JP4613698B2 - Steel strip and strip - Google Patents

Steel strip and strip Download PDF

Info

Publication number
JP4613698B2
JP4613698B2 JP2005154726A JP2005154726A JP4613698B2 JP 4613698 B2 JP4613698 B2 JP 4613698B2 JP 2005154726 A JP2005154726 A JP 2005154726A JP 2005154726 A JP2005154726 A JP 2005154726A JP 4613698 B2 JP4613698 B2 JP 4613698B2
Authority
JP
Japan
Prior art keywords
steel
less
ribbon
strength
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005154726A
Other languages
Japanese (ja)
Other versions
JP2006328486A (en
Inventor
宏之 高林
哲也 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005154726A priority Critical patent/JP4613698B2/en
Publication of JP2006328486A publication Critical patent/JP2006328486A/en
Application granted granted Critical
Publication of JP4613698B2 publication Critical patent/JP4613698B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、薄帯用鋼に関し、各種の金属ベルト類の材料として使用したとき、すぐれた疲労強度を示す鋼を提供する。 The present invention relates to a steel for a ribbon, and provides a steel exhibiting excellent fatigue strength when used as a material for various metal belts.

たとえばCVT(連続可変トランスミッション)を構成する金属ベルトの材料としては、通常、Tiを添加したマルエージング鋼が使用されている。具体的な合金組成の例をあげれば、C:0.03%以下、Ni:12.0〜25.0%、Co:8.0〜12.5%、Mo:3.5〜4.8%、Ti:0.2〜1.7%およびAl:0.1〜0.3%を含有し、残部がFeおよび不可避な不純物からなるマルエージング鋼である。 For example, as a material for a metal belt constituting a CVT (continuously variable transmission), maraging steel added with Ti is usually used. If the example of a specific alloy composition is given, C: 0.03% or less, Ni: 12.0-25.0%, Co: 8.0-12.5%, Mo: 3.5-4.8 %, Ti: 0.2 to 1.7% and Al: 0.1 to 0.3%, and the balance is a maraging steel made of Fe and inevitable impurities.

この種のマルエージング鋼は、強度がきわめて高く、靱性がすぐれているだけでなく、被削性、加工性および溶接性も良好であるため、さまざまな用途に向けられているが、Tiを含有しているために、疲労強度をはじめとする疲労特性に関しては若干不十分であり、とくに厚さ0.5mm以下の薄板に加工すると、とりわけ疲労特性が低下するという欠点がある。 This type of maraging steel is not only very strong and has excellent toughness, but also has good machinability, workability and weldability, so it is suitable for various applications, but contains Ti. Therefore, the fatigue properties including fatigue strength are slightly insufficient, and particularly when processed into a thin plate having a thickness of 0.5 mm or less, there is a disadvantage that the fatigue properties are deteriorated.

既存のマルエージング鋼の上記した欠点を補うことを目的として、出願人は、比較的多量のCを添加したマルエージング鋼を開発し、開示した(特許文献1)。その鋼は、Cが時効によりCrおよびMoと結合して炭化物を生成するという現象に基づき、炭化物が析出して二次硬化を起こすという機構を利用するものであるから、在来のマルエージング鋼のC含有量「0.03%以下」に対し桁ちがいの、「0.3%以下」という多量のCを添加する。上記特許文献1の実施例では、0.16〜0.22%のCが添加されている。
特開2002−167652
In order to compensate for the above-mentioned drawbacks of existing maraging steel, the applicant has developed and disclosed maraging steel to which a relatively large amount of C is added (Patent Document 1). The steel is based on the phenomenon that C combines with Cr and Mo by aging to form carbides, and uses a mechanism in which carbides precipitate and cause secondary hardening. A large amount of “0.3% or less” of C is added to the C content of “0.03% or less”. In the Example of the said patent document 1, 0.16-0.22% of C is added.
JP-A-2002-167652

発明者らは、在来のマルエージング鋼の0.03%を超え、特許文献1が提案する上限0.3%に至るC含有量の領域におけるC含有量が物性に与える影響を精査して、つぎの知見を得た。
・C含有量と引張り強さとの関係は、図1の上段のグラフに示すように、在来の低Cの領域を超えて0.3%に至るまでは、在来品より高い値が得られること。(図1の上段において破線で示した値が、在来のマルエージング鋼の強度レベルである。)
・ところが、疲労特性に関しては、C含有量が在来のものを超えて多量になると、図1の下段のグラフに示したように、ある程度までは疲労限界が向上するが、0.15%を超えると低下しはじめ、0.23%に至って、在来材のレベル(図1の下段において破線で示した)を下回ること。この、0.23%までは在来材と同等以上の疲労特性が得られるのは、母材自身の強度に助けられたためと理解される。
・疲労特性は、窒化処理によってマルエージング鋼製品の表面に形成される窒素拡散層の深さによって左右され、この層の深さは、図1の中段のグラフに見るように、C含有量が0.15%を超えると低下すること。この結果は、下段のグラフの疲労強度の変化と対応している。
The inventors have examined the influence of C content on the physical properties in the region of C content exceeding 0.03% of conventional maraging steel and reaching the upper limit of 0.3% proposed by Patent Document 1. The following knowledge was obtained.
・ As shown in the upper graph of Fig. 1, the relationship between C content and tensile strength is higher than that of conventional products until it reaches 0.3% beyond the conventional low C region. Be done. (The value indicated by the broken line in the upper part of FIG. 1 is the strength level of conventional maraging steel.)
・ However, with regard to fatigue properties, when the C content exceeds the conventional one, the fatigue limit improves to a certain extent as shown in the lower graph of FIG. When it exceeds, it starts to decrease and reaches 0.23%, which is below the level of conventional materials (shown by a broken line in the lower part of FIG. 1). It is understood that the fatigue characteristics equal to or higher than those of conventional materials can be obtained up to 0.23% because the strength of the base metal itself is helped.
-Fatigue properties depend on the depth of the nitrogen diffusion layer formed on the surface of the maraging steel product by nitriding treatment. The depth of this layer depends on the C content as shown in the middle graph of FIG. When it exceeds 0.15%, it decreases. This result corresponds to the change in fatigue strength in the lower graph.

上記の知見にもとづいて、発明者らは、疲労特性が改善されたマルエージング鋼の合金設計を行なう指針として、在来のマルエージング鋼の上限0.03%を超える0.05%以上であって、特許文献1の発明が試みなかった0.15%以下の領域のC含有量を選ぶべきことを知った。マルエージング鋼の疲労強度を高めるためには、材料表面の硬化も必要であるが、窒素を材料内部の深いところまで、適切な濃度で拡散させる必要がある。つまり、製品薄帯の板厚方向に加わる曲げ応力分布の勾配に近いパターンで、圧縮残留応力状態を窒素の拡散によって実現することが重要である。 Based on the above findings, the inventors have used 0.05% or more, exceeding the upper limit of 0.03% of conventional maraging steel, as a guideline for designing an alloy of maraging steel with improved fatigue properties. Thus, it was found that the C content in the region of 0.15% or less that the invention of Patent Document 1 did not try should be selected. In order to increase the fatigue strength of maraging steel, it is necessary to harden the surface of the material, but it is necessary to diffuse nitrogen at an appropriate concentration deep inside the material. That is, it is important to realize a compressive residual stress state by nitrogen diffusion in a pattern close to the gradient of the bending stress distribution applied in the thickness direction of the product ribbon.

本発明の目的は、上述した発明者らの知見を、当業技術の分野で知られていた諸事項に考え合わせて、強度および靱性が高いというマルエージング鋼の特徴を確保しつつ、疲労強度特性に関して既知のものよりすぐれた薄帯用鋼を提供することにある。そのマルエージング鋼を使用して、従来品よりいっそう耐久性が高い鋼ベルトを提供することも、本発明の目的に含まれる。 The object of the present invention is to combine the above-mentioned findings of the inventors with various matters known in the technical field of the art, while ensuring the characteristics of maraging steel with high strength and toughness, while maintaining fatigue strength. The aim is to provide a strip steel which is superior in properties to the known ones. It is also included in the object of the present invention to use the maraging steel to provide a steel belt having higher durability than conventional products.

上記の目的を達成する本発明の薄帯用鋼は、重量%で、C:0.05〜0.15%、Ni:10.0〜18.0%、Co:5.0〜30.0%、Mo:1.0〜5.0%、Al:0.5〜1.3%、およびCr:1.0〜3.0%を含有し、Ti:0.10%以下、S:0.003%以下、P:0.03%以下、N:0.03%以下、かつ、O:0.03%以下であって、残部がFeおよび不可避の不純物からなる合金組成を有する曲げ疲労特性にすぐれた薄帯用鋼である。本発明の薄帯は、上記の合金組成を有する薄帯用鋼を薄帯形状に成形し、表面の窒化処理を施してなる、繰り返し曲げ応力が加わる用途に用いる薄帯である。 The steel sheet for ribbon according to the present invention that achieves the above-mentioned object is, by weight%, C: 0.05 to 0.15%, Ni: 10.0 to 18.0%, Co: 5.0 to 30.0. %, Mo: 1.0 to 5.0%, Al: 0.5 to 1.3%, and Cr: 1.0 to 3.0%, Ti: 0.10% or less, S: 0 0.0003% or less, P: 0.03% or less, N: 0.03% or less, and O: 0.03% or less, the bending fatigue characteristics having an alloy composition with the balance being Fe and inevitable impurities It is an excellent steel strip. The ribbon according to the present invention is a ribbon used for applications in which repeated bending stress is applied by forming a steel for a ribbon having the above alloy composition into a ribbon shape and subjecting the surface to nitriding treatment.

本発明の薄帯用鋼は、薄帯に加工したものに窒化処理を施した製品が、繰り返し曲げ応力の加わる用途に向けたとき、すぐれた曲げ疲労特性を発揮する。この製品の引張り強度や靱性は、従来のマルエージング鋼のそれに、まさるとも劣らない。したがって本発明の鋼で製造した薄帯は、自動車の動力伝達系におけるCVTのベルトなどに使用したとき、高い耐久力を発揮する。 The steel for a strip according to the present invention exhibits excellent bending fatigue characteristics when a product obtained by nitriding a product processed into a strip is subjected to repeated bending stress application. The tensile strength and toughness of this product are not inferior to those of conventional maraging steel. Therefore, the ribbon manufactured with the steel of the present invention exhibits high durability when used for a CVT belt in a power transmission system of an automobile.

本発明の薄帯用鋼は、前記した合金成分に加えて、下記のグループに属する任意添加成分のいずれか一つまたは二つ以上を有することができる。
1)B:0.0001〜0.010%、Ca:0.0001〜0.010%、およびMg:0.0001〜0.010%の1種または2種以上、
2)Zr:0.005〜0.04%、
3)V:0.01〜1.0%、Nbおよび(または)Ta(併用の場合は合計量で):0.01〜1.0%、W:0.01〜1.0%およびCu:0.01〜1.0%の1種または2種以上、ならびに
4)REM:0.005〜0.020%
In addition to the above-described alloy components, the steel for a strip of the present invention can have any one or two or more of optional additive components belonging to the following groups.
1) One or more of B: 0.0001 to 0.010%, Ca: 0.0001 to 0.010%, and Mg: 0.0001 to 0.010%,
2) Zr: 0.005 to 0.04%,
3) V: 0.01 to 1.0%, Nb and / or Ta (when combined, in total amount): 0.01 to 1.0%, W: 0.01 to 1.0% and Cu : 0.01 to 1.0% of one or more, and 4) REM: 0.005 to 0.020%

以下に、本発明の薄帯用鋼の合金組成を上記のように定めた理由を、まず必須合金成分について、つぎに任意添加成分について説明する。 The reason why the alloy composition of the steel strip for use in the present invention is determined as described above will be described first for the essential alloy component and then for the optional additive component.

C:0.05〜0.15%
上に説明したように、従来のマルエージング鋼においては、CはTiと結合してTiCを形成し、これが強度および靱性を低下させるとして、0.03%以下という低い含有量に制限していた。ところが本発明においては、Cは、時効によりCrおよびMoと結合しこれらの炭化物となって析出することを利用し、二次硬化を引き起こさせることを目的として含有させるものであるから、積極的に多量を添加する。しかし、Cが0.15%を超えると、窒化処理時に十分な窒化層深さが得られず、破壊のパターンが内部起点型から表面起点型に移行し、表面キズや外部環境の影響を受けて、疲労強度が低下する。母材の強度と窒化特性とのバランスから、C量の増大に伴って、0.23%までは通常のマルエージング鋼に比べて、同等以上の曲げ疲労強度が得られるが、すぐれた曲げ疲労強度特性が安定して得られる0.05〜0.15%の範囲を選んだ。
C: 0.05 to 0.15%
As explained above, in the conventional maraging steel, C combines with Ti to form TiC, which is limited to a low content of 0.03% or less as it reduces strength and toughness. . However, in the present invention, C is incorporated for the purpose of causing secondary hardening by utilizing the fact that it combines with Cr and Mo by aging and precipitates as these carbides. Add a large amount. However, if C exceeds 0.15%, a sufficient nitrided layer depth cannot be obtained during nitriding, and the pattern of destruction shifts from the internal origin type to the surface origin type, and is affected by surface scratches and the external environment. As a result, fatigue strength decreases. From the balance between the strength of the base metal and the nitriding characteristics, with increasing C content, bending fatigue strength equal to or higher than that of ordinary maraging steel can be obtained up to 0.23%, but excellent bending fatigue. A range of 0.05 to 0.15% at which strength characteristics are stably obtained was selected.

Ni:10.0〜18.0%
Niは、マトリクスをオーステナイト組織にし、それを固溶化熱処理温度から室温まで放冷することによりマルテンサイト組織に変わることによって強度および靱性を向上させ、延性・靱性遷移温度を高くする。それとともに、時効によりMoおよびAlと金属間化合物を形成し、それが析出して二次硬化を引き起こす。Niがもたらすこのような効果は、10.0%以上の添加により可能となるが、18.0%を超えて添加すると、上記の放冷をしてもオーステナイトが残ってしまい、全体をマルテンサイトにすることができなくなる。
Ni: 10.0-18.0%
Ni makes the matrix an austenitic structure, which is cooled to a room temperature from the solution heat treatment temperature to room temperature, thereby improving the strength and toughness and increasing the ductility / toughness transition temperature. At the same time, Mo and Al form an intermetallic compound by aging, which precipitates and causes secondary hardening. Such an effect brought about by Ni is made possible by addition of 10.0% or more, but if added over 18.0%, austenite remains even after the above cooling, and the whole is martensite. Can not be.

Co:5.0〜30.0%
Coは、時効硬化特性を高めて強度を向上させるとともに、マルテンサイト変態温度を高めてマルテンサイトへの変態を容易にするので、それらを目的として添加する。これらの効果を得るためには、5.0%以上の含有が必要であるが、20.0%を超えると添加効果が飽和する傾向にあるので、30.0%を上限とする。好ましい添加量は、8.0〜20.0%である。
Co: 5.0-30.0%
Co increases age-hardening characteristics to improve strength, and also raises the martensite transformation temperature to facilitate transformation to martensite, so is added for the purpose. In order to obtain these effects, it is necessary to contain 5.0% or more. However, if it exceeds 20.0%, the additive effect tends to be saturated, so 30.0% is made the upper limit. A preferable addition amount is 8.0 to 20.0%.

Mo:1.0〜5.0%
Moは、時効によりNiと化合して金属間化合物Ni3Moを析出させるだけでなく、Crと同様にCと結合して炭化物を析出させ、それら析出物が二次硬化を引き起こすはたらきがある。この効果は、1.0%以上の添加で認められる、5.0%を超えると延性および靱性を低下させるので、上記の範囲内の添加量を選ぶ。
Mo: 1.0-5.0%
Mo not only combines with Ni by aging to precipitate the intermetallic compound Ni 3 Mo, but also bonds to C in the same way as Cr to precipitate carbides, and these precipitates cause secondary hardening. This effect is recognized when 1.0% or more is added, and if it exceeds 5.0%, ductility and toughness are lowered. Therefore, the addition amount is selected within the above range.

Al:0.5〜1.3%
Alは、溶製時の脱酸剤であるとともに、時効によりNiと結合して金属間化合物を析出させ(NiAlなど)、二次硬化による強度向上の効果をもたらす。この効果を得るために、0.5%以上のAlを添加するが、1.3%を超える添加は延性および靱性を損なうので、この範囲内の添加量とする。
Al: 0.5 to 1.3%
Al is a deoxidizer at the time of melting, and binds to Ni by aging to precipitate an intermetallic compound (NiAl or the like), and brings about an effect of improving strength by secondary hardening. In order to obtain this effect, 0.5% or more of Al is added. However, since addition exceeding 1.3% impairs ductility and toughness, the addition amount is set within this range.

Cr:1.0〜3.0%
Crは、Moに関して上記したように、炭化物を析出させて二次硬化を引き起こすとともに、マトリクスに溶解して耐腐食性を高める。これらの目的で添加するCrの量は、少なくとも1.0%なければならない。多量の添加は延性・靱性にとって不利にはたらくので、3.0%を上限とする。
Cr: 1.0-3.0%
As described above with respect to Mo, Cr precipitates carbides to cause secondary hardening, and dissolves in the matrix to enhance corrosion resistance. The amount of Cr added for these purposes must be at least 1.0%. Addition of a large amount adversely affects ductility and toughness, so the upper limit is 3.0%.

Ti:0.10%以下
Tiは、CおよびNと結合してTi系の非金属介在物を形成し、疲労強度などの疲労特性を低下させるから、その量を0.10%以内に止める。
Ti: 0.10% or less Ti combines with C and N to form Ti-based non-metallic inclusions and deteriorates fatigue characteristics such as fatigue strength. Therefore, the amount is limited to 0.10%.

S:0.003%以下
Sは被削性を高める元素であるが、被削性をもたらすMnSは靱性および疲労強度にとっては好ましくない存在であるから、含有量を0.003%以下に制限する。
S: 0.003% or less S is an element that enhances machinability, but MnS that brings about machinability is not preferable for toughness and fatigue strength, so the content is limited to 0.003% or less. .

P:0.03%以下
Pは靱性にとっても疲労強度にとってもマイナスとなる成分である。含有量を0.03%以下にしなければならない。
P: 0.03% or less P is a component that is negative for toughness and fatigue strength. The content must be 0.03% or less.

N:0.03%以下
Nは、上記のようにTiなどと化合してTi系の非金属介在物を形成し、それが疲労特性を低下させるから、その含有量を0.03%以下に抑える。
N: 0.03% or less N combines with Ti as described above to form Ti-based non-metallic inclusions, which lowers fatigue properties, so the content is made 0.03% or less. suppress.

O:0.03%以下
OはAlなどと化合して、酸化物系の非金属介在物を形成する。それらは疲労特性にとって望まれない存在であるから、Oの含有量を0.03%以下に低減する。
O: 0.03% or less O combines with Al to form oxide-based non-metallic inclusions. Since they are undesirable for fatigue properties, the O content is reduced to 0.03% or less.

B,CaおよびMgの1種または2種以(併用の場合は合計量で):0.0001〜0.010%
B,Ca,Mgは、疲労強度の向上に効果があり、また、熱間加工性を向上させる上でも有効な元素である。この効果は、含有量0.0001%以上で現れるが、過剰な添加は、低融点のホウ化物を粒界に析出させたり、酸化物を形成させたりするため、鋼の清浄度が低下し、熱間加工性や冷間加工性を低下させる上、疲労強度の低下をも招くため、0.010%以下の量に止める必要がある。
One, two or more of B, Ca and Mg (in the case of combined use, the total amount): 0.0001 to 0.010%
B, Ca, and Mg are effective elements for improving fatigue strength, and are effective elements for improving hot workability. This effect appears at a content of 0.0001% or more, but excessive addition causes a low melting point boride to precipitate at the grain boundaries or to form an oxide, thereby reducing the cleanliness of the steel. In addition to lowering hot workability and cold workability, it also causes a decrease in fatigue strength, so it is necessary to limit the amount to 0.010% or less.

Zr:0.005〜0.040%
Zrを添加する意義は、TiCの生成を抑制して疲労強度を高めることにある。この効果は0.005%以上の添加により得られるが、過大な添加をすると偏析が多くなって靱性が損なわれるので、その問題のない0.040%までの範囲で、添加量を選択すべきである。
Zr: 0.005 to 0.040%
The significance of adding Zr is to increase the fatigue strength by suppressing the formation of TiC. This effect can be obtained by addition of 0.005% or more. However, if excessive addition is performed, segregation increases and the toughness is impaired. Therefore, the addition amount should be selected within the range of 0.040% without any problem. It is.

V:0.01〜1.0%、Nbおよび(または)Ta(併用の場合は合計量で):0.01〜1.0%、W:0.01〜1.0%およびCu:0.01〜1.0%の1種または2種以上、
V,Nb,Ta,WおよびCuは、マトリクスに固溶して疲労強度を向上させるので、その目的で添加することが好ましい。効果が明らかになるのは、いずれも0.01%以上の添加量においてである。1.0%を超える多量の添加は、延性および靱性を低下させるので、それぞれの含有量を、0.01〜1.0%の範囲内に選ぶ。
V: 0.01 to 1.0%, Nb and / or Ta (when combined use, in total amount): 0.01 to 1.0%, W: 0.01 to 1.0% and Cu: 0 .01-1.0% of one or more,
V, Nb, Ta, W and Cu are preferably added for that purpose because they dissolve in the matrix and improve the fatigue strength. The effects become clear only when the addition amount is 0.01% or more. Addition of a large amount exceeding 1.0% lowers the ductility and toughness, so the respective contents are selected within the range of 0.01 to 1.0%.

REM:0.005〜0.020%
REMは、酸化被膜の密着性を高くして、高温における耐食性を向上させるので、使用環境によっては、その目的で添加することが推奨される。この効果は、0.005%以上の含有量で認められるが、0.020%を超える添加は、局部的に融点を低下させて熱間加工性を損なうという弊害がでるので、これを上限とする。
REM: 0.005-0.020%
REM increases the adhesion of the oxide film and improves the corrosion resistance at high temperatures. Therefore, depending on the usage environment, it is recommended to add REM. This effect is recognized at a content of 0.005% or more. However, addition over 0.020% has a detrimental effect of locally lowering the melting point and impairing hot workability. To do.

本発明の薄板材の製造に当たっては、(1)不純物の少ない原料を真空誘導炉で溶解し、鋳造してインゴットにするか、または(2)スクラップおよび合金元素などの溶解原料をエルー式アーク炉で溶解および精錬し、得られた溶鋼を加熱装置および真空装置の付いた取鍋精錬炉に移して真空精錬し、鋳造してインゴットにするという操作を行なう。このようにして得たインゴットを、エレクトロスラグ再溶解法または真空アーク再溶解法により再溶解し、凝固させて再溶解インゴットとする。 In the production of the thin plate material of the present invention, (1) a raw material with few impurities is melted in a vacuum induction furnace and cast into an ingot, or (2) a melting raw material such as scrap and alloy elements is an eruc arc furnace. The resulting molten steel is transferred to a ladle refining furnace equipped with a heating device and a vacuum device, vacuum refined, and cast into an ingot. The ingot thus obtained is remelted by the electroslag remelting method or the vacuum arc remelting method and solidified to form a remelted ingot.

再溶解インゴットは、約1000〜1300℃の範囲の温度に6〜72時間程度加熱するソーキングを行ない、空冷したのち、熱間加工または冷間加工により所望の製品形状に加工する。最終的な製品形状を与えられた後、800〜1000℃の温度に約1〜60分間加熱して固溶化処理し、空冷したのち、研磨して表面スケールを除去し、表面品質の均質化をはかり、端部のR付けを行なう。続いて、所定の素材強度を得るため、真空中、不活性雰囲気中または弱還元性雰囲気中で、100〜600℃に1〜5時間加熱して空冷し、大気中で100〜400℃に1〜60分間、酸化処理を施し、最後に100〜600℃の窒化雰囲気中に1〜5時間おき、不活性ガスでガス冷却することによって、製品を得る。 The remelted ingot is soaked by heating to a temperature in the range of about 1000 to 1300 ° C. for about 6 to 72 hours, air cooled, and then processed into a desired product shape by hot working or cold working. After being given the final product shape, it is heated to a temperature of 800-1000 ° C. for about 1-60 minutes for solid solution treatment, air-cooled, and then polished to remove the surface scale and homogenize the surface quality. Weigh the scale and end. Subsequently, in order to obtain a predetermined material strength, it is heated in air at 100 to 600 ° C. for 1 to 5 hours in a vacuum, in an inert atmosphere or in a weakly reducing atmosphere, and is then air-cooled at 100 to 400 ° C. in air. Oxidation treatment is performed for ˜60 minutes, and finally, the product is obtained by gas cooling with an inert gas every 1 to 5 hours in a nitriding atmosphere at 100 to 600 ° C.

前記した(2)の方法に従い、スクラップのアーク炉による溶解−精錬、取鍋精錬炉による真空精錬、および真空アーク再溶解を行なって、直径510mmのインゴットを得た。合金組成は、表1に示すとおりである。これらのインゴットを1150〜1200℃で24時間加熱するソーキングを行なって均質化し、熱間鍛造および熱間圧延により、厚さ4mmの板材とし、つづいて冷間圧延により厚さ0.4mmの薄板材にした。この薄板材に、下記の熱処理を施した。
1)900℃に60分間加熱する固溶化−空冷
2)480℃に4時間加熱−空冷
3)大気中250℃に60分間加熱する酸化処理
4)窒化雰囲気中で450℃に60分間加熱−不活性ガスでガス冷却する時効窒化処理。
According to the method (2) described above, melting and refining of scrap by an arc furnace, vacuum refining by a ladle refining furnace, and vacuum arc remelting were performed to obtain an ingot having a diameter of 510 mm. The alloy composition is as shown in Table 1. These ingots are homogenized by soaking by heating at 1150 to 1200 ° C. for 24 hours to form a plate material having a thickness of 4 mm by hot forging and hot rolling, and subsequently a thin plate material having a thickness of 0.4 mm by cold rolling. I made it. The thin plate material was subjected to the following heat treatment.
1) Solid solution heated to 900 ° C for 60 minutes-Air cooling 2) Heating to 480 ° C for 4 hours-Air cooling 3) Oxidation treatment heating to 250 ° C for 60 minutes in the atmosphere 4) Heating to 450 ° C for 60 minutes in a nitriding atmosphere-Not used Aging nitriding with gas cooling with active gas.

Figure 0004613698
Figure 0004613698

薄板材の最終製品について、下記の試験を行なった。
[清浄度]
JIS G0555に定める、鋼中の非金属介在物の顕微鏡試験方法に準じて、介在物の面積率(%)を測定した。試験片は、0.4mm×5mm×10mmの短冊型にした薄板材を5枚重ねて樹脂に埋め込み、鏡面研磨して製作した。
[引張り試験]
JIS Z2241に定める、金属引張り試験方法に準じて、引張り強度(MPa)を測定した。試験片は、JIS Z2201による5号試験片とした。
[T/2硬さ]
JIS Z2241に定める、ビッカース硬さ試験方法に準じて実施した。試験片は、上記の清浄度試験のために用意したものと同じであって、荷重0.5Nで測定した。測定部位は、横断面に置いて表面から試料厚さの1/2の位置(T/2)である。測定値は10点の平均値を採用した。
The following test was performed on the final product of the sheet material.
[Cleanliness]
The area ratio (%) of inclusions was measured in accordance with the microscope test method for nonmetallic inclusions in steel defined in JIS G0555. The test piece was manufactured by stacking five sheets of 0.4 mm × 5 mm × 10 mm strips and embedding them in a resin, followed by mirror polishing.
[Tensile test]
The tensile strength (MPa) was measured according to the metal tensile test method defined in JIS Z2241. The test piece was a No. 5 test piece according to JIS Z2201.
[T / 2 hardness]
The test was performed according to the Vickers hardness test method defined in JIS Z2241. The test piece was the same as that prepared for the above cleanliness test, and was measured at a load of 0.5 N. The measurement site is a position (T / 2) that is 1/2 the sample thickness from the surface, placed on the cross section. The measured value was an average value of 10 points.

[窒素拡散層深さ]
上記の清浄度試験のために用意したものと同じ試験片について、EPMAにより窒素濃度の分布を測定し、図2に示したグラフを描き、そこで斜線を施した部分、すなわち、表面から窒素濃度が最低値で飽和するまでの深さをもって、窒化層深さ(μm)とした。
[曲げ疲労特性]
JIS Z2273に定める、金属材料の疲れ試験方法通則に準じて調査。具体的には、図3に示すように、寸法が0.4mm×10mm×100mmの短冊型の試験片に対して、両振りで振幅応力1000〜1300N/mm2、加振速度1000rpmの条件で、試験片を繰り返し曲げ変形させ、破断に至るまでの加振(変形)繰り返し回数を測定した。試験片のつけ根部に加わる垂直応力の最大値を変化させて、破断までの繰り返し回数が10回以上になる強度を疲労強度(N/mm2)とした。
[Nitrogen diffusion layer depth]
For the same test piece prepared for the above cleanliness test, the nitrogen concentration distribution is measured by EPMA, and the graph shown in FIG. 2 is drawn, where the hatched portion, that is, the nitrogen concentration is measured from the surface. The depth until saturation at the lowest value was taken as the nitrided layer depth (μm).
[Bending fatigue properties]
Investigated according to the general rules for fatigue testing of metal materials as defined in JIS Z2273. Specifically, as shown in FIG. 3, a strip-shaped test piece having dimensions of 0.4 mm × 10 mm × 100 mm is subjected to a swing stress of 1000 to 1300 N / mm 2 and an excitation speed of 1000 rpm. The test piece was repeatedly bent and deformed, and the number of vibration (deformation) repetitions until breaking was measured. Fatigue strength (N / mm 2 ) was defined as the strength at which the number of repetitions until breakage was 10 7 times or more by changing the maximum value of the vertical stress applied to the base of the test piece.

以上の試験結果を、表2に示す。 The test results are shown in Table 2.

Figure 0004613698
Figure 0004613698

本発明に従った実施例A〜Lは、C量が適切(0.05〜0.15%)であるため、引張り強度が高く、窒素拡散層の深さも十分であり、結果として高い疲労強度が実現できている。また、BおよびCaを添加した実施例Fでは、同じC量の実施例Bに比較して、疲労強度がいっそう向上している。実施例G〜Lでは、Zr,V,Nb,Ta,WあるいはCuなどを添加したことにより、それらを添加してない実施例A〜Eに比較して、引張り強度が向上し、さらに疲労強度も改善されている。 In Examples A to L according to the present invention, the amount of C is appropriate (0.05 to 0.15%), so the tensile strength is high and the depth of the nitrogen diffusion layer is sufficient, resulting in high fatigue strength. Has been realized. Further, in Example F to which B and Ca were added, the fatigue strength was further improved as compared with Example B having the same amount of C. In Examples G to L, by adding Zr, V, Nb, Ta, W, Cu, or the like, the tensile strength is improved as compared to Examples A to E in which they are not added, and the fatigue strength is further increased. Has also been improved.

これに対して、比較例M〜Oは、C量が不足(0.05%未満)なために、窒素拡散層は十分な深さが得られたものの、素材の引張り強度が低く、疲労強度は不満足な値である。比較例P〜Vは、C量が過大(0.15%超過)であるために窒素拡散層が浅くなる傾向にあり、疲労強度が低いレベルに止まった。とくに比較例T〜Vにおいては、素材の引張り強度も低下しており、それが疲労強度の低下に拍車をかけている。比較例Wは、従来のマルエージング鋼に相当する合金組成であって、引張り強度は比較的高く、また窒素拡散層の深さも十分であるが、疲労強度が低い。これは、素材の強化にTiを利用したことに起因する。すなわち、製造中に生成するTiN介在物を起点にして、低応力で破断が起こるからである。 On the other hand, in Comparative Examples M to O, the amount of C is insufficient (less than 0.05%), so that the nitrogen diffusion layer has a sufficient depth, but the tensile strength of the material is low and the fatigue strength is low. Is an unsatisfactory value. In Comparative Examples P to V, since the amount of C was excessive (exceeding 0.15%), the nitrogen diffusion layer tended to become shallow, and the fatigue strength remained at a low level. Particularly in Comparative Examples T to V, the tensile strength of the material is also reduced, which spurs the decrease in fatigue strength. Comparative Example W is an alloy composition corresponding to conventional maraging steel, which has a relatively high tensile strength and a sufficient nitrogen diffusion layer depth, but a low fatigue strength. This is due to the use of Ti for strengthening the material. That is, rupture occurs with low stress starting from TiN inclusions produced during production.

いずれも、マルエージング鋼において、Cの含有量を変化させたときの諸特性とC量との関係を示すグラフであって、上段は引張り強度とC量との関係、中段は窒素拡散層の深さとC量との関係、下段は疲労限界とC量との関係を、それぞれ示す。Both are graphs showing the relationship between various properties and C content when the C content is changed in maraging steel, where the upper graph shows the relationship between tensile strength and C content, and the middle graph shows the nitrogen diffusion layer. The relationship between the depth and the C content, and the lower graph show the relationship between the fatigue limit and the C content, respectively. 窒素拡散層の「深さ」の定義を示す概念的な図。The conceptual diagram which shows the definition of the "depth" of a nitrogen diffusion layer. 本発明の実施例において行なった、曲げ疲労試験の条件を示す概念的な図。The conceptual diagram which shows the conditions of the bending fatigue test performed in the Example of this invention.

Claims (6)

重量%で、C:0.05〜0.15%、Ni:10.0〜18.0%、Co:5.0〜30.0%、Mo:1.0〜5.0%、Al:0.5〜1.3%、およびCr:1.0〜3.0%を含有し、Ti:0.10%以下、S:0.003%以下、P:0.03%以下、N:0.03%以下、かつ、O:0.03%以下であって、残部がFeおよび不可避の不純物からなる合金組成を有する曲げ疲労特性にすぐれた薄帯用鋼を材料とし、この材料を薄帯形状に成形し、表面の窒化処理を施してなる、繰り返し曲げ応力が加わる用途に用いる薄帯% By weight, C: 0.05 to 0.15%, Ni: 10.0 to 18.0%, Co: 5.0 to 30.0%, Mo: 1.0 to 5.0%, Al: 0.5 to 1.3% and Cr: 1.0 to 3.0%, Ti: 0.10% or less, S: 0.003% or less, P: 0.03% or less, N: 0.03% or less and O: 0.03% or less, and the steel for a ribbon having excellent bending fatigue characteristics having an alloy composition consisting of Fe and unavoidable impurities as a balance is used as a material. A thin ribbon that is formed into a band shape and subjected to nitriding treatment on the surface, and is used for applications where repeated bending stress is applied . 請求項1に規定した合金成分に加えて、B:0.0001〜0.010%、Ca:0.0001〜0.010%およびMg:0.0001〜0.010%の1種または2種以上を含有する合金組成を有する薄帯用鋼を材料として使用した請求項1の薄帯In addition to the alloy components defined in claim 1, one or two of B: 0.0001 to 0.010%, Ca: 0.0001 to 0.010% and Mg: 0.0001 to 0.010% 2. The ribbon according to claim 1, wherein the ribbon steel having an alloy composition containing the above is used as a material . 請求項1または2に規定した合金成分に加えて、Zr:0.005〜0.040%を含有する合金組成を有する薄帯用鋼を材料として使用した請求項1または2の薄帯The ribbon according to claim 1 or 2, wherein a steel for a ribbon having an alloy composition containing Zr: 0.005 to 0.040% in addition to the alloy components defined in claim 1 or 2 is used as a material . 請求項1ないし3のいずれかに規定した合金成分に加えて、V:0.01〜1.0%、Nbおよび(または)Ta(併用の場合は合計量で):0.01〜1.0%、W:0.01〜1.0%およびCu:0.01〜1.0%の1種または2種以上を含有する合金組成を有する薄帯用鋼を材料として使用した請求項1ないし3のいずれかの薄帯In addition to the alloy components defined in any one of claims 1 to 3, V: 0.01 to 1.0%, Nb and / or Ta (in combination, in total amount): 0.01 to 1. A steel for a ribbon having an alloy composition containing one or more of 0%, W: 0.01 to 1.0% and Cu: 0.01 to 1.0% is used as a material. One or three ribbons . 請求項1ないし4のいずれかに規定した合金成分に加えて、REM:0.005〜0.020%を含有する合金組成を有する薄帯用鋼を材料として使用した請求項1ないし4のいずれかの薄帯Any of Claims 1 to 4 which uses as a material the steel for strips which has the alloy composition containing REM: 0.005-0.020% in addition to the alloy component specified in any one of Claims 1 to 4. That ribbon . 請求項1ないし5のいずれかの薄帯であって、厚さ0.5mm以下のものを加工してなるCVT用リング。 A ring for CVT formed by processing the ribbon according to claim 1 having a thickness of 0.5 mm or less.
JP2005154726A 2005-05-26 2005-05-26 Steel strip and strip Expired - Fee Related JP4613698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154726A JP4613698B2 (en) 2005-05-26 2005-05-26 Steel strip and strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154726A JP4613698B2 (en) 2005-05-26 2005-05-26 Steel strip and strip

Publications (2)

Publication Number Publication Date
JP2006328486A JP2006328486A (en) 2006-12-07
JP4613698B2 true JP4613698B2 (en) 2011-01-19

Family

ID=37550483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154726A Expired - Fee Related JP4613698B2 (en) 2005-05-26 2005-05-26 Steel strip and strip

Country Status (1)

Country Link
JP (1) JP4613698B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5053651B2 (en) * 2007-01-31 2012-10-17 日立金属株式会社 Method for producing maraging steel strip having high fatigue strength
KR101546561B1 (en) * 2008-06-30 2015-08-21 로베르트 보쉬 게엠베하 Heat treatment process for a drive belt metal ring component
CN102356171A (en) * 2009-03-26 2012-02-15 日立金属株式会社 Maraging steel strip
KR101445726B1 (en) * 2012-07-16 2014-10-01 한국과학기술원 High tensile steel and preparing method thereof
CN106148651A (en) * 2016-07-24 2016-11-23 钢铁研究总院 Containing Al joint Co type high specific strength Secondery-hardening Ultrahigh Strength Steel and preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161342A (en) * 2000-11-24 2002-06-04 Daido Steel Co Ltd Structural steel superior in strength, fatigue resistance and corrosion resistance
JP2002167652A (en) * 2000-11-28 2002-06-11 Daido Steel Co Ltd Thin sheet material excellent in high strength-high fatigue resisting characteristic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161342A (en) * 2000-11-24 2002-06-04 Daido Steel Co Ltd Structural steel superior in strength, fatigue resistance and corrosion resistance
JP2002167652A (en) * 2000-11-28 2002-06-11 Daido Steel Co Ltd Thin sheet material excellent in high strength-high fatigue resisting characteristic

Also Published As

Publication number Publication date
JP2006328486A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP5777090B2 (en) Steel for machine structural use with excellent surface fatigue strength
JP6302722B2 (en) High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics
JPH1129839A (en) Spring steel with high toughness
JP6212473B2 (en) Rolled material for high-strength spring and high-strength spring wire using the same
JP5034803B2 (en) Steel sheet for soft nitriding treatment and method for producing the same
JP5046363B2 (en) Maraging steel for power transmission belt with high fatigue strength and maraging steel strip for power transmission belt using the same
JP2013253277A (en) Maraging steel
JP4844902B2 (en) Piston ring material for internal combustion engines
WO2021230244A1 (en) Austenitic stainless steel material, method for producing same, and plate spring
JP4613698B2 (en) Steel strip and strip
JP5347600B2 (en) Austenitic stainless steel and method for producing austenitic stainless steel sheet
CN110062814A (en) Low alloy steel plate with excellent intensity and ductility
JP5804832B2 (en) Steel material made of carburizing steel with excellent torsional fatigue properties
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP2011195922A (en) Thin steel sheet for cvt ring
JP5630978B2 (en) Mechanical structural steel with excellent toughness
JP2002167652A (en) Thin sheet material excellent in high strength-high fatigue resisting characteristic
JP2007107046A (en) Steel material to be induction-hardened
JP2022155180A (en) Austenitic stainless steel and method for producing the same
JP4315049B2 (en) Thin steel strip with excellent strength, fatigue strength, corrosion resistance and wear resistance, and manufacturing method thereof
WO2008075889A1 (en) Ultra high strength carburizing steel with high fatigue resistance
JP2004244705A (en) Nb-CONTAINING CASE-HARDENING STEEL SUPERIOR IN CARBURIZATION PROPERTY
JP4389726B2 (en) Thin steel strip for metal belt ring of continuously variable transmission belt
JPH08260104A (en) Chromium steel sheet excellent in formability and atmospheric corrosion resistance
JP7168059B2 (en) Steel for nitriding and quenching treatment, nitriding and quenching parts, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees