KR20110052967A - Composite of steel material, hallow drive shaft of vehicle and method for manufacturing the same - Google Patents

Composite of steel material, hallow drive shaft of vehicle and method for manufacturing the same Download PDF

Info

Publication number
KR20110052967A
KR20110052967A KR1020090109725A KR20090109725A KR20110052967A KR 20110052967 A KR20110052967 A KR 20110052967A KR 1020090109725 A KR1020090109725 A KR 1020090109725A KR 20090109725 A KR20090109725 A KR 20090109725A KR 20110052967 A KR20110052967 A KR 20110052967A
Authority
KR
South Korea
Prior art keywords
drive shaft
manufacturing
vehicle
strength
steel material
Prior art date
Application number
KR1020090109725A
Other languages
Korean (ko)
Inventor
이시엽
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020090109725A priority Critical patent/KR20110052967A/en
Publication of KR20110052967A publication Critical patent/KR20110052967A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/14Spinning
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PURPOSE: A steel material composite, hallow drive shaft, and a manufacturing method thereof are provided to reduce noise without a separate damper by preventing the resonance frequency with another car body in rotation. CONSTITUTION: A steel material composite comprises carbon(C) 0.25~0.35 wt%, silicon(Si) 0.2~0.5 wt%, manganese(Mn) 1.0~2.0 wt%, vanadium(V) 0.05~0.20 wt%, aluminum(Al) 0.01~0.05wt%, titanium(Ti) 0.005~0.20 wt%, boron(B) 0.001~0.006 wt% and Fe remainder.

Description

강재 조성물, 차량의 중공형 드라이브 샤프트 및 이를 제조하는 방법{COMPOSITE OF STEEL MATERIAL, HALLOW DRIVE SHAFT OF VEHICLE AND METHOD FOR MANUFACTURING THE SAME}Steel composition, hollow drive shaft of vehicle, and method for manufacturing same {COMPOSITE OF STEEL MATERIAL, HALLOW DRIVE SHAFT OF VEHICLE AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 강재 조성물에 관한 것으로서, 보다 상세하게는, 강도를 향상시킬 수 있는 강재 조성물에 관한 것이다.The present invention relates to a steel composition, and more particularly, to a steel composition capable of improving strength.

또한, 본 발명은 상기 강재 조성물로 제작된 차량의 중공형 드라이브 샤프트 및 이를 제조하는 방법에 관한 것이다.The present invention also relates to a hollow drive shaft of a vehicle made of the steel composition and a method of manufacturing the same.

일반적으로, 종래 차량의 중실형 드라이브 샤프트는 철(Fe)을 기지로 하여 0.36 ~ 0.44 wt% 탄소(C), 0.15 ~ 0.35 wt% 규소(Si), 1.35 ~ 1.65 wt% 망간(Mn) 등을 포함하여 구성된다.In general, a solid drive shaft of a conventional vehicle is based on iron (Fe) based on 0.36 ~ 0.44 wt% carbon (C), 0.15 ~ 0.35 wt% silicon (Si), 1.35 ~ 1.65 wt% manganese (Mn) It is configured to include.

이러한 종래 드라이브 샤프트는 도 1과 같은 방법에 의해 제조된다.Such a conventional drive shaft is manufactured by the method as shown in FIG.

즉, 먼저 상기 조성물로 구성된 환봉을 제작한 후, 이 환봉을 선삭 가공하여 드라이브 샤프트의 형상 및 스플라인 등을 형성한 다음, 고주파를 이용하여 열처리로 마무리함으로써 드라이브 샤프트가 제조된다.That is, first, after manufacturing the round bar made of the composition, the round bar is turned to form the shape and spline of the drive shaft, and then the drive shaft is manufactured by heat treatment using high frequency.

이러한 드라이브 샤프트는 엔진에서 발생된 구동력을 트랜스미션을 거쳐 휠 에 전달하는 역할을 하므로, 강도가 많이 요구되는 부품인데, 상기 조성물로 제조된 드라이브 샤프트는 강도가 좋지 못한 문제점이 있었다.Since the drive shaft serves to transfer the driving force generated in the engine to the wheel through the transmission, a component that requires a lot of strength, the drive shaft made of the composition had a problem of poor strength.

또한, 중공형이 아닌 중실형으로 제작됨으로써, 차체의 중량이 상승할 뿐만 아니라, 드라이브 샤프트가 회전할 때 다른 차체 부품과 간섭되어 공진이 발생하여 소음이 크게 발생하여 드라이브 샤프트에 별도의 댐퍼를 장착해야 하는 문제점이 있었다.In addition, by making a solid rather than a hollow type, the weight of the vehicle body not only increases, but when the drive shaft rotates, interference occurs with other vehicle body parts, resonance occurs, and noise is generated so that a separate damper is mounted on the drive shaft. There was a problem to be done.

따라서, 본 발명의 목적은 강도가 향상될 수 있는 강재 조성물을 제공하는 것이다. Accordingly, it is an object of the present invention to provide a steel composition in which strength can be improved.

또한, 강도가 향상될 뿐만 아니라 중량이 절감되고 별도의 댐퍼를 삭제할 수 있는 차량의 중공형 드라이브 샤프트 및 이를 제조하는 방법을 제공하는 것이다.In addition, the present invention provides a hollow drive shaft of a vehicle capable of improving strength, reducing weight, and eliminating a separate damper, and a method of manufacturing the same.

상기 목적은 본 발명의 강재 조성물에 따라, 0.25 ~ 0.35 wt% 탄소(C), 0.2 ~ 0.5 wt% 규소(Si), 1.0 ~ 2.0 wt% 망간(Mn), 0.05 ~ 0.20 wt% 바나듐(V), 0.01 ~ 0.05wt% 알루미늄(Al), 0.005 ~ 0.20 wt% 티타늄(Ti), 0.001 ~ 0.006 wt% 붕소(B) 및 잔량의 철(Fe)에 의해 달성된다.The object is according to the steel composition of the present invention, 0.25 to 0.35 wt% carbon (C), 0.2 to 0.5 wt% silicon (Si), 1.0 to 2.0 wt% manganese (Mn), 0.05 to 0.20 wt% vanadium (V) , 0.01 to 0.05 wt% aluminum (Al), 0.005 to 0.20 wt% titanium (Ti), 0.001 to 0.006 wt% boron (B) and the balance of iron (Fe).

한편, 상기 다른 목적은 본 발명의 차량의 중공형 드라이브 샤프트의 제조 방법에 따라, 상기 강재 조성물로 환봉을 제작하는 과정; 상기 환봉의 중앙을 피어싱하여 강관을 제작하는 과정; 상기 강관을 스웨이징 공법으로 성형하는 과정과; 열처리 과정에 의해 달성된다.On the other hand, the other object is a process of manufacturing a round bar with the steel composition, according to the manufacturing method of the hollow drive shaft of the vehicle of the present invention; Manufacturing a steel pipe by piercing the center of the round bar; Forming the steel pipe by a swaging method; Achieved by a heat treatment process.

여기서, 상기 열처리 과정은 800 ~ 980도 조건으로 2 ~ 6시간 동안 0.7 ~ 0.8 wt% 탄소를 침탄한 후, 염욕로에서 250 ~ 450도 조건으로 1 ~ 5 시간 동안 오스템퍼링하는 것이 바람직하다. Here, the heat treatment is preferably carburized 0.7 to 0.8 wt% carbon for 2 to 6 hours at 800 to 980 degrees, and then ossampling for 1 to 5 hours at 250 to 450 degrees in a salt bath.

또한, 상기 다른 목적은 상기 제조 방법에 의헤 제조된 차량의 중공형 드라이브 샤프트에 의해 달성된다.The other object is also achieved by a hollow drive shaft of a vehicle manufactured by the manufacturing method.

이상 설명한 바와 같이, 본 발명에 따르면, 강도가 향상될 수 있는 강재 조성물이 제공된다. As described above, according to the present invention, a steel composition in which strength can be improved is provided.

또한, 강도가 향상될 뿐만 아니라 중량이 절감되고 별도의 댐퍼를 삭제할 수 있는 차량의 중공형 드라이브 샤프트 및 이를 제조하는 방법이 제공된다. In addition, there is provided a hollow drive shaft of a vehicle that can not only improve strength, but also reduce weight and eliminate a separate damper, and a method of manufacturing the same.

이하에서는 첨부도면을 참조하여 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 차량의 드라이브 샤프트는 경량화를 위해 중공형으로 제작된 것으로서, 이와 같이 중공형으로 제작됨으로써 회전시 다른 차체 부품과의 공진 주파수가 회피됨으로써 소음이 저감되므로 별도의 댐퍼를 장착할 필요가 없는 점에 특징이 있다. 뿐만 아니라, 본 발명에 따른 중공형 드라이브 샤프트는 아래와 같은 강재 조성물로 제작됨으로써, 종래 중실형 드라이브 샤프트에 비해 강도가 크게 향상된 점에 특징이 있다.The drive shaft of the vehicle according to the present invention is manufactured in a hollow form to reduce the weight, and as such a hollow form is manufactured, the noise is reduced by avoiding the resonance frequency with other body parts during rotation, so it is necessary to install a separate damper. It is characterized by the absence. In addition, the hollow drive shaft according to the present invention is characterized in that the strength is significantly improved compared to the conventional solid drive shaft by being made of the following steel composition.

중공형 드라이브 샤프트를 구성하는 강재 조성물은 다음과 같다.The steel composition constituting the hollow drive shaft is as follows.

강재 조성물은 0.25 ~ 0.35 wt% 탄소(C), 0.2 ~ 0.5 wt% 규소(Si), 1.0 ~ 2.0 wt% 망간(Mn), 0.05 ~ 0.20 wt% 바나듐(V), 0.01 ~ 0.05wt% 알루미늄(Al), 0.005 ~ 0.20 wt% 티타늄(Ti), 0.001 ~ 0.006 wt% 붕소(B) 및 잔량의 철(Fe)을 포함하여 이루어진다. 여기서, 바나듐(V), 알루미늄(Al), 티타늄(Ti)은 결정립의 크기를 미세화하여 강도를 향상시키는 역할을 한다.The steel composition is 0.25 to 0.35 wt% carbon (C), 0.2 to 0.5 wt% silicon (Si), 1.0 to 2.0 wt% manganese (Mn), 0.05 to 0.20 wt% vanadium (V), 0.01 to 0.05 wt% aluminum ( Al), 0.005 to 0.20 wt% titanium (Ti), 0.001 to 0.006 wt% boron (B) and the balance of iron (Fe). Here, vanadium (V), aluminum (Al), and titanium (Ti) serve to improve the strength by miniaturizing the size of the crystal grains.

이 때, 탄소(C)는 열처리 후 강도를 증가시키는 역할을 하며, 그 함량은 0.25 ~ 0.35 wt%인 것이 좋다. 탄소(C)의 함량을 이와 같이 한정한 이유는 탄소(C)가 0.25 wt% 이상이 함유되어야 목표 강도를 확보할 수 있고, 탄소(C)가 0.35 wt% 를 초과하면 냉간 성형성이 저하되기 때문이다. At this time, the carbon (C) serves to increase the strength after the heat treatment, the content is preferably 0.25 to 0.35 wt%. The reason for limiting the content of carbon in this way is that carbon (C) must contain 0.25 wt% or more to secure the target strength, and when carbon (C) exceeds 0.35 wt%, cold formability is deteriorated. Because.

바나듐(V)은 경화능을 향상시킬 뿐만 아니라, 석출 강화에 의해 강도를 향상시키는 역할을 한다. Vanadium (V) not only improves the hardenability, but also plays a role of improving strength by strengthening precipitation.

알루미늄(Al)은 결정립 미세화로 강도를 향상시키는 역할을 하며, 함량이 0.05 wt% 를 초과하면 개재물 형성에 의해 청정도가 저하되므로 그 이하로 한정되어야 한다.Aluminum (Al) serves to improve the strength by grain refinement, and if the content exceeds 0.05 wt%, the cleanliness is lowered by inclusions formation, so it should be limited thereto.

또한, 붕소(B)는 입계 강화에 의해 강도를 향상시키며, 그 함량이 0.006 wt%를 초과하면 더 이상의 효과없이 비용만 증가하므로 상기 함량으로 한정되는 것이 좋다.In addition, boron (B) improves the strength by strengthening the grain boundary, and if the content exceeds 0.006 wt%, it is preferable to limit the content because only the cost increases without any further effect.

그리고, 규소(Si)는 충격 강도를 향상시킬 뿐만 아니라 베이나이트 탄화물이 형성되는 것을 억제하는 역할을 한다. 이 때, 규소(Si)가 0.5 wt% 를 초과하면 편석이 발생하므로 상기 함량으로 한정되는 것이 좋다.In addition, silicon (Si) not only improves impact strength, but also serves to suppress formation of bainite carbide. At this time, since the segregation occurs when the silicon (Si) exceeds 0.5 wt% is preferably limited to the above content.

망간(Mn)은 강도 및 경화능을 향상시키는 역할을 한다. 이 때, 망간(Mn)이 2.0 wt% 를 초과하면 편선에 의한 탄화물이 발생이 발생하여 인성이 저하되므로 상기 함량으로 한정되는 것이 좋다.Manganese (Mn) serves to improve strength and hardenability. At this time, when the manganese (Mn) is more than 2.0 wt%, carbides are generated due to the polarization, so the toughness is lowered.

이와 같이, 상기 강재 조성물로 제조된 중공형 드라이브 샤프트는 강도 뿐만 아니라 인성이 증가되어 피로 강도가 향상되는 이점이 있다.As such, the hollow drive shaft made of the steel composition has an advantage of increasing fatigue strength as well as toughness.

상기 강재 조성물을 이용하여 중공형 드라이브 샤프트를 제조하는 방법에 대 하여, 도 2를 참조하여 간단히 설명하면 다음과 같다.A method of manufacturing a hollow drive shaft using the steel composition will be briefly described with reference to FIG. 2 as follows.

먼저, 강재 조성물로 환봉을 제작한다. 그 후, 환봉의 중앙을 피어싱하여 강관을 제작한다. 여기서, 피어싱하기 전에, 환봉을 센터링하고, 유도 가열하고 써모스탯에서 가열해야 함은 물론이다.First, a round bar is produced from a steel composition. Thereafter, the center of the round bar is pierced to produce a steel pipe. Here, of course, before piercing, the round bar should be centered, inductively heated and heated in the thermostat.

다음, 피어싱된 강관을 스웨이징 공법으로 형상 및 스플라인 등을 성형한다. 여기서, 스웨이징 공법이란 강관의 중공부에 맨드릴(mandrel)을 삽입한 상태에서 다이를 회전시켜 강관을 회전시키면서 공구로 눌러 형상을 만드는 것이다. 이 때, 스웨이징 공법을 이용함으로써 복잡한 형상을 만들 수 있을 뿐만 아니라 소재 강도가 향상되는 효과를 얻을 수 있다.Next, the pierced steel pipe is shaped into a shape, a spline, or the like by the swaging method. Here, the swaging method is to form a shape by pressing a tool while rotating the steel pipe by rotating the die while the mandrel is inserted into the hollow portion of the steel pipe. In this case, by using the swaging method, not only a complicated shape can be made but also the effect of improving the strength of the material can be obtained.

마지막으로, 이와 같이 성형된 강관을 열처리하여 마무리 한다. 여기서, 열처리는 800 ~ 980도 조건으로 2 ~ 6시간 동안 0.7 ~ 0.8 wt% 탄소를 침탄한 후, 염욕로에서 250 ~ 450도 조건으로 1 ~ 5 시간 동안 오스템퍼링하는 과정으로 이루어지는 것이 좋다. 이에, 침탄 및 오스템퍼링의 복합 열처리법으로 제작된 본 발명의 중공형 드라이브 샤프트는 고주파 열처리하였던 종래의 중실형 드라이브 샤프트에 비해 경량 사양임에도 불구하고 피로 강도가 향상되는 효과가 있다.Finally, the steel pipe thus formed is heat treated to finish. Here, the heat treatment may be made of a process of carburizing 0.7 ~ 0.8 wt% carbon for 2 to 6 hours at 800 ~ 980 degrees, 1 to 5 hours at 250 to 450 degrees in a salt bath. Thus, the hollow drive shaft of the present invention manufactured by a composite heat treatment method of carburizing and ostempering has an effect of improving fatigue strength in spite of a light weight specification compared to a conventional solid drive shaft subjected to high frequency heat treatment.

상기 과정에 의해 제조된 본 발명의 중공형 드라이브 샤프트와 종래 중실형 드라이브 샤프트의 단류선에 대해 도 3을 참조하여 비교하면, 종래 중실형 드라이브 샤프트의 단류선은 도 3의 (a)와 같이 끊어진 반면 본 발명의 중공형 드라이브 샤프트의 단류선은 도 3의 (b)와 같이 끊어지지 않고 이어져 있음을 알 수 있다(산 부분 비교).When comparing the flow path of the hollow drive shaft and the conventional solid drive shaft of the present invention manufactured by the above process with reference to FIG. 3, the flow path of the conventional solid drive shaft is broken as shown in (a) of FIG. On the other hand, it can be seen that the streamline of the hollow drive shaft of the present invention is not broken as shown in FIG.

이와 같이, 본 발명에 따른 중공형 드라이브 샤프트는 종래 중실형 드라이브 샤프트에 비해 중량이 30% 가량 절감되고, 회전시 다른 차체와 공진되는 현상이 줄어들어 별도의 댐퍼가 필요 없는 이점이 있다. As such, the hollow drive shaft according to the present invention has an advantage of reducing weight by about 30% compared to the conventional solid drive shaft and reducing the phenomenon of resonating with other vehicle bodies during rotation, thereby eliminating the need for a separate damper.

또한, 본 발명의 중공형 드라이브 샤프트는 상기 강재 조성물로 제조됨으로써, 강도 및 인성이 향상된 효과를 얻을 수 있다.In addition, the hollow drive shaft of the present invention can be obtained by the steel composition, thereby improving the strength and toughness.

도 1은 종래 차량의 중실형 드라이브 샤프트를 제조하는 과정을 개략적으로 도시한 도면.1 is a view schematically showing a process of manufacturing a solid drive shaft of a conventional vehicle.

도 2는 본 발명에 따른 차량의 중공형 드라이브 샤프트를 제조하는 과정을 개략적으로 도시한 도면.Figure 2 schematically shows a process of manufacturing a hollow drive shaft of a vehicle according to the present invention.

도 3의 (a)는 종래 중실형 드라이브 샤프트의 단류선을 나타낸 도면, (b)는 본 발명에 따른 중공형 드라이브 샤프트의 단류선을 나타낸 도면이다.Figure 3 (a) is a view showing a streamline of the conventional solid drive shaft, (b) is a view showing a flowline of the hollow drive shaft according to the present invention.

Claims (4)

0.25 ~ 0.35 wt% 탄소(C), 0.2 ~ 0.5 wt% 규소(Si), 1.0 ~ 2.0 wt% 망간(Mn), 0.05 ~ 0.20 wt% 바나듐(V), 0.01 ~ 0.05wt% 알루미늄(Al), 0.005 ~ 0.20 wt% 티타늄(Ti), 0.001 ~ 0.006 wt% 붕소(B) 및 잔량의 철(Fe)을 포함하는 것을 특징으로 하는 강재 조성물.0.25 to 0.35 wt% carbon (C), 0.2 to 0.5 wt% silicon (Si), 1.0 to 2.0 wt% manganese (Mn), 0.05 to 0.20 wt% vanadium (V), 0.01 to 0.05 wt% aluminum (Al), A steel composition comprising 0.005 to 0.20 wt% titanium (Ti), 0.001 to 0.006 wt% boron (B), and a balance of iron (Fe). 청구항 1의 강재 조성물로 환봉을 제작하는 과정;Manufacturing a round bar from the steel composition of claim 1; 상기 환봉의 중앙을 피어싱하여 강관을 제작하는 과정;Manufacturing a steel pipe by piercing the center of the round bar; 상기 강관을 스웨이징 공법으로 성형하는 과정과;Forming the steel pipe by a swaging method; 열처리 과정을 포함하는 것을 특징으로 하는 차량의 중공형 드라이브 샤프트 제조 방법.Hollow drive shaft manufacturing method of a vehicle comprising a heat treatment process. 청구항 2에 있어서, 상기 열처리 과정은 The method of claim 2, wherein the heat treatment process 800 ~ 980도 조건으로 2 ~ 6시간 동안 0.7 ~ 0.8 wt% 탄소를 침탄한 후, 염욕로에서 250 ~ 450도 조건으로 1 ~ 5 시간 동안 오스템퍼링하는 것을 특징으로 하는 차량의 중공형 드라이브 샤프트 제조방법.After carburizing 0.7 to 0.8 wt% carbon for 2 to 6 hours at 800 to 980 degrees, and manufacturing the hollow drive shaft of the vehicle, characterized in that the osmosis is performed for 1 to 5 hours at 250 to 450 degrees in a salt bath. Way. 청구항 2 또는 청구항 3의 제조 방법으로 제작된 차량의 중공형 드라이브 샤프트.A hollow drive shaft of a vehicle produced by the manufacturing method of claim 2 or 3.
KR1020090109725A 2009-11-13 2009-11-13 Composite of steel material, hallow drive shaft of vehicle and method for manufacturing the same KR20110052967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090109725A KR20110052967A (en) 2009-11-13 2009-11-13 Composite of steel material, hallow drive shaft of vehicle and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090109725A KR20110052967A (en) 2009-11-13 2009-11-13 Composite of steel material, hallow drive shaft of vehicle and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20110052967A true KR20110052967A (en) 2011-05-19

Family

ID=44362756

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090109725A KR20110052967A (en) 2009-11-13 2009-11-13 Composite of steel material, hallow drive shaft of vehicle and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR20110052967A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311691B1 (en) * 2011-10-17 2013-09-30 주식회사 센트랄디티에스 Apparatus and method for manufacturing of one body type hollow drive shaft
KR101320238B1 (en) * 2011-05-30 2013-10-21 현대제철 주식회사 Hollow shaft having surface hardening treated hollow shaft and the method of manufacturing the same
KR20150093942A (en) * 2014-02-10 2015-08-19 장준수 Input shaft and the manufacture method for car gearbox
JP2023512322A (en) * 2020-02-07 2023-03-24 イレ エイエムエス カンパニー リミテッド Heat treatment method for tubular shaft for drive shaft having ball spline structure and tubular shaft manufactured by the method
KR20230094651A (en) 2021-12-21 2023-06-28 현대제철 주식회사 Low carbon spherodial alloy steel and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320238B1 (en) * 2011-05-30 2013-10-21 현대제철 주식회사 Hollow shaft having surface hardening treated hollow shaft and the method of manufacturing the same
KR101311691B1 (en) * 2011-10-17 2013-09-30 주식회사 센트랄디티에스 Apparatus and method for manufacturing of one body type hollow drive shaft
KR20150093942A (en) * 2014-02-10 2015-08-19 장준수 Input shaft and the manufacture method for car gearbox
JP2023512322A (en) * 2020-02-07 2023-03-24 イレ エイエムエス カンパニー リミテッド Heat treatment method for tubular shaft for drive shaft having ball spline structure and tubular shaft manufactured by the method
KR20230094651A (en) 2021-12-21 2023-06-28 현대제철 주식회사 Low carbon spherodial alloy steel and method of manufacturing the same

Similar Documents

Publication Publication Date Title
EP3124636B1 (en) Rail and method for manufacturing same
EP2436795A1 (en) Carburized component and manufacturing method therefor
US20080264530A1 (en) Hot Forged Product With Excellent Fatigue Strength, Method for Making the Same, and Machine Structural Part Made From the Same
CN105296852B (en) Welded still pipe used for vehicle transmission shaft and its manufacture method
KR20110052967A (en) Composite of steel material, hallow drive shaft of vehicle and method for manufacturing the same
WO2005116284A1 (en) Seamless steel pipe and method for production thereof
JP2005344149A (en) High strength steel for large-sized steel forging, and crankshaft
CN104372155B (en) A kind of Technology for Heating Processing of the axletree of bullet train containing niobium
JP4423858B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP2006138007A (en) Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
WO2018180342A1 (en) Shaft member
US20090110589A1 (en) Steel Material and Process for Producing the Same
JPH11302727A (en) Production of high strength shaft
JP4219863B2 (en) High-strength bainite-type nitrided parts and manufacturing method thereof
JP4757831B2 (en) Induction hardening part and manufacturing method thereof
CN100374603C (en) Hot forged non-heat treated steel for induction hardening
CN104213015B (en) A kind of production method of DP steel, its purposes, roller washing machine and automobile
JP3988663B2 (en) Non-tempered steel
JP6721972B2 (en) Carbon steel composition for steering rack bar with reduced thermal deformation, steering rack bar, and method for producing carbon steel composition for steering rack bar
WO2007069270A3 (en) Post forging process for enhancing fatigue strength of steel components
KR20190070737A (en) Steel for wheel bearing and manufacturing method of crank shaft using the same
JPH10265891A (en) Ferrite/pearlite type non-heat treated steel
JP4127145B2 (en) Constant velocity joint inner ring with excellent fatigue characteristics and manufacturing method thereof
WO2007043315A1 (en) Steel material and process for producing the same
JP3687275B2 (en) Non-tempered steel for induction hardening

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application