transmitting shaft which can secure its stable torsional fatigue strength. <P>SOLUTION: The power transmitting shaft 1 is an integrated hollow shaft, in which an intermediate pipe 1a having a maximum diameter and shafts 1b having connecting portions, such as a spline, etc. formed on the outer surfaces of the ends of the power transmitting shaft 1 are integrally formed from the same pipe material. The power transmitting shaft 1 contains 0.30-0.45 wt.% C, 0.05-0.35 wt.% Si, 1.0-2.0 wt.% Mn, and further, contains at most 0.05 wt.% Al, and at most 0.01 wt.% S. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は動力伝達シャフトに関し、例えば、自動車の動力伝達系の一部を構成するドライブシャフト(駆動軸)やプロペラシャフト(推進軸)に使用される動力伝達シャフトに関する。   The present invention relates to a power transmission shaft, for example, a power transmission shaft used for a drive shaft (drive shaft) and a propeller shaft (propulsion shaft) constituting a part of a power transmission system of an automobile.

自動車の動力伝達系を構成するシャフトには、エンジンと車輪軸受装置を繋ぐドライブシャフトや、変速機から減速歯車装置に動力を伝達するプロペラシャフトがあり、いずれも軸端部にスプライン等の連結要素が設けられる。この動力伝達シャフトは、その種類を基本構造で大別すると、中実の棒材から加工された中実シャフトと、鋼管などから加工された中空シャフトとがある。   Shafts that make up the power transmission system of automobiles include drive shafts that connect the engine and wheel bearing devices, and propeller shafts that transmit power from the transmission to the reduction gear device, both of which are connecting elements such as splines at the shaft end. Is provided. The power transmission shafts are roughly classified into basic structures, and are divided into solid shafts machined from solid bars and hollow shafts machined from steel pipes.

従来は、中実シャフトを使用していたが、近年における自動車の高機能化や車室内の静粛性向上の要求から、動力伝達シャフトにも、強度、耐久性のみならず、軽量化、コンパクト化、NVH特性の向上など様々な機能が必要になってきている。また、自動車の発進時の操縦性やダイレクト感を得るために捩り剛性の向上が必要である。捩り剛性の向上を図るためにはシャフト径を大きくすることが考えられるが、重量増加を招来し、連結部の削り量も増加してコストアップを招くことになる。さらに、自動車の走行時、エンジン振動とシャフトが共振して車内への騒音を招くのでそれを回避するために固有振動数のチューニングが必要である。固有振動数のチューニングを図るためには動力伝達シャフトにダンパー等を取り付けることが考えられるが、部品点数の増加や組み付け工数の増加などからコストアップを招来する。   In the past, solid shafts were used. However, due to the recent demand for higher-performance automobiles and quieter interiors, power transmission shafts are not only strong and durable, but also lighter and more compact. Various functions such as improvement of NVH characteristics have become necessary. In addition, it is necessary to improve torsional rigidity in order to obtain a maneuverability and direct feeling when the vehicle is started. In order to improve the torsional rigidity, it is conceivable to increase the shaft diameter, but this results in an increase in weight and an increase in the amount of shaving of the connecting portion, resulting in an increase in cost. Further, when the vehicle is running, the engine vibration and the shaft resonate to cause noise in the vehicle. Therefore, tuning of the natural frequency is necessary to avoid the noise. In order to tune the natural frequency, it may be possible to attach a damper or the like to the power transmission shaft. However, this increases the cost due to an increase in the number of parts and an increase in assembly man-hours.

これら機能面での必要性から、中実シャフトに代えて中空シャフトを多用する傾向にある。この種の中空シャフトは、一体型中空シャフトと接合型中空シャフトに大別される。一体型中空シャフトは、最外径部を持つ中央のパイプ部と端部外周面にスプライン等の連結部が形成された軸部とを同一素管から一体成形した構造を有する(例えば、下記の特許文献1〜3)。これに対して、接合型中空シャフトは、パイプ部と軸部(スタブ)とを別々に成形して摩擦圧接や溶接などにより接合した構造を有する(例えば、下記の特許文献4)。
特開平11−101259号公報 特公平7−88876号公報 特開2001−32818号公報 特開平10−267027号公報
Because of these functional requirements, there is a tendency to use a hollow shaft in place of a solid shaft. This type of hollow shaft is roughly divided into an integral hollow shaft and a joined hollow shaft. The integral hollow shaft has a structure in which a central pipe portion having an outermost diameter portion and a shaft portion having a spline or other connecting portion formed on the outer peripheral surface of the end portion are integrally molded from the same raw tube (for example, Patent Documents 1 to 3). On the other hand, the joining type hollow shaft has a structure in which a pipe portion and a shaft portion (stub) are separately formed and joined by friction welding or welding (for example, Patent Document 4 below).
Japanese Patent Laid-Open No. 11-101259 Japanese Patent Publication No. 7-88876 JP 2001-32818 A Japanese Patent Laid-Open No. 10-267027

ところで、前述した一体型や接合型の中空シャフトは、中実シャフトに比べて断面係数が減少し、中空シャフトに作用する最大剪断応力が大きくため、剪断強度が低下する虞がある。また、動力伝達用の中空シャフトには、肉厚精度が高く、安定した強度が得られる電縫管が用いられる場合がある。しかしながら、電縫管は、寸法精度や仕上げ精度が良好な鋼材をパイプ状に成形して電気抵抗溶接で突き合わせ溶接した構造を有するため、その軸線方向に沿って延在する溶接部分の電縫部で破損し易く、動力伝達シャフトの強度低下を招来する。   By the way, the integral type and the joined type hollow shaft have a smaller section modulus than the solid shaft, and the maximum shear stress acting on the hollow shaft is large, so that the shear strength may be lowered. In addition, there is a case where an electric resistance welded tube having high wall thickness accuracy and stable strength is used for the hollow shaft for power transmission. However, the ERW pipe has a structure in which a steel material with good dimensional accuracy and finishing accuracy is formed into a pipe shape and butt-welded by electric resistance welding. Therefore, the ERW pipe is a welded portion extending along its axial direction. It is easily damaged and causes a reduction in strength of the power transmission shaft.

そこで、本発明は前記問題点に鑑みて提案されたもので、その目的とするところは、安定した捩り疲労強度を確保し得る動力伝達シャフトを提供することにある。   Therefore, the present invention has been proposed in view of the above problems, and an object of the present invention is to provide a power transmission shaft that can ensure a stable torsional fatigue strength.

前記目的を達成するため、本発明は、鋼材からなるパイプの両端に連結要素を備えた動力伝達シャフトにおいて、Cの含有量が0.30wt%以上で0.45wt%以下、Siの含有量が0.05wt%以上で0.35wt%以下、Mnの含有量が1.0wt%以上で2.0wt%以下であり、かつ、高周波焼入れによる硬化処理が施されている構成を提供する。C、Si、及びMnの含有量を上記範囲内に規制することにより、加工性の低下を防止しつつ、高周波焼入れ性を良くし、所要の硬度を得ることができる。これにより、安定した捩り疲労強度を確保することができる。好ましくは、Alを0.05wt%以下、Sを0.01wt%以下で含有させるのが良い。   In order to achieve the above object, the present invention provides a power transmission shaft provided with connecting elements at both ends of a pipe made of steel, and the content of C is 0.30 wt% or more and 0.45 wt% or less, and the Si content is Provided is a configuration in which 0.05 wt% or more and 0.35 wt% or less, Mn content is 1.0 wt% or more and 2.0 wt% or less, and a hardening process is performed by induction hardening. By regulating the contents of C, Si, and Mn within the above range, it is possible to improve the induction hardenability and obtain the required hardness while preventing the workability from decreasing. Thereby, stable torsional fatigue strength can be ensured. Preferably, Al is contained at 0.05 wt% or less and S is contained at 0.01 wt% or less.

本発明によれば、安定した捩り疲労強度が確保され、長寿命で信頼性の高い動力伝達シャフトを提供できる。   According to the present invention, a stable torsional fatigue strength can be ensured, and a long-life and highly reliable power transmission shaft can be provided.

図1に示す実施形態の動力伝達シャフト1は、最外径部を持つ中央のパイプ部1aと端部外周面にスプライン等の連結部が形成された軸部1bとを同一素管から一体成形したパイプからなる一体型中空シャフトである。なお、図2に示す実施形態の動力伝達シャフト2のように、パイプ部2aと軸部2bとを別々に成形して摩擦圧接や溶接などにより接合したパイプからなる接合型中空シャフトであってもよい。図3は、図1に示す動力伝達シャフト1のパイプ部1aまたは図2に示す動力伝達シャフト2のパイプ部2aの断面図である。図1および図2の実施形態ではその説明が共通するため、以下、図1の実施形態に基づいて詳述する。   A power transmission shaft 1 according to the embodiment shown in FIG. 1 is formed by integrally forming a central pipe portion 1a having an outermost diameter portion and a shaft portion 1b in which a connecting portion such as a spline is formed on an outer peripheral surface of an end portion from the same raw tube. It is an integrated hollow shaft made of a pipe. Note that, as in the power transmission shaft 2 of the embodiment shown in FIG. 2, a joined hollow shaft made of a pipe in which the pipe portion 2a and the shaft portion 2b are separately molded and joined by friction welding or welding or the like. Good. 3 is a cross-sectional view of the pipe portion 1a of the power transmission shaft 1 shown in FIG. 1 or the pipe portion 2a of the power transmission shaft 2 shown in FIG. Since the description is common to the embodiment of FIG. 1 and FIG. 2, it will be described in detail below based on the embodiment of FIG.

この動力伝達シャフト1には、肉厚精度のよい電縫管を使用する。この電縫管では、寸法精度や仕上げ精度が良好な板材をパイプ状に成形して電気抵抗溶接で突き合わせ溶接したものであるため、その軸線方向に沿って形成された溶接部分である電縫部3を有する(図3参照)。   The power transmission shaft 1 is an electric sewing tube with good wall thickness accuracy. In this ERW pipe, a plate material with good dimensional accuracy and finishing accuracy is formed into a pipe shape and butt-welded by electric resistance welding. Therefore, the ERW 3 is a welded portion formed along the axial direction. (See FIG. 3).

動力伝達シャフト1は、Cを0.30wt%以上、0.45wt%以下、Siを0.05wt%以上、0.35wt%以下、Mnを1.0wt%以上、2.0wt%以下で含有し、さらにAlを0.05wt%以下、Sを0.01wt%以下で含有している。残部はFeおよび不可避不純物である。そして、電縫部3およびその近傍がロックウェル硬さHRC45以上に硬化処理されている。ここで、「電縫部の近傍」とは、電縫部の円周方向中央部から円周方向両側に5mmの範囲を意味する。   The power transmission shaft 1 contains C in an amount of 0.30 wt% or more and 0.45 wt% or less, Si in an amount of 0.05 wt% or more and 0.35 wt% or less, and Mn in an amount of 1.0 wt% or more and 2.0 wt% or less. Furthermore, Al is contained at 0.05 wt% or less and S is contained at 0.01 wt% or less. The balance is Fe and inevitable impurities. The electric stitching portion 3 and the vicinity thereof are hardened to a Rockwell hardness of HRC45 or higher. Here, “the vicinity of the electric sewing portion” means a range of 5 mm from the central portion in the circumferential direction of the electric sewing portion to both sides in the circumferential direction.

この硬化処理は、動力伝達シャフト1を高周波焼入れ・焼戻し処理することにより実現される。図1および図2におけるハッチング部分は高周波焼入れ・焼戻しされた領域で焼き抜けた状態を示す。動力伝達シャフト1を、前記成分を含有する鋼材により形成することにより、電縫部3およびその近傍がロックウェル硬さHRC45以上に硬化処理することが可能となる。これにより、パイプ自体の強度を向上させると共に安定した捩り疲労強度を確保することができる。   This hardening process is realized by subjecting the power transmission shaft 1 to induction hardening and tempering. The hatched portions in FIG. 1 and FIG. 2 show a state of being burned out in the region that has been induction hardened and tempered. By forming the power transmission shaft 1 with a steel material containing the above components, the electric stitching portion 3 and its vicinity can be hardened to a Rockwell hardness of HRC45 or more. Thereby, the strength of the pipe itself can be improved and a stable torsional fatigue strength can be ensured.

ここで、動力伝達シャフト1における捩り疲労強度に対して硬さが大きな要因となっていることは一般的に知られており、硬さは鋼材の成分にも大きく左右される。つまり、焼入れ後の硬さを決める元素はCであるが、深さ方向の焼入れ後の硬さを決めるには、その他の元素(例えば、Si、Mn等)が有効に作用する点でこれら成分を調整する必要がある。   Here, it is generally known that the hardness is a major factor for the torsional fatigue strength of the power transmission shaft 1, and the hardness greatly depends on the components of the steel material. That is, the element that determines the hardness after quenching is C, but in order to determine the hardness after quenching in the depth direction, these components are effective in that other elements (for example, Si, Mn, etc.) act effectively. Need to be adjusted.

Cは、動力伝達シャフト1の捩り疲労強度を確保するために必要な元素であり、所定の熱処理後の硬さを得るためには、0.30wt%以上必要である。また、0.45wt%を超えた場合は、鋼材の硬さが増加しすぎて加工性を低下させる点でこれを上限とする。Siは、鋼材の脱酸剤として若干量だけ必要であると共に、鋼材の高周波焼入れ性を確保するためにも必要な元素であり、その含有量が0.05wt%未満ではこの効果が小さい。また、0.35wt%を超えて添加すると、加工性が著しく低下するのでこれを上限とする。Mnは、鋼材の高周波焼入れ性を高く確保するためには1.0wt%以上の添加量が必要である。しかしながら、2.0wt%を超えて添加すると、加工性が著しく低下するのでこれを上限とする。Alは、鋼材の脱酸剤として添加するものであり、鋼材の清浄
度を害さないために低減することが望ましく、0.05wt%を上限とする。また、Sは、冷間加工時の変形能を低下させ、0.01wt%を超えると変形能の低下が著しくなることから、0.01wt%を上限とする。
C is an element necessary for ensuring the torsional fatigue strength of the power transmission shaft 1 and is required to be 0.30 wt% or more in order to obtain hardness after a predetermined heat treatment. Moreover, when exceeding 0.45 wt%, this is made into an upper limit at the point which the hardness of steel materials increases too much and workability is reduced. Si is an element necessary for securing a high-frequency hardenability of the steel material as well as a slight amount as a deoxidizer for the steel material, and this effect is small when the content is less than 0.05 wt%. On the other hand, if it exceeds 0.35 wt%, the workability is remarkably lowered, so this is the upper limit. Mn needs to be added in an amount of 1.0 wt% or more in order to ensure high induction hardenability of the steel material. However, if it exceeds 2.0 wt%, the workability is remarkably reduced, so this is the upper limit. Al is added as a deoxidizer for steel, and is desirably reduced so as not to impair the cleanliness of the steel, and the upper limit is 0.05 wt%. S lowers the deformability at the time of cold working, and when it exceeds 0.01 wt%, the deformability is significantly reduced, so 0.01 wt% is the upper limit.

なお、鋼材の高周波焼入れ性を補うために、Crを0.1wt%以上で0.35wt%以下、Bを0.0005wt%以上で0.005wt%以下で含有させてもよい。CrとBの両者は、少なくともいずれか一方を含有させればよい。Crは、その含有量が0.1wt%未満であると、鋼材の高周波焼入れ性を補う効果が小さく、また、0.35wt%を超えて添加すると、鋼材のコストアップを招来する。また、Bは、その含有量が0.0005wt%未満であると、鋼材の高周波焼入れ性を補う効果が小さく、また、0.005wt%を超えて添加しても高周波焼入れ性の効果は変わらない。   In order to supplement the induction hardenability of the steel material, Cr may be contained in an amount of 0.1 wt% to 0.35 wt% and B may be contained in an amount of 0.0005 wt% to 0.005 wt%. Both Cr and B may contain at least one of them. If the Cr content is less than 0.1 wt%, the effect of supplementing the induction hardenability of the steel material is small, and if added over 0.35 wt%, the cost of the steel material increases. Further, if the content of B is less than 0.0005 wt%, the effect of supplementing the induction hardenability of the steel material is small, and even if added over 0.005 wt%, the effect of the induction hardenability does not change. .

また、高周波焼入れ・焼戻し処理の後、動力伝達シャフト1の全周にショットピーニング処理を施してもよい。動力伝達シャフト1の表面部の残留圧縮応力を増大させることによって捩り疲労強度をより一層向上させることができる。ここで、前記ショットピーニング処理とは、一般的に小さな鋼粒を圧縮空気または遠心力で金属表面にたたきつけて表面の応力を均一化することである。   Moreover, you may perform a shot peening process to the perimeter of the power transmission shaft 1 after an induction hardening and tempering process. By increasing the residual compressive stress on the surface portion of the power transmission shaft 1, the torsional fatigue strength can be further improved. Here, the shot peening treatment is to make the surface stress uniform by generally hitting a small steel grain against a metal surface with compressed air or centrifugal force.

本出願人は、内径および外径が同一で高周波焼入れ・焼戻し処理を行い、C、Si、Mn、S、Al、CrおよびB成分の含有量と電縫部近傍のロックウェル硬さHRCを異ならせた8個の動力伝達シャフト(サンプルNo.1〜8)について捩り疲労強度試験を行った。その試験結果を図4に示す。   The applicant performs induction hardening and tempering treatment with the same inner diameter and outer diameter, and varies the content of C, Si, Mn, S, Al, Cr and B components and the Rockwell hardness HRC near the ERW. In addition, torsional fatigue strength tests were performed on eight power transmission shafts (samples Nos. 1 to 8). The test results are shown in FIG.

なお、電縫部以外の部分については外径部での表面硬さをロックウェル硬さHRC50以上の硬さ分布となるように焼入れ・焼戻し処理をした。電縫部近傍の硬さは内径側より2mm位置で測定したビッカース硬さをロックウェル硬さに換算した結果である。この試験では、動力伝達シャフト1の両端を支持した状態で一端を固定し、他端から負荷トルクを付与した。判定については、同一軸部径を有する中実シャフトの強度下限レベルを判定基準として40万回以上を合格とした。   The portions other than the electro-sewn portion were quenched and tempered so that the surface hardness at the outer diameter portion had a hardness distribution of Rockwell hardness HRC50 or higher. The hardness in the vicinity of the electro-sewn portion is the result of converting Vickers hardness measured at a position of 2 mm from the inner diameter side into Rockwell hardness. In this test, one end was fixed in a state where both ends of the power transmission shaft 1 were supported, and load torque was applied from the other end. Regarding the determination, the strength lower limit level of the solid shaft having the same shaft portion diameter was used as a determination criterion, and 400,000 times or more was regarded as acceptable.

図4に示す試験結果から明らかなように、動力伝達シャフト1が、Cが0.30wt%以上で0.45wt%以下、Siが0.05wt%以上で0.35wt%以下、Mnが1.0wt%以上で2.0wt%以下、Alが0.05wt%以下、Sが0.01wt%以下で含有する鋼材により形成され、かつ、前記電縫部3およびその近傍がロックウェル硬さHRC45以上に硬化処理されているサンプル(サンプルNo.4〜8)のみが捩り疲労強度の点で合格であった。   As is clear from the test results shown in FIG. 4, the power transmission shaft 1 has a C of 0.30 wt% or more and 0.45 wt% or less, an Si of 0.05 wt% or more and 0.35 wt% or less, and an Mn of 1. It is formed of a steel material containing 0 wt% or more and 2.0 wt% or less, Al 0.05 wt% or less and S 0.01 wt% or less, and the ERW 3 and the vicinity thereof have Rockwell hardness HRC 45 or more. Only the cured samples (Sample Nos. 4-8) passed in terms of torsional fatigue strength.

本発明に係る動力伝達シャフトの実施形態で、一体型中空シャフトを示す一部断面部分を含む正面図である。In the embodiment of the power transmission shaft according to the present invention, it is a front view including a partial cross-sectional portion showing an integrated hollow shaft. 本発明に係る動力伝達シャフトの他の実施形態で、接合型中空シャフトを示す一部断面部分を含む正面図である。It is other embodiment of the power transmission shaft which concerns on this invention, and is a front view containing the partial cross-section part which shows a joining type | mold hollow shaft. パイプ(電縫管)の電縫部を示す断面図である。It is sectional drawing which shows the electric sewing part of a pipe (electric sewing pipe). 捩り疲労強度試験の結果を示す表である。It is a table | surface which shows the result of a torsional fatigue strength test.

符号の説明Explanation of symbols

1,2動力伝達シャフト   1,2 power transmission shaft

Claims (2)

鋼材からなるパイプの両端に連結要素を備えた動力伝達シャフトにおいて、Cの含有量が0.30wt%以上で0.45wt%以下、Siの含有量が0.05wt%以上で0.35wt%以下、Mnの含有量が1.0wt%以上で2.0wt%以下であり、かつ、高周波焼入れによる硬化処理が施されていることを特徴とする動力伝達シャフト。   In a power transmission shaft provided with connecting elements at both ends of a pipe made of steel, the C content is 0.30 wt% or more and 0.45 wt% or less, and the Si content is 0.05 wt% or more and 0.35 wt% or less. A power transmission shaft, wherein the Mn content is 1.0 wt% or more and 2.0 wt% or less, and is subjected to hardening treatment by induction hardening. さらに、Alを0.05wt%以下、Sを0.01wt%以下で含有していることを特徴とする請求項1に記載の動力伝達シャフト。



The power transmission shaft according to claim 1, further comprising Al in an amount of 0.05 wt% or less and S in an amount of 0.01 wt% or less.



JP2004282167A 2004-09-28 2004-09-28 Power transmitting shaft Pending JP2005048958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004282167A JP2005048958A (en) 2004-09-28 2004-09-28 Power transmitting shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004282167A JP2005048958A (en) 2004-09-28 2004-09-28 Power transmitting shaft

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001158691A Division JP3760112B2 (en) 2001-05-28 2001-05-28 Power transmission shaft

Publications (1)

Publication Number Publication Date
JP2005048958A true JP2005048958A (en) 2005-02-24

Family

ID=34270297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004282167A Pending JP2005048958A (en) 2004-09-28 2004-09-28 Power transmitting shaft

Country Status (1)

Country Link
JP (1) JP2005048958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389193B1 (en) 2012-09-11 2014-04-24 현대위아 주식회사 Producing method of shaft for constant velocity joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389193B1 (en) 2012-09-11 2014-04-24 현대위아 주식회사 Producing method of shaft for constant velocity joint

Similar Documents

Publication Publication Date Title
JP4687712B2 (en) Induction hardening hollow drive shaft
US20070251606A1 (en) Power transmission shaft
KR100882394B1 (en) Seamless steel pipe and method for production thereof
WO2005088147A1 (en) Machine element and method for manufacture thereof
US6684735B2 (en) Torsional damper
JP3760112B2 (en) Power transmission shaft
WO2006030709A1 (en) Hollow power transmission shaft
JP5036739B2 (en) Propeller shaft support device
JP2005048958A (en) Power transmitting shaft
US7112141B2 (en) Power transmission shaft
JP3988661B2 (en) Non-tempered steel
JP4053254B2 (en) Power transmission shaft
JP2005048957A (en) Method for manufacturing power transmitting shaft
JP2005061637A (en) Power transmitting shaft
JP2005090752A (en) Power transmitting shaft
JP4255861B2 (en) Non-tempered connecting rod and method for manufacturing the same
JP3988663B2 (en) Non-tempered steel
KR20110052967A (en) Composite of steel material, hallow drive shaft of vehicle and method for manufacturing the same
JP2005090753A (en) Power transmitting shaft
CN106048426B (en) Carbon steel composition for steering rack having reduced thermal strain and method for manufacturing same
JP4624456B2 (en) Steel tie rod end and manufacturing method thereof
JP2000234141A (en) Power transmission shaft
JP2009085381A (en) Power-transmission shaft
JP4292375B2 (en) Non-heat treated steel for cracking connecting rod
JP4490874B2 (en) Steel parts having splines and methods for improving their fatigue properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A131 Notification of reasons for refusal

Effective date: 20080115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A02 Decision of refusal

Effective date: 20080612

Free format text: JAPANESE INTERMEDIATE CODE: A02