JP2005048198A - Hot dip galvannealed steel sheet having excellent powdering resistance, slidableness and image clarity after coating, and its production method - Google Patents

Hot dip galvannealed steel sheet having excellent powdering resistance, slidableness and image clarity after coating, and its production method Download PDF

Info

Publication number
JP2005048198A
JP2005048198A JP2003202997A JP2003202997A JP2005048198A JP 2005048198 A JP2005048198 A JP 2005048198A JP 2003202997 A JP2003202997 A JP 2003202997A JP 2003202997 A JP2003202997 A JP 2003202997A JP 2005048198 A JP2005048198 A JP 2005048198A
Authority
JP
Japan
Prior art keywords
steel sheet
plating
temper rolling
less
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003202997A
Other languages
Japanese (ja)
Other versions
JP4039332B2 (en
Inventor
Michitaka Sakurai
理孝 櫻井
Shoichiro Taira
章一郎 平
Yoshiharu Sugimoto
芳春 杉本
Junichi Inagaki
淳一 稲垣
Masaaki Yamashita
正明 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003202997A priority Critical patent/JP4039332B2/en
Publication of JP2005048198A publication Critical patent/JP2005048198A/en
Application granted granted Critical
Publication of JP4039332B2 publication Critical patent/JP4039332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot dip galvannealed steel sheet having excellent powdering resistance, slidableness and image clarity after coating, and to provide its production method. <P>SOLUTION: In the hot dip galvannealed steel sheet having excellent powdering resistance, slidableness and image clarity after coating, the coating weight of a plating film is 45 to 65 g/m<SP>2</SP>, the content of Fe in the plating film is 6.5 to 10%, the presence ratio Z/D of a ζ phase in the plating film, expressed by the following formula (1) from the intensity obtained by subjecting the plating film to X-ray diffraction ≥20, the surface roughness Ra after skinpass rolling is ≤1.0 μm, and the area ratio of the flat part in the plating surface is 30 to 60%: Z/D=(Iζ-Ibg)/(Iδ<SB>1</SB>-Ibg)×100 (1); wherein, Iζ:the peek intensity of d=1.900; Iδ<SB>1</SB>:the peek intensity of d=1.990; and Ibg: the back ground. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、プレス成形性、塗装後鮮映性および耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
合金化溶融亜鉛めっき鋼板は優れた塗装後耐食性、溶接性を有するため、自動車用、家電用、建材用の防錆鋼板としてその需要が近年増加しており、特に最近では、耐食性を確保するため亜鉛めっき皮膜が厚目付化する傾向にある。ところで、この合金化溶融亜鉛めっき鋼板を自動車等の用途に用いる場合、優れた耐めっき剥離性(耐パウダリング性)とプレス成形性(良好な摺動性)が要求される。さらに、自動車、家電製品および鋼製家具等の外板のように、塗装後の仕上がり外観が良好であること(塗装後鮮映性)も要求される。
【0003】
この「パウダリング」とは、めっき層が粉状または塊状に剥離する現象である。この現象が生じると、剥離部分の耐食性が劣化したり、剥離しためっき片により該鋼板自体に疵が生じるといった問題がある。「パウダリング」が生じる原因は、めっき層と地鉄との界面に、硬くて脆いГ相が生成するからであると言われている。
【0004】
一方、合金化溶融亜鉛めっき鋼板のプレス加工時のもう一つの大きな不具合として、鋼板の割れの発生が挙げられる。割れの原因は、摩擦係数で代表させる「摺動性」が劣る(摩擦係数が大きい)ことにある。さらに、つき詰めるならば、めっき層の表面に軟質な合金相であるζ相が生成することにあり、このζ相が、該めっき鋼板プレス加工時に割れを引き起こすのである。また、ζ相が多いと、フレーキングと称される箔状のめっき剥離が起きることも知られている。
【0005】
そこで、例えば、特許文献1は、このГ相を極力減らし、且つζ相を含有しない合金化溶融亜鉛めっき鋼板を提案している。確かに、「めっき密着性」を劣化させるГ相を極力減らし、且つ「摺動性」を劣化させるζ相を含有しない合金化溶融亜鉛めっき鋼板が安定して製造できれば、自動車の車体用鋼板を供給する者にとっては、非常に好ましいことである。しかしながら、合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき後に加熱拡散処理を施し、表面のめっき層と地鉄との間でFeを相互拡散させ、つまり合金化して製造するものであるから、Fe−Zn2元系状態図に現れる前記合金相がめっき層内に現れることは不可避である。そして、めっき表層に出現するFe含有率の低いζ相を抑制しようとすると、どうしてもめっき層と地鉄の界面にFe含有率の高いГ相が厚く成長し、一方、Г相の生成を抑制しようとすると、ζ相が厚く生成してしまうという関係は、回避できないものであった。
【0006】
また、特許文献2は、ζ相からなる結晶を主体にした合金化溶融亜鉛めっき鋼板を提案している。しかしながら、該めっき鋼板は、上述したζ相の結晶が大きくなり過ぎるために、「摺動性」及び「耐フレーキング性」に劣るものであった。
【0007】
さらに、自動車、家電製品および鋼製家具等の外板のように、塗装後の仕上がり外観が良好であることを要求される鋼板には、従来、表面粗さが調節された冷延鋼板が使用されていた。また、自動車用鋼板等のように、優れた防錆効果が要求される鋼板としては、表面粗さが調節された冷延鋼板に、電気亜鉛めっき処理を施すことによって製造された、薄目付けの電気亜鉛めっき鋼板が使用されていた。
【0008】
近年、更に優れた防錆効果が要求されており、厚目付けの表面処理鋼板に対するニーズが高まっていることから、塗装性、溶接性および耐食性に優れており、しかも比較的安価に厚目付けが可能な、合金化溶融亜鉛めっき鋼板が広く使用されるようになってきた。しかしながら、合金化溶融亜鉛めっき鋼板は、最終の溶融亜鉛めっき工程および合金化処理工程において、めっき層の表面粗さが大きく変化するために、上述した鋼板の表面粗さを調節する方法による効果は期待できなかった。
【0009】
以下に、先行技術文献情報について記載する。
【0010】
【特許文献1】
特公平3−55544号公報
【0011】
【特許文献2】
特公平3−55543号公報
【0012】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、「耐パウダリング性」、「摺動性」及び「塗装後鮮映性」が共に優れた合金化溶融亜鉛めっき鋼板およびその製造方法を提供することを目的としている。
【0013】
【課題を解決するための手段】
発明者らは、まず、耐パウダリング性を確保することを目的に、表層にζ相が存在するめっき層において、いかに摺動性を向上させるかという課題に関し鋭意研究を重ねた。その結果、従来から言われているように、めっき層表面の相構造は摺動性に影響を及ぼすという大きな傾向があるものの、さらに、表面平坦部が摺動性に大きな影響を与えることを見出し、表面平坦部を制御することにより、表層にζ相が多く存在するめっき皮膜においても良好な摺動性を得ることできることが判明した。一方、塗装後鮮映性に及ぼす合金化溶融亜鉛めっき鋼板のめっき層の表面粗さについて、鋭意研究を行った結果、めっき層表面にζ相が存在している方が、塗装後鮮映性に有利な表面粗さを形成しやすいことを見出し、「耐パウダリング性」、「摺動性」及び「塗装後鮮映性」が共に優れた合金化溶融亜鉛めっき鋼板を得ることに成功し、本発明を完成させたのである。
【0014】
すなわち、第1発明は、めっき皮膜の付着量が45〜65g/m、該めっき皮膜中のFe含有量が6.5〜10%、該めっき皮膜をX線回折し、得られた強度から下記(1)式で表される皮膜中ζ相の存在比率Z/Dが20以上、調質圧延後の表面粗さRaが1.0μm以下且つめっき表面の平坦部の面積率が30%以上60%以下であることを特徴とする耐パウダリング性、摺動性および塗装後鮮映性に優れた合金化溶融亜鉛めっき鋼板である。
Z/D=(Iζ−Ibg)/(Iδ−Ibg)×100…(1)
但し、Iζ:d=1.900のピーク強度、
Iδ:d=1.990のピーク強度、
Ibg:バックグランド
また、第2発明は、鋼板を浴中Al量0.14%以下、残部Znおよび不可避的不純物からなる浴温度470℃以下の亜鉛めっき浴に侵入板温495℃以下で侵入させてめっきを施した後、該亜鉛めっき浴から引き上げるめっき工程と、めっき浴から引き上げた鋼板のめっき付着量を調整する目付量調整工程と、めっき付着量を調整した鋼板を高周波誘導加熱炉で加熱炉出側の板温が495℃以下で加熱した後冷却してめっき皮膜のFe含有量を6.5〜10%の範囲内にする合金化処理工程と、合金化処理後のめっき鋼板を表面粗さRaが1.4μm以下のロールで伸長率0.5〜2.0%の調質圧延を行う調質圧延工程と、を有することを特徴とする、耐パウダリング性、摺動性および塗装後鮮映性に優れた合金化溶融亜鉛めっき鋼板の製造方法である。
【0015】
【発明の実施の形態】
以下、発明をなすに至った経緯とともに、本発明の実施の形態について説明する。
【0016】
本発明者らは、まず、塗装後鮮映性に及ぼす、合金化処理温度ならびに合金化処理後の調質圧延伸長率の影響を調査した。IF鋼冷延鋼板を連続溶融亜鉛めっきライン(CGL)において、亜鉛めっきし、実験室において、高周波誘導加熱炉により450、500、550℃での恒温合金化処理を施し、調質圧延を行った各サンプルに対して、一般的に自動車製造工程で用いられる方法により塗装を施した。即ち、リン酸亜鉛処理による前処理を行った後、カチオン電着塗装を行い、その後、塗装後鮮映性に及ぼす塗装条件の影響をより明確にする為、中塗りまでの2コートのスプレー塗装(塗装膜厚:55μm)を行った。塗装後鮮映性の評価は、スガ試験機(株)製の「写像鮮明度測定装置NSIC型」によりNSIC値を測定した。なお、NSIC値は、黒板研磨ガラスを100とし、その値が100に近いほど良好な鮮映性を示すものとされている。図1に実験結果を示した。
【0017】
450℃で合金化処理を行った場合には、めっき皮膜表層には柱状のζ相が生成した。そして、500、550℃で合金化処理を行った場合には、めっき皮膜表層には主にδ相が存在した。
【0018】
調質圧延をする前の鋼板のNSIC値は、合金化処理温度によらずほぼ一定の値を示した。これは、合金化処理時に生成するFe−Zn合金結晶の違いは、100μm以下の短い波長の成分であり、塗装後鮮映性には影響しないことを示している。しかしながら、調質圧延を施した場合には、450℃で合金化処理したサンプルのNSIC値は、500、550℃で合金化処理したサンプルに比べ高い値を示し、塗装後鮮映性が良好であった。
【0019】
前述のNSIC値の違いは、調質圧延でめっき表面に形成された平坦部の割合と関係していると考えられることから、以上のことは、めっき皮膜に生成したFe−Zn合金結晶の種類によって、調質圧延の際の平坦化挙動に違いがあることを示唆している。これは、ζ相がδ相に比べ軟らかいことにより、調質圧延時の平坦化挙動に差を生じたものと考えられる。
【0020】
次に、IF鋼冷延鋼板を連続溶融亜鉛めっきライン(CGL)において、亜鉛めっき後高周波誘導加熱炉によりFe%をおよそ7〜12%に調整した後に表面粗さの異なるロールを用いて同一の伸長率(0.7%)で調質圧延を行った合金化溶融亜鉛めっき鋼板を用いて、耐パウダリング性および摺動性に及ぼす製造条件の影響を調査した。また、比較のために、調質圧延を行わなかった未調圧のサンプルについても調査した。
【0021】
耐パウダリング性の評価は図2に示すドロービード試験機にて行った。図2において、1は試験片、2はビード部、3はダイ、4はロードセル、5は油圧シリンダである。図3は図2のドロービード試験機のビードおよびダイ部分の拡大概略断面図、図4はビードの断面形状を説明する側面図である。図3に示すように、ビード部2のダイ3対向側にビード2aが取り付けられている。ビード2aの先端半径Rは0.5mmである。
【0022】
試験片1に防錆油(パーカー興産(株)製ノックスラスト550HN)を1g/m塗布した後、ビード部2とダイ3の間に装着し、油圧シリンダ5で押し付け荷重P:500kg、押し込み深さh:4mmで、ダイ3を試験片1を介してビード部2に押し付け、試験片1を引き抜き速度:200mm/minで上方に引き抜くビード引き抜き試験を行い、ビード引き抜き試験後の試験片1表面をテープ剥離後重量測定した。ドロービード試験前の試験片重量と前記で測定したテープ剥離後の試験片重量の変化量から剥離量を算出した。
【0023】
図5は前述のドロービード試験結果を示す図で、耐パウダリング性に及ぼすめっき皮膜中Fe%の影響を示す。図5から、良好な耐パウダリング性を得るためには、Fe%は10%以下であることが好ましいことがわかった。
【0024】
ここで、合金化処理のヒートパターンを種々変えて、めっき付着量が50〜55g/mの範囲内にある合金化溶融亜鉛めっき鋼板を製造し、めっき皮膜中に存在するζ相の存在比率Z/D(本明細書では、単に「Z/D」とも記載する。)とFe%の関係について調査した結果を図6に示す。皮膜中ζ相の量は、めっき皮膜をX線回折し、ζ相についてはd=1.900のピーク強度Iζを、またδ相についてはd=1.990のピーク強度Iδをそれぞれ取り、下式で示すピーク強度比をもって皮膜中のζ相の量を表した。なお、Ibgはバックグランドである。
Z/D=(Iζ−Ibg)/(Iδ−Ibg)×100
図6からわかるように、めっき皮膜のζ量はFe%が低いほど多く、Fe%が10%を超えるとかなり少なくなる。また、Fe%が9〜10%の範囲では、同じFe%であっても、ζ相の存在量にはかなりの差が生じる。これは、Fe%が9〜10%の範囲では、合金化のヒートパターンなどにより、柱状のζ相の生成にばらつきがあることによると考えられる。
【0025】
摺動性の評価は図7に示す平板摺動試験機により測定される摩擦係数にて行った。試験片11が試料台12に固定され、試料台12は、水平移動可能なスライドテーブル13の上面に固定されている。スライドテーブル13の下面には、これに接したローラ14を有する上下動可能なスライドテーブル支持台15が設けられ、これを押上げることにより、圧子16による試験片11への押付荷重Nを測定するための第1ロードセル17が、スライドテーブル支持台15に取付けられている。上記押付力を作用させた状態でスライドテーブル13を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル18が、スライドテーブル13の一方の端部に取付けられている。
【0026】
図8は、使用した圧子16の形状・寸法を示す概略斜視図である。圧子16の下面が試験片11の表面に押しつけられた状態で摺動する。図8に示す圧子16の形状は、幅10mm、試験片の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試験片が押付けられる圧子下面(摺動面)は幅10mm、摺動方向長さ3mmの平面を有する。
【0027】
試験片11に防錆洗浄油(スギムラ化学(株)製プレトンR352L)を1g/m塗布した後、工具鋼SKD11製の圧子16を荷重400kgfで押し付け、1.0m/minの引き抜き速度で摺動長さ100mmの引き抜きを行い、引き抜き荷重Fと押し付け荷重Nとの比、F/Nを摩擦係数とした。
【0028】
引き抜き荷重は、▲1▼圧子と鋼板表面が凝着を起こし、凝着を引き剥がすための剪断力、▲2▼圧子が鋼板表面を変形させ潰していく力、が主要なものと考えられる。従って、▲1▼鋼板表面の組成、すなわち、鋼板表面の融点、▲2▼鋼板表面の硬さ、および、▲3▼鋼板表面の形状、が摩擦係数に及ぼす重要な要因である。
【0029】
図9に摩擦係数に及ぼすに及ぼすめっき皮膜中のζ相の存在量Z/Dおよび調質圧延の影響を示した。
【0030】
調質圧延を行わない場合は、Z/Dの増加とともに摩擦係数が徐々に高くなり、Z/Dが35程度以上になると、摩擦係数が一定かあるいはやや低下する傾向が認められる。Z/Dが高いほど、ζ相の存在量が多い。従って、融点が低く軟らかいζ相が圧子と凝着を起こし、引き抜き荷重が増加した結果、摩擦係数が高くなったものである。また、Z/Dが35程度以上で摩擦係数が一定かあるいはやや低下する傾向が認められた原因は、ζ相自体が軟らかいために、変形抵抗がやや小さくなったものと考えられる。尚、調質圧延を行わない場合には、摩擦測定時の変形に影響するマクロの表面の形状は、合金化条件の違いに関係なく、めっき前の原板である冷延鋼板形状と概ね一致する形状になる。そのため、調質圧延を行った場合に比べ、粗い表面形状となっているため、めっき鋼板表面の変形抵抗への寄与は調質圧延を行った材料に比べて大きい。
【0031】
Ra=1.0μmのロールにより調質圧延を行った場合には、Z/Dの増加とともに摩擦係数が小さくなった。摩擦係数は、Z/Dが20未満ではZ/Dの増加とともに徐々に低下したが、Z/Dが20以上ではZ/Dの増加とともに顕著に低下した。この原因を調べるために、図9中に示されるZ/Dの値の異なるA、BおよびCのめっき鋼板の表面を観察した結果を図10に示す。図10中、暗く見える部分が平坦部、明るく見える部分が凹部である。Z/Dは、Aが10、Bが25、Cが57である。また、図10中に記載されるように、各サンプルの平坦部面積率は、サンプルAは17%、サンプルBは23%、サンプルCは38%である。
【0032】
Z/Dの高い、すなわち表層がζ相主体の皮膜(サンプルC)の場合、調質圧延により平滑化された平坦部面積率が、Z/Dの低い、すなわち表層がδ相主体の皮膜(サンプルA、B)の場合に比べ大きいことが判る。これは、ζ相がδ相に比べ軟らかいことにより、調質圧延時の平坦化挙動に差を生じたものと考えられる。以上のことは、先に、塗装後鮮映性の説明でも述べたが、めっき皮膜に生成したFe−Zn合金結晶の種類によって、調質圧延の際の平坦化挙動に違いがあることを示している。
【0033】
以上より、Z/Dが高い、すなわちめっき表面のζ相存在量が多いサンプルであっても、調質圧延によりめっき表面が平滑化されている場合には、引き抜き抵抗が小さくなり、摩擦係数が低くなることが判明した。めっき鋼板表面の平坦部は、周囲と比較すると凸部として存在する。平坦部が多いことにより、摺動時の変形が抑制され、変形抵抗に基づく引き抜き荷重増加が軽減されたことが原因と考えられる。
【0034】
Ra=1.8μmのロールにより調質圧延を行った場合は、調質圧延を行わない場合に比べて摩擦係数が小さいが、Ra=1.0μmのロールで調質圧延を行った場合に比べて摩擦係数が大きく、摩擦係数とZ/Dの関係もRa=1.0μmのロールで調質圧延を行った場合とは異なる傾向を示した。すなわち、Z/Dが35程度まではZ/Dの増加とともに摩擦係数は徐々に大きくなり、Z/Dがそれ以上になると摩擦係数はほぼ一定又は若干低下する程度で、摩擦係数が顕著に低下する現象は認められなかった。これは、Z/D増加による凝着の寄与と、粗いロールにより調質圧延が行われていることにより、鋼板表面の平坦化よりもロール粗さの転写のほうが支配的であり、鋼板表面の変形抵抗の寄与がRa=1.0μmのロールで調質圧延を行った材料に比べて大きいことが原因と考えられる。
【0035】
なお、調質圧延を行わない場合、調質圧延後のめっき表面粗さRaは1.2〜1.4μmの範囲内、Ra=1.0μmのロールにより調質圧延を行った場合の調質圧延後のめっき表面粗さRaは0.4〜0.8μmの範囲内、Ra=1.8μmのロールにより調質圧延を行った場合の調質圧延後のめっき表面粗さRaは1.2〜1.4μmの範囲内にあった。
【0036】
また、ここでは、データとして示さないが、ロール粗さが粗いロールで調質圧延を行うと、合金化溶融亜鉛めっき鋼板のめっき皮膜が、調質圧延時に剪断変形を受けやすくなるため、調質圧延終了の時点で既にめっき皮膜が損傷を受けた状態となり、耐パウダリング性が劣化する傾向にある。
本発明は、以上の知見に基づいてなされた。本発明に係る合金化溶融亜鉛めっき鋼板は、耐パウダリング性、摺動性および塗装後鮮映性に優れた合金化溶融亜鉛めっき鋼板であり、めっき皮膜の付着量が45〜65g/m、該めっき皮膜中のFe含有量が6.5〜10%、該めっき皮膜をX線回折し、得られた強度から以下の(1)の式で表される皮膜中ζ相の存在比率Z/Dが20以上、調質圧延後の表面粗さRaが1.0μm以下且つめっき表面の平坦部の面積率が30%以上60%以下であることを特徴とする。
Z/D=(Iζ−Ibg)/(Iδ−Ibg)×100…(1)
但し、Iζ:d=1.900のピーク強度、
Iδ:d=1.990のピーク強度、
Ibg:バックグランド。
【0037】
ここで、本発明に係る合金化溶融亜鉛めっき鋼板におけるめっき皮膜の付着量、皮膜中のFe含有率、皮膜中ζ相の存在比率Z/D、調質圧延により平滑化された平坦部の面積率の限定理由について説明する。
【0038】
めっき皮膜の付着量は、45〜65g/mとする。めっき皮膜が45g/m未満では、満足する耐食性が得られない。一方、65g/mを超えても耐食性は充分すぎることと、耐パウダリング性が劣化し、プレス成形時に表面欠陥を発生させる弊害が出るため好ましくない。
【0039】
皮膜中のFe含有量は6.5〜10%とする。6.5%を下回ると、純亜鉛相が表面に残存するため、摺動性が劣化し、また合金化溶融亜鉛めっき鋼板の特徴である、良好な塗装後耐食性や溶接性が得られなくなる。一方、10%を越えると、耐パウダリング性が劣化しプレス成形時に表面欠陥を発生させる弊害があるとともに、後述のζ相の存在量が少なくなるため、調質圧延による表面の平坦化効果が現れず、良好な摺動性および塗装後鮮映性が得られないので好ましくない。
【0040】
めっき皮膜をX線回折し、得られた強度で表される皮膜中ζ相の存在比率Z/Dは20以上とする。Z/Dが20未満では、調質圧延による平坦化効果が現れず、良好な摺動性および塗装後鮮映性が得られない。
【0041】
調質圧延後のめっき鋼板の表面粗さRaは1.0μm以下とする。表面粗さRaが1.0μm超では、良好な摺動性および塗装後鮮映性が得られない。表面粗さRaは0.8μm以下がより好ましい。表面粗さRaが小さすぎるとハンドリング疵が発生しやすくなるので、表面粗さRaは0.3μm以上であることが好ましい。
【0042】
調質圧延により平滑化された平坦部の面積率は30%以上60%以下とする。30%未満では、調質圧延による表面の平坦化効果が現れず、良好な摺動性および塗装後鮮映性が得られない。一方、60%を越えると、表面が平滑すぎて、ハンドリング上の問題があるため好ましくない。
【0043】
めっき表面の平坦部は、光学顕微鏡あるいは走査型電子顕微鏡等で表面を観察することで容易に識別可能である。めっき表面における平坦部の面積率は、上記顕微鏡写真を画像解析することにより求めることができる。
【0044】
次に、上記した本発明に係る合金化溶融亜鉛めっき鋼板の製造方法について説明する。
【0045】
本発明に係る合金化溶融亜鉛めっき鋼板は、焼鈍工程で焼鈍された鋼板を、溶融亜鉛めっきするめっき工程、めっき付着量を調整する目付量調整工程、めっき量を調整した鋼板を合金化処理する合金化処理工程、次いで調質圧延する調質圧延工程により製造される。焼鈍工程の条件は常法でよく、特に限定されない。
【0046】
本発明では、めっき皮膜にζ相を形成させることが第一の特徴である。
めっき工程は、前記鋼板を、浴中Al量0.14%以下、残部Znおよび不可避的不純物からなる、浴温度:470℃以下の亜鉛めっき浴に侵入板温495℃以下で侵入させてめっきを施した後、該めっき浴から鋼板を引き上げる。
【0047】
浴中Al量が0.14%を超えると、ζ相の生成量が減少し、Z/Dを20以上にすることが難しくなる上、合金化時間が長くなり生産性が低下するため好ましくない。浴温度が、470℃を超えると、浴中でアウトバースト反応が起こり、合金化が進みすぎるため好ましくない。侵入板温が495℃を超えると、ζ相が形成しにくくなり、安定してZ/Dを20以上にすることが難しくなるため好ましくない。
【0048】
目付量調整工程は、めっき浴から引き上げた鋼板のめっき付着量を気体絞りにより所定のめっき量に調整する。めっき量調整方法は常法でよい。
【0049】
次に、合金化処理工程で合金化処理を行う。合金化処理工程は、めっき付着量を調整した鋼板を高周波誘導加熱炉で加熱炉出側の板温が495℃以下で加熱した後冷却してめっき皮膜のFe含有量を6.5〜10%の範囲内にする。
【0050】
本発明では、合金化処理を高周波誘導加熱炉で行う。これは、以下に記載するように、ガス炉等の雰囲気加熱方式による合金化処理に比べて、優れた耐パウダリング性と摺動性が得られるためである。
【0051】
従来一般に行われているガス炉等の雰囲気加熱方式による合金化処理では、めっき皮膜の上から加熱され、加熱が不均一となり易く、合金化反応が微視的に不均一に生じ易い。特に結晶粒界は反応性に富むため、所謂アウトバースト反応が生じ易い。アウトバースト組織が発生すると、この部分からΓ相が成長し始め、このΓ相の形成により耐パウダリング性が劣化する。
【0052】
これに対して、高周波誘導加熱炉を用いて鋼板を高周波誘導加熱すると、鋼板自体を直接加熱することができ、しかも、めっき皮膜に接する界面が最も加熱されるため、界面におけるFe−Zn反応が短時間でしかも板面位置に無関係に均一に起こり、また微視的にも均一な合金化反応が生じる。また、短時間で合金化処理できるため、Γ相の生成を少なくできる。さらに、鋼板幅方向、長さ方向で均一な加熱が可能で、加熱炉出側での厳密な板温管理が可能であることから、過合金が起こりにくい。そのため、鋼板上での局部的な過合金やζ相の残留がなくなり、鋼板−めっき界面にΓ相を厚く生成させずに、めっき皮膜をδ相主体のFe−Zn層とし、さらに、めっき層表面にζ相を安定して生成させることができる。
【0053】
加熱炉出側の板温を495℃以下に規定するのは、加熱炉出側の板温が495℃を超えると、ζ相が形成しにくくなり、安定してZ/Dを20以上にすることが難しくなるためである。
【0054】
皮膜中のFe含有量を6.5〜10%に規定するのは、6.5%を下回ると、摺動性が劣化し、良好な塗装後耐食性や溶接性が得られなくなり、一方、10%を越えると、耐パウダリング性が劣化しプレス成形時に表面欠陥を発生させる弊害があるとともに、後述のζ相の存在量が少なくなるため、調質圧延による表面の平坦化効果が発現されず、良好な摺動性および塗装後鮮映性が得られないためである。皮膜中のFe%は、加熱炉出側板温や冷却速度を調整することで調整可能である。
【0055】
高周波誘導加熱炉を用いると、ガス炉等の雰囲気加熱方式とは異なり、加熱された雰囲気ガスの上昇(ドラフト効果)がないため、加熱炉を出たあとで過合金が起り難いため、加熱炉をでた後は特殊な冷却を行わなくてもよい。
【0056】
調質圧延工程では、合金化処理後のめっき鋼板を表面粗さRaが1.4μm以下のロールで伸長率0.5〜2.0%の調質圧延を行う。
【0057】
本発明の第2の特徴は、鋼板表面に調質圧延により平滑化された表面平坦部を形成することである。調質圧延ロールの表面粗さRaが1.4μmを超えると、ロールの粗さが鋼板表面に転写され、調質圧延後のめっき鋼板の表面粗さRaが1.0μm超になって、良好な摺動性および塗装後鮮映性が得られないので好ましくない。調質圧延後のめっき鋼板の表面粗さRaを0.8μm以下にするには、調質圧延ロールの表面粗さRaが1.2μm以下とすることが好ましい。伸長率が0.5%未満では、平坦部面積率を30%以上にすることはできないため、良好な摺動性および塗装後鮮映性が得られないので好ましくない。また、伸長率が2.0%超では、材質が劣化するため、好ましくない。伸長率を大きくすることで平坦部面積率が大きくなるが、伸長率が2.0%以下であれば、平坦部面積率を確実に60%以下にできる。
【0058】
【実施例】
(実施例1)
被めっき原板として、板厚0.8mm、表1に示す成分組成、及び残部がFe及び不可避不純物であるIF鋼冷延鋼板を準備し、連続溶融亜鉛めっきライン(CGL)において、通板速度90mpmで、850℃で焼鈍後、浴温度:460℃、浴中Al量0.13%、残部Znおよび不可避的不純物からなる亜鉛めっき浴に、侵入板温465℃で侵入させてめっきを施した後、ガスワイピングノズルでめっき皮膜の付着量を調整し、次いで高周波誘導加熱炉で合金化処理を行い、引き続き調質圧延を行って合金化溶融亜鉛めっき鋼板の供試材を製造した。ガスワイピングノズル条件を調整することでめっき皮膜の付着量を調整し、高周波誘導加熱炉で加熱装置の出力を調整して加熱炉出側板温を調整することでめっき皮膜中Fe%、Z/Dの値の異なる供試材を得た。調質圧延は表面粗さRaが1.0μmのダルロール(但し、比較例7および比較例8のみ表面粗さRaが1.6μmのダルロール)を用い、伸長率を調整することで、めっき鋼板の表面粗さRaと平坦部の面積率を調整した。
【0059】
【表1】

Figure 2005048198
【0060】
前記で得た供試材のめっき付着量、皮膜中のFe%、表面粗さ(Ra)、Z/D(皮膜中ζ相の存在比率)、平坦部面積率、耐パウダリング性、摺動性(摩擦係数)、塗装後鮮映性を調査した。Z/Dは、めっき皮膜をX線回折し、得られた強度に基き前記(1)式から求めた。平坦部面積率は、めっき表面の走査型電子顕微鏡による観察結果から求めた。耐パウダリング性は、図2のドロービード試験機を用いて、実施の形態に記載した方法で剥離量を算出して評価した。摺動性は、図7の平板摺動試験機を用いて、実施の形態に記載した方法で摩擦係数を測定して評価した。塗装後鮮映性は、実施の形態に記載した方法で、膜厚55μmの2コート塗装を行い、NSIC値を測定して評価した。調査結果を表2に記載した。
【0061】
【表2】
Figure 2005048198
【0062】
めっき皮膜の付着量、皮膜中のFe含有量、表面粗さ(Ra)、Z/D、平坦部の面積率が本発明範囲内にある本発明例の各鋼板は、何れも、「耐パウダリング性」、「摺動性」及び「塗装後鮮映性」が優れる。
【0063】
これに対して、皮膜中のFe含有量、Z/Dが本発明範囲を外れる比較例2、5、平坦部の面積率は本発明範囲の下限を下回る比較例3、めっき皮膜の付着量が本発明範囲の上限を超える比較例6は、「耐パウダリング性」、「摺動性」及び「塗装後鮮映性」のうちの少なくとも一つの特性が劣る。
【0064】
めっき皮膜の付着量が本発明範囲の下限を外れる比較例1は、「耐パウダリング性」、「摺動性」及び「塗装後鮮映性」は良好であるが、耐食性が劣る。平坦部の面積率が本発明範囲を上回る比較例4は「耐パウダリング性」、「摺動性」及び「塗装後鮮映性」は良好であるが、ハンドリング性に劣る。
【0065】
比較例7および比較例8は表面粗さRaが本発明範囲を外れるため、「摺動性」と「塗装後鮮映性」が劣る。尚、比較例7および比較例8は表面粗さRaが大きい調質圧延ロールを用いて調質圧延を行っているために、「耐パウダリング性」が比較的劣る傾向にあり、特に、比較例8では、顕著である。
【0066】
(実施例2)
被めっき原板として、板厚0.8mm、実施例1と同じ成分組成のIF鋼冷延鋼板を準備し、連続溶融亜鉛めっきライン(CGL)において、通板速度90mpmで、850℃で焼鈍後、浴中Al量0.13%、残部Znおよび不可避的不純物からなる亜鉛めっき浴に侵入させてめっきを施した後、ガスワイピングノズルでめっき皮膜の付着量を50g/mに調整し、次いで高周波誘導加熱炉で合金化処理を行い、引き続き調質圧延を行って合金化溶融亜鉛めっき鋼板の供試材を製造した。供試材の製造条件を表3に記載した。前記で得ためっき鋼板のめっき付着量、皮膜中のFe%、表面粗さ(Ra)、Z/D、平坦部面積率、耐パウダリング性、摺動性(摩擦係数)、塗装後鮮映性を調査した。Z/D、平坦部面積率、耐パウダリング性、摺動性(摩擦係数)、塗装後鮮映性は、実施例1と同様の方法で調査した。調査結果を表4に記載した。
【0067】
【表3】
Figure 2005048198
【0068】
【表4】
Figure 2005048198
【0069】
めっき浴温度、侵入板温、誘導加熱炉出側板温、調質圧延条件(ロール粗さ、伸長率)が本発明範囲内にある本発明例の各鋼板は、表面粗さ(Ra)、Z/Dの値及び平坦部の面積率が第1発明で規定する範囲内にあり、何れも、「耐パウダリング性」、「摺動性」及び「塗装後鮮映性」が優れる。
【0070】
一方、めっき浴温度、侵入板温、誘導加熱炉出側板温の内のいずれかの条件が本発明範囲を外れる比較例1〜3は、Z/Dの値と平坦部面積率が第1発明で規定する範囲を下回るため、「摺動性」と「塗装後鮮映性」又はさらに「耐パウダリング性」、が劣る。
【0071】
調質圧延の伸長率が第2発明範囲を下回る比較例4は平坦部面積率が本発明範囲の下限を外れるため、摺動性と塗装後鮮映性が劣る。
【0072】
調質圧延の伸長率が第2発明範囲を上回る比較例5は平坦部面積率が本発明範囲の上限を外れるため、ハンドリング性に劣る。
【0073】
調質圧延の圧延ロールの表面粗さが本発明範囲を外れる比較例6及び比較例7は、鋼板表面粗さが第1発明範囲を外れるため、摺動性に劣る結果となった。
【0074】
【発明の効果】
本発明によれば、プレス成形性、塗装後鮮映性および耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板が得られる。
【0075】
本発明に係る合金化溶融亜鉛めっき鋼板は、比較的安価に厚目付けが可能であるので、プレス成形性、塗装後鮮映性および耐パウダリング性に加えて、さらに耐食性が要求される用途への適用にも適する。
【図面の簡単な説明】
【図1】合金化処理温度ならびに合金化処理後の調質圧延伸長率の塗装後鮮映性に及ぼす影響を示す図である。
【図2】ドロービード試験機の概略正面図である。
【図3】ドロービード試験機のビードおよびダイ部分の拡大概略断面図である。
【図4】ドロービード試験機のビード形状を説明する側面図である。
【図5】耐パウダリング性に及ぼすめっき皮膜中Fe%の影響を示す図である。
【図6】めっき皮膜中に存在するζ相の比率とFe%の関係を示す図である。
【図7】平板摺動試験機の概略正面図である。
【図8】図7の平板摺動試験機に使用した圧子の形状・寸法を示す概略斜視図である。
【図9】摩擦係数に及ぼすに及ぼすめっき皮膜中のζ相の存在量Z/Dおよび調質圧延の影響を示す図である。
【図10】Z/Dの値の異なる鋼板のめっき表面の平坦化状態を示す図面代用の顕微鏡写真である。
【符号の説明】
1 試験片
2 ビード部
2a ビード
3 ダイ
4 ロードセル
5 油圧シリンダ
11 試験片
12 試料台
13 スライドテーブル
14 ローラ
15 スライドテーブル支持台
16 圧子
17 第1ロードセル
18 第2ロードセル
N 押付荷重
F 摺動抵抗力[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alloyed hot-dip galvanized steel sheet excellent in press formability, post-paint clarity and powdering resistance, and a method for producing the same.
[0002]
[Prior art]
Alloyed hot-dip galvanized steel sheet has excellent post-coating corrosion resistance and weldability, so its demand has increased in recent years as a rust-proof steel sheet for automobiles, home appliances, and building materials. Especially recently, to ensure corrosion resistance. The galvanized film tends to become thicker. By the way, when this alloyed hot-dip galvanized steel sheet is used for applications such as automobiles, excellent plating peel resistance (powdering resistance) and press formability (good slidability) are required. Furthermore, it is also required that the finished appearance after painting is good (clearness after painting) like outer panels of automobiles, home appliances and steel furniture.
[0003]
The “powdering” is a phenomenon in which the plating layer is peeled off in a powder or lump form. When this phenomenon occurs, there is a problem that the corrosion resistance of the peeled portion deteriorates or the steel plate itself is wrinkled by the peeled strip. It is said that the cause of “powdering” is that a hard and brittle Γ phase is generated at the interface between the plating layer and the ground iron.
[0004]
On the other hand, the generation of cracks in the steel sheet is another major problem when the alloyed hot-dip galvanized steel sheet is pressed. The cause of the crack is that the “sliding property” represented by the friction coefficient is inferior (the friction coefficient is large). Furthermore, if it is closely attached, a ζ phase, which is a soft alloy phase, is generated on the surface of the plating layer, and this ζ phase causes cracking during the press working of the plated steel sheet. It is also known that when the ζ phase is large, foil-like plating peeling called flaking occurs.
[0005]
Thus, for example, Patent Document 1 proposes an alloyed hot-dip galvanized steel sheet that reduces this Γ phase as much as possible and does not contain a ζ phase. Certainly, if an alloyed hot-dip galvanized steel sheet that does not contain the ζ phase that degrades the “slidability” can be stably produced, the steel sheet for automobile body can be manufactured. It is very favorable for the supplier. However, the alloyed hot dip galvanized steel sheet is manufactured by performing heat diffusion treatment after hot dip galvanizing and interdiffusing Fe between the plating layer on the surface and the ground iron, that is, by alloying. It is inevitable that the alloy phase appearing in the Zn binary phase diagram appears in the plating layer. When trying to suppress the ζ phase with a low Fe content appearing on the plating surface layer, the Γ phase with a high Fe content grows thick at the interface between the plating layer and the ground iron, while suppressing the formation of the Γ phase. Then, the relationship that the ζ phase is generated thickly cannot be avoided.
[0006]
Patent Document 2 proposes an alloyed hot-dip galvanized steel sheet mainly composed of crystals composed of ζ phase. However, the plated steel sheet is inferior in “slidability” and “flaking resistance” because the ζ-phase crystals described above become too large.
[0007]
Furthermore, cold-rolled steel sheets with controlled surface roughness have been used for steel sheets that require a finished appearance after painting, such as the outer panels of automobiles, home appliances, and steel furniture. It had been. In addition, as a steel sheet that requires an excellent rust-proofing effect, such as a steel sheet for automobiles, it is manufactured by subjecting a cold-rolled steel sheet with a controlled surface roughness to electrogalvanizing treatment. An electrogalvanized steel sheet was used.
[0008]
In recent years, there has been a demand for even better rust-preventing effects, and the need for thick surface-treated steel sheets is increasing, so it has excellent paintability, weldability, and corrosion resistance, and can be thickened at a relatively low cost. In addition, galvannealed steel sheets have been widely used. However, in the galvannealed steel sheet, since the surface roughness of the plating layer greatly changes in the final galvanizing process and the alloying process, the effect of the method for adjusting the surface roughness of the steel sheet described above is I couldn't expect it.
[0009]
The prior art document information will be described below.
[0010]
[Patent Document 1]
Japanese Patent Publication No. 3-55544
[0011]
[Patent Document 2]
Japanese Patent Publication No. 3-55543
[0012]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide an alloyed hot-dip galvanized steel sheet excellent in “powdering resistance”, “slidability”, and “post-paint clarity” and a method for producing the same. Yes.
[0013]
[Means for Solving the Problems]
The inventors first conducted intensive research on the problem of how to improve the slidability in a plated layer having a ζ phase on the surface layer in order to ensure powdering resistance. As a result, as has been said, the phase structure on the surface of the plating layer has a great tendency to affect the slidability, but the surface flat part has a great influence on the slidability. It has been found that by controlling the surface flat portion, good slidability can be obtained even in a plating film having a large amount of ζ phase in the surface layer. On the other hand, as a result of intensive studies on the surface roughness of the galvanized steel sheet that affects the sharpness after coating, it is clear that the ζ phase is present on the surface of the plated layer. Found that it is easy to form a surface roughness that is advantageous to steel, and succeeded in obtaining an alloyed hot-dip galvanized steel sheet with excellent “powdering resistance”, “slidability” and “post-paint clarity”. The present invention has been completed.
[0014]
That is, in the first invention, the adhesion amount of the plating film is 45 to 65 g / m. 2 The content of Fe in the plating film is 6.5 to 10%, the plating film is X-ray diffracted, and the abundance ratio Z / D of the ζ phase in the film represented by the following formula (1) from the obtained strength 20 or more, the surface roughness Ra after temper rolling is 1.0 μm or less, and the area ratio of the flat portion of the plating surface is 30% or more and 60% or less. It is an alloyed hot-dip galvanized steel sheet with excellent post-paint clarity.
Z / D = (Iζ−Ibg) / (Iδ 1 −Ibg) × 100 (1)
However, the peak intensity of Iζ: d = 1.900,
1 : Peak intensity of d = 1.990,
Ibg: Background
In addition, the second invention is a method in which a steel sheet is plated by intruding into a galvanizing bath having a bath temperature of 470 ° C. or less consisting of an aluminum content of 0.14% or less and the balance Zn and inevitable impurities at a penetration plate temperature of 495 ° C. or less. After that, the plating step of pulling up from the galvanizing bath, the basis weight adjusting step of adjusting the plating adhesion amount of the steel plate pulled up from the plating bath, and the steel plate adjusted in the plating adhesion amount on the heating furnace exit side in a high frequency induction heating furnace An alloying treatment step of heating the plate temperature at 495 ° C. or lower and then cooling to bring the Fe content of the plating film into a range of 6.5 to 10%; and a surface roughness Ra of the plated steel plate after the alloying treatment A temper rolling step of performing temper rolling with an elongation of 0.5 to 2.0% with a roll of 1.4 μm or less, and powdering resistance, slidability and post-painting screening Of alloyed hot-dip galvanized steel sheet It is a production method.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the embodiment of the present invention will be described together with the background of the invention.
[0016]
The present inventors first investigated the effects of the alloying treatment temperature and the temper rolling elongation after the alloying treatment on the post-paint clarity. IF steel cold-rolled steel sheet was galvanized in a continuous hot-dip galvanizing line (CGL), and subjected to temper rolling in a laboratory by applying a constant temperature alloying treatment at 450, 500, and 550 ° C. in a high-frequency induction heating furnace. Each sample was coated by a method generally used in an automobile manufacturing process. In other words, after pre-treatment with zinc phosphate treatment, cationic electrodeposition coating is performed, and then spray coating of 2 coats up to intermediate coating is performed in order to clarify the effect of the coating conditions on post-painting clarity. (Coating film thickness: 55 μm) was performed. The evaluation of the sharpness after painting was performed by measuring the NSIC value using a “image clarity measuring device NSIC type” manufactured by Suga Test Instruments Co., Ltd. Note that the NSIC value is 100 for blackboard polished glass, and the closer the value is to 100, the better the visibility. The experimental results are shown in FIG.
[0017]
When alloying was performed at 450 ° C., a columnar ζ phase was formed on the surface of the plating film. When the alloying treatment is performed at 500, 550 ° C., the surface of the plating film is mainly δ. 1 There was a phase.
[0018]
The NSIC value of the steel sheet before temper rolling was a substantially constant value regardless of the alloying temperature. This indicates that the difference in the Fe—Zn alloy crystal generated during the alloying treatment is a component having a short wavelength of 100 μm or less and does not affect the sharpness after coating. However, when subjected to temper rolling, the NSIC value of the sample alloyed at 450 ° C. is higher than that of the sample alloyed at 500 ° C. and 550 ° C., and the sharpness after coating is good. there were.
[0019]
Since the difference in the above-mentioned NSIC value is considered to be related to the ratio of the flat portion formed on the plating surface by temper rolling, the above is the kind of the Fe—Zn alloy crystal formed in the plating film. This suggests that there is a difference in the flattening behavior during temper rolling. This is because the ζ phase is δ 1 It is considered that a difference in flattening behavior during temper rolling was caused by being softer than the phase.
[0020]
Next, the IF steel cold-rolled steel sheet is adjusted in a continuous hot-dip galvanizing line (CGL) using a roll having different surface roughness after adjusting the Fe% to about 7 to 12% by a high-frequency induction heating furnace after galvanization. Using the alloyed hot-dip galvanized steel sheet subjected to temper rolling at an elongation rate (0.7%), the influence of production conditions on powdering resistance and sliding properties was investigated. For comparison, an unregulated sample that was not subjected to temper rolling was also investigated.
[0021]
Evaluation of the powdering resistance was carried out with a draw bead testing machine shown in FIG. In FIG. 2, 1 is a test piece, 2 is a bead part, 3 is a die, 4 is a load cell, and 5 is a hydraulic cylinder. 3 is an enlarged schematic cross-sectional view of a bead and a die portion of the draw bead testing machine of FIG. 2, and FIG. 4 is a side view illustrating a cross-sectional shape of the bead. As shown in FIG. 3, a bead 2 a is attached to the bead portion 2 on the side opposite to the die 3. The tip radius R of the bead 2a is 0.5 mm.
[0022]
1 g / m of rust preventive oil (Knoxlast 550HN manufactured by Parker Kosan Co., Ltd.) on test piece 1 2 After coating, it is mounted between the bead part 2 and the die 3 and pressed by the hydraulic cylinder 5 with a pressing load P: 500 kg and a pressing depth h: 4 mm, and the die 3 is pressed against the bead part 2 via the test piece 1. A bead pull-out test was performed in which the piece 1 was pulled upward at a drawing speed of 200 mm / min, and the surface of the test piece 1 after the bead pull-out test was subjected to weight measurement after tape peeling. The amount of peel was calculated from the weight of the test piece before the draw bead test and the amount of change in the weight of the test piece after tape peeling measured above.
[0023]
FIG. 5 is a diagram showing the result of the above-described draw bead test, and shows the influence of Fe% in the plating film on the powdering resistance. From FIG. 5, it was found that the Fe% is preferably 10% or less in order to obtain good powdering resistance.
[0024]
Here, various heat treatment patterns of the alloying treatment were used, and the plating adhesion amount was 50 to 55 g / m. 2 An alloyed hot-dip galvanized steel sheet within the above range is manufactured, and the abundance ratio Z / D (also simply referred to as “Z / D” in this specification) of the ζ phase present in the plating film and Fe%. The results of investigating the relationship are shown in FIG. The amount of ζ phase in the film is determined by X-ray diffraction of the plated film, and for the ζ phase, the peak intensity Iζ of d = 1.900 and δ 1 For the phase, the peak intensity Iδ at d = 1.990 1 The amount of ζ phase in the film was expressed with the peak intensity ratio shown by the following formula. Note that Ibg is the background.
Z / D = (Iζ−Ibg) / (Iδ 1 −Ibg) × 100
As can be seen from FIG. 6, the amount of ζ in the plating film increases as Fe% decreases, and decreases significantly when Fe% exceeds 10%. Further, when the Fe% is in the range of 9 to 10%, there is a considerable difference in the abundance of the ζ phase even if the Fe% is the same. This is considered to be due to variations in the formation of the columnar ζ phase due to the alloying heat pattern or the like when the Fe% is in the range of 9 to 10%.
[0025]
The evaluation of the slidability was performed using a friction coefficient measured by a flat plate sliding tester shown in FIG. A test piece 11 is fixed to a sample table 12, and the sample table 12 is fixed to the upper surface of a slide table 13 that can move horizontally. On the lower surface of the slide table 13, there is provided a slide table support base 15 having a roller 14 in contact with the slide table 13 and capable of moving up and down. By pushing this up, the pressing load N applied to the test piece 11 by the indenter 16 is measured. A first load cell 17 is attached to the slide table support 15. A second load cell 18 for measuring a sliding resistance force F for moving the slide table 13 in the horizontal direction in a state where the pressing force is applied is attached to one end of the slide table 13.
[0026]
FIG. 8 is a schematic perspective view showing the shape and dimensions of the used indenter 16. The indenter 16 slides with its lower surface pressed against the surface of the test piece 11. The shape of the indenter 16 shown in FIG. 8 is 10 mm in width, 12 mm in the sliding direction length of the test piece, and the lower part at both ends in the sliding direction is a curved surface having a curvature of 4.5 mmR. Surface) has a flat surface with a width of 10 mm and a sliding direction length of 3 mm.
[0027]
1 g / m of rust preventive cleaning oil (Preton R352L manufactured by Sugimura Chemical Co., Ltd.) on the test piece 11 2 After coating, the indenter 16 made of tool steel SKD11 is pressed with a load of 400 kgf, the sliding length is 100 mm at a pulling speed of 1.0 m / min, the ratio of the pulling load F to the pressing load N, F / N Was the friction coefficient.
[0028]
The pull-out load is considered to be mainly composed of (1) a shearing force for causing the indenter to adhere to the steel sheet surface and peeling the adhesion, and (2) a force for the indenter to deform and crush the steel sheet surface. Therefore, (1) the composition of the steel sheet surface, that is, the melting point of the steel sheet surface, (2) the hardness of the steel sheet surface, and (3) the shape of the steel sheet surface are important factors affecting the friction coefficient.
[0029]
FIG. 9 shows the effects of Z / D abundance of ζ phase in the plating film and temper rolling on the friction coefficient.
[0030]
When temper rolling is not performed, the friction coefficient gradually increases as Z / D increases, and when Z / D is about 35 or more, the friction coefficient tends to be constant or slightly decreased. The higher the Z / D is, the more ζ phase is present. Therefore, the soft ζ phase having a low melting point causes adhesion with the indenter, and the pulling load increases, resulting in an increase in the coefficient of friction. Further, the reason why the coefficient of friction tends to be constant or slightly lower when Z / D is about 35 or more is considered to be that the deformation resistance is slightly reduced because the ζ phase itself is soft. In addition, when temper rolling is not performed, the shape of the surface of the macro that affects the deformation at the time of friction measurement is almost the same as the shape of the cold-rolled steel plate that is the original plate before plating, regardless of the difference in alloying conditions. Become a shape. Therefore, since it has a rough surface shape compared to the case where temper rolling is performed, the contribution to the deformation resistance of the surface of the plated steel sheet is greater than that of the material subjected to temper rolling.
[0031]
When temper rolling was performed with a roll of Ra = 1.0 μm, the friction coefficient decreased with increasing Z / D. The coefficient of friction gradually decreased with increasing Z / D when Z / D was less than 20, but significantly decreased with increasing Z / D when Z / D was 20 or more. In order to investigate this cause, the result of observing the surface of the plated steel sheets of A, B and C having different Z / D values shown in FIG. 9 is shown in FIG. In FIG. 10, the portion that appears dark is a flat portion, and the portion that appears bright is a recess. Z / D is 10 for A, 25 for B, and 57 for C. As shown in FIG. 10, the flat area ratio of each sample is 17% for sample A, 23% for sample B, and 38% for sample C.
[0032]
When the Z / D is high, that is, when the surface layer is a film mainly composed of ζ phase (sample C), the flat area area ratio smoothed by temper rolling is low, that is, the surface layer is δ 1 It can be seen that it is larger than the case of the phase-based film (samples A and B). This is because the ζ phase is δ 1 It is considered that a difference in flattening behavior during temper rolling was caused by being softer than the phase. As described above in the description of the post-paint clarity after painting, the flattening behavior during temper rolling varies depending on the type of Fe-Zn alloy crystals formed in the plating film. ing.
[0033]
From the above, even if the sample has a high Z / D, that is, a sample having a large amount of ζ phase on the plating surface, if the plating surface is smoothed by temper rolling, the drawing resistance becomes small and the friction coefficient becomes small. Turned out to be lower. The flat part on the surface of the plated steel sheet exists as a convex part as compared with the surroundings. It is thought that due to the large number of flat portions, deformation at the time of sliding is suppressed, and an increase in pull-out load based on deformation resistance is reduced.
[0034]
When temper rolling is performed with a roll of Ra = 1.8 μm, the friction coefficient is smaller than when temper rolling is not performed, but compared with when temper rolling is performed with a roll of Ra = 1.0 μm. The friction coefficient was large, and the relationship between the friction coefficient and Z / D also showed a tendency different from that in the case of temper rolling with a roll of Ra = 1.0 μm. That is, the friction coefficient gradually increases with increasing Z / D until Z / D is about 35, and the friction coefficient is remarkably decreased when Z / D is more than that, with the friction coefficient being substantially constant or slightly decreasing. This phenomenon was not observed. This is because the roll roughness transfer is more dominant than the flattening of the steel sheet surface due to the contribution of adhesion due to the increase in Z / D and the temper rolling performed by the rough roll. The cause is considered to be that the contribution of deformation resistance is larger than that of the material subjected to temper rolling with a roll of Ra = 1.0 μm.
[0035]
In addition, when temper rolling is not performed, the plating surface roughness Ra after temper rolling is in the range of 1.2 to 1.4 μm, and tempering is performed when temper rolling is performed with a roll of Ra = 1.0 μm. The plating surface roughness Ra after rolling is in the range of 0.4 to 0.8 μm, and the plating surface roughness Ra after temper rolling when temper rolling is performed with a roll of Ra = 1.8 μm is 1.2. It was in the range of ~ 1.4 μm.
[0036]
Although not shown here as data, when temper rolling is performed with a roll having a rough roll, the galvanized steel sheet becomes susceptible to shear deformation during temper rolling. The plating film is already damaged at the end of rolling, and the powdering resistance tends to deteriorate.
The present invention has been made based on the above findings. The alloyed hot-dip galvanized steel sheet according to the present invention is an alloyed hot-dip galvanized steel sheet having excellent powdering resistance, slidability, and sharpness after coating, and the coating amount of the plating film is 45 to 65 g / m. 2 The Fe content in the plating film is 6.5 to 10%, the plating film is subjected to X-ray diffraction, and the abundance ratio Z of the ζ phase in the film represented by the following formula (1) is obtained from the obtained strength. / D is 20 or more, the surface roughness Ra after temper rolling is 1.0 μm or less, and the area ratio of the flat portion of the plating surface is 30% or more and 60% or less.
Z / D = (Iζ−Ibg) / (Iδ 1 −Ibg) × 100 (1)
However, the peak intensity of Iζ: d = 1.900,
1 : Peak intensity of d = 1.990,
Ibg: Background.
[0037]
Here, the adhesion amount of the plating film in the galvannealed steel sheet according to the present invention, the Fe content in the film, the abundance ratio Z / D of the ζ phase in the film, the area of the flat part smoothed by temper rolling The reason for limiting the rate will be described.
[0038]
The adhesion amount of the plating film is 45 to 65 g / m. 2 And Plating film 45g / m 2 If it is less than 1, satisfactory corrosion resistance cannot be obtained. On the other hand, 65 g / m 2 Exceeding the above range is not preferable because the corrosion resistance is too high, the powdering resistance is deteriorated, and the surface defects are generated at the time of press molding.
[0039]
The Fe content in the film is 6.5 to 10%. If it is less than 6.5%, the pure zinc phase remains on the surface, so that the slidability is deteriorated, and good post-coating corrosion resistance and weldability, which are characteristics of the galvannealed steel sheet, cannot be obtained. On the other hand, if it exceeds 10%, the powdering resistance deteriorates, and there is a harmful effect of generating surface defects at the time of press molding, and the abundance of the ζ phase described later is reduced. It does not appear, and good slidability and sharpness after painting cannot be obtained.
[0040]
The plating film is subjected to X-ray diffraction, and the abundance ratio Z / D of the ζ phase in the film represented by the obtained strength is set to 20 or more. If Z / D is less than 20, the flattening effect by temper rolling does not appear, and good slidability and post-paint clarity cannot be obtained.
[0041]
The surface roughness Ra of the plated steel sheet after temper rolling is 1.0 μm or less. When the surface roughness Ra is more than 1.0 μm, good sliding properties and post-painting sharpness cannot be obtained. The surface roughness Ra is more preferably 0.8 μm or less. If the surface roughness Ra is too small, handling wrinkles are likely to occur, so the surface roughness Ra is preferably 0.3 μm or more.
[0042]
The area ratio of the flat portion smoothed by temper rolling is set to 30% or more and 60% or less. If it is less than 30%, the surface flattening effect by temper rolling does not appear, and good slidability and post-painting sharpness cannot be obtained. On the other hand, if it exceeds 60%, the surface is too smooth and there is a problem in handling.
[0043]
The flat portion of the plating surface can be easily identified by observing the surface with an optical microscope or a scanning electron microscope. The area ratio of the flat portion on the plating surface can be obtained by image analysis of the above micrograph.
[0044]
Next, the manufacturing method of the above galvannealed steel sheet according to the present invention will be described.
[0045]
The alloyed hot-dip galvanized steel sheet according to the present invention is an alloying treatment for a steel sheet annealed in the annealing process, a plating process for hot-dip galvanizing, a basis weight adjustment process for adjusting the coating amount, and a steel sheet with an adjusted plating amount. It is manufactured by an alloying treatment step and then a temper rolling step of temper rolling. Conditions for the annealing step may be conventional methods and are not particularly limited.
[0046]
In the present invention, the first feature is to form a ζ phase in the plating film.
In the plating step, the steel sheet is infiltrated into a zinc plating bath having a bath temperature of 470 ° C. or less, which is made up of an aluminum content of 0.14% or less, the balance Zn and inevitable impurities, at a penetration plate temperature of 495 ° C. or less. After the application, the steel sheet is pulled up from the plating bath.
[0047]
If the amount of Al in the bath exceeds 0.14%, the amount of ζ phase produced decreases, making it difficult to set Z / D to 20 or more, and it is not preferable because the alloying time becomes longer and the productivity decreases. . When the bath temperature exceeds 470 ° C., an outburst reaction occurs in the bath and the alloying proceeds excessively, which is not preferable. When the penetration plate temperature exceeds 495 ° C., it is difficult to form a ζ phase, and it is difficult to stably set Z / D to 20 or more.
[0048]
In the basis weight adjustment step, the plating adhesion amount of the steel plate pulled up from the plating bath is adjusted to a predetermined plating amount by gas restriction. The plating amount adjustment method may be a conventional method.
[0049]
Next, an alloying process is performed in an alloying process. In the alloying treatment step, the steel sheet whose plating adhesion amount is adjusted is heated in a high-frequency induction heating furnace at a heating furnace outlet side temperature of 495 ° C. or lower and then cooled to reduce the Fe content of the plating film to 6.5 to 10%. Within the range.
[0050]
In the present invention, the alloying process is performed in a high frequency induction heating furnace. This is because, as described below, superior powdering resistance and slidability can be obtained as compared with alloying treatment by an atmosphere heating method such as a gas furnace.
[0051]
In the conventional alloying treatment by an atmospheric heating method such as a gas furnace, heating is performed from above the plating film, the heating is likely to be non-uniform, and the alloying reaction is likely to be microscopically non-uniform. In particular, since the crystal grain boundary is rich in reactivity, a so-called outburst reaction is likely to occur. When an outburst structure is generated, the Γ phase starts to grow from this portion, and the powdering resistance deteriorates due to the formation of the Γ phase.
[0052]
On the other hand, when a steel plate is induction-heated using a high-frequency induction heating furnace, the steel plate itself can be directly heated, and the interface in contact with the plating film is heated most, so that the Fe—Zn reaction at the interface occurs. A uniform alloying reaction occurs in a short time and regardless of the position of the plate surface, and even microscopically. Further, since the alloying treatment can be performed in a short time, the generation of the Γ phase can be reduced. Furthermore, uniform heating is possible in the width direction and the length direction of the steel sheet, and strict sheet temperature control on the exit side of the heating furnace is possible, so that overalloy is unlikely to occur. For this reason, local overalloy and ζ phase remain on the steel plate, and the plating film is formed without forming a Γ phase thick at the steel plate-plating interface. 1 A phase-based Fe—Zn layer can be formed, and a ζ phase can be stably generated on the surface of the plating layer.
[0053]
The plate temperature on the heating furnace exit side is regulated to 495 ° C. or less. When the plate temperature on the heating furnace exit side exceeds 495 ° C., it becomes difficult to form a ζ phase, and the Z / D is stably set to 20 or more. Because it becomes difficult.
[0054]
When the Fe content in the film is regulated to 6.5 to 10%, if it falls below 6.5%, the slidability deteriorates and good post-coating corrosion resistance and weldability cannot be obtained. If it exceeds 50%, the powdering resistance deteriorates, and there is an adverse effect of generating surface defects at the time of press molding, and the abundance of the ζ phase described later is reduced, so the surface flattening effect by temper rolling is not manifested. This is because good slidability and clearness after painting cannot be obtained. The Fe% in the film can be adjusted by adjusting the heating furnace outlet side plate temperature and the cooling rate.
[0055]
When using a high-frequency induction heating furnace, unlike an atmosphere heating system such as a gas furnace, there is no rise in the heated atmosphere gas (draft effect), so it is difficult for an overalloy to occur after leaving the heating furnace. It is not necessary to perform special cooling after leaving.
[0056]
In the temper rolling step, the galvanized steel sheet after the alloying treatment is temper-rolled with a roll having a surface roughness Ra of 1.4 μm or less and an elongation of 0.5 to 2.0%.
[0057]
The second feature of the present invention is that a flat surface portion smoothed by temper rolling is formed on the steel plate surface. When the surface roughness Ra of the temper rolling roll exceeds 1.4 μm, the roughness of the roll is transferred to the steel sheet surface, and the surface roughness Ra of the galvanized steel sheet after temper rolling is better than 1.0 μm. Slidability and sharpness after painting cannot be obtained. In order to make the surface roughness Ra of the plated steel sheet after the temper rolling less than 0.8 μm, it is preferable that the surface roughness Ra of the temper rolling roll is set to 1.2 μm or less. If the elongation ratio is less than 0.5%, the flat area ratio cannot be increased to 30% or more, and therefore, it is not preferable because good slidability and sharpness after painting cannot be obtained. Further, if the elongation ratio exceeds 2.0%, the material is deteriorated, which is not preferable. By increasing the elongation rate, the flat area ratio increases, but if the elongation ratio is 2.0% or less, the flat area ratio can be reliably reduced to 60% or less.
[0058]
【Example】
(Example 1)
As a plate to be plated, prepared is an IF steel cold-rolled steel sheet having a thickness of 0.8 mm, the composition shown in Table 1, and the balance being Fe and inevitable impurities, and in a continuous hot dip galvanizing line (CGL), a plate speed of 90 mpm After annealing at 850 ° C., after bathing at a bath temperature of 460 ° C., 0.13% of the Al content in the bath, the remainder Zn and unavoidable impurities intruding at a penetration plate temperature of 465 ° C. Then, the adhesion amount of the plating film was adjusted with a gas wiping nozzle, then alloyed in a high-frequency induction heating furnace, and subsequently subjected to temper rolling to produce a specimen of an galvannealed steel sheet. By adjusting the gas wiping nozzle conditions, the amount of plating film deposited is adjusted, and by adjusting the output of the heating device in the high frequency induction heating furnace and adjusting the heating furnace outlet side plate temperature, Fe% in the plating film, Z / D Specimens with different values were obtained. The temper rolling uses a dull roll having a surface roughness Ra of 1.0 μm (however, only Comparative Example 7 and Comparative Example 8 have a surface roughness Ra of 1.6 μm), and adjusting the elongation ratio, The surface roughness Ra and the area ratio of the flat portion were adjusted.
[0059]
[Table 1]
Figure 2005048198
[0060]
Amount of plating of test material obtained above, Fe% in coating, surface roughness (Ra), Z / D (existing ratio of ζ phase in coating), flat area ratio, powdering resistance, sliding We investigated the property (coefficient of friction) and the sharpness after painting. Z / D was determined from the equation (1) based on the obtained strength after X-ray diffraction of the plating film. The flat area ratio was obtained from the observation result of the plating surface with a scanning electron microscope. The powdering resistance was evaluated by calculating the amount of peeling by the method described in the embodiment using the draw bead tester shown in FIG. The slidability was evaluated by measuring the friction coefficient by the method described in the embodiment using the flat plate sliding tester shown in FIG. The sharpness after coating was evaluated by measuring the NSIC value by applying two coats with a film thickness of 55 μm by the method described in the embodiment. The survey results are shown in Table 2.
[0061]
[Table 2]
Figure 2005048198
[0062]
Each steel sheet of the present invention examples in which the adhesion amount of the plating film, the Fe content in the film, the surface roughness (Ra), the Z / D, and the area ratio of the flat portion are within the scope of the present invention are “powder resistant”. “Ringability”, “slidability” and “paintability after painting” are excellent.
[0063]
In contrast, Comparative Examples 2 and 5 in which the Fe content in the film and Z / D deviate from the scope of the present invention, and the area ratio of the flat portion is less than the lower limit of the scope of the present invention. Comparative Example 6 exceeding the upper limit of the range of the present invention is inferior in at least one of “powdering resistance”, “slidability” and “post-paint clarity”.
[0064]
In Comparative Example 1 in which the amount of the plating film adhered is outside the lower limit of the range of the present invention, “powdering resistance”, “slidability” and “post-paint clarity” are good, but corrosion resistance is poor. In Comparative Example 4 in which the area ratio of the flat portion exceeds the range of the present invention, “powdering resistance”, “slidability” and “image quality after painting” are good, but the handling property is inferior.
[0065]
In Comparative Examples 7 and 8, the surface roughness Ra is out of the range of the present invention, so that “slidability” and “post-paint clarity” are inferior. In addition, since Comparative Example 7 and Comparative Example 8 are temper rolled using a temper rolling roll having a large surface roughness Ra, the “powdering resistance” tends to be relatively inferior. In Example 8, it is remarkable.
[0066]
(Example 2)
As an original plate to be plated, an IF steel cold-rolled steel sheet having a thickness of 0.8 mm and the same composition as in Example 1 was prepared, and after annealing at 850 ° C. at a plate speed of 90 mpm in a continuous hot-dip galvanizing line (CGL), After plating by intruding into a galvanizing bath consisting of 0.13% Al in the bath, the balance Zn and inevitable impurities, the coating amount of the plating film was 50 g / m with a gas wiping nozzle. 2 Next, alloying treatment was performed in a high-frequency induction heating furnace, and then temper rolling was performed to produce a test material for an alloyed hot-dip galvanized steel sheet. The production conditions of the test materials are shown in Table 3. Plating adhesion amount, Fe% in coating, surface roughness (Ra), Z / D, flat area ratio, powdering resistance, slidability (friction coefficient), fine coating after painting The sex was investigated. Z / D, flat area ratio, powdering resistance, slidability (friction coefficient), and post-paint clarity were investigated in the same manner as in Example 1. The survey results are shown in Table 4.
[0067]
[Table 3]
Figure 2005048198
[0068]
[Table 4]
Figure 2005048198
[0069]
Each steel plate of the present invention example in which the plating bath temperature, the intrusion plate temperature, the induction heating furnace outlet side plate temperature, and the temper rolling conditions (roll roughness, elongation rate) are within the scope of the present invention, the surface roughness (Ra), Z The value of / D and the area ratio of the flat portion are within the range defined by the first invention, and all of them are excellent in “powdering resistance”, “sliding property” and “post-paint clarity”.
[0070]
On the other hand, Comparative Examples 1 to 3 in which any one of the plating bath temperature, the intruding plate temperature, and the induction heating furnace outlet side plate temperature deviates from the scope of the present invention, the Z / D value and the flat area ratio are the first invention. Therefore, “slidability” and “paintability after painting” or “powdering resistance” are inferior.
[0071]
In Comparative Example 4 in which the elongation rate of temper rolling is lower than the range of the second invention, the flat area ratio is outside the lower limit of the range of the present invention, so that the slidability and the sharpness after coating are inferior.
[0072]
In Comparative Example 5 in which the elongation rate of the temper rolling exceeds the range of the second invention, the flat area ratio is outside the upper limit of the range of the present invention, so that the handling property is inferior.
[0073]
In Comparative Example 6 and Comparative Example 7 in which the surface roughness of the temper rolling roll deviated from the range of the present invention, the surface roughness of the steel sheet deviated from the range of the first invention, resulting in poor sliding properties.
[0074]
【The invention's effect】
According to the present invention, an galvannealed steel sheet excellent in press formability, post-paint clarity and powdering resistance can be obtained.
[0075]
Since the alloyed hot-dip galvanized steel sheet according to the present invention can be thickened at a relatively low cost, in addition to press formability, post-painting sharpness and powdering resistance, the application further requires corrosion resistance. Also suitable for application.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of alloying treatment temperature and temper rolling elongation after alloying treatment on post-painting clarity.
FIG. 2 is a schematic front view of a draw bead testing machine.
FIG. 3 is an enlarged schematic cross-sectional view of a bead and a die portion of a draw bead testing machine.
FIG. 4 is a side view illustrating a bead shape of a draw bead testing machine.
FIG. 5 is a diagram showing the influence of Fe% in the plating film on the powdering resistance.
FIG. 6 is a graph showing the relationship between the proportion of ζ phase present in the plating film and Fe%.
FIG. 7 is a schematic front view of a flat plate sliding tester.
8 is a schematic perspective view showing the shape and dimensions of an indenter used in the flat plate sliding tester shown in FIG.
FIG. 9 is a diagram showing the influence of the abundance Z / D of the ζ phase in the plating film and the temper rolling on the friction coefficient.
FIG. 10 is a photomicrograph in place of a drawing showing the flattened state of the plated surface of steel sheets having different Z / D values.
[Explanation of symbols]
1 Test piece
2 Bead section
2a bead
3 die
4 Load cell
5 Hydraulic cylinder
11 Test piece
12 Sample stage
13 Slide table
14 Laura
15 Slide table support
16 Indenter
17 First load cell
18 Second load cell
N Pushing load
F Sliding resistance

Claims (2)

めっき皮膜の付着量が45〜65g/m、該めっき皮膜中のFe含有量が6.5〜10%、該めっき皮膜をX線回折し、得られた強度から下記(1)式で表される皮膜中ζ相の存在比率Z/Dが20以上、調質圧延後の表面粗さRaが1.0μm以下且つめっき表面の平坦部の面積率が30%以上60%以下であることを特徴とする耐パウダリング性、摺動性および塗装後鮮映性に優れた合金化溶融亜鉛めっき鋼板。
Z/D=(Iζ−Ibg)/(Iδ−Ibg)×100…(1)
但し、Iζ:d=1.900のピーク強度、
Iδ:d=1.990のピーク強度、
Ibg:バックグランド
The amount of adhesion of the plating film is 45 to 65 g / m 2 , the Fe content in the plating film is 6.5 to 10%, the plating film is X-ray diffracted, and the obtained strength is expressed by the following formula (1). The ratio ζ phase abundance Z / D in the coating film is 20 or more, the surface roughness Ra after temper rolling is 1.0 μm or less, and the area ratio of the flat portion of the plating surface is 30% or more and 60% or less. An alloyed hot-dip galvanized steel sheet with excellent powdering resistance, slidability and sharpness after painting.
Z / D = (Iζ−Ibg) / (Iδ 1 −Ibg) × 100 (1)
However, the peak intensity of Iζ: d = 1.900,
1 : peak intensity at d = 1.990,
Ibg: Background
鋼板を浴中Al量0.14%以下、残部Znおよび不可避的不純物からなる浴温度470℃以下の亜鉛めっき浴に侵入板温495℃以下で侵入させてめっきを施した後、該亜鉛めっき浴から引き上げるめっき工程と、
めっき浴から引き上げた鋼板のめっき付着量を調整する目付量調整工程と、
めっき付着量を調整した鋼板を高周波誘導加熱炉で加熱炉出側の板温が495℃以下で加熱した後冷却してめっき皮膜のFe含有量を6.5〜10%の範囲内にする合金化処理工程と、
合金化処理後のめっき鋼板を表面粗さRaが1.4μm以下のロールで伸長率0.5〜2.0%の調質圧延を行う調質圧延工程と、
を有することを特徴とする、耐パウダリング性、摺動性および塗装後鮮映性に優れた合金化溶融亜鉛めっき鋼板の製造方法。
After the steel plate is plated by intruding into a zinc plating bath having a bath temperature of 470 ° C. or less, comprising an aluminum content of 0.14% or less, the balance Zn and inevitable impurities, at a penetration plate temperature of 495 ° C. or less, the zinc plating bath A plating process to lift from,
A basis weight adjustment process for adjusting the coating amount of the steel sheet pulled up from the plating bath;
An alloy that adjusts the Fe content of the plating film to within a range of 6.5 to 10% by heating the steel sheet with adjusted coating amount in a high-frequency induction heating furnace at a heating furnace outlet side temperature of 495 ° C. or lower and then cooling. Chemical treatment process;
A temper rolling step of subjecting the plated steel sheet after the alloying treatment to temper rolling with a roll having a surface roughness Ra of 1.4 μm or less and an elongation rate of 0.5 to 2.0%;
A method for producing an alloyed hot-dip galvanized steel sheet having excellent powdering resistance, slidability, and post-paint clarity.
JP2003202997A 2003-07-29 2003-07-29 Alloyed hot-dip galvanized steel sheet excellent in powdering resistance, slidability and sharpness after painting, and method for producing the same Expired - Lifetime JP4039332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202997A JP4039332B2 (en) 2003-07-29 2003-07-29 Alloyed hot-dip galvanized steel sheet excellent in powdering resistance, slidability and sharpness after painting, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202997A JP4039332B2 (en) 2003-07-29 2003-07-29 Alloyed hot-dip galvanized steel sheet excellent in powdering resistance, slidability and sharpness after painting, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005048198A true JP2005048198A (en) 2005-02-24
JP4039332B2 JP4039332B2 (en) 2008-01-30

Family

ID=34262514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202997A Expired - Lifetime JP4039332B2 (en) 2003-07-29 2003-07-29 Alloyed hot-dip galvanized steel sheet excellent in powdering resistance, slidability and sharpness after painting, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4039332B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089910A1 (en) 2009-02-03 2010-08-12 新日本製鐵株式会社 Galvannealed steel sheet and process for production thereof
JP2012503102A (en) * 2008-09-23 2012-02-02 ポステック アカデミー−インダストリー ファンデーション Ultra-high-strength hot-dip galvanized steel sheet having a martensite structure as a base and method for producing the same
KR20150140346A (en) 2013-05-20 2015-12-15 신닛테츠스미킨 카부시키카이샤 Galvannealed steel plate and method for manufacturing same
CN114945699A (en) * 2020-01-13 2022-08-26 蒂森克虏伯钢铁欧洲股份公司 Method for producing surface-tempered and surface-finished steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355543B2 (en) * 1987-07-13 1991-08-23
JPH03249162A (en) * 1990-02-27 1991-11-07 Nkk Corp Alloying hot dip galvanized steel sheet
JP2792346B2 (en) * 1992-05-28 1998-09-03 日本鋼管株式会社 Manufacturing method of alloyed hot-dip galvanized steel sheet with excellent clarity after painting
JP2003138361A (en) * 2001-11-01 2003-05-14 Nkk Corp Galvannealed steel sheet
JP2003183801A (en) * 2001-12-20 2003-07-03 Jfe Steel Kk Galvannealed steel sheet and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355543B2 (en) * 1987-07-13 1991-08-23
JPH03249162A (en) * 1990-02-27 1991-11-07 Nkk Corp Alloying hot dip galvanized steel sheet
JP2792346B2 (en) * 1992-05-28 1998-09-03 日本鋼管株式会社 Manufacturing method of alloyed hot-dip galvanized steel sheet with excellent clarity after painting
JP2003138361A (en) * 2001-11-01 2003-05-14 Nkk Corp Galvannealed steel sheet
JP2003183801A (en) * 2001-12-20 2003-07-03 Jfe Steel Kk Galvannealed steel sheet and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503102A (en) * 2008-09-23 2012-02-02 ポステック アカデミー−インダストリー ファンデーション Ultra-high-strength hot-dip galvanized steel sheet having a martensite structure as a base and method for producing the same
US8741078B2 (en) 2008-09-23 2014-06-03 Postech Academy-Industry Foundation Method for manufacturing an ultrahigh strength hot dip galvanized steel sheet having martensitic structure as matrix
WO2010089910A1 (en) 2009-02-03 2010-08-12 新日本製鐵株式会社 Galvannealed steel sheet and process for production thereof
US8404358B2 (en) 2009-02-03 2013-03-26 Nippon Steel & Sumitomo Metal Corporation Galvannealed steel sheet and producing method therefor
EP2620527A1 (en) 2009-02-03 2013-07-31 Nippon Steel & Sumitomo Metal Corporation Galvannealed steel sheet and process for production thereof
KR20150140346A (en) 2013-05-20 2015-12-15 신닛테츠스미킨 카부시키카이샤 Galvannealed steel plate and method for manufacturing same
US10040270B2 (en) 2013-05-20 2018-08-07 Nippon Steel & Sumitomo Metal Corporation Galvannealed steel sheet and manufacturing method thereof
CN114945699A (en) * 2020-01-13 2022-08-26 蒂森克虏伯钢铁欧洲股份公司 Method for producing surface-tempered and surface-finished steel sheet
CN114945699B (en) * 2020-01-13 2024-02-27 蒂森克虏伯钢铁欧洲股份公司 Method for producing a surface-hardened and surface-finished steel sheet

Also Published As

Publication number Publication date
JP4039332B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
JP5825244B2 (en) Hot-dip galvanized steel sheet
CA2605486C (en) Hot dip galvannealed steel sheet and method of production of the same
JP4987510B2 (en) Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
JP4039332B2 (en) Alloyed hot-dip galvanized steel sheet excellent in powdering resistance, slidability and sharpness after painting, and method for producing the same
JP2792346B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet with excellent clarity after painting
KR20000035534A (en) Galvannealed steel sheet and manufacturing method
US5629099A (en) Alloying-treated iron-zinc alloy dip-plated steel sheet excellent in press-formability and method for manufacturing same
JP3139231B2 (en) Alloyed hot-dip galvanized steel sheet with excellent press formability and clarity after painting
US20230012544A1 (en) Aluminum alloy-plated steel sheet having excellent workability and corrosion resistance and method for manufacturing same
JP6648874B1 (en) Manufacturing method of hot press molded product, press molded product, die mold, and mold set
JPH01319661A (en) Alloying hot dip galvanized steel sheet excellent in press formability
JPH10226862A (en) Galvannealed steel sheet excellent in press formability and smoothness of plating film
JP3368647B2 (en) Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability, powdering resistance and sharpness after painting
CN105274301B (en) A kind of production method of yield strength &gt;=220MPa galvanneal steel plates
JP2004156111A (en) Galvannealed steel sheet and its production method
JP3201117B2 (en) Method for producing alloyed hot-dip galvanized steel sheet excellent in press formability, powdering resistance and clarity after painting
JP3097472B2 (en) Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
JPH11217660A (en) Hot dip galvannealed steel sheet and its production
JP2004190074A (en) Galvannealed steel sheet superior in formability
JP5092858B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR20020052728A (en) Manufacturing method of galvanized steel sheet with excellent surface appearance and brightness
JP3201312B2 (en) Galvannealed steel sheet with excellent press formability
WO2020009171A1 (en) Hot press-formed item manufacturing method, press-formed item, die, and die set
JP5407296B2 (en) Hot-dip galvanized steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4039332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term