JP7168059B2 - Steel for nitriding and quenching treatment, nitriding and quenching parts, and manufacturing method thereof - Google Patents

Steel for nitriding and quenching treatment, nitriding and quenching parts, and manufacturing method thereof Download PDF

Info

Publication number
JP7168059B2
JP7168059B2 JP2021198062A JP2021198062A JP7168059B2 JP 7168059 B2 JP7168059 B2 JP 7168059B2 JP 2021198062 A JP2021198062 A JP 2021198062A JP 2021198062 A JP2021198062 A JP 2021198062A JP 7168059 B2 JP7168059 B2 JP 7168059B2
Authority
JP
Japan
Prior art keywords
nitriding
mass
quenching
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021198062A
Other languages
Japanese (ja)
Other versions
JP2022028931A (en
Inventor
義臣 内田
寛典 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018059056A external-priority patent/JP7031428B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2021198062A priority Critical patent/JP7168059B2/en
Publication of JP2022028931A publication Critical patent/JP2022028931A/en
Application granted granted Critical
Publication of JP7168059B2 publication Critical patent/JP7168059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、浸窒焼入れ処理用鋼、浸窒焼入れ部品及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a steel for nitriding and quenching treatment, a part for nitriding and quenching, and a method for manufacturing the same.

自動車部品などをはじめとする機械構造部品は、機械構造部品の素材である鋼を所定の形状に加工した後に浸炭焼入れ処理、窒化処理などの表面硬化処理を行うことによって一般に製造されている。 Mechanical structural parts such as automobile parts are generally manufactured by processing steel, which is the raw material of mechanical structural parts, into a predetermined shape and then performing surface hardening such as carburizing and quenching and nitriding.

近年、自動車の品質及び性能を向上させることを目的として、自動車部品の寸法精度及び表面強度に対する要求が厳しくなっている。一般に、寸法精度は、熱処理ひずみを低減させることによって高めることができ、また、表面強度は、表面硬化処理層を厚くすることによって高めることができる。
しかしながら、浸炭焼入れ処理は、表面強度を高めることが容易であるものの、処理温度が高いため、熱処理ひずみが大きく、寸法精度を高めることができないという問題がある。
一方、窒化処理は、処理温度が比較的低温であるため、熱処理ひずみが小さく、寸法精度を高めることができる。しかしながら、窒化処理は、表面硬化処理層を厚くすることができないことから、高強度化が難しいという問題がある。
In recent years, with the aim of improving the quality and performance of automobiles, the requirements for dimensional accuracy and surface strength of automobile parts have become stricter. In general, dimensional accuracy can be enhanced by reducing heat treatment strain, and surface strength can be enhanced by thickening the surface hardening treatment layer.
However, although the carburizing and quenching treatment can easily increase the surface strength, there is a problem that since the treatment temperature is high, the heat treatment strain is large and the dimensional accuracy cannot be improved.
On the other hand, since the nitriding treatment is performed at a relatively low temperature, the heat treatment distortion is small and the dimensional accuracy can be improved. However, since the nitriding treatment cannot thicken the surface-hardened layer, there is a problem that it is difficult to increase the strength.

そこで、寸法精度及び表面硬度の両方を高める技術として、特許文献1には、被処理品を鉄-窒素系平衡状態図のオーステナイトと鉄窒化物(Fe4N)の混相域温度で浸窒した後、被処理品を急冷及び再加熱して、被処理品表面にFe162と窒素マルテンサイトとの2層構造を生成させる浸窒焼入れ処理が提案されている。
なお、浸窒焼入れ処理とは、一般に、鉄-窒素系平衡状態図のA1点以上の温度域で鋼表面から窒素を拡散浸透させて窒素オーステナイトを表層部に形成した後、焼入れ(急冷)することによって硬質な窒素マルテンサイトを生成させる表面硬化法である。浸窒焼入れ処理は、浸炭焼入れ処理に比べて低温で処理を行うため熱ひずみが小さく、また、窒化処理に比べて高温で処理を行うため処理時間が短いという利点がある。以下、窒素の拡散浸透(浸窒処理)によって鋼の表層部に形成された層を「浸窒層」、浸窒層が形成されなかった部分(浸窒層よりも内側の部分)を「母材」といい、浸窒層の焼入れによって生成した層を「硬化層」という。
Therefore, as a technique for improving both dimensional accuracy and surface hardness, Patent Document 1 discloses that the article to be treated is nitrided at the temperature of the mixed phase region of austenite and iron nitride (Fe 4 N) in the iron-nitrogen system equilibrium diagram. A nitriding and quenching treatment is proposed in which the article to be treated is then rapidly cooled and reheated to form a two-layer structure of Fe 16 N 2 and nitrogen martensite on the surface of the article to be treated.
In addition, nitriding and quenching treatment generally refers to quenching (quenching) after nitrogen is diffused and permeated from the steel surface in a temperature range of A1 or higher in the iron-nitrogen equilibrium diagram to form nitrogen austenite on the surface layer. It is a surface hardening method that generates hard nitrogen martensite by The nitriding and quenching treatment is performed at a lower temperature than the carburizing and quenching treatment, so that thermal strain is small, and compared to the nitriding treatment, the treatment time is shorter because the treatment is performed at a higher temperature. Hereinafter, the layer formed on the surface of the steel by nitrogen diffusion (nitriding treatment) is called the "nitrided layer", and the part where the nitrified layer is not formed (the part inside the nitrified layer) is called the "mother layer". The layer formed by quenching the nitriding layer is called the "hardened layer."

特開2015-25161号公報JP 2015-25161 A

近年、自動車部品などの機械構造部品には、寸法精度及び表面強度だけでなく靭性及び疲労強度に対する要求も増している。
しかしながら、特許文献1では、機械構造部品(浸窒焼入れ部品)の靭性及び疲労強度については十分に検討されていない。
In recent years, demands for not only dimensional accuracy and surface strength but also toughness and fatigue strength are increasing for mechanical structural parts such as automobile parts.
However, Patent Document 1 does not sufficiently examine the toughness and fatigue strength of mechanical structural parts (nitriding and quenching parts).

本発明は、上記のような問題を解決するためになされたものであり、靭性及び疲労強度に優れた浸窒焼入れ部品を製造可能な浸窒焼入れ処理用鋼を提供することを目的とする。
また、本発明は、靭性及び疲労強度に優れた浸窒焼入れ部品及びその製造方法を提供することを目的とする。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a nitriding and quenching steel capable of producing nitriding and quenching parts having excellent toughness and fatigue strength.
Another object of the present invention is to provide a nitriding hardened part excellent in toughness and fatigue strength, and a method for manufacturing the same.

本発明者らは、浸窒焼入れ処理用鋼の合金組成に着目して鋭意研究を行った結果、浸窒焼入れ処理用鋼を浸窒焼入れ処理した後に靭性及び疲労特性が低下する原因が、浸窒層及び硬化層における結晶粒の粗大化及び結晶粒間のフェライトに主に起因しているという知見を得た。そして、本発明者らは、Mn及び/又はNiを所定の割合で含有させることにより、浸窒層のオーステナイト化を促進してオーステナイト結晶粒間に存在するフェライトを低減し、その結果として硬化層のマルテンサイト結晶粒間のフェライトも低減し得ることを見出した。また、本発明者らは、浸窒処理時に窒化物を生成する元素を所定の割合で含有させることにより、浸窒層におけるオーステナイト結晶粒の粗大化を抑制し、その結果として硬化層におけるマルテンサイト結晶粒の粗大化も抑制し得ることを見出した。本発明は、これらの知見に基づき完成されたものである。 The inventors of the present invention conducted intensive research focusing on the alloy composition of the steel for nitriding and quenching treatment, and found that the reason why the toughness and fatigue properties of the steel for nitriding and quenching treatment are reduced after nitriding and quenching treatment is immersion. It was found that this is mainly due to coarsening of crystal grains in the nitride layer and the hardened layer and ferrite between the crystal grains. The present inventors have found that by containing Mn and / or Ni in a predetermined ratio, the austenitization of the nitriding layer is promoted to reduce the amount of ferrite present between austenite grains, and as a result, the hardened layer It was found that ferrite between martensite grains can also be reduced. In addition, the present inventors have found that by containing an element that forms nitrides in a predetermined ratio during nitriding treatment, coarsening of austenite grains in the nitriding layer is suppressed, and as a result, martensite in the hardened layer It was found that coarsening of crystal grains can also be suppressed. The present invention has been completed based on these findings.

すなわち、本発明は、
C:0.3質量%以下、
Mn:0.3~2.8質量%、
Ni:0.05~1.0質量%、
P:0.03質量%以下、
S:0.03質量%以下、並びに
Cr:0.1~4.5質量%、Si:0.1~1.0質量%及びAl:0.1~1.0質量%から選択される1種以上
を含み、Mn及びNiが合計で0.4~3.0質量%であり、残部がFe及び不可避的不純物からなり、
下記式(1):
A1=0.30Cr+0.45Si+0.34Al-0.2(Mn+Ni) (1)
(式中、各元素記号は、各元素の質量%である)で表される浸窒指数A1が0.7以下である浸窒焼入れ処理用鋼である。
That is, the present invention
C: 0.3% by mass or less,
Mn: 0.3 to 2.8% by mass,
Ni: 0.05 to 1.0% by mass,
P: 0.03% by mass or less,
S: 0.03% by mass or less, and 1 selected from Cr: 0.1 to 4.5% by mass, Si: 0.1 to 1.0% by mass, and Al: 0.1 to 1.0% by mass including more than seeds, the total amount of Mn and Ni is 0.4 to 3.0% by mass, and the balance consists of Fe and unavoidable impurities,
Formula (1) below:
A1=0.30Cr+0.45Si+0.34Al-0.2(Mn+Ni) (1)
The steel for nitriding and quenching treatment has a nitriding index A1 represented by (in the formula, each element symbol represents mass % of each element) of 0.7 or less.

また、本発明は、
C:0.3質量%以下、
Mn:0.3~2.8質量%、
Ni:0.05~1.0質量%、
P:0.03質量%以下、
S:0.03質量%以下、
Cr:0.1~4.5質量%、Si:0.1~1.0質量%及びAl:0.1~1.0質量%から選択される1種以上、並びに
V:0.01~1.5質量%、Nb:0.01~3.0質量%及びTi:0.01~1.5質量%から選択される1種以上
を含み、Mn及びNiが合計で0.4~3.0質量%であり、残部がFe及び不可避的不純物からなり、
下記式(3):
A3=0.30Cr+0.45Si+0.34Al+0.36V+0.35Nb+0.35Ti-0.20(Mn+Ni) (3)
(式中、各元素記号は、各元素の質量%である)で表される浸窒指数A3が0.7以下である浸窒焼入れ処理用鋼である。
In addition, the present invention
C: 0.3% by mass or less,
Mn: 0.3 to 2.8% by mass,
Ni: 0.05 to 1.0% by mass,
P: 0.03% by mass or less,
S: 0.03% by mass or less,
Cr: 0.1 to 4.5% by mass, Si: 0.1 to 1.0% by mass and Al: one or more selected from 0.1 to 1.0% by mass, and V: 0.01 to 1.5% by mass, Nb: 0.01 to 3.0% by mass, and Ti: one or more selected from 0.01 to 1.5% by mass, and the total amount of Mn and Ni is 0.4 to 3 .0% by mass, the balance being Fe and unavoidable impurities,
Formula (3) below:
A3=0.30Cr+0.45Si+0.34Al+0.36V+0.35Nb+0.35Ti-0.20(Mn+Ni) (3)
The steel for nitriding and quenching treatment has a nitriding index A3 represented by (in the formula, each element symbol represents mass % of each element) of 0.7 or less.

また、本発明は、前記浸窒焼入れ処理用鋼の表層部に、浸窒焼入れ処理によって窒素マルテンサイトを含む硬化層が形成された浸窒焼入れ部品である。
さらに、本発明は、前記浸窒焼入れ処理用鋼を部品形状に加工して浸窒焼入れ処理を行う、浸窒焼入れ部品の製造方法である。
The present invention also provides a nitriding and quenching component in which a hardened layer containing nitrogen martensite is formed by nitriding and quenching on the surface layer of the steel for nitriding and quenching.
Further, the present invention is a method for manufacturing a nitriding and quenching part, wherein the steel for nitriding and quenching treatment is worked into a part shape and the part is subjected to nitriding and quenching treatment.

本発明によれば、靭性及び疲労強度に優れた浸窒焼入れ部品を製造可能な浸窒焼入れ処理用鋼を提供することができる。
また、本発明によれば、靭性及び疲労強度に優れた浸窒焼入れ部品及びその製造方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the steel for nitriding hardening process which can manufacture the nitriding hardening components excellent in toughness and fatigue strength can be provided.
Further, according to the present invention, it is possible to provide a nitriding hardened part excellent in toughness and fatigue strength and a method for manufacturing the same.

以下、本発明の好適な実施形態について具体的に説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の要旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、改良などを行うことができる。各実施形態に開示されている複数の構成要素は、適宜な組み合わせにより、種々の発明を形成できる。例えば、1つの実施形態に示される全構成要素からいくつかの構成要素を削除してもよいし、異なる実施形態の構成要素を適宜組み合わせてもよい。 Hereinafter, preferred embodiments of the present invention will be specifically described, but the present invention should not be construed as being limited to these, and as long as it does not depart from the gist of the present invention, , various modifications, improvements, etc. may be made. A plurality of constituent elements disclosed in each embodiment can be appropriately combined to form various inventions. For example, some components may be omitted from all components shown in one embodiment, or components of different embodiments may be combined as appropriate.

(実施形態1)
本実施形態に係る浸窒焼入れ処理用鋼は、Cと、Mn及び/又はNiと、Pと、Sと、Cr、Si及びAlから選択される1種以上とを含み、残部がFe及び不可避的不純物からなる。また、この浸窒焼入れ処理用鋼は、Mo及びBから選択される1種以上をさらに含んでもよい。
ここで、本明細書において「不可避的不純物」とは、Oなどの除去することが難しい成分のことを意味する。この成分は、原料を溶製する段階で不可避的に混入する。
(Embodiment 1)
The steel for nitriding and quenching treatment according to the present embodiment contains C, Mn and/or Ni, P, S, and one or more selected from Cr, Si and Al, and the balance is Fe and unavoidable consists of organic impurities. In addition, this nitriding and quenching steel may further contain one or more selected from Mo and B.
Here, the term "inevitable impurities" as used herein means components such as O that are difficult to remove. This component is inevitably mixed in at the stage of smelting the raw material.

<C:0.6質量%以下>
Cは、浸窒焼入れ処理用鋼の調質硬さ及び強度を確保するために必要な元素である。しかしながら、Cの含有量が多すぎると、浸窒焼入れ処理用鋼の加工性及び溶接性が低下するため、0.6質量%、好ましくは0.5質量%を上限とする。また、浸窒焼入れ部品の母材に硬度があまり要求されない場合、0.3質量%をCの含有量の上限としてもよい。Cの含有量の下限は、特に限定されないが、好ましくは0.005質量%、より好ましくは0.010質量%である。
<C: 0.6% by mass or less>
C is an element necessary for ensuring the refining hardness and strength of the steel for nitriding and quenching. However, if the C content is too high, the workability and weldability of the steel for nitriding and quenching treatment will deteriorate. Further, when the base material of the nitriding and hardening part does not require much hardness, the upper limit of the C content may be 0.3% by mass. Although the lower limit of the C content is not particularly limited, it is preferably 0.005% by mass, more preferably 0.010% by mass.

<Mn及び/又はNi:合計で0.4~3.0質量%>
Mn及びNiは、浸窒焼入れ処理用鋼の焼入性を高めるとともに、オーステナイト成長速度を高める効果を有するため、浸窒層内のフェライトを低減して疲労強度の低下を抑制する元素である。焼入性を向上させる観点からは、Mn及び/又はNiの合計量の下限を0.4質量%、好ましくは0.42質量%とする。一方、Mn及び/又はNiの含有量が多すぎると、焼入れ処理時に残留オーステナイト量の増加によって硬化層の硬さが低下する。したがって、Mn及び/又はNiの合計量の上限を3.0質量%、好ましくは2.8質量%とする。
また、Mn及びNiそれぞれの含有量は、特に限定されないが、Mnの含有量が多すぎると、浸窒焼入れ処理用鋼の加工性が低下する傾向にあり、Niの含有量が多すぎると、Niが高価であるため経済的に不利となる。したがって、Mnの含有量は、好ましくは3.0質量%以下、より好ましくは0.3~2.8質量%である。また、Niの含有量は、好ましくは3.0質量%以下、より好ましくは0.05~1.0質量%である。
<Mn and/or Ni: 0.4 to 3.0% by mass in total>
Mn and Ni have the effect of increasing the hardenability of the steel for nitriding and quenching and increasing the austenite growth rate, so they are elements that reduce ferrite in the nitriding layer and suppress a decrease in fatigue strength. From the viewpoint of improving hardenability, the lower limit of the total amount of Mn and/or Ni is set to 0.4% by mass, preferably 0.42% by mass. On the other hand, if the content of Mn and/or Ni is too high, the hardness of the hardened layer decreases due to an increase in the amount of retained austenite during quenching. Therefore, the upper limit of the total amount of Mn and/or Ni is set at 3.0% by mass, preferably 2.8% by mass.
The contents of each of Mn and Ni are not particularly limited. Since Ni is expensive, it is economically disadvantageous. Therefore, the Mn content is preferably 3.0% by mass or less, more preferably 0.3 to 2.8% by mass. Also, the Ni content is preferably 3.0% by mass or less, more preferably 0.05 to 1.0% by mass.

<P:0.03質量%以下>
Pは、粒界偏析して粒界を脆化させ易い元素である。Pの含有量が多すぎると、粒界の脆化によって靭性が低下する。そのため、Pの含有量の上限を0.03質量%、好ましくは0.025質量%とする。一方、Pの含有量の下限は、特に限定されないが、好ましくは0.0001質量%、より好ましくは0.0005質量%である。
<P: 0.03% by mass or less>
P is an element that easily causes grain boundary segregation to embrittle the grain boundary. If the P content is too high, grain boundary embrittlement lowers the toughness. Therefore, the upper limit of the P content is set to 0.03% by mass, preferably 0.025% by mass. On the other hand, the lower limit of the P content is not particularly limited, but is preferably 0.0001% by mass, more preferably 0.0005% by mass.

<S:0.03質量%以下>
Sは硫化物生成元素である。Sの含有量が多すぎると、粗大なMnSが生成し、疲労強度が低下する。そのため、Sの含有量の上限を0.03質量%、好ましくは0.025質量%とする。一方、Sの含有量の下限は、特に限定されないが、好ましくは0.0001質量%、より好ましくは0.0005質量%である。
<S: 0.03% by mass or less>
S is a sulfide-forming element. If the S content is too high, coarse MnS is formed and the fatigue strength is lowered. Therefore, the upper limit of the S content is set to 0.03% by mass, preferably 0.025% by mass. On the other hand, the lower limit of the S content is not particularly limited, but is preferably 0.0001% by mass, more preferably 0.0005% by mass.

<Cr:0.1~4.5質量%、Si:0.1~1.0質量%及びAl:0.1~1.0質量%から選択される1種以上>
Cr、Si及びAlは、浸窒焼入れ処理時に窒化物を生成する元素である。すなわち、これらの元素は、浸窒焼入れ処理時に窒化物を生成して浸窒層における窒素オーステナイトの結晶組織を微細化し、その結果として硬化層における窒素マルテンサイトの結晶組織も微細化する。これにより、浸窒焼入れ部品の疲労強度及び靭性を向上させることが可能となる。
また、Crは、焼入性を高める元素でもある。このようなCrによる効果を得るためには、Crの含有量の下限を0.1質量%、好ましくは0.15質量%とする。一方、この効果は、Crの含有量の増加によって飽和するため、Crの含有量の上限を4.5質量%、好ましくは4.0質量%、より好ましくは1.5質量%とする。
<One or more selected from Cr: 0.1 to 4.5% by mass, Si: 0.1 to 1.0% by mass, and Al: 0.1 to 1.0% by mass>
Cr, Si and Al are elements that form nitrides during nitriding and quenching. That is, these elements form nitrides during the nitriding and quenching treatment to refine the crystal structure of nitrogen austenite in the nitriding layer, and as a result, refine the crystal structure of nitrogen martensite in the hardened layer. This makes it possible to improve the fatigue strength and toughness of the nitriding and quenching part.
Cr is also an element that enhances hardenability. In order to obtain such an effect of Cr, the lower limit of the Cr content is set to 0.1% by mass, preferably 0.15% by mass. On the other hand, this effect saturates as the Cr content increases, so the upper limit of the Cr content is set to 4.5% by mass, preferably 4.0% by mass, and more preferably 1.5% by mass.

Siは、上記の効果の他に、浸窒焼入れ部品の母材の強度を確保するために必要な元素である。このようなSiによる効果を得るためには、Siの含有量の下限を0.1質量%、好ましくは0.15質量%、より好ましくは0.2質量%とする。一方、この効果は、Siの含有量の増加によって飽和するため、Siの含有量の上限を1.0質量%、好ましくは0.9質量%、より好ましくは0.7質量%とする。 In addition to the above effects, Si is an element necessary for ensuring the strength of the base material of the nitriding and quenching part. In order to obtain such effects of Si, the lower limit of the Si content is set to 0.1% by mass, preferably 0.15% by mass, and more preferably 0.2% by mass. On the other hand, since this effect is saturated with an increase in the Si content, the upper limit of the Si content is set to 1.0% by mass, preferably 0.9% by mass, and more preferably 0.7% by mass.

Alによる上記の効果を得るためには、Alの含有量の下限を0.1質量%、好ましくは0.15質量%、より好ましくは0.2質量%とする。一方、この効果は、Alの含有量の増加によって飽和するため、Alの含有量の上限を1.0質量%、好ましくは0.9質量%、より好ましくは0.7質量%とする。 In order to obtain the above effect of Al, the lower limit of the Al content is set to 0.1% by mass, preferably 0.15% by mass, more preferably 0.2% by mass. On the other hand, since this effect is saturated with an increase in the Al content, the upper limit of the Al content is set to 1.0% by mass, preferably 0.9% by mass, and more preferably 0.7% by mass.

Cr、Si及びAlの合計量は、特に限定されないが、好ましくは0.1~4.5質量%である。この合計量が0.1質量%未満であると、浸窒層における窒素オーステナイト及び硬化層における窒素オーステナイトの結晶組織の微細化が不十分となり、浸窒焼入れ部品の疲労強度及び靭性が十分に向上しないことがある。一方、この合計量が4.5質量%を超えると、その量に見合う効果を得ることができないため不経済である。 Although the total amount of Cr, Si and Al is not particularly limited, it is preferably 0.1 to 4.5% by mass. If the total amount is less than 0.1% by mass, the refinement of the crystal structure of the nitrogen austenite in the nitriding layer and the nitrogen austenite in the hardened layer is insufficient, and the fatigue strength and toughness of the nitriding and quenching part are sufficiently improved. Sometimes I don't. On the other hand, if the total amount exceeds 4.5% by mass, it is uneconomical because the effects commensurate with the amount cannot be obtained.

<Mo:0.1~2.0質量%>
Moは、浸窒焼入れ処理用鋼の焼入性を高める元素である。この効果を得るためには、Moの含有量の下限を好ましくは0.1質量%、より好ましくは0.15質量%とする。一方、Moは高価であり、過剰使用は不経済となるため、Moの含有量の上限を好ましくは2.0質量%、より好ましくは1.5質量%とする。
<Mo: 0.1 to 2.0% by mass>
Mo is an element that enhances the hardenability of steel for nitriding and quenching. In order to obtain this effect, the lower limit of the Mo content is preferably 0.1% by mass, more preferably 0.15% by mass. On the other hand, Mo is expensive and excessive use is uneconomical, so the upper limit of the Mo content is preferably 2.0% by mass, more preferably 1.5% by mass.

<B:0.0001~0.01質量%>
BもMoと同様に、浸窒焼入れ処理用鋼の焼入性を高める元素である。この効果を得るためには、Bの含有量の下限を好ましくは0.0001質量%、より好ましくは0.0003質量%とする。一方、この効果はBの含有量の増加によって飽和するため、Bの含有量の上限を好ましくは0.01質量%、より好ましくは0.005質量%とする。
<B: 0.0001 to 0.01% by mass>
B, like Mo, is an element that enhances the hardenability of the steel for nitriding and quenching treatment. To obtain this effect, the lower limit of the B content is preferably 0.0001% by mass, more preferably 0.0003% by mass. On the other hand, since this effect is saturated with an increase in the B content, the upper limit of the B content is preferably 0.01% by mass, more preferably 0.005% by mass.

本実施形態に係る浸窒焼入れ処理用鋼において、疲労特性及び靭性を効率良く発現させるためには、焼入れ処理後に硬化層となる浸窒層の厚さを制御する必要がある。
そこで、本実施形態に係る浸窒焼入れ処理用鋼は、下記式(1)で表される浸窒指数A1が0.7以下、好ましくは-0.10~0.68、より好ましくは0~0.5に制御されている。
A1=0.30Cr+0.45Si+0.34Al-0.2(Mn+Ni) (1)
式中、各元素記号は、各元素の質量%である。
浸窒指数A1は、浸窒処理によって表面から成長した窒素オーステナイトの金属組織の厚さの指標であり、浸窒指数A1が小さいほど浸窒層(焼入れ処理後の硬化層)の厚さが大きいことを意味する。浸窒指数A1が0.7を超えると、浸窒層(焼入れ処理後の硬化層)の厚さが小さくなりすぎてしまい、焼入れ処理によって疲労特性を十分に発現させることができない。なお、浸窒指数A1は、合金組成と浸窒層の厚さとの関係から実験的に算出されたものである。
In the steel for nitriding and quenching treatment according to the present embodiment, in order to efficiently exhibit fatigue properties and toughness, it is necessary to control the thickness of the nitriding layer that becomes a hardened layer after the quenching treatment.
Therefore, the steel for nitriding and quenching according to the present embodiment has a nitriding index A1 represented by the following formula (1) of 0.7 or less, preferably -0.10 to 0.68, more preferably 0 to It is controlled at 0.5.
A1=0.30Cr+0.45Si+0.34Al-0.2(Mn+Ni) (1)
In the formula, each element symbol is mass % of each element.
The nitriding index A1 is an index of the thickness of the nitrogen austenite metal structure grown from the surface by the nitriding treatment, and the smaller the nitriding index A1, the greater the thickness of the nitriding layer (hardened layer after quenching treatment). means that If the nitriding index A1 exceeds 0.7, the thickness of the nitriding layer (hardened layer after quenching treatment) becomes too small, and the fatigue properties cannot be fully exhibited by the quenching treatment. The nitriding index A1 is experimentally calculated from the relationship between the alloy composition and the thickness of the nitriding layer.

本実施形態に係る浸窒焼入れ処理用鋼の金属組織は、特に限定されないが、好ましくはフェライトである。このような金属組織を有する浸窒焼入れ処理用鋼は、A1点以上の温度域で浸窒処理することで窒素オーステナイトを含む浸窒層を表層部に形成した後、焼入れによって窒素オーステナイトを窒素マルテンサイトに変態させることで硬化層を形成することができる。 The metal structure of the steel for nitriding and quenching treatment according to the present embodiment is not particularly limited, but is preferably ferrite. Steel for nitriding and quenching treatment having such a metal structure forms a nitriding layer containing nitrogen austenite on the surface layer by nitriding in a temperature range of A1 or higher, and then converts nitrogen austenite to nitrogen by quenching. A hardened layer can be formed by transforming to martensite.

(実施形態2)
本実施形態に係る浸窒焼入れ処理用鋼は、Cと、Mn及び/又はNiと、Pと、Sと、V、Nb及びTiから選択される1種以上とを含み、残部がFe及び不可避的不純物からなる。また、この浸窒焼入れ処理用鋼は、Mo及びBから選択される1種以上をさらに含んでもよい。
本実施形態に係る浸窒焼入れ処理用鋼は、Cr、Si及びAlから選択される1種以上の代わりに、V、Nb及びTiから選択される1種以上を含んでいる点で、実施形態1に係る浸窒焼入れ処理用鋼と異なる。なお、本実施形態に係る浸窒焼入れ処理用鋼の基本的な特徴は、実施形態1に係る浸窒焼入れ処理用鋼と同様であるため、相違点のみ説明する。
(Embodiment 2)
The steel for nitriding and quenching according to the present embodiment contains C, Mn and/or Ni, P, S, and one or more selected from V, Nb and Ti, and the balance is Fe and unavoidable consists of organic impurities. In addition, this nitriding and quenching steel may further contain one or more selected from Mo and B.
The steel for nitriding and quenching according to the present embodiment contains at least one selected from V, Nb and Ti instead of at least one selected from Cr, Si and Al. It is different from the steel for nitriding and quenching treatment according to No. 1. Since the basic features of the nitriding and quenching steel according to the present embodiment are the same as those of the nitriding and quenching steel according to the first embodiment, only the differences will be described.

<V:0.01~1.5質量%、Nb:0.01~3.0質量%及びTi:0.01~1.5質量%から選択される1種以上>
V、Nb及びTiは、浸窒焼入れ処理時に窒化物を生成する元素である。すなわち、これらの元素は、浸窒焼入れ処理時に窒化物を生成して浸窒層における窒素オーステナイトの結晶組織を微細化し、その結果として硬化層における窒素マルテンサイトの結晶組織も微細化する。これにより、浸窒焼入れ部品の疲労強度及び靭性を向上させることが可能となる。
また、V及びTiはいずれも、炭化物を生成して浸窒焼入れ処理用鋼の結晶組織を微細化することができる。このようなV及びTiによる効果を得るためには、V及びTiの含有量の下限をいずれも0.01質量%、好ましくは0.05質量%、より好ましくは0.2質量%とする。一方、この効果は、V及びTiの含有量の増加によって飽和するため、V及びTiの含有量の上限をいずれも1.5質量%、好ましくは1.45質量%、より好ましくは0.5質量%とする。
<One or more selected from V: 0.01 to 1.5% by mass, Nb: 0.01 to 3.0% by mass, and Ti: 0.01 to 1.5% by mass>
V, Nb and Ti are elements that form nitrides during nitriding and quenching. That is, these elements form nitrides during the nitriding and quenching treatment to refine the crystal structure of nitrogen austenite in the nitriding layer, and as a result, refine the crystal structure of nitrogen martensite in the hardened layer. This makes it possible to improve the fatigue strength and toughness of the nitriding and quenching part.
Moreover, both V and Ti can form carbides and refine the crystal structure of the steel for nitriding and quenching. In order to obtain such effects of V and Ti, the lower limits of the contents of V and Ti are each set to 0.01% by mass, preferably 0.05% by mass, and more preferably 0.2% by mass. On the other hand, this effect is saturated by increasing the content of V and Ti, so the upper limit of the content of V and Ti is set to 1.5% by mass, preferably 1.45% by mass, more preferably 0.5% by mass. % by mass.

NbもV及びTiと同様に、炭化物を生成して浸窒焼入れ処理用鋼の結晶組織を微細化する。このようなNbによる効果を得るためには、Nbの含有量の下限を0.01質量%、好ましくは0.05質量%とする。一方、この効果は、Nbの含有量の増加によって飽和するため、Nbの含有量の上限を3.0質量%、好ましくは2.8質量%、より好ましくは0.6質量%とする。 Like V and Ti, Nb also forms carbides and refines the crystal structure of the steel for nitriding and quenching. In order to obtain such an effect of Nb, the lower limit of the Nb content is set to 0.01% by mass, preferably 0.05% by mass. On the other hand, since this effect is saturated with an increase in the Nb content, the upper limit of the Nb content is set to 3.0% by mass, preferably 2.8% by mass, more preferably 0.6% by mass.

V、Nb及びTiの合計量は、特に限定されないが、好ましくは0.01~3.0質量%である。この合計量が0.01質量%未満であると、浸窒層における窒素オーステナイト及び硬化層における窒素マルテンサイトの結晶組織の微細化が不十分となり、浸窒焼入れ部品の疲労強度及び靭性を十分に高めることができない場合がある。一方、この合計量が3.0質量%を超えると、その量に見合う効果を得ることができないため不経済である。 Although the total amount of V, Nb and Ti is not particularly limited, it is preferably 0.01 to 3.0% by mass. If the total amount is less than 0.01% by mass, the refinement of the crystal structure of nitrogen austenite in the nitriding layer and nitrogen martensite in the hardened layer is insufficient, and the fatigue strength and toughness of the nitriding and quenching part are sufficiently improved. may not be able to be increased. On the other hand, if the total amount exceeds 3.0% by mass, it is uneconomical because the effect corresponding to the amount cannot be obtained.

本実施形態に係る浸窒焼入れ処理用鋼は、下記式(2)で表される浸窒指数A2が0.7以下、好ましくは-0.10~0.68、より好ましくは0~0.5に制御されている。
A2=0.36V+0.35Nb+0.35Ti-0.20(Mn+Ni) (2)
式中、各元素記号は、各元素の質量%である。
浸窒指数A2は、浸窒処理によって表面から成長した窒素オーステナイトの金属組織の厚さの指標であり、浸窒指数A2が小さいほど浸窒層の厚さが大きいことを意味する。浸窒指数A2が0.7を超えると、浸窒層の厚さが小さくなりすぎてしまい、焼入れ処理によって疲労特性を十分に発現させることができない。なお、浸窒指数A2は、合金組成と浸窒層の厚さとの関係から実験的に算出されたものである。
The steel for nitriding and quenching treatment according to the present embodiment has a nitriding index A2 represented by the following formula (2) of 0.7 or less, preferably -0.10 to 0.68, more preferably 0 to 0.5. 5 is controlled.
A2=0.36V+0.35Nb+0.35Ti-0.20(Mn+Ni) (2)
In the formula, each element symbol is mass % of each element.
The nitriding index A2 is an index of the thickness of the nitrogen austenite metal structure grown from the surface by the nitriding treatment, and the smaller the nitriding index A2, the larger the thickness of the nitriding layer. When the nitriding index A2 exceeds 0.7, the thickness of the nitriding layer becomes too small, and the fatigue properties cannot be fully exhibited by the quenching treatment. The nitriding index A2 is experimentally calculated from the relationship between the alloy composition and the thickness of the nitriding layer.

(実施形態3)
本実施形態に係る浸窒焼入れ処理用鋼は、Cと、Mn及び/又はNiと、Pと、Sと、Cr、Si及びAlから選択される1種以上と、V、Nb及びTiから選択される1種以上とを含み、残部がFe及び不可避的不純物からなる。また、この浸窒焼入れ処理用鋼は、Mo及びBから選択される1種以上をさらに含んでもよい。
本実施形態に係る浸窒焼入れ処理用鋼は、V、Nb及びTiから選択される1種以上をさらに含んでいる点で、実施形態1に係る浸窒焼入れ処理用鋼と異なる。なお、本実施形態に係る浸窒焼入れ処理用鋼の基本的な特徴は、実施形態1及び2に係る浸窒焼入れ処理用鋼と同様であるため、相違点のみ説明する。
(Embodiment 3)
The steel for nitriding and quenching according to the present embodiment is selected from C, Mn and/or Ni, P, S, one or more selected from Cr, Si and Al, and V, Nb and Ti. and the balance consists of Fe and unavoidable impurities. In addition, this nitriding and quenching steel may further contain one or more selected from Mo and B.
The nitriding and quenching steel according to the present embodiment differs from the nitriding and quenching steel according to the first embodiment in that it further contains one or more selected from V, Nb and Ti. Since the basic characteristics of the steel for nitriding and quenching treatment according to this embodiment are the same as those of the steel for nitriding and quenching treatment according to Embodiments 1 and 2, only the differences will be described.

本実施形態に係る浸窒焼入れ処理用鋼は、下記式(3)で表される浸窒指数A3が0.7以下、好ましくは-0.10~0.68、より好ましくは0~0.5に制御されている。
A3=0.30Cr+0.45Si+0.34Al+0.36V+0.35Nb+0.35Ti-0.20(Mn+Ni) (3)
式中、各元素記号は、各元素の質量%である。
浸窒指数A3は、浸窒処理によって表面から成長した窒素オーステナイトの金属組織の厚さの指標であり、浸窒指数A3が小さいほど浸窒層の厚さが大きいことを意味する。浸窒指数A3が0.7を超えると、浸窒層の厚さが小さくなりすぎてしまい、焼入れ処理によって疲労特性を十分に発現させることができない。なお、浸窒指数A3は、合金組成と浸窒層の厚さとの関係から実験的に算出されたものである。
The steel for nitriding and quenching treatment according to the present embodiment has a nitriding index A3 represented by the following formula (3) of 0.7 or less, preferably -0.10 to 0.68, more preferably 0 to 0.5. 5 is controlled.
A3=0.30Cr+0.45Si+0.34Al+0.36V+0.35Nb+0.35Ti-0.20(Mn+Ni) (3)
In the formula, each element symbol is mass % of each element.
The nitriding index A3 is an index of the thickness of the nitrogen austenite metal structure grown from the surface by the nitriding treatment, and the smaller the nitriding index A3, the larger the thickness of the nitriding layer. When the nitriding index A3 exceeds 0.7, the thickness of the nitriding layer becomes too small, and the fatigue properties cannot be fully exhibited by the quenching treatment. The nitriding index A3 is experimentally calculated from the relationship between the alloy composition and the thickness of the nitriding layer.

(実施形態4)
本実施形態に係る浸窒焼入れ部品は、実施形態1~3の浸窒焼入れ処理用鋼の表層部に、浸窒焼入れ処理によって窒素マルテンサイトを含む硬化層が形成されている。
硬化層に含まれる窒素マルテンサイトの平均結晶粒径は、小さいほど浸窒焼入れ部品の靭性及び疲労特性が向上する傾向にあるため、好ましくは80μm以下、より好ましくは75μm以下、さらに好ましくは70μm以下である。一方、窒素マルテンサイトの平均結晶粒径の下限は、特に限定されないが、好ましくは1μm、より好ましくは10μm、さらに好ましくは20μmである。
(Embodiment 4)
In the nitriding and quenching part according to the present embodiment, a hardened layer containing nitrogen martensite is formed on the surface layer of the nitriding and quenching steel according to the first to third embodiments by nitriding and quenching.
The smaller the average crystal grain size of the nitrogen martensite contained in the hardened layer, the better the toughness and fatigue characteristics of the nitriding and quenching part. is. On the other hand, the lower limit of the average crystal grain size of nitrogen martensite is not particularly limited, but is preferably 1 μm, more preferably 10 μm, and still more preferably 20 μm.

硬化層の厚さは、浸窒焼入れ部品の種類に応じて適宜調整すればよく特に限定されないが、好ましくは105~500μm、より好ましくは108~450μm、さらに好ましくは110~400μmである。硬化層の厚さが上記の範囲であると、疲労特性を安定して確保することができる。 The thickness of the hardened layer is not particularly limited and may be appropriately adjusted according to the type of the nitriding and quenching part, but is preferably 105 to 500 μm, more preferably 108 to 450 μm, further preferably 110 to 400 μm. When the thickness of the hardened layer is within the above range, the fatigue properties can be stably ensured.

硬化層のビッカース硬さは、浸窒焼入れ部品の種類に応じて適宜調整すればよく特に限定されないが、好ましくは500HV以上、より好ましくは600~1000HV、さらに好ましくは700~900HVである。 The Vickers hardness of the hardened layer is not particularly limited and may be appropriately adjusted according to the type of the nitriding and quenching part, but is preferably 500 HV or more, more preferably 600 to 1000 HV, and still more preferably 700 to 900 HV.

浸窒焼入れ部品における靱性、疲労強度などの特性は、母材金属組織の平均結晶粒径によっても影響され得る。例えば、母材の金属組織の平均結晶粒径は小さい方が、靭性、疲労強度に優れた浸窒焼入れ部品となる。浸窒焼入れ処理用鋼が熱延材、冷延材、焼鈍材のいずれの場合であっても、浸窒焼入れ処理によって金属組織の平均結晶粒径が変化する可能性が高いが、母材の金属組織の平均結晶粒径は小さいことが望ましい。そこで、母材の金属組織の平均結晶粒径は、好ましくは100μm以下、より好ましくは95μm以下、更に好ましくは90μm以下とする。一方、母材の金属組織の平均結晶粒径が小さすぎると、硬さが高くなって加工性が低下するため、下限は、好ましくは1μm、より好ましくは10μm、さらに好ましくは15μmとする。
ここで、本明細書において「平均結晶粒径」とは、JIS G0551:2013に準拠して切断法によって測定されるものを意味する。
Properties such as toughness and fatigue strength in nitriding and hardening parts can also be affected by the average grain size of the base metal structure. For example, the smaller the average crystal grain size of the metal structure of the base material, the better the toughness and fatigue strength of the nitriding and quenching part. Regardless of whether the steel for nitriding and quenching is a hot-rolled material, a cold-rolled material, or an annealed material, there is a high possibility that the average grain size of the metal structure will change due to the nitriding and quenching treatment. It is desirable that the average grain size of the metallographic structure is small. Therefore, the average crystal grain size of the metal structure of the base material is preferably 100 μm or less, more preferably 95 μm or less, still more preferably 90 μm or less. On the other hand, if the average crystal grain size of the metal structure of the base material is too small, the hardness increases and workability decreases.
Here, "average crystal grain size" as used herein means that measured by a cutting method in accordance with JIS G0551:2013.

上記のような特徴を有する浸窒焼入れ部品は、浸窒焼入れ処理用鋼を部品形状に加工し、浸窒焼入れ処理を行うことによって製造される。
部品形状としては、特に限定されず、部品の種類に応じた形状であればよい。例えば、浸窒焼入れ部品が軸受部品であれば、要求される軸受部品の形状とすればよい。また、その加工方法も特に限定されず、当該技術分野において公知の方法を用いることができる。
Nitriding and quenching parts having the characteristics described above are manufactured by working the steel for nitriding and quenching treatment into a part shape and performing nitriding and quenching treatment.
The shape of the part is not particularly limited, and any shape suitable for the type of the part may be used. For example, if the nitriding and quenching part is a bearing part, the required shape of the bearing part may be used. Also, the processing method is not particularly limited, and a method known in the art can be used.

浸窒焼入れ処理としては、特に限定されず、当該技術分野において公知の方法に準じて行うことができる。具体的には、部品形状に加工した浸窒焼入れ処理用鋼を鉄-窒素系平衡状態図のA1点以上の温度域で鋼表面から窒素を拡散浸透させた後、焼入れ(急冷)すればよい。 The nitriding and quenching treatment is not particularly limited, and can be performed according to a method known in the technical field. Specifically, the steel for nitriding and quenching processed into a part shape is quenched (rapidly cooled) after nitrogen is diffused and permeated from the steel surface in a temperature range of A1 or higher in the iron - nitrogen equilibrium diagram. good.

このようにして製造される本実施形態に係る浸窒焼入れ部品は、寸法精度及び表面強度はもちろんのこと、靭性及び疲労強度にも優れているため、自動車部品として用いるのに適している。 The nitriding and quenching part according to the present embodiment manufactured in this way is excellent not only in dimensional accuracy and surface strength but also in toughness and fatigue strength, and is suitable for use as an automobile part.

以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

表1に示す合金組成を有する熱延鋼板を板厚2mmまで冷延した後、700~960℃で焼鈍することによって鋼板(浸窒焼入れ処理用鋼)を得た。 A hot-rolled steel sheet having an alloy composition shown in Table 1 was cold-rolled to a thickness of 2 mm, and then annealed at 700 to 960° C. to obtain a steel sheet (steel for nitriding and quenching treatment).

Figure 0007168059000001
Figure 0007168059000001

上記で得られた鋼板に対して浸窒焼入れ処理を行った。浸窒焼入れ処理は、鋼板を窒素ガス、水素ガス及びアンモニアガスを含む混合ガスと接触させることで浸窒処理した後、油焼入れを行い、鋼板の表層部に硬化層を形成した。詳細な条件は下記の通りとした。
浸窒処理温度:830℃
浸窒処理時間:3時間
混合ガス中の窒素ガス濃度:79.95~99体積%
混合ガス中の水素ガス濃度:0.95~20体積%
混合ガス中のアンモニアガス濃度:0.05~0.3体積%
焼入れ温度:60~70℃
The steel plate obtained above was subjected to nitriding and quenching treatment. In the nitriding and quenching treatment, the steel sheet was subjected to nitriding treatment by contacting it with a mixed gas containing nitrogen gas, hydrogen gas and ammonia gas, followed by oil quenching to form a hardened layer on the surface layer of the steel sheet. Detailed conditions were as follows.
Nitriding temperature: 830°C
Nitriding time: 3 hours Nitrogen gas concentration in mixed gas: 79.95 to 99% by volume
Hydrogen gas concentration in mixed gas: 0.95 to 20% by volume
Ammonia gas concentration in mixed gas: 0.05 to 0.3% by volume
Quenching temperature: 60-70°C

上記で得られた鋼板について、下記の評価を行った。
(平均結晶粒径)
JIS G0551:2013に準拠し、切断法を使用して母材部の金属組織(フェライト)及び硬化層の金属組織(窒素マルテンサイト)の結晶粒径を測定した。具体的には、測定数を10とし、光学顕微鏡を用いて100~500倍で10視野の結晶粒径を測定し、その平均をとった。
The steel sheets obtained above were evaluated as follows.
(Average grain size)
Based on JIS G0551:2013, the crystal grain size of the metal structure (ferrite) of the base material portion and the metal structure of the hardened layer (nitrogen martensite) was measured using a cutting method. Specifically, the number of measurements was set to 10, and the crystal grain size was measured in 10 fields of view at a magnification of 100 to 500 using an optical microscope, and the average was taken.

(硬化層の厚さ)
光学顕微鏡を用いて硬化層の厚さを測定した。具体的には、測定数を10とし、光学顕微鏡を用いて100倍で10視野の浸窒層厚さを測定し、その平均をとった。
(Thickness of hardened layer)
The thickness of the cured layer was measured using an optical microscope. Specifically, the number of measurements was set to 10, the thickness of the nitriding layer was measured in 10 fields of view at 100 times magnification using an optical microscope, and the average was taken.

(硬化層のビッカース硬さ)
ビッカース硬さ試験機を用い、試験加重を980mN、試験数を5とし、表面から深さ25μmの位置におけるビッカース硬さを測定し、その平均をとった。
(Vickers hardness of hardened layer)
Using a Vickers hardness tester, the test load was 980 mN, the number of tests was 5, the Vickers hardness was measured at a depth of 25 μm from the surface, and the average was taken.

(硬化層の窒素濃度)
グロー放電発光分析法法(GD-OES)を用いて硬化層の窒素濃度を測定した。測定条件は下記の通りとした。
測定機:マーカス型高周波グロー放電発光表面分析装置
スパッタ方式:ノーマルスパッタ
測定深さ:表面から深さ10μm
測定範囲:Φ4mm
(Nitrogen concentration in hardened layer)
The nitrogen concentration of the cured layer was measured using glow discharge optical emission spectroscopy (GD-OES). The measurement conditions were as follows.
Measuring machine: Marcus type high-frequency glow discharge luminescence surface analyzer Sputtering method: Normal sputtering Measuring depth: 10 μm depth from the surface
Measuring range: Φ4mm

(疲労特性)
JIS Z2273:1978及びJIS Z2275:1978に準拠して評価を行った。試験片は、JIS Z2275:1978に記載の1号試験片の形状(d=20、R=42.5)とし、PWOG型平面曲げ疲労試験機を用い、応力比=-1、周波数1250rpm、最大曲げ応力を500N/mm2及び650N/mm2、試験数5の条件にて、疲労破壊が生じるまでの応力の繰返し回数を測定した。最大曲げ応力が500N/mm2の場合は、繰返し回数が2.0×106回を超えても疲労破壊が生じなかった試験片が過半数だったものを合格(〇)、最大曲げ応力が650N/mm2の場合は、繰返し回数が1.0×105回を超えても疲労破壊が生じなかった試験片が過半数のものを合格(〇)とし、それ以外を不合格(×)とした。なお、この評価基準は、自動車の変速機部品などの一般的な機械構造部品として使用する場合を想定した基準である。
(Fatigue properties)
Evaluation was performed in accordance with JIS Z2273:1978 and JIS Z2275:1978. The test piece has the shape of No. 1 test piece (d = 20, R = 42.5) described in JIS Z2275: 1978, and uses a PWOG type plane bending fatigue tester, stress ratio = -1, frequency 1250 rpm, maximum Under conditions of bending stress of 500 N/mm 2 and 650 N/mm 2 and 5 tests, the number of repetitions of stress until fatigue fracture occurred was measured. When the maximum bending stress is 500 N/mm 2 , the majority of the test pieces that did not cause fatigue failure even when the number of cycles exceeded 2.0 × 10 6 passed (○), and the maximum bending stress was 650 N. In the case of /mm 2 , the majority of the test pieces that did not cause fatigue failure even when the number of repetitions exceeded 1.0 × 10 5 was evaluated as a pass (○), and the other test specimens were evaluated as a failure (×). . This evaluation standard is a standard that assumes the case of using it as a general mechanical structural part such as a transmission part of an automobile.

(靭性)
JIS Z2242:2005に準拠して評価を行った。試験片は、JIS Z2242:2005に記載のVノッチ試験片(ノッチ深さ2mm)とし、シャルピー衝撃試験機を用いて室温にて行った。また、試験数は3とした。この評価において、シャルピー衝撃値が30J/cm2以上であったものを◎、15J/cm2以上30J/cm2未満であったものを〇、15J/cm2未満であったものを×とした。なお、この評価基準は、自動車の変速機部品などの一般的な機械構造部品としての使用を想定した基準である。
(Toughness)
Evaluation was made in accordance with JIS Z2242:2005. The test piece was a V-notch test piece (notch depth 2 mm) described in JIS Z2242:2005, and the test was performed at room temperature using a Charpy impact tester. Also, the number of tests was three. In this evaluation, Charpy impact values of 30 J/cm 2 or more were evaluated as ⊚, 15 J/cm 2 or more and less than 30 J/cm 2 as ◯, and less than 15 J/cm 2 as X. . It should be noted that this evaluation standard is a standard that assumes use as a general mechanical structural component such as a transmission component for automobiles.

上記の各結果を表2に示す。 Table 2 shows the above results.

Figure 0007168059000002
Figure 0007168059000002

表2に示されるように、実施例1~23は、所定の合金組成及び浸窒指数を満たす鋼板を用いたため、浸窒焼入れ処理後に疲労特性及び靭性が良好であった。
これに対して、比較例1~13は、所定の合金組成を満たしていない鋼板を用いていたため、浸窒焼入れ処理後に疲労特性及び靭性が十分でなかった。
特に、比較例1は、浸窒焼入れ処理時に窒化物を生成する元素を含んでいないため、窒化物の生成による窒素オーステナイトの粗大化抑制の効果が得られず、窒素マルテンサイトの結晶粒も大きくなった。そのため、浸窒焼入れ処理後に疲労特性及び靭性が低下してしまった。
また、比較例2は、Mn及びNiの合計量が少なすぎたため、焼入れ不足が発生し、疲労特性及び靭性が低下した。比較例3も同様に、Mn及びNiの合計量が少なすぎたため、浸窒層のオーステナイト化が不十分であり、オーステナイト結晶粒間に存在するフェライトを十分に低減させることができなかった。そのため、浸窒焼入れ処理後に疲労特性及び靭性が低下した。
As shown in Table 2, in Examples 1 to 23, since the steel sheets satisfying the predetermined alloy composition and nitriding index were used, the fatigue properties and toughness were good after the nitriding and quenching treatment.
On the other hand, in Comparative Examples 1 to 13, since the steel sheets that did not satisfy the predetermined alloy composition were used, the fatigue properties and toughness were not sufficient after the nitriding and quenching treatment.
In particular, Comparative Example 1 does not contain an element that forms nitrides during the nitriding and quenching treatment, so the effect of suppressing the coarsening of nitrogen austenite due to the formation of nitrides cannot be obtained, and the grains of nitrogen martensite are large. became. Therefore, fatigue properties and toughness were lowered after nitriding and quenching.
In addition, in Comparative Example 2, the total amount of Mn and Ni was too small, so that quenching was insufficient and the fatigue characteristics and toughness were lowered. Similarly, in Comparative Example 3, since the total amount of Mn and Ni was too small, the austenitization of the nitriding layer was insufficient, and ferrite existing between austenite grains could not be sufficiently reduced. Therefore, the fatigue properties and toughness decreased after the nitriding and quenching treatment.

また、比較例4~7及び10~13は、浸窒焼入れ処理時に窒化物を生成する元素が少なすぎたため、窒化物の生成による窒素オーステナイトの粗大化抑制の効果が得られず、窒素マルテンサイトの結晶粒も大きくなった。そのため、浸窒焼入れ処理後に疲労特性及び靭性が低下してしまった。
また、比較例8及び9は、Si及びAlの量が多すぎたため、窒化物が粗大化してしまい疲労破壊の起点となり易くなった。そのため、浸窒焼入れ処理後に疲労特性及び靭性が低下してしまった。
また、比較例14~16は、浸窒指数が0.7以上であったため、浸窒処理時にオーステナイト成長速度が遅くなり、浸窒層の厚さが小さくなった。そのため、硬化層の厚さも小さくなり、疲労特性及び靭性が低下してしまった。
In addition, in Comparative Examples 4 to 7 and 10 to 13, the number of elements that form nitrides during nitriding and quenching treatment was too small, so the effect of suppressing coarsening of nitrogen austenite due to the formation of nitrides was not obtained, and nitrogen martensite was not obtained. grain size also increased. Therefore, fatigue properties and toughness were lowered after nitriding and quenching.
In addition, in Comparative Examples 8 and 9, since the amounts of Si and Al were too large, the nitrides were coarsened and tended to become starting points of fatigue fracture. Therefore, fatigue properties and toughness were lowered after nitriding and quenching.
Further, in Comparative Examples 14 to 16, since the nitriding index was 0.7 or more, the austenite growth rate was slowed down during the nitriding treatment, and the thickness of the nitriding layer was reduced. As a result, the thickness of the hardened layer was also reduced, resulting in deterioration in fatigue properties and toughness.

以上の結果からわかるように、本発明によれば、靭性及び疲労強度に優れた浸窒焼入れ部品を製造可能な浸窒焼入れ処理用鋼を提供することができる。また、本発明によれば、靭性及び疲労強度に優れた浸窒焼入れ部品及びその製造方法を提供することができる。 As can be seen from the above results, according to the present invention, it is possible to provide a nitriding and quenching steel capable of producing nitriding and quenching parts having excellent toughness and fatigue strength. Further, according to the present invention, it is possible to provide a nitriding hardened part excellent in toughness and fatigue strength and a method for manufacturing the same.

Claims (9)

C:0.3質量%以下、
Mn:0.3~2.8質量%、
Ni:0.05~1.0質量%、
P:0.03質量%以下、
S:0.03質量%以下、並びに
Cr:0.1~4.5質量%、Si:0.1~1.0質量%及びAl:0.1~1.0質量%から選択される1種以上
を含み、Mn及びNiが合計で0.4~3.0質量%であり、残部がFe及び不可避的不純物からなり、
下記式(1):
A1=0.30Cr+0.45Si+0.34Al-0.2(Mn+Ni) (1)
(式中、各元素記号は、各元素の質量%である)で表される浸窒指数A1が0.7以下である浸窒焼入れ処理用鋼。
C: 0.3% by mass or less,
Mn: 0.3 to 2.8% by mass,
Ni: 0.05 to 1.0% by mass,
P: 0.03% by mass or less,
S: 0.03% by mass or less, and 1 selected from Cr: 0.1 to 4.5% by mass, Si: 0.1 to 1.0% by mass, and Al: 0.1 to 1.0% by mass including more than seeds, the total amount of Mn and Ni is 0.4 to 3.0% by mass, and the balance consists of Fe and unavoidable impurities,
Formula (1) below:
A1=0.30Cr+0.45Si+0.34Al-0.2(Mn+Ni) (1)
A steel for nitriding and quenching treatment having a nitriding index A1 represented by (in the formula, each element symbol represents mass % of each element) of 0.7 or less.
C:0.3質量%以下、
Mn:0.3~2.8質量%、
Ni:0.05~1.0質量%、
P:0.03質量%以下、
S:0.03質量%以下、
Cr:0.1~4.5質量%、Si:0.1~1.0質量%及びAl:0.1~1.0質量%から選択される1種以上、並びに
V:0.01~1.5質量%、Nb:0.01~3.0質量%及びTi:0.01~1.5質量%から選択される1種以上
を含み、Mn及びNiが合計で0.4~3.0質量%であり、残部がFe及び不可避的不純物からなり、
下記式(3):
A3=0.30Cr+0.45Si+0.34Al+0.36V+0.35Nb+0.35Ti-0.20(Mn+Ni) (3)
(式中、各元素記号は、各元素の質量%である)で表される浸窒指数A3が0.7以下である浸窒焼入れ処理用鋼。
C: 0.3% by mass or less,
Mn: 0.3 to 2.8% by mass,
Ni: 0.05 to 1.0% by mass,
P: 0.03% by mass or less,
S: 0.03% by mass or less,
Cr: 0.1 to 4.5% by mass, Si: 0.1 to 1.0% by mass and Al: one or more selected from 0.1 to 1.0% by mass, and V: 0.01 to 1.5% by mass, Nb: 0.01 to 3.0% by mass, and Ti: one or more selected from 0.01 to 1.5% by mass, and the total amount of Mn and Ni is 0.4 to 3 .0% by mass, the balance being Fe and unavoidable impurities,
Formula (3) below:
A3=0.30Cr+0.45Si+0.34Al+0.36V+0.35Nb+0.35Ti-0.20(Mn+Ni) (3)
A steel for nitriding and quenching treatment having a nitriding index A3 represented by (in the formula, each element symbol represents mass % of each element) of 0.7 or less.
Mo:0.1~2.0質量%及びB:0.0001~0.01質量%から選択される1種以上をさらに含む、請求項1又は2に記載の浸窒焼入れ処理用鋼。 3. The steel for nitriding and quenching according to claim 1, further comprising one or more selected from Mo: 0.1 to 2.0% by mass and B: 0.0001 to 0.01% by mass. Cr、Si及びAlの合計量が0.1~4.5質量%である、請求項1~3のいずれか一項に記載の浸窒焼入れ処理用鋼。 The steel for nitriding and quenching treatment according to any one of claims 1 to 3, wherein the total amount of Cr, Si and Al is 0.1 to 4.5% by mass. V、Nb及びTiの合計量が0.01~3.0質量%である、請求項2~4のいずれか一項に記載の浸窒焼入れ処理用鋼。 The steel for nitriding and quenching treatment according to any one of claims 2 to 4, wherein the total amount of V, Nb and Ti is 0.01 to 3.0% by mass. 請求項1~5のいずれか一項に記載の浸窒焼入れ処理用鋼の表層部に、浸窒焼入れ処理によって窒素マルテンサイトを含む硬化層が形成された浸窒焼入れ部品。 A nitriding and quenching part in which a hardened layer containing nitrogen martensite is formed by nitriding and quenching on the surface layer of the steel for nitriding and quenching according to any one of claims 1 to 5. 前記窒素マルテンサイトの平均結晶粒径が80μm以下である、請求項6に記載の浸窒焼入れ部品。 7. The nitriding and quenching part according to claim 6, wherein said nitrogen martensite has an average crystal grain size of 80 [mu]m or less. 前記硬化層のビッカース硬さが500HV以上である、請求項6又は7に記載の浸窒焼入れ部品。 8. The nitriding and quenching part according to claim 6, wherein the hardened layer has a Vickers hardness of 500 HV or more. 請求項1~5のいずれか一項に記載の浸窒焼入れ処理用鋼を部品形状に加工して浸窒焼入れ処理を行う、浸窒焼入れ部品の製造方法。 A method of manufacturing a nitriding and quenching part, comprising processing the steel for nitriding and quenching according to any one of claims 1 to 5 into a part shape and performing nitriding and quenching treatment.
JP2021198062A 2018-03-26 2021-12-06 Steel for nitriding and quenching treatment, nitriding and quenching parts, and manufacturing method thereof Active JP7168059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021198062A JP7168059B2 (en) 2018-03-26 2021-12-06 Steel for nitriding and quenching treatment, nitriding and quenching parts, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018059056A JP7031428B2 (en) 2018-03-26 2018-03-26 Steel for soaking and quenching, soaking and quenching parts and their manufacturing methods
JP2021198062A JP7168059B2 (en) 2018-03-26 2021-12-06 Steel for nitriding and quenching treatment, nitriding and quenching parts, and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018059056A Division JP7031428B2 (en) 2018-03-26 2018-03-26 Steel for soaking and quenching, soaking and quenching parts and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2022028931A JP2022028931A (en) 2022-02-16
JP7168059B2 true JP7168059B2 (en) 2022-11-09

Family

ID=87761051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021198062A Active JP7168059B2 (en) 2018-03-26 2021-12-06 Steel for nitriding and quenching treatment, nitriding and quenching parts, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7168059B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147224A1 (en) 2009-06-17 2010-12-23 新日本製鐵株式会社 Steel for nitriding and nitrided steel components
JP2011208250A (en) 2010-03-30 2011-10-20 Nippon Steel Corp Steel for nitriding and induction hardening and nitrided, induction-hardened component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3381738B2 (en) * 1993-09-20 2003-03-04 日産自動車株式会社 Manufacturing method of mechanical structural parts with excellent mechanical strength
JP3405468B2 (en) * 1993-09-27 2003-05-12 日産自動車株式会社 Manufacturing method of mechanical structural parts
JPH07310731A (en) * 1994-05-13 1995-11-28 Jatco Corp High strength shaft and manufacture thereof
JP5477248B2 (en) * 2010-09-30 2014-04-23 新日鐵住金株式会社 Nitriding steel and nitriding parts with excellent machinability
JP5999751B2 (en) * 2011-08-25 2016-09-28 Jfeスチール株式会社 Manufacturing method of ferrous materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147224A1 (en) 2009-06-17 2010-12-23 新日本製鐵株式会社 Steel for nitriding and nitrided steel components
JP2011208250A (en) 2010-03-30 2011-10-20 Nippon Steel Corp Steel for nitriding and induction hardening and nitrided, induction-hardened component

Also Published As

Publication number Publication date
JP2022028931A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JP6452454B2 (en) Rolled material for high strength spring and wire for high strength spring
JP5123335B2 (en) Crankshaft and manufacturing method thereof
KR102464899B1 (en) Precipitation hardening steel and its manufacture
WO2013024876A1 (en) Spring steel and spring
WO2021230244A1 (en) Austenitic stainless steel material, method for producing same, and plate spring
JP4347763B2 (en) High temperature carburizing steel and method for producing the same
JP2017066460A (en) Age hardening steel
JP2007113071A (en) Case hardening steel having excellent rolling fatigue property and crystal grain coarsening prevention property
JP4613698B2 (en) Steel strip and strip
JP2005220423A (en) Ti-CONTAINING CASE HARDENING STEEL
KR100999676B1 (en) Wire for valve spring having excellent tensile strength and fatigue strength and manufacturing method thereeof
JP7031428B2 (en) Steel for soaking and quenching, soaking and quenching parts and their manufacturing methods
JP2005097682A (en) Steel, steel sheet and stock belt for continuously variable transmission belt, continuously variable transmission belt, and production method therefor
JP7168059B2 (en) Steel for nitriding and quenching treatment, nitriding and quenching parts, and manufacturing method thereof
US20160160306A1 (en) Coil spring, and method for manufacturing same
JP2020029608A (en) Steel for carbonitriding
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
CN101397631A (en) Case-hardened steel with good cold-forging performance and low carburized deformation performance
JP5594521B2 (en) Steel for element of belt type CVT and element using the same
JP4315049B2 (en) Thin steel strip with excellent strength, fatigue strength, corrosion resistance and wear resistance, and manufacturing method thereof
WO2020255303A1 (en) Steel for nitriding quenching treatment, nitrided quenched component and method for producing same
CN112585290A (en) High-strength steel sheet and method for producing same
JP6282078B2 (en) Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics
TW202108783A (en) Steel for nitriding and quenching treatment, nitriding and quenching part and manufacturing method thereof having excellent ductility and fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221010

R151 Written notification of patent or utility model registration

Ref document number: 7168059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151