JP3405468B2 - Manufacturing method of mechanical structural parts - Google Patents

Manufacturing method of mechanical structural parts

Info

Publication number
JP3405468B2
JP3405468B2 JP24014293A JP24014293A JP3405468B2 JP 3405468 B2 JP3405468 B2 JP 3405468B2 JP 24014293 A JP24014293 A JP 24014293A JP 24014293 A JP24014293 A JP 24014293A JP 3405468 B2 JP3405468 B2 JP 3405468B2
Authority
JP
Japan
Prior art keywords
nitriding
steel
mechanical structural
mechanical
structural component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24014293A
Other languages
Japanese (ja)
Other versions
JPH0790364A (en
Inventor
田 龍 実 瓜
村 貞 行 中
辺 陽 一 渡
垣 俊 造 梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP24014293A priority Critical patent/JP3405468B2/en
Publication of JPH0790364A publication Critical patent/JPH0790364A/en
Application granted granted Critical
Publication of JP3405468B2 publication Critical patent/JP3405468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、面圧強度,曲げ疲労強
度,ねじり疲労強度等の機械的強度に優れた機械構造部
品を得るのに利用される機械構造部品の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a mechanical structural part used for obtaining a mechanical structural part having excellent mechanical strength such as surface pressure strength, bending fatigue strength, and torsional fatigue strength. .

【0002】[0002]

【従来の技術】従来、機械構造部品の面圧強度,曲げ疲
労強度,ねじり疲労強度等の機械的強度を向上させるた
めに、鋼に対して表面硬化処理を行うことがよく実施さ
れており、浸炭,窒化,高周波焼入れなどの表面硬化処
理がよく採用されている(なお、この種の鋼に対する表
面硬化処理に関しては、例えば、「第3版 鉄鋼便覧第
VI巻 二次加工・表面処理・熱処理・溶接」 昭和5
7年5月31日発行社団法人 日本鉄鋼協会編 第56
2頁〜第600頁『14.表面硬化』に詳細な説明がな
されている。)。
2. Description of the Related Art Conventionally, in order to improve mechanical strength such as surface pressure strength, bending fatigue strength and torsional fatigue strength of machine structural parts, it is often practiced to subject steel to surface hardening treatment. Surface hardening treatments such as carburizing, nitriding, and induction hardening are often adopted. (For surface hardening treatments for this type of steel, see, for example, "3rd Edition Iron and Steel Handbook, Volume VI Secondary Processing, Surface Treatment, and Heat Treatment."・ Welding ”Showa 5
May 31, 1995 Published by The Iron and Steel Institute of Japan, 56th edition
Pages 2 to 600, “14. Surface hardening ”for a detailed explanation. ).

【0003】このような表面硬化処理において、例え
ば、C含有量を0.13〜0.23%と低くしたはだ焼
鋼を用いて浸炭や浸炭窒化処理を施すことによって、耐
摩耗性や疲労強度を向上させた機械構造部品を得ること
が良く行われているが、このほか、窒化処理(例えば、
タフトライド処理,ガス軟窒化処理,イオン窒化処理)
や高周波焼入れなども良く行われている。
In such a surface hardening treatment, for example, by using carburizing or carbonitriding treatment using a case-hardening steel having a C content as low as 0.13 to 0.23%, wear resistance and fatigue are improved. It is common to obtain mechanical structural parts with improved strength, but in addition to this, nitriding treatment (for example,
(Tufftride treatment, gas soft nitriding treatment, ion nitriding treatment)
Also induction hardening is often done.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
窒化処理のみの場合では、硬化層深さが浅いため、転動
寿命の向上に限界があると共に、曲げ疲労強度やねじり
疲労強度の向上もいまだ十分でないという問題点があ
り、高周波焼入れのみでは表面硬さが低く転動寿命が著
しく短く、焼もどし軟化抵抗も低いという問題点があっ
て、窒素と炭素を含有したオーステナイトを急冷して得
られるマルテンサイトのもつ優れた焼もどし軟化抵抗性
や亀裂発生抵抗性をより一層活かすことができるように
することが課題であった。
However, in the case of only the conventional nitriding treatment, the depth of the hardened layer is shallow, so that there is a limit to the improvement of rolling life and the improvement of bending fatigue strength and torsional fatigue strength still remains. There is a problem that it is not sufficient, there is a problem that the surface hardness is low and the rolling life is extremely short only by induction hardening, and the resistance to temper softening is also low, and it can be obtained by rapidly cooling austenite containing nitrogen and carbon. It was a subject to make it possible to further utilize the excellent tempering softening resistance and cracking resistance of martensite.

【0005】[0005]

【発明の目的】本発明は、上述した従来の課題にかんが
みてなされたものであって、窒素と炭素を含有したオー
ステナイトを急冷して得られるマルテンサイトのもつ優
れた焼もどし軟化抵抗性や亀裂発生抵抗性をより一層活
かすことが可能であり、面圧強度(耐ピッチング疲労特
性),曲げ疲労強度,ねじり疲労強度等の機械的強度に
より一層優れた機械構造部品を得ることを目的としてい
る。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has excellent resistance to temper softening and cracking of martensite obtained by rapidly cooling austenite containing nitrogen and carbon. The purpose of the present invention is to obtain a mechanical structural component that can make better use of the generated resistance and is further excellent in mechanical strength such as surface pressure strength (pitting fatigue resistance), bending fatigue strength, and torsional fatigue strength.

【0006】[0006]

【課題を解決するための手段】本発明に係わる機械構造
部品の製造方法は、重量%で、C:0.35〜0.65
%、Si:0.03〜1.50%、Mn:0.3〜1.
0%、Cr:0.1〜3.0%を含み、場合によっては
さらに、Al:0.02〜1.5%,V:0.05〜
0.5%,Mo:0.05〜0.5%のうちの1種また
は2種以上、同じく、Ni:0.5〜2.0%、同じ
く、Ti:0.005〜0.05%,Nb:0.01〜
0.10%の1種または2種、同じく、S:0.02〜
0.40%,Pb:0.01〜0.50%,Ca:0.
0003〜0.010%,Te:0.005〜0.10
%,Bi:0.01〜0.50%のうちの1種または2
種以上を含み、残部Feおよび不純物よりなる鋼に対
し、窒化層深さが150μm以上となる条件で軟窒化処
理を行った後、表面加熱温度を900〜1200℃、加
熱時間を1〜10secとして窒化層がオーステナイト
化する条件で高周波焼入れを行うことを特徴としてい
る。
The method of manufacturing a mechanical structural component according to the present invention is, by weight%, C: 0.35 to 0.65.
%, Si: 0.03 to 1.50%, Mn: 0.3 to 1.
0:%, Cr: 0.1-3.0%, and in some cases, Al: 0.02-1.5%, V: 0.05-
One or more of 0.5% and Mo: 0.05 to 0.5%, Ni: 0.5 to 2.0%, and Ti: 0.005 to 0.05% , Nb: 0.01 to
0.10% of 1 type or 2 types, similarly, S: 0.02
0.40%, Pb: 0.01 to 0.50%, Ca: 0.
0003-0.010%, Te: 0.005-0.10
%, Bi: 0.01 to 0.50%, 1 or 2
After soft nitriding treatment is performed on the steel containing at least seeds and the balance Fe and impurities under the condition that the nitrided layer depth is 150 μm or more, the surface heating temperature is 900 to 1200 ° C., and the heating time is 1 to 10 sec. It is characterized in that induction hardening is performed under the condition that the nitrided layer becomes austenite.

【0007】次に、本発明に係わる機械構造部品の製造
方法において適用される鋼の化学成分組成(重量%)の
限定理由について説明する。
Next, the reasons for limiting the chemical composition (% by weight) of steel applied in the method of manufacturing a mechanical structural part according to the present invention will be explained.

【0008】Cは機械構造部品の強度を確保するのに有
用な元素であるが、含有量が少なすぎると強度の確保が
十分にできなくなるので、0.35%以上としている。
しかし、C含有量が多すぎると靭性の劣化を招くことが
あるので0.65%以下としている。
C is an element useful for securing the strength of mechanical structural parts, but if the content is too small, the strength cannot be secured sufficiently, so the content is made 0.35% or more.
However, if the C content is too large, the toughness may be deteriorated, so the content is made 0.65% or less.

【0009】Siは鋼溶製時において脱酸剤として有用
であると共に、焼もどし軟化抵抗性を向上して、転動寿
命を向上させるのに有用な元素であり、このような作用
を得るために0.03%以上としている。しかし、Si
含有量が多すぎると加工性や靭性の劣化を招くこととな
るので1.50%以下としている。
Si is an element which is useful as a deoxidizing agent during the melting of steel, and is also useful for improving the resistance to temper softening and improving the rolling life. And 0.03% or more. But Si
If the content is too large, workability and toughness are deteriorated, so the content is made 1.50% or less.

【0010】Mnは鋼溶製時において脱酸剤および脱硫
剤として作用すると共に、高周波焼入れ性の向上に有用
な元素であり、このような作用を得るために0.3%以
上としている。しかし、Mn含有量が多すぎると靭性の
劣化を招くので1.0%以下としている。
Mn acts as a deoxidizing agent and a desulfurizing agent during the melting of steel, and is an element useful for improving the induction hardenability. To obtain such an action, Mn is set to 0.3% or more. However, if the Mn content is too high, the toughness is deteriorated, so the content is made 1.0% or less.

【0011】Crは窒化特性の向上、とくに、窒化深さ
の増大に有用であると共に、高周波焼入れ性の向上にも
有用な元素であり、このような作用を得るために0.1
%以上としている。しかし、Cr含有量を多くしても窒
化特性向上の効果が飽和するので3.0%以下としてい
る。
Cr is an element that is useful for improving the nitriding property, particularly for increasing the nitriding depth, and also for improving the induction hardenability.
% And above. However, even if the Cr content is increased, the effect of improving the nitriding characteristics is saturated, so the content is made 3.0% or less.

【0012】Al,V,Moはいずれも窒化特性の向上
に有用な元素であり、Alは特に表面硬さの向上に有用
な元素であり、Vは特に窒化深さの向上に有用であると
共に心部硬さの向上にも有用な元素であり、Moは特に
窒化深さの向上および高周波焼入れ性の向上にも有用な
元素であることから、Alについては0.02%以上、
Vについては0.05%以上、Moについては0.05
%以上のうちの1種または2種以上を場合によっては含
有させることもできる。しかし、Al含有量が多すぎて
も窒化特性向上の効果が飽和することから1.5%以下
とし、V含有量が多すぎても窒化特性向上の効果が飽和
することから0.5以下とし、Mo含有量が多すぎても
焼入れ性向上の効果が飽和すると共に被削性を劣化させ
るので0.5%以下とするのが良い。
All of Al, V, and Mo are elements useful for improving nitriding characteristics, Al is an element particularly useful for improving surface hardness, and V is particularly useful for improving nitriding depth. Since it is an element that is also useful for improving the core hardness, and Mo is an element that is particularly useful for improving the nitriding depth and the induction hardenability, Al is 0.02% or more,
0.05% or more for V, 0.05 for Mo
One or two or more of% or more may be optionally contained. However, if the Al content is too large, the effect of improving the nitriding characteristics is saturated, so it is set to 1.5% or less, and if the V content is too large, the effect of improving the nitriding characteristics is saturated, so it is set to 0.5 or less. If the Mo content is too high, the effect of improving the hardenability is saturated and the machinability is deteriorated, so 0.5% or less is preferable.

【0013】Niは高周波焼入れ性の向上ならびに靭性
の向上に寄与する元素であることから、場合によっては
0.5%以上を含有させることもできる。しかし、Ni
含有量が多すぎると焼入れ性の向上効果が飽和すると共
に被削性を劣化させることとなるので2.0%以下とす
るのが良い。
Ni is an element that contributes to the improvement of the induction hardenability and the toughness, so 0.5% or more may be contained in some cases. However, Ni
If the content is too large, the effect of improving the hardenability is saturated and the machinability is deteriorated. Therefore, the content is preferably 2.0% or less.

【0014】Ti,Nbは結晶粒の微細化および窒化特
性の向上に有用な元素であるので、Tiについては0.
005%以上、Nbについては0.01%以上を場合に
よっては含有させることもできる。しかし、Ti,Nb
含有量が多すぎると靭性を低下させることとなるので、
Tiについては0.05%以下、Nbについては0.1
0%以下とするのが良い。
Since Ti and Nb are elements useful for refining the crystal grains and improving the nitriding characteristics, the Ti content is 0.
Depending on the case, 005% or more and 0.01% or more of Nb may be contained. However, Ti, Nb
If the content is too large, the toughness will decrease, so
0.05% or less for Ti, 0.1 for Nb
It is better to be 0% or less.

【0015】S,Pb,Ca,Te,Biはいずれも被
削性の向上に寄与する元素であるので、被削性に優れて
いることが要求される機械構造部品の場合にはこれらの
1種または2種以上を添加するのも良く、この場合に、
Sについては0.02%以上,Pbについては0.01
%以上、Caについては0.0003%以上、Teにつ
いては0.005%以上、Biについては0.01%以
上を適宜添加することもできる。しかし、これらの含有
量が多すぎると強度(特に、ローラーピッチング強度)
を低下させると共に縦(圧延)方向の靭性を劣化させる
こととなるので、Sについては0.40%以下、Pbに
ついては0.50%以下、Caについては0.010%
以下、Teについては0.10%以下、Biについては
0.50%以下とするのが良い。
Since S, Pb, Ca, Te, and Bi are all elements that contribute to the improvement of machinability, in the case of mechanical structural parts that are required to have excellent machinability, these 1 It is also possible to add seeds or two or more kinds. In this case,
0.02% or more for S, 0.01 for Pb
%, Ca may be 0.0003% or more, Te may be 0.005% or more, and Bi may be 0.01% or more. However, if these contents are too high, strength (especially roller pitting strength)
As well as decreasing the toughness in the longitudinal (rolling) direction, S is 0.40% or less, Pb is 0.50% or less, and Ca is 0.010%.
Hereinafter, Te is preferably 0.10% or less and Bi is preferably 0.50% or less.

【0016】本発明においては、上記組成の鋼に対し
て、窒化層深さが150μm以上となる窒化条件で軟窒
化処理を行うようにしているが、このような窒化層深さ
は、窒素+炭素マルテンサイトによる面圧強度(耐ピッ
チング疲労特性)の向上をはかるために必要であり、図
3に示すように、窒化層深さが150μmに満たない場
合には表面の陥没を生じやすくなるなどの理由によって
破損に至ることがあるため寿命が著しく短いものとなる
ので好ましくない。この場合、窒化層深さは、表層から
硬さが心部に向けて同じ硬さとなっている部分までの距
離を言っている。
In the present invention, the steel having the above composition is subjected to the soft nitriding treatment under the nitriding condition such that the nitriding layer depth becomes 150 μm or more. It is necessary to improve the surface pressure strength (pitting fatigue resistance) by carbon martensite. As shown in FIG. 3, when the depth of the nitrided layer is less than 150 μm, surface depression is likely to occur. For this reason, it may be damaged, resulting in a significantly short life, which is not preferable. In this case, the depth of the nitrided layer means the distance from the surface layer to the portion where the hardness is the same toward the core.

【0017】そして、このような軟窒化処理としては、
ガス軟窒化処理を用いることができ、そのほか、タフラ
イド処理やイオン窒化処理等の軟窒化処理を用いること
ができる。
And, as such soft nitriding treatment,
Gas soft nitriding treatment can be used, and in addition, soft nitriding treatment such as tufting treatment or ion nitriding treatment can be used.

【0018】本発明においては、上記したように、窒化
層深さが150μm以上となる条件で軟窒化処理を行っ
たのち、窒化層がオーステナイト化する条件で高周波焼
入れを行うようにしているので、このような高周波焼入
れは、窒素+炭素マルテンサイトによる面圧強度を向上
させるために行うようにしており、心部マルテンサイト
による曲げ疲労強度ないしはねじり疲労強度を向上させ
るようにしている。
In the present invention, as described above, since the soft nitriding treatment is performed under the condition that the nitride layer depth is 150 μm or more, the induction hardening is performed under the condition that the nitride layer becomes austenite. Such induction hardening is carried out in order to improve the surface pressure strength due to nitrogen + carbon martensite, and to improve the bending fatigue strength or torsional fatigue strength due to the core martensite.

【0019】この場合、高周波焼入れの際の加熱条件
は、表面加熱温度(T)が900℃以上1200℃以下
でかつ加熱時間(t)が1sec以上10sec以下と
する。更に、下式のZで規定される平均の表面加熱温度
と加熱時間との関係が200≦Z≦1000となる範囲
の条件とすることが望ましい。
In this case, the heating conditions for induction hardening are that the surface heating temperature (T) is 900 ° C. or more and 1200 ° C. or less and the heating time (t) is 1 sec or more and 10 sec or less. Furthermore, it is desirable that the relationship between the average surface heating temperature and the heating time defined by Z in the following equation be in the range of 200 ≦ Z ≦ 1000.

【0020】Z=(T+273)×log(t)Z = (T + 273) × log (t)

【0021】そして、表面加熱温度が900℃よりも低
いと窒化物が高周波焼入れ時に固溶しがたくなるので好
ましくなく、表面加熱温度が900℃以上であっても表
層には窒化物が形成されることからピンニング効果によ
り結晶粒は粗大化しがたいものとなっているが、表面加
熱温度が1200℃よりも高いと結晶粒が粗大化するこ
ととなるので好ましくない。したがって、高周波焼入れ
の際の表面加熱温度は900〜1200℃とすることが
望ましい。
If the surface heating temperature is lower than 900 ° C., it is not preferable because the nitride hardly forms a solid solution during induction hardening, and even if the surface heating temperature is 900 ° C. or higher, nitride is formed on the surface layer. Therefore, the crystal grains are difficult to coarsen due to the pinning effect, but if the surface heating temperature is higher than 1200 ° C., the crystal grains become coarse, which is not preferable. Therefore, it is desirable that the surface heating temperature during induction hardening be 900 to 1200 ° C.

【0022】また、Zの値が200よりも小さいと窒化
物が高周波焼入れ時に固溶しがたくなるので好ましくな
く、Zの値は1000よりも大きいと表面肌が荒れやす
いこととなるので好ましくない。
If the value of Z is less than 200, it is not preferable because the nitride is less likely to form a solid solution during induction hardening, and if the value of Z is more than 1000, the surface skin tends to be rough, which is not preferable. .

【0023】[0023]

【発明の作用】本発明に係わる機械構造部品の製造方法
では、重量%で、C:0.35〜0.65%、Si:
0.03〜1.50%、Mn:0.3〜1.0%、C
r:0.1〜3.0%を含み、場合によってはさらに、
Al:0.02〜1.5%,V:0.05〜0.5%,
Mo:0.05〜0.5%のうちの1種または2種以
上、同じく、Ni:0.5〜2.0%、同じく、Ti:
0.005〜0.05%,Nb:0.01〜0.10%
のうちの1種または2種、同じく、S:0.02〜0.
40%,Pb:0.01〜0.50%,Ca:0.00
03〜0.010%,Te:0.005〜0.10%,
Bi:0.01〜0.50%のうちの1種または2種以
上を含み、残部Feおよび不純物よりなる鋼に対し、窒
化層深さが150μm以上となる条件で軟窒化処理を行
った後、表面加熱温度を900〜1200℃、加熱時間
を1〜10secとして窒化層がオーステナイト化する
条件で高周波焼入れを行うので、表層部分には窒素と炭
素を含有したオーステナイトを急冷して得られる窒素+
炭素マルテンサイトが形成されている機械構造部品とな
り、焼もどし軟化抵抗性や亀裂発生抵抗性がより一層良
好なものとなって、面圧強度(耐ピッチング疲労特
性),曲げ疲労強度ならびにねじり疲労強度等の機械的
特性により一層優れた機械構造部品となる。
In the method of manufacturing a mechanical structural part according to the present invention, C: 0.35 to 0.65% by weight and Si:
0.03 to 1.50%, Mn: 0.3 to 1.0%, C
r: 0.1 to 3.0%, depending on the case,
Al: 0.02-1.5%, V: 0.05-0.5%,
One or more of Mo: 0.05 to 0.5%, similarly Ni: 0.5 to 2.0%, and similarly Ti:
0.005-0.05%, Nb: 0.01-0.10%
1 or 2 of the same, similarly, S: 0.02 to 0.
40%, Pb: 0.01 to 0.50%, Ca: 0.00
03-0.010%, Te: 0.005-0.10%,
Bi: after soft nitriding is performed on steel containing one or two or more of 0.01 to 0.50% and the balance Fe and impurities under the condition that the nitriding layer depth is 150 μm or more. Since induction heating is performed under the conditions that the surface heating temperature is 900 to 1200 ° C. and the heating time is 1 to 10 seconds and the nitride layer is austenitized, nitrogen + carbon obtained by quenching austenite containing nitrogen and carbon is obtained in the surface layer portion.
It becomes a machine structural part in which carbon martensite is formed, and its tempering softening resistance and crack initiation resistance are even better. It becomes a mechanical structural component that is more excellent due to mechanical properties such as.

【0024】[0024]

【実施例】表1および表2に示す化学成分の鋼を溶製し
たのち直径32mmに鍛造し、焼ならしを施したあと、
図1に示すように、D=26mm,D=22mm,
=28mm,L=51mm,L=130mmの
ローラーピッチング試験片1を作製すると共に、図2に
示すように、D=8mm,D=15mm,L=5
0mm,L=80mm,L=210mm,R=30
mmの小野式回転曲げ試験片2を作製し、これを供試材
とした。
EXAMPLES Steels having the chemical compositions shown in Tables 1 and 2 were melted, forged to a diameter of 32 mm, and after normalizing,
As shown in FIG. 1, D 1 = 26 mm, D 2 = 22 mm,
A roller pitching test piece 1 having L 1 = 28 mm, L 2 = 51 mm, L 3 = 130 mm was prepared, and as shown in FIG. 2, D 5 = 8 mm, D 6 = 15 mm, L 5 = 5.
0 mm, L 6 = 80 mm, L 7 = 210 mm, R = 30
An Ono-type rotary bending test piece 2 having a size of mm was produced and used as a test material.

【0025】そして、比較例d−2を除く各供試材に対
して表7に示す条件によるガス軟窒化処理を行うことに
よって、ローラーピッチング試験片1については表3お
よび表4ならびに小野式回転曲げ試験片2については表
5および表6のそれぞれ「窒化後の表面硬さ」,「窒化
層深さ」の各欄に示す値をもつ窒化層を得た。
Then, each of the test materials except Comparative Example d-2 was subjected to a gas nitrocarburizing treatment under the conditions shown in Table 7, whereby the roller pitching test piece 1 was subjected to Tables 3 and 4 and Ono-type rotation. With respect to the bending test piece 2, a nitride layer having the values shown in the columns of "surface hardness after nitriding" and "nitride layer depth" in Tables 5 and 6 was obtained.

【0026】続いて、窒化処理後の各供試材のうち、比
較例d−1を除く各供試材に対して表8(ローラーピッ
チング試験片1と小野式回転曲げ試験片2とで高周波焼
入れ条件を異ならせている。)、さらにローラーピッチ
ング試験片1については表3および表4ならびに小野式
回転曲げ試験片2については表5および表6のそれぞれ
「表面最高加熱温度」,「加熱時間」,「平均表面温度
×時間[Z=(T+273)×log(t)]の各欄に
示す条件によって高周波焼入れを行うことによって、同
じくローラーピッチング試験片1については表3および
表4ならびに小野式回転曲げ試験片2については表5お
よび表6のそれぞれ「高周波焼入れ後の表面硬さ」,
「高周波焼入れ後の窒化深さ」,「高周波焼入れ後の硬
化層深さ」の各欄に示す値をもつ硬化層を得た。
Subsequently, among the test materials after the nitriding treatment, for each test material except Comparative Example d-1, Table 8 (high frequency was used for the roller pitting test piece 1 and the Ono-type rotary bending test piece 2). The quenching conditions are different), and further, Table 3 and Table 4 for the roller pitching test piece 1 and Table 5 and Table 6 for the Ono type rotary bending test piece 2 show the "maximum surface heating temperature" and "heating time", respectively. , “Average surface temperature × time [Z = (T + 273) × log (t)] by induction hardening under the conditions shown in the columns, and also for the roller pitching test piece 1, Tables 3 and 4 and Ono formula For the rotary bending test piece 2, Table 5 and Table 6 show "surface hardness after induction hardening", respectively.
Hardened layers having the values shown in the columns of "nitriding depth after induction hardening" and "hardened layer depth after induction hardening" were obtained.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【表5】 [Table 5]

【0032】[0032]

【表6】 [Table 6]

【0033】[0033]

【表7】 [Table 7]

【0034】[0034]

【表8】 [Table 8]

【0035】次に、各ローラーピッチング試験片1に対
して、 小ローラー(試験片):直径26mm 大ローラー(相手材):直径130mm 滑り率 :40% 回転数 :1580rpm の条件でローラーピッチング試験を行ったところ、同じ
く、表3および表4の「ピッチング寿命」の欄に示す結
果が得られた。
Next, for each roller pitching test piece 1, a roller pitching test was conducted under the conditions of small roller (test piece): diameter 26 mm, large roller (counterpart material): diameter 130 mm, slip ratio: 40%, rotation speed: 1580 rpm. When carried out, similarly, the results shown in the columns of "pitching life" in Tables 3 and 4 were obtained.

【0036】この結果、本発明例A〜Lではいずれもピ
ッチング寿命が10回を超えており、優れた面圧疲労
強度(耐ピッチング疲労強度)を有するものとなってい
た。
As a result, the invention examples A to L all had a pitting life of more than 10 7 times and had excellent surface pressure fatigue strength (pitting fatigue strength).

【0037】これに対して、窒化処理のみ行い高周波焼
入れ処理を行わない比較例d−1の場合、窒化処理を行
わず高周波焼入れ処理のみを行う比較例d−2の場合、
窒化処理時間が短いため窒化層深さが小さい比較例d−
3の場合、高周波焼入れの際の加熱時間が短い比較例d
−4の場合は、いずれもピッチング寿命が短く、面圧疲
労強度が低いものとなっていた。
On the other hand, in the case of Comparative Example d-1 in which only the nitriding treatment is performed and the induction hardening treatment is not performed, in the case of Comparative Example d-2 in which the nitriding treatment is not performed and only the induction hardening treatment is performed,
Comparative Example d- where the nitriding time is short and the nitriding layer depth is small
In the case of 3, Comparative Example d in which the heating time during induction hardening is short
In all cases of -4, the pitting life was short and the contact pressure fatigue strength was low.

【0038】他方、各小野式回転曲げ試験片2に対し
て、回転数:3500rpmの条件で小野式回転曲げ疲
労試験を行ったところ、同じく、表5および表6の「疲
労限度」の欄に示す結果が得られた。
On the other hand, when an Ono-type rotary bending fatigue test was conducted on each Ono-type rotary bending test piece 2 under the condition of the number of rotations: 3500 rpm, the same results were obtained in the "Fatigue limit" column of Tables 5 and 6. The results shown were obtained.

【0039】この結果、本発明例A〜Lではいずれも疲
労限度が600N/mmを超えており優れた曲げ疲労
強度を有するものとなっていた。
As a result, in each of Examples A to L of the present invention, the fatigue limit exceeded 600 N / mm 2 and had excellent bending fatigue strength.

【0040】これに対して、比較例d−1〜d−4の場
合は、いずれも疲労強度の値が低く、曲げ疲労強度に劣
るものとなっていた。
On the other hand, in each of Comparative Examples d-1 to d-4, the fatigue strength was low and the bending fatigue strength was poor.

【0041】[0041]

【発明の効果】本発明に係わる機械構造部品の製造方法
では、特定成分の鋼に対し窒化層深さが150μm以上
となる条件で軟窒化処理を行った後、表面加熱温度を9
00〜1200℃、加熱時間を1〜10secとして窒
化層がオーステナイト化する条件で高周波焼入れを行う
ようにしたから、窒素と炭素を含有したオーステナイト
を急冷して得られるマルテンサイトのもつ優れた焼もど
し軟化抵抗性や亀裂発生抵抗性をより一層活用すること
が可能となり、面圧強度(耐ピッチング疲労強度),曲
げ疲労強度,ねじり疲労強度等の機械的特性に優れた機
械構造部品を提供することが可能であるという著しく優
れた効果がもたらされる。
In the method for manufacturing a mechanical structural part according to the present invention, the surface heating temperature is set to 9 after the soft nitriding treatment is performed on the steel of the specific component under the condition that the nitriding layer depth is 150 μm or more.
Since induction hardening was carried out under conditions where the nitrided layer was austenitized at a heating temperature of 0 to 1200 ° C. for 1 to 10 sec, the excellent tempering of martensite obtained by quenching austenite containing nitrogen and carbon was achieved. It is possible to further utilize softening resistance and crack initiation resistance, and to provide a mechanical structural component having excellent mechanical properties such as surface pressure strength (pitting fatigue strength), bending fatigue strength, and torsional fatigue strength. It is possible to obtain a remarkably excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】ローラーピッチング試験片の形状を示す説明図
である。
FIG. 1 is an explanatory view showing the shape of a roller pitching test piece.

【図2】小野式回転曲げ試験片の形状を示す説明図であ
る。
FIG. 2 is an explanatory view showing the shape of an Ono-type rotary bending test piece.

【図3】窒化層深さによる寿命への影響を例示するグラ
フである。
FIG. 3 is a graph illustrating the influence of the depth of the nitride layer on the life.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/60 C22C 38/60 (72)発明者 梅 垣 俊 造 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社 内 (56)参考文献 特開 平2−232353(JP,A) 特開 昭59−50158(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 1/06,6/00 C23C 8/26 C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22C 38/60 C22C 38/60 (72) Inventor Shun Umegaki No. 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. (56) References JP-A-2-232353 (JP, A) JP-A-59-50158 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 1 / 06,6 / 00 C23C 8/26 C22C 38/00-38/60

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.35〜0.65%、
Si:0.03〜1.50%、Mn:0.3〜1.0
%、Cr:0.1〜3.0%、残部Feおよび不純物よ
りなる鋼に対し、窒化層深さが150μm以上となる条
件で軟窒化処理を行った後、表面加熱温度を900〜1
200℃、加熱時間を1〜10secとして窒化層がオ
ーステナイト化する条件で高周波焼入れを行うことを特
徴とする機械的強度に優れた機械構造部品の製造方法。
1. C: 0.35 to 0.65% by weight,
Si: 0.03 to 1.50%, Mn: 0.3 to 1.0
%, Cr: 0.1 to 3.0%, the balance Fe and impurities to the steel, after the nitriding treatment is performed under the condition that the nitriding layer depth is 150 μm or more, the surface heating temperature is 900 to 1
A method for producing a mechanical structural component excellent in mechanical strength, which comprises performing induction hardening under conditions of 200 ° C. and a heating time of 1 to 10 seconds so that a nitride layer is austenitized.
【請求項2】 鋼中に、Al:0.02〜1.5%,
V:0.05〜0.5%,Mo:0.05〜0.5%の
うちの1種または2種以上を含有する請求項1に記載の
機械的強度に優れた機械構造部品の製造方法。
2. In the steel, Al: 0.02 to 1.5%,
The production of a mechanical structural component excellent in mechanical strength according to claim 1, which contains one or more of V: 0.05 to 0.5% and Mo: 0.05 to 0.5%. Method.
【請求項3】 鋼中に、Ni:0.5〜2.0%を含有
する請求項1または2に記載の機械的強度に優れた機械
構造部品の製造方法。
3. The method for producing a mechanical structural component excellent in mechanical strength according to claim 1, wherein the steel contains Ni: 0.5 to 2.0%.
【請求項4】 鋼中に、Ti:0.005〜0.05
%,Nb:0.01〜0.10%のうちの1種または2
種を含有する請求項1ないし3のいずれかに記載の機械
的強度に優れた機械構造部品の製造方法。
4. Ti: 0.005 to 0.05 in steel
%, Nb: 1 to 2 out of 0.01 to 0.10% or 2
The method for producing a mechanical structural component having excellent mechanical strength according to claim 1, further comprising a seed.
【請求項5】 鋼中に、S:0.02〜0.40%,P
b:0.01〜0.50%,Ca:0.0003〜0.
010%,Te:0.005〜0.10%,Bi:0.
01〜0.50%のうちの1種または2種以上を含有す
る請求項1ないし4のいずれかに記載の機械的強度に優
れた機械構造部品の製造方法。
5. S: 0.02 to 0.40%, P in steel
b: 0.01 to 0.50%, Ca: 0.0003 to 0.
010%, Te: 0.005 to 0.10%, Bi: 0.
The method for producing a mechanical structural component excellent in mechanical strength according to any one of claims 1 to 4, containing one or more of 01 to 0.50%.
JP24014293A 1993-09-27 1993-09-27 Manufacturing method of mechanical structural parts Expired - Fee Related JP3405468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24014293A JP3405468B2 (en) 1993-09-27 1993-09-27 Manufacturing method of mechanical structural parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24014293A JP3405468B2 (en) 1993-09-27 1993-09-27 Manufacturing method of mechanical structural parts

Publications (2)

Publication Number Publication Date
JPH0790364A JPH0790364A (en) 1995-04-04
JP3405468B2 true JP3405468B2 (en) 2003-05-12

Family

ID=17055125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24014293A Expired - Fee Related JP3405468B2 (en) 1993-09-27 1993-09-27 Manufacturing method of mechanical structural parts

Country Status (1)

Country Link
JP (1) JP3405468B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762077B2 (en) 2006-08-09 2011-08-31 日本パーカライジング株式会社 Hardening method of steel member, hardened steel member and hardened surface protective agent
JP4560141B2 (en) 2008-12-19 2010-10-13 新日本製鐵株式会社 Surface hardening machine structural steel and machine structural steel parts
CN102282282B (en) 2009-01-16 2015-01-21 新日铁住金株式会社 Steel for surface hardening for machine structural use, and component for machine structural use
JP5233846B2 (en) * 2009-06-02 2013-07-10 新日鐵住金株式会社 Steel materials used for nitriding and induction hardening
JP5328545B2 (en) 2009-07-31 2013-10-30 日本パーカライジング株式会社 Steel member having nitrogen compound layer and method for producing the same
JP5477111B2 (en) * 2010-03-30 2014-04-23 新日鐵住金株式会社 Nitriding induction hardening steel and nitriding induction hardening parts
US10072314B2 (en) 2013-03-08 2018-09-11 Nippon Steel & Sumitomo Metal Corporation Roughly shaped material for induction hardened components and method for producing same
JP5958652B2 (en) 2013-05-30 2016-08-02 新日鐵住金株式会社 Soft nitrided induction hardened steel parts with excellent surface fatigue strength
JP2015121228A (en) * 2014-12-25 2015-07-02 日本パーカライジング株式会社 High durability engine valve
JP6641851B2 (en) * 2015-10-02 2020-02-05 大同特殊鋼株式会社 Steel heat treatment method and steel member
JP7031428B2 (en) * 2018-03-26 2022-03-08 日本製鉄株式会社 Steel for soaking and quenching, soaking and quenching parts and their manufacturing methods
JP7168059B2 (en) * 2018-03-26 2022-11-09 日本製鉄株式会社 Steel for nitriding and quenching treatment, nitriding and quenching parts, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0790364A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
JP4047499B2 (en) Carbonitriding parts with excellent pitting resistance
JP3405468B2 (en) Manufacturing method of mechanical structural parts
JPH09287644A (en) High strength low heat treatment deformation gear and manufacture thereof
JP3381738B2 (en) Manufacturing method of mechanical structural parts with excellent mechanical strength
JPH0953149A (en) Case hardening steel with high strength and high toughness
JP3006034B2 (en) High strength mechanical structural members with excellent surface pressure strength
JP3184411B2 (en) Low distortion type carburized steel for gears
JP2991064B2 (en) Non-tempered nitrided forged steel and non-tempered nitrided forged products
JP4010023B2 (en) Soft nitrided non-tempered crankshaft and manufacturing method thereof
JPS5916949A (en) Soft-nitriding steel
JPH09111405A (en) Low strain type carburized and quenched steel stock for gear
JP2769135B2 (en) Low distortion type steel material for carburized hardened gears
JPH07188895A (en) Manufacture of parts for machine structure use
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JPH0565592A (en) High fatigue strength steel for structural purpose and steel member made of the same
JPH0488148A (en) High strength gear steel capable of rapid carburization and high strength gear
JP3267164B2 (en) Method for producing steel for nitriding and nitrided steel products
JPH0643604B2 (en) Manufacturing method for machine structural parts
JP2000008141A (en) Non-heat treated soft-nitrided steel forged parts and production thereof
JPH06346142A (en) Production of machine structural parts excellent in bearing fatigue strength
US6391124B1 (en) Non-heat treated, soft-nitrided steel parts
JP2769136B2 (en) Low distortion type steel material for carburized hardened gears
JPH09111408A (en) Low strain type carburized and quenched steel stock for gear
JPH05279794A (en) Soft-nitriding steel
JP3996386B2 (en) Carburizing steel with excellent torsional fatigue properties

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees