JP4490874B2 - Steel parts having splines and methods for improving their fatigue properties - Google Patents

Steel parts having splines and methods for improving their fatigue properties Download PDF

Info

Publication number
JP4490874B2
JP4490874B2 JP2005152434A JP2005152434A JP4490874B2 JP 4490874 B2 JP4490874 B2 JP 4490874B2 JP 2005152434 A JP2005152434 A JP 2005152434A JP 2005152434 A JP2005152434 A JP 2005152434A JP 4490874 B2 JP4490874 B2 JP 4490874B2
Authority
JP
Japan
Prior art keywords
spline
residual stress
steel part
shaft
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005152434A
Other languages
Japanese (ja)
Other versions
JP2006328466A (en
Inventor
崇史 藤田
達朗 越智
卓 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005152434A priority Critical patent/JP4490874B2/en
Publication of JP2006328466A publication Critical patent/JP2006328466A/en
Application granted granted Critical
Publication of JP4490874B2 publication Critical patent/JP4490874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

本発明は,機械部品の疲労破壊の起点となるスプライン端部を強化した,疲労強度に優れたスプラインを有する鋼製部品およびその疲労強度向上方法に関する。さらに詳しくは,スプライン部を有するシャフトの動力伝達系を構成する鋼製の機械部品およびその疲労特性向上方法に関する。   The present invention relates to a steel part having a spline with excellent fatigue strength in which a spline end portion that is a starting point of fatigue fracture of a machine part is strengthened and a method for improving the fatigue strength thereof. More specifically, the present invention relates to a steel mechanical part constituting a power transmission system of a shaft having a spline portion and a method for improving fatigue characteristics thereof.

自動車などのエンジンに用いられるドライブシャフトやギヤシャフトには,エンジンの回転に伴い大きな変動負荷が作用するため,強い強度が求められる。特に,動力伝達系部品に設けられたスプライン端部は応力集中部であるため,最も強度が弱い部位となっている。   Drive shafts and gear shafts used in engines such as automobiles are required to have high strength because a large fluctuating load acts as the engine rotates. In particular, the spline end provided in the power transmission system part is a stress concentration part, and is the weakest part.

スプライン端部に関わらず,応力集中部の強化方法に関しては従来から種々の提案がなされており,例えば,特許文献1には,高周波焼入により応力集中部である油穴周りの強度を上げ,かつ,油穴表層に圧縮の残留応力を導入する方法に関する発明が開示されている。また,この特許文献1には,クランクシャフトを回転させながら半解放型の高周波加熱コイルで加熱する際に,油穴が加熱コイルの対面に位置したときに回転を遅くし,油穴開口部の近傍の加熱層を厚くして焼入硬化層を深くし,油穴周りを強化する方法が開示されている。   Regardless of the spline end, various proposals have been made regarding the method of strengthening the stress concentration portion. For example, in Patent Document 1, the strength around the oil hole, which is the stress concentration portion, is increased by induction hardening, And the invention regarding the method of introduce | transducing the residual stress of a compression to an oil hole surface layer is disclosed. Further, in Patent Document 1, when heating is performed with a half-release type high-frequency heating coil while rotating the crankshaft, the rotation is slowed down when the oil hole is located on the opposite side of the heating coil, A method is disclosed in which the heating layer in the vicinity is thickened to deepen the hardened hardened layer and strengthen the periphery of the oil hole.

しかしながら,焼入れを行う境界部であるいわゆる「焼き境」では,引張の残留応力が発生するため,焼割れが発生しやすいうえに,「焼き境」から疲労亀裂が発生するため,部品として疲労強度の大幅向上は困難である,という問題があった。   However, at the so-called “hardened boundary” where quenching occurs, tensile residual stress is generated, so that cracks are easily generated and fatigue cracks are generated from the “hardened boundary”. There was a problem that it was difficult to improve significantly.

また,スプライン部を有するシャフトに関する技術としては,例えば,特許文献2には,動力伝達シャフト先端の自在継ぎ手組付け用のスプライン加工部位と非加工部位であるシャフトの中間部位とで,焼入れ深さに差を持たせる方法が開示されている。   Further, as a technique related to a shaft having a spline portion, for example, Patent Document 2 discloses a quenching depth between a spline processing part for assembling a universal joint at the tip of a power transmission shaft and an intermediate part of a shaft which is a non-processing part. A method for making a difference between the two is disclosed.

これは,動力伝達シャフトにおいては,シャフトの中間部位はシャフトの先端部であるスプライン加工部位に比較して静的強度が低いこと,シャフトの軽量化に伴う小径化によってシャフト中間部位とスプライン加工部との静的強度の差が大きくなること等を考慮したものであり,シャフトの中間部位のみ静的強度の補強を図っているものである。なお,シャフトの先端部位であるスプライン部については,その疲労強度向上を図るべく,残留応力付与のためのショットピーニング処理が行われている。   This is because, in a power transmission shaft, the intermediate part of the shaft has a lower static strength than the splined part that is the tip of the shaft, and the shaft intermediate part and the spline processed part are reduced due to the reduced diameter associated with the weight reduction of the shaft. The difference in static strength from the above is taken into account, and the static strength is reinforced only at the middle part of the shaft. Note that the spline portion, which is the tip portion of the shaft, is subjected to shot peening for imparting residual stress in order to improve its fatigue strength.

同様に,特許文献3ではシャフト全体を熱処理し,これによって強度を高め,応力集中部であるスプライン端部にショットピーニングを行うことにより,圧縮残留応力を付与し,部品としての疲労強度を高める方法が記載されている。   Similarly, in Patent Document 3, the entire shaft is heat-treated, thereby increasing the strength, and by applying shot peening to the end of the spline that is a stress concentration portion, compressive residual stress is applied, and the fatigue strength of the part is increased. Is described.

しかしながら,特許文献2および3に記載されたようなショットピーニングを用いた残留応力付与法では,疲労破壊を防止するような十分な残留応力を付与することが困難で,また,十分な残留応力を付与することができたとしても処理に時間が掛かり,処理表面が荒れるため実用的ではない,という問題があった。   However, in the residual stress applying method using shot peening as described in Patent Documents 2 and 3, it is difficult to apply sufficient residual stress to prevent fatigue failure, and sufficient residual stress is not applied. Even if it can be applied, the treatment takes time and the treatment surface becomes rough, which is not practical.

また,特許文献4には,スプライン端部の形状を調整して応力集中を緩和する方法が開示されている。   Patent Document 4 discloses a method for reducing stress concentration by adjusting the shape of the spline end.

しかしながら,特許文献4の記載の方法では,最適な形状についての数値条件が示されておらず,十分な効果を得るためには多数の試作が必要になる。また,形状が複雑になるため,工程数の増加を招きコスト上昇が否めない,という問題があった。   However, in the method described in Patent Document 4, numerical conditions for the optimum shape are not shown, and a large number of prototypes are required to obtain a sufficient effect. Further, since the shape is complicated, there is a problem that the number of processes is increased and the cost cannot be denied.

特開2002−038220号公報JP 2002-038220 A 特開2000−240669号公報JP 2000-240669 A 特開2003−307211号公報JP 2003-307111 A 特開2004−125000号公報JP 2004-125000 A

そこで,本発明は,このような問題に鑑みてなされたもので,その目的は,スプライン端部に十分な圧縮残留応力を付加することが可能な,新規かつ改良された耐疲労特性に優れたスプラインを有する鋼製部品及びその疲労強度向上方法を提供することにある。   Therefore, the present invention has been made in view of such problems, and its purpose is to provide a new and improved fatigue resistance property capable of applying a sufficient compressive residual stress to the spline end. An object of the present invention is to provide a steel part having a spline and a method for improving the fatigue strength thereof.

本発明は,上記課題を解決するために鋭意検討の結果なされたものであり,スプライン端部に超音波打撃処理を施して強化することによって,スプライン端部に十分な圧縮残留応力を付加することができる,耐疲労特性に優れたスプラインを有する鋼製部品,及びその簡便な疲労強度向上方法を提供するものであり,その要旨とするところは,以下のとおりである。   The present invention has been made as a result of intensive studies in order to solve the above-mentioned problems. By applying ultrasonic hitting treatment to the end of the spline and strengthening it, sufficient compressive residual stress is applied to the end of the spline. The present invention provides a steel part having a spline with excellent fatigue resistance, and a simple method for improving fatigue strength, the gist of which is as follows.

(1) 質量%で,C:0.1〜0.8%,Si:0.05〜2.5%,Mn:0.2〜3%,Al:0.005〜0.1%,N:0.001〜0.02%を含有し,残部がFeおよび不可避的不純物からなり,スプライン端部の表層における圧縮残留応力が,下記式(A)を満足することを特徴とする,スプラインを有する鋼製部品。
−2.4<(残留応力[MPa])/(表面ビッカース硬度Hv.)≦−1.8
・・・(A)
(2) 質量%で,Cr:0.1〜2%,Ni:0.1〜2%,Mo:0.1〜2%,Cu:0.1〜2%,Ti:0.003〜0.2%,V :0.05〜0.5%,Nb:0.01〜0.1%の1種または2種以上をさらに含有することを特徴とする,(1)に記載のスプラインを有する鋼製部品。
(3) 上記(1)または(2)に記載のスプラインを有する鋼製部品の疲労特性向上方法であって,前記スプライン端部を,振動数10k〜60kHz,振幅0.5〜50μmで振動する振動端子で打撃することを特徴とする,スプラインを有する鋼製部品の疲労特性向上方法。
(1) By mass%, C: 0.1 to 0.8%, Si: 0.05 to 2.5%, Mn: 0.2 to 3%, Al: 0.005 to 0.1%, N A spline containing 0.001 to 0.02%, the balance being Fe and inevitable impurities, and the compressive residual stress in the surface layer of the spline end satisfying the following formula (A): Has steel parts.
−2.4 <(residual stress [MPa]) / (surface Vickers hardness Hv.) ≦ −1.8
... (A)
(2) By mass%, Cr: 0.1-2%, Ni: 0.1-2%, Mo: 0.1-2%, Cu: 0.1-2%, Ti: 0.003-0 The spline according to (1), further comprising one or more of 2%, V: 0.05 to 0.5%, Nb: 0.01 to 0.1% Has steel parts.
(3) A method for improving the fatigue characteristics of a steel part having a spline as described in (1) or (2) above, wherein the spline end is vibrated at a frequency of 10 to 60 kHz and an amplitude of 0.5 to 50 μm. A method for improving fatigue characteristics of steel parts having splines, characterized by striking with vibration terminals.

本発明によれば,スプライン端部に十分な圧縮残留応力を付加することができる,耐疲労特性に優れたスプラインを有する鋼製部品,及びその簡便な疲労強度向上方法を提供することができる。その結果,本発明に係るスプラインを有する鋼製製品においては,スプライン端部から破壊することがなくなり部品の信頼性が増すうえ,強化分相応の部品の軽量化が可能となり燃費向上・コスト削減に寄与するなど,産業上有用な著しい効果を奏する。   According to the present invention, it is possible to provide a steel part having a spline with excellent fatigue resistance, which can apply a sufficient compressive residual stress to the spline end, and a simple method for improving fatigue strength. As a result, in the steel product having the spline according to the present invention, the spline end portion is not broken and the reliability of the part is increased, and the weight of the part corresponding to the reinforcement can be reduced, which contributes to the improvement of fuel consumption and cost. It has significant industrially useful effects.

以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

本発明を実施するための最良の形態について,図1〜図3を用いて詳細に説明する。   The best mode for carrying out the present invention will be described in detail with reference to FIGS.

まず,本発明の根幹をなす技術思想は以下の通りである。すなわち,シャフトに設けられたスプライン端部は応力集中形状であり,さらに,場合によっては断面積が減少する形状であるため,疲労亀裂の発生起点となっている。すなわち,スプライン端部の疲労強度が,シャフト全体の疲労強度を決定している。   First, the technical idea forming the basis of the present invention is as follows. That is, the spline end portion provided on the shaft has a stress concentration shape, and further has a shape in which the cross-sectional area decreases. In other words, the fatigue strength of the spline end determines the fatigue strength of the entire shaft.

スプライン端部の周りの疲労強度を向上させるためには,スプライン端部の周りの強度を上げるか,圧縮の残留応力を導入するかの2通りの対策が考えられる。   In order to improve the fatigue strength around the spline end, two measures are conceivable: increasing the strength around the spline end or introducing compressive residual stress.

本発明者らは,超音波振動する振動端子で鋼材を打撃することにより,上記2通りの対策を共に満足することが可能であることを見出した。   The present inventors have found that it is possible to satisfy both of the above two measures by hitting a steel material with a vibration terminal that vibrates ultrasonically.

すなわち,スプライン端部表面に大きな圧縮の残留応力を付与し,かつ,ショットピーニングと同様に表面を塑性加工することにより加工硬化させ,スプライン端部を有するシャフトの疲労強度の大幅な向上が可能であることを見出した。   In other words, a large compressive residual stress is applied to the surface of the spline end, and the surface is plastic-worked in the same way as shot peening, so that the fatigue strength of the shaft with the spline end can be greatly improved. I found out.

図1は,本発明が対象とするスプラインを有する鋼製部品,シャフトの一例を示す。図1(a)は,シャフト中のスプライン部の外観を示す図であり,図1(b)は,そのスプラインのスプライン端部1およびその周辺の領域の側面拡大図である。図1(b)に示すように,スプライン端部1の歯溝は平滑部に向かって溝の深さが連続的に浅くなる形状を有しており,溝の深さが0mmになる部分,すなわち溝が解消された部分から平滑部へ移行する。   FIG. 1 shows an example of a steel part having a spline and a shaft targeted by the present invention. FIG. 1A is a view showing an appearance of a spline portion in the shaft, and FIG. 1B is an enlarged side view of the spline end portion 1 of the spline and its peripheral region. As shown in FIG. 1B, the tooth groove of the spline end portion 1 has a shape in which the groove depth continuously decreases toward the smooth portion, and the groove depth is 0 mm. That is, the portion where the groove is eliminated shifts to the smooth portion.

図2および図3は,本発明におけるシャフトのスプライン端部を打撃する実施形態を示す図である。また,図2において,(a)はスプラインの端部近傍の軸に垂直な断面を,(b)はスプライン歯溝部の軸方向断面を示している。図中,2はスプラインの歯,3は超音波振動端子を示しており,スプライン端部の歯溝が徐々に浅くなる領域(歯溝終端部分,より具体的には歯溝部から平滑部に至る領域)における処理方法を示している。   2 and 3 are views showing an embodiment in which the spline end portion of the shaft according to the present invention is hit. 2A shows a cross section perpendicular to the axis near the end of the spline, and FIG. 2B shows an axial cross section of the spline tooth groove. In the figure, 2 is a spline tooth, and 3 is an ultrasonic vibration terminal, where the tooth groove at the end of the spline becomes gradually shallower (from the end of the tooth groove, more specifically from the tooth groove to the smooth part). The processing method in (region) is shown.

この時,図2(a)に示すように,超音波振動端子3は,その長さ方向に振動しているが,シャフト半径方向へのエネルギー伝達を効率的に行うため,超音波振動端子3を歯元(歯溝部の最深部)からの垂線に対して±5°以下の角度で振動させることによって,圧縮残留応力を効果的に付与することができる。   At this time, as shown in FIG. 2 (a), the ultrasonic vibration terminal 3 vibrates in the length direction, but the ultrasonic vibration terminal 3 is used to efficiently transfer energy in the shaft radial direction. Oscillates at an angle of ± 5 ° or less with respect to the perpendicular from the tooth root (the deepest part of the tooth gap), the compressive residual stress can be effectively applied.

また,超音波振動端子3の先端部の曲率半径Rが歯元の曲率半径以上の場合には,歯元,すなわち,歯溝部の最深部まで超音波振動端子3の先端が到達することができないため,超音波振動によるエネルギー付与が不可能となる。従って,超音波振動端子3の先端部の曲率半径Rは,歯元の曲率半径以下であることが必要である。また,歯元の曲率半径の半分以下の曲率半径では,超音波振動端子3を押し付けたとき,塑性変形が大きくなりすぎ,かえって疲労寿命を低下させるため,最小の曲率半径を歯元の曲率半径の半分以上の曲率半径とする。   Further, when the radius of curvature R of the tip of the ultrasonic vibration terminal 3 is greater than or equal to the radius of curvature of the tooth root, the tip of the ultrasonic vibration terminal 3 cannot reach the tooth root, that is, the deepest part of the tooth gap. Therefore, it is impossible to apply energy by ultrasonic vibration. Therefore, the curvature radius R of the tip portion of the ultrasonic vibration terminal 3 needs to be equal to or less than the curvature radius of the tooth root. Also, at a radius of curvature less than half of the radius of curvature of the tooth root, when the ultrasonic vibration terminal 3 is pressed, the plastic deformation becomes too large, and on the contrary, the fatigue life is reduced, so the minimum radius of curvature is set to the radius of curvature of the tooth root. The radius of curvature is more than half of the above.

従って,超音波振動端子3の先端部の曲率半径Rは,下記式(B)の範囲が好ましい。
(歯元の曲率半径)≧R≧(歯元の曲率半径)/2・・・(B)
Therefore, the radius of curvature R at the tip of the ultrasonic vibration terminal 3 is preferably in the range of the following formula (B).
(Curvature radius of tooth root) ≧ R ≧ (curvature radius of tooth root) / 2 (B)

図3では,スプライン端部の歯2が無い平滑部分の処理法を示している。(a)は,図2(b)同様,スプライン端部近傍の軸方向断面を示したものであり,(b)はスプライン付きのシャフトを旋盤等に挟んで回転させ,それに超音波振動子を接触させて軸方向に走査することにより効率よく面処理を行う方法を示している。なお,図3では平滑部分の径の変化が無いシャフトについて描いたが,平滑部分の径が変化する場合においても有効である。   In FIG. 3, the processing method of the smooth part without the tooth | gear 2 of a spline edge part is shown. 2A shows an axial cross section near the end of the spline, as in FIG. 2B, and FIG. 2B shows a splined shaft that is sandwiched between lathes and rotated to provide an ultrasonic transducer. It shows a method of efficiently performing surface treatment by making contact and scanning in the axial direction. In FIG. 3, the shaft without the change in the diameter of the smooth portion is illustrated, but it is also effective when the diameter of the smooth portion changes.

本発明において,打撃処理を行う部位をシャフトのスプライン端部に限定したのは,シャフトにおいて疲労破壊が主たる問題となるのが,シャフト端部だからである。ここで言うスプライン端部とは,スプラインの歯溝が徐々に浅くなる領域およびスプライン端部の近傍の平滑部のことを指している。スプライン端部の近傍の平滑部の幅(軸方向の長さ)は特に規定しないが,スプライン端部の近傍の平滑部の軸半径に相当する領域(スプライン端部の近傍の平滑部の幅を,軸半径と同一の長さとした領域)に超音波処理を行うことが望ましい。また,スプライン端部周辺において疲労亀裂の入る位置があらかじめわかっているときは,その部位を集中的に処理すればよい。超音波処理をすることにより,超音波振動端子による打撃痕が生じる。打撃痕の深さは,10μm以下では,疲労強度の向上効果が十分でなく,また,50μmを超えると加工硬化が飽和するため,10〜50μmの範囲が好ましい。   In the present invention, the part where the hitting process is performed is limited to the spline end of the shaft because the fatigue failure is the main problem in the shaft because of the end of the shaft. The spline end mentioned here refers to a region where the spline tooth groove gradually becomes shallow and a smooth portion near the spline end. The width of the smooth part near the spline end (length in the axial direction) is not specified, but the area corresponding to the axial radius of the smooth part near the spline end (the width of the smooth part near the spline end is It is desirable to perform ultrasonic treatment on a region having the same length as the shaft radius. In addition, when the position where the fatigue crack is generated in the vicinity of the spline end is known in advance, the portion may be processed intensively. By performing the ultrasonic treatment, an impact mark is generated by the ultrasonic vibration terminal. When the depth of the impact mark is 10 μm or less, the effect of improving the fatigue strength is not sufficient, and when it exceeds 50 μm, work hardening is saturated, so the range of 10 to 50 μm is preferable.

ここで,スプライン端部表面の残留応力は,下記式(A)を満足することが好ましい。   Here, it is preferable that the residual stress on the surface of the spline end portion satisfies the following formula (A).

−2.4<(残留応力[MPa])/(表面ビッカース硬度Hv.)≦−1.8
・・・(A)
−2.4 <(residual stress [MPa]) / (surface Vickers hardness Hv.) ≦ −1.8
... (A)

ここで,本実施形態においては,表面ビッカース硬度の測定は,加工後の部品を軸方向に垂直に切断し,その断面における表面から深さ50μmの部位に300gfの力を荷重することにより行う。   Here, in this embodiment, the measurement of the surface Vickers hardness is performed by cutting the processed part perpendicularly to the axial direction and applying a force of 300 gf from the surface in the cross section to a part having a depth of 50 μm.

疲労特性を向上させるためには,表面ビッカース硬度が大きいほど,すなわち,強度が高いほど好ましいが,本発明では更に,圧縮残留応力を表面ビッカース硬度に比例して高めることを要求している。   In order to improve the fatigue characteristics, the higher the surface Vickers hardness, that is, the higher the strength, the better. However, the present invention further requires that the compressive residual stress be increased in proportion to the surface Vickers hardness.

本発明に用いる超音波打撃処理では,(残留応力[MPa])/(表面ビッカース硬度Hv.)を−2.4以下にすることは困難であることから,その下限を−2.4としている。一方,(残留応力[MPa])/(表面ビッカース硬度Hv.)が−1.5以上では十分な疲労強度向上が認められないことから,その上限を−1.5としている。なお,さらに好ましくは,後述する実施例に示すように,(残留応力[MPa])/(表面ビッカース硬度Hv.)が−1.8以下である。
In the ultrasonic striking treatment used in the present invention, it is difficult to set (residual stress [MPa]) / (surface Vickers hardness Hv.) To −2.4 or less, so the lower limit is set to −2.4. . On the other hand, when (residual stress [MPa]) / (surface Vickers hardness Hv.) Is −1.5 or more, the fatigue strength cannot be sufficiently improved, so the upper limit is set to −1.5. More preferably, as shown in the examples described later, (residual stress [MPa]) / (surface Vickers hardness Hv.) Is −1.8 or less.

スプライン端部を処理する場合に,超音波振動端子3の先端の形状は,半球状,蒲鉾状,鞍状等が考えられるが特に限定されない。ただし,スプライン端部の歯2が無い平滑部分の処理を行う際には,半球状または蒲鉾状の先端形状では,凸と凸とをつきあわせることになるので処理が不安定になる可能性がある。最も好ましいものは,凸と凹を組み合わせることになる鞍状であるが,超音波振動端子3の製造コストが高くなる可能性がある。   When processing the spline end, the shape of the tip of the ultrasonic vibration terminal 3 may be a hemispherical shape, a bowl shape, a bowl shape, or the like, but is not particularly limited. However, when processing a smooth part without the spline end teeth 2, the hemispherical or bowl-shaped tip shape may cause convexity and convexity to come together, which may result in unstable processing. is there. The most preferable one is a bowl shape that combines convex and concave, but there is a possibility that the manufacturing cost of the ultrasonic vibration terminal 3 is increased.

また,本発明に用いる超音波振動子の振動数を10k〜60kHzと限定したのは,鋼材に与えられる圧縮の残留応力がこの領域で大きくなるからである。同様に,超音波振動する振動端子の先端の振幅を0.5〜50μmと限定したのも,0.5μm未満の振幅では十分な圧縮残留応力を鋼材に与えることができないからである。振幅は大きいほど残留応力が増すが,50μm超では塑性変形が大きくなり過ぎ,部品の寸法精度が低下するとともに疲労強度も低下するため,振幅の上限を50μmに限定している。   The reason why the frequency of the ultrasonic vibrator used in the present invention is limited to 10 to 60 kHz is that the compressive residual stress applied to the steel material increases in this region. Similarly, the amplitude of the tip of the vibration terminal that vibrates ultrasonically is limited to 0.5 to 50 μm, because sufficient compressive residual stress cannot be applied to the steel material with an amplitude of less than 0.5 μm. Although the residual stress increases as the amplitude increases, the plastic deformation becomes too large at more than 50 μm, and the dimensional accuracy of the parts decreases and the fatigue strength also decreases. Therefore, the upper limit of the amplitude is limited to 50 μm.

次に,本発明のシャフトを構成する鋼材の成分の限定理由について以下に説明する。
Cは,鋼を強化するのに有効な元素であるが,0.1%未満では充分な強度が得られない。一方,過剰に添加すると靭性が低下するため,添加量の上限を0.8%とする。
Siは,鋼の強化元素として有効であるが,0.05%未満ではその効果がない。一方,過剰に添加すると靭性および被削性が低下するため,添加量の上限を2.5%とする。
Mnは,鋼の強化に有効な元素であるが,0.2%未満では充分な効果が得られない。一方,過剰に添加すると靭性および被削性が低下するため,添加量の上限を3%とする。
Alは,鋼の脱酸および結晶粒の微細化のために有効な元素であるが,0.005%未満ではその効果がない。一方,過剰に添加すると被削性が低下するため,添加量の上限を0.1%とする。
Nは,V炭窒化物やNb炭窒化物を生成し,析出強化のために必要な元素であるが,0.001%未満では充分な効果が得られない。一方,過剰に添加すると靭性が劣化するため,添加量の上限を0.02%とする。
Cr,Ni,Mo,Cuはいずれも適量の添加においては靱性を損なうことなく強度を増大する元素である。Cr,Ni,Mo,Cuは,いずれも0.1%未満ではその効果はなく,2%を越えると靱性が大きく劣化するため,その添加量の下限をそれぞれ0.1%,上限を2%とする。
Tiは,窒化物・炭化物を生成し,析出強化により強度が上昇するため有効な元素である。さらに,Tiの窒化物は高温まで固溶せずに残るため,加熱時のオーステナイト粗大化を防止するのに有効である。0.003%未満ではこれらの効果は現れず,0.2%を越えると靱性が劣化するため,その添加量の下限を0.003%,上限を0.2%とする。
Vも,Tiと同様に窒化物・炭化物を生成し,析出強化により強度が上昇するため有効な元素であるが,その効果が生じるためには0.05%以上の添加が必要である。一方,過剰に添加すると靭性が劣化するため,添加量の上限を0.5%とする。
Nbも,Tiと同様に窒化物・炭化物を生成し,析出強化により強度が上昇するため有効な元素であるが,その効果が生じるためには0.01%未満では充分な効果が得られない。一方,過剰に添加すると靭性が劣化するため,添加量の上限を0.1%とする。
Next, the reasons for limiting the components of the steel material constituting the shaft of the present invention will be described below.
C is an element effective for strengthening steel, but if it is less than 0.1%, sufficient strength cannot be obtained. On the other hand, if added excessively, the toughness decreases, so the upper limit of the amount added is 0.8%.
Si is effective as a steel strengthening element, but less than 0.05% has no effect. On the other hand, if added in excess, the toughness and machinability deteriorate, so the upper limit of the amount added is 2.5%.
Mn is an element effective for strengthening steel, but if it is less than 0.2%, a sufficient effect cannot be obtained. On the other hand, if added in excess, the toughness and machinability decrease, so the upper limit of the amount added is 3%.
Al is an element effective for deoxidation of steel and refinement of crystal grains, but if it is less than 0.005%, there is no effect. On the other hand, since the machinability deteriorates if added excessively, the upper limit of the addition amount is set to 0.1%.
N forms V carbonitride and Nb carbonitride and is an element necessary for precipitation strengthening, but if it is less than 0.001%, sufficient effects cannot be obtained. On the other hand, if added excessively, the toughness deteriorates, so the upper limit of the amount added is 0.02%.
Cr, Ni, Mo, and Cu are all elements that increase strength without impairing toughness when added in appropriate amounts. Cr, Ni, Mo, and Cu are not effective when the content is less than 0.1%, and the toughness is greatly deteriorated when the content exceeds 2%. And
Ti is an effective element because it produces nitrides and carbides and increases the strength by precipitation strengthening. Furthermore, since the Ti nitride remains without dissolving at high temperatures, it is effective in preventing austenite coarsening during heating. If the content is less than 0.003%, these effects do not appear. If the content exceeds 0.2%, the toughness deteriorates, so the lower limit of the amount added is 0.003% and the upper limit is 0.2%.
V is also an effective element because it produces nitrides and carbides as in the case of Ti and increases in strength due to precipitation strengthening, but 0.05% or more of addition is necessary for the effect to occur. On the other hand, if added excessively, toughness deteriorates, so the upper limit of the amount added is 0.5%.
Nb is also an effective element because it produces nitrides and carbides as well as Ti, and the strength is increased by precipitation strengthening. However, if it is less than 0.01%, a sufficient effect cannot be obtained for its effect. . On the other hand, if added excessively, the toughness deteriorates, so the upper limit of the amount added is 0.1%.

また,これらの元素以外にも,被削性を向上させる元素として,例えば,Pb,S,Bi等を添加してもよく,その場合も本発明に含まれる。   In addition to these elements, for example, Pb, S, Bi or the like may be added as an element for improving machinability, and such a case is also included in the present invention.

なお,上記の元素以外に,例えばP等の不可避的不純物が含まれるが,その場合も本発明に含まれる。   In addition to the above elements, unavoidable impurities such as P are included, and such cases are also included in the present invention.

下記表1に示す成分の鋼から,スプライン端部を模した溝,及び平滑部を模した溝を設けた小野式回転曲げ試験片を切り出した。また,表1中に示す鋼番号Sの成分の鋼については,上記と同様の形状の小野式回転曲げ試験片に切り出した後,図5の条件で浸炭を行った。   Ono-type rotating bending test pieces provided with grooves simulating spline ends and grooves simulating smooth portions were cut out from the steels having the components shown in Table 1 below. Moreover, about the steel of the component of the steel number S shown in Table 1, after cutting out to the Ono type | formula rotation bending test piece of the same shape as the above, it carburized on the conditions of FIG.

図4に試験片の詳細を示す。JIS Z 2274,1号試験片,記号1−6に準拠した試験片を用意し,この試験片に図4(a)に示したようなスプラインを模した軸方向の溝および平滑部を模した周方向の溝を加工した。図4(b)は試験片の軸方向断面を示す。スプラインを模した軸方向の溝の長さは15mmとした。図4(c)に,図4(a)のA−A’断面を示す。スプラインを模した溝は,45°刻みで計8本,溝の曲率半径は0.8R,溝の深さは0.5mmとした。図4(d)に平滑部を模した溝近傍の軸方向断面の拡大図を示す。平滑部を模した溝の曲率半径は0.5R,深さは0.5mmとした。   FIG. 4 shows details of the test piece. JIS Z 2274, No. 1 test piece, a test piece conforming to symbol 1-6 was prepared, and an axial groove and a smooth part simulating a spline as shown in FIG. Circumferential grooves were machined. FIG. 4B shows an axial section of the test piece. The length of the axial groove imitating the spline was 15 mm. FIG. 4C shows an A-A ′ cross section of FIG. Grooves simulating splines were 8 in 45 ° increments, the groove radius of curvature was 0.8R, and the groove depth was 0.5 mm. FIG. 4D shows an enlarged view of an axial cross section in the vicinity of the groove simulating a smooth portion. The radius of curvature of the groove imitating the smooth portion was 0.5R, and the depth was 0.5 mm.

この試験片に本発明の超音波処理を施した実施例,および無処理または本発明の数値限定の範囲外の処理を施した比較例を用意し,小野式回転曲げ疲労試験を行ない,疲労強度を求めた。その結果を下記表2に示す。   An example in which the ultrasonic treatment of the present invention was applied to this test piece and a comparative example in which no treatment or a treatment outside the range of numerical values of the present invention was applied were prepared. Asked. The results are shown in Table 2 below.

なお,超音波処理は,曲率半径0.5mmの半球状の先端を持つ振動子を用いて行ない,スプラインを模した溝については振動子が各溝を1往復するように,平滑部を模した溝については振動子が溝を2周するようにして,超音波処理を行った。   The ultrasonic treatment was performed using a vibrator having a hemispherical tip with a radius of curvature of 0.5 mm. For the groove simulating a spline, a smooth part was simulated so that the vibrator reciprocated once in each groove. The groove was subjected to ultrasonic treatment so that the vibrator made two rounds of the groove.

また,表1に示した表面ビッカース硬度の値は,部品加工後,軸方向に垂直に切断した断面の表面から深さ50μmの部位に荷重300gfの条件でビッカース硬度を3点測定し,その平均値を採用したものである。   The value of surface Vickers hardness shown in Table 1 is the average of Vickers hardness measured at three points under a load of 300 gf from the surface of the cross section cut perpendicular to the axial direction after machining the part at a depth of 50 μm. Value is adopted.

表2に示した残留応力の測定値は,疲労試験を行っていない試験片を別途用意し,接合部表層の残留応力を測定したものである。なお,残留応力の測定はX線を用いて行ない,回折X線の強度を測定しピーク強度の半値幅から求めている。   The measured values of the residual stress shown in Table 2 are obtained by separately preparing a test piece that has not been subjected to a fatigue test and measuring the residual stress of the joint surface layer. The residual stress is measured using X-rays, and the intensity of diffracted X-rays is measured and obtained from the half-value width of the peak intensity.

超音波打撃処理無しの試料は,超音波打撃処理有りの試験片に比べ,低い疲労強度しか得られていない。これは,スプライン端部が疲労強度を低下させていることが原因であると考えられる。一方,適正な超音波打撃処理を行うことにより,スプライン端部の強度を増し,圧縮の残留応力を導入することで,疲労強度を向上することが可能となっている。   Samples without ultrasonic striking treatment have only low fatigue strength compared to specimens with ultrasonic striking treatment. This is considered to be caused by the fact that the spline end portion reduces the fatigue strength. On the other hand, the fatigue strength can be improved by increasing the strength of the spline end by introducing an appropriate ultrasonic striking treatment and introducing compressive residual stress.

その結果,本発明の疲労強度向上方法を用いた実施例は,比較例に比べて,大幅な疲労強度向上が認められた。   As a result, the Example using the method for improving fatigue strength of the present invention showed a significant improvement in fatigue strength compared to the comparative example.

Figure 0004490874
Figure 0004490874

Figure 0004490874
Figure 0004490874

以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されないことは言うまでもない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は,機械部品の疲労破壊の起点となるスプライン端部を強化した,疲労強度に優れたスプラインを有する鋼製部品およびその疲労強度向上方法に適用可能である。特に,スプライン部を有するシャフトの動力伝達系を構成する鋼製の機械部品およびその疲労特性向上方法に適用可能である。   INDUSTRIAL APPLICABILITY The present invention can be applied to a steel part having a spline with excellent fatigue strength in which a spline end portion that is a starting point for fatigue failure of a mechanical part is strengthened and a method for improving the fatigue strength thereof. In particular, the present invention can be applied to steel mechanical parts constituting a power transmission system of a shaft having a spline portion and methods for improving the fatigue characteristics thereof.

スプラインを有するシャフトの形態を例示する図である。It is a figure which illustrates the form of the shaft which has a spline. 本発明におけるスプラインを有するシャフトのスプライン端部を打撃する際のスプライン部を打撃する実施形態を例示する図である。It is a figure which illustrates embodiment which strikes the spline part at the time of striking the spline edge part of the shaft which has a spline in this invention. 本発明におけるスプラインを有するシャフトのスプライン端部を打撃する際の平滑部を打撃する実施形態を例示する図である。It is a figure which illustrates embodiment which strikes the smooth part at the time of hit | damaging the spline edge part of the shaft which has a spline in this invention. 本発明の実施例に用いた試験片を示す図である。It is a figure which shows the test piece used for the Example of this invention. 本発明の実施例に用いた浸炭焼入条件を示す図である。It is a figure which shows the carburizing quenching conditions used for the Example of this invention.

符号の説明Explanation of symbols

1 スプライン端部
2 スプラインの歯
3 超音波振動端子
1 Spline end 2 Spline teeth 3 Ultrasonic vibration terminal

Claims (5)

質量%で,
C :0.1〜0.8%,
Si:0.05〜2.5%,
Mn:0.2〜3%,
Al:0.005〜0.1%,
N :0.001〜0.02%
を含有し,残部がFeおよび不可避的不純物からなり,
スプライン端部の表層における圧縮残留応力が,下記式(A)を満足することを特徴とする,スプラインを有する鋼製部品。
−2.4<(残留応力[MPa])/(表面ビッカース硬度Hv.)<−1.8
・・・(A)
% By mass
C: 0.1 to 0.8%,
Si: 0.05 to 2.5%,
Mn: 0.2 to 3%,
Al: 0.005 to 0.1%,
N: 0.001 to 0.02%
And the balance consists of Fe and inevitable impurities,
A steel part having a spline, wherein the compressive residual stress in the surface layer at the end of the spline satisfies the following formula (A).
-2.4 <(residual stress [MPa]) / (surface Vickers hardness Hv.) < -1.8
... (A)
質量%で,
Cr:0.1〜2%,
Ni:0.1〜2%,
Mo:0.1〜2%,
Cu:0.1〜2%,
Ti:0.003〜0.2%,
V :0.05〜0.5%,
Nb:0.01〜0.1%
の1種または2種以上をさらに含有することを特徴とする,請求項1に記載のスプラインを有する鋼製部品。
% By mass
Cr: 0.1 to 2%,
Ni: 0.1 to 2%,
Mo: 0.1 to 2%,
Cu: 0.1 to 2%,
Ti: 0.003 to 0.2%,
V: 0.05-0.5%,
Nb: 0.01 to 0.1%
The steel part having a spline according to claim 1, further comprising one or more of the following.
請求項1または2に記載のスプラインを有する鋼製部品の疲労特性向上方法であって,
前記スプライン端部を,振動数10k〜60kHz,振幅0.5〜50μmで振動する振動端子で打撃することを特徴とする,スプラインを有する鋼製部品の疲労特性向上方法。
A method for improving fatigue characteristics of a steel part having a spline according to claim 1 or 2,
A method for improving fatigue characteristics of a steel part having a spline, wherein the spline end portion is hit with a vibration terminal that vibrates at a frequency of 10 to 60 kHz and an amplitude of 0.5 to 50 μm.
前記スプライン端部は,スプラインの歯溝が徐々に浅くなる領域および当該領域の近傍の平滑部のことであることを特徴とする,請求項3に記載のスプラインを有する鋼製部品の疲労特性向上方法。  4. The fatigue property improvement of a steel part having a spline according to claim 3, wherein the spline end portion is a region where the tooth groove of the spline gradually becomes shallow and a smooth portion near the region. Method. 前記平滑部の軸方向の長さは,当該平滑部の軸半径と同一の長さであり,  The length of the smooth portion in the axial direction is the same length as the axial radius of the smooth portion,
前記振動端子は,超音波振動端子であることを特徴とする,請求項3または4に記載のスプラインを有する鋼製部品の疲労特性向上方法。  The method for improving fatigue characteristics of a steel part having splines according to claim 3 or 4, wherein the vibration terminal is an ultrasonic vibration terminal.
JP2005152434A 2005-05-25 2005-05-25 Steel parts having splines and methods for improving their fatigue properties Active JP4490874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152434A JP4490874B2 (en) 2005-05-25 2005-05-25 Steel parts having splines and methods for improving their fatigue properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152434A JP4490874B2 (en) 2005-05-25 2005-05-25 Steel parts having splines and methods for improving their fatigue properties

Publications (2)

Publication Number Publication Date
JP2006328466A JP2006328466A (en) 2006-12-07
JP4490874B2 true JP4490874B2 (en) 2010-06-30

Family

ID=37550464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152434A Active JP4490874B2 (en) 2005-05-25 2005-05-25 Steel parts having splines and methods for improving their fatigue properties

Country Status (1)

Country Link
JP (1) JP4490874B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020645A1 (en) * 1993-03-12 1994-09-15 Nippon Steel Corporation Steel material for induction-hardened shaft part and shaft part made therefrom
JP2000002229A (en) * 1998-06-17 2000-01-07 Daido Steel Co Ltd High strength shaft part and its manufacture
JP2004169063A (en) * 2002-11-18 2004-06-17 Nippon Steel Corp Rotator having excellent fatigue strength and long service life and its production method
JP2004353028A (en) * 2003-05-28 2004-12-16 Jfe Steel Kk High carbon steel tube having excellent cold forging workability and rolling workability, and its production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341539A (en) * 1991-05-16 1992-11-27 Daido Steel Co Ltd Carbon steel excellent in edge crack resistance after cold shearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020645A1 (en) * 1993-03-12 1994-09-15 Nippon Steel Corporation Steel material for induction-hardened shaft part and shaft part made therefrom
JP2000002229A (en) * 1998-06-17 2000-01-07 Daido Steel Co Ltd High strength shaft part and its manufacture
JP2004169063A (en) * 2002-11-18 2004-06-17 Nippon Steel Corp Rotator having excellent fatigue strength and long service life and its production method
JP2004353028A (en) * 2003-05-28 2004-12-16 Jfe Steel Kk High carbon steel tube having excellent cold forging workability and rolling workability, and its production method

Also Published As

Publication number Publication date
JP2006328466A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP3308377B2 (en) Gear with excellent tooth surface strength and method of manufacturing the same
JP5635316B2 (en) Gear having excellent fatigue strength and method for manufacturing the same
JP3995904B2 (en) Method for producing inner ring for constant velocity joint excellent in workability and strength
WO2006104023A1 (en) Hollow driving shaft obtained through induction hardening
JP5872863B2 (en) Gear having excellent pitting resistance and method for producing the same
WO2005088147A1 (en) Machine element and method for manufacture thereof
JPH0421757A (en) High surface pressure gear
JP3405468B2 (en) Manufacturing method of mechanical structural parts
JP4854981B2 (en) Friction welded parts with excellent fatigue resistance and methods for improving the fatigue characteristics
JP4818632B2 (en) Shaft with excellent fatigue resistance and method for improving fatigue characteristics
JP4490874B2 (en) Steel parts having splines and methods for improving their fatigue properties
JP4504550B2 (en) Steel for gears and gears with excellent root bending fatigue and surface fatigue properties
JP4436225B2 (en) High-strength mechanical parts with excellent fatigue characteristics and methods for improving the fatigue characteristics
WO2006030800A1 (en) High strength machine parts and shaft excellent in fatigue characteristics, and method for improving fatigue characteristics thereof
JP2006292108A (en) Crank shaft and its manufacturing method
JP4403044B2 (en) Crankshaft fatigue characteristics improvement method
WO2017170540A1 (en) Carbonitrided component having excellent surface fatigue strength and bending fatigue strength, and method for manufacturing same
JP2000002229A (en) High strength shaft part and its manufacture
JPH0565592A (en) High fatigue strength steel for structural purpose and steel member made of the same
JP4374306B2 (en) Connecting rods with excellent fatigue characteristics and methods for improving the fatigue characteristics
KR20070021182A (en) High strength machine parts and shaft excellent in fatigue characteristics, and method for improving fatigue characteristics thereof
JPH10310823A (en) Manufacture of shaft-shaped parts for machine structural use, excellent in fatigue characteristic
JP6987625B2 (en) Machine parts such as slab-baked steel for machine structures with excellent pitching resistance used for carburized skin and slab-baked gears made of the steel.
EP1098012B1 (en) Non-heat treated, soft-nitrided steel parts
JP2008196592A (en) Power transmission shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4490874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350