JP2003183801A - Galvannealed steel sheet and manufacturing method therefor - Google Patents

Galvannealed steel sheet and manufacturing method therefor

Info

Publication number
JP2003183801A
JP2003183801A JP2001387299A JP2001387299A JP2003183801A JP 2003183801 A JP2003183801 A JP 2003183801A JP 2001387299 A JP2001387299 A JP 2001387299A JP 2001387299 A JP2001387299 A JP 2001387299A JP 2003183801 A JP2003183801 A JP 2003183801A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
dip galvanized
less
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001387299A
Other languages
Japanese (ja)
Other versions
JP3753062B2 (en
Inventor
Nobue Fujibayashi
亘江 藤林
Kazuaki Kyono
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001387299A priority Critical patent/JP3753062B2/en
Publication of JP2003183801A publication Critical patent/JP2003183801A/en
Application granted granted Critical
Publication of JP3753062B2 publication Critical patent/JP3753062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvannealed steel sheet which is cheap and exhibits a slidability better than that of a conventional one even after press working. <P>SOLUTION: This galvannealed steel sheet is prepared by hot-dip galvanizing the surface of a steel sheet, heating the resultant plating layer to be alloyed with the surface of the steel sheet, and subjecting thus plated steel sheet to temper rolling. The steel sheet has such characteristics that the iron content of an alloyed plating layer is 11-14 mass% or higher; the surface roughness (Ra) is 0.6 μm-1.0 μm; the number of mountaintops per inch (PPI) on the surface is 350 or less; the mountain-valley undulation value (Wca) is 0.4 μm or lower; the presence probability of mountain parts in the region upper than the position apart from the median by 2 μm in the direction of a mountaintop in the probability amplitude density distribution of surface roughness is 0.05 or lower; and the mountain density of which the mountain part area of the virtual horizontal cross section at the position is 10<SP>-5</SP>-10<SP>-3</SP>mm<SP>2</SP>is 3×10<SP>2</SP>/mm<SP>2</SP>or less. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、合金化溶融亜鉛め
っき鋼板及びその製造方法に係わり、特に自動車用防錆
表面処理鋼板として用いられ、摺動性に優れた合金化溶
融亜鉛めっき鋼板及びその製造技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloyed hot dip galvanized steel sheet and a method for producing the same, and particularly to an alloyed hot dip galvanized steel sheet which is used as an anticorrosion surface-treated steel sheet for automobiles and has excellent slidability and a method thereof. Regarding manufacturing technology.

【0002】[0002]

【従来の技術】合金化溶融亜鉛めっき鋼板(以下、GA
鋼板という)は、比較的安価で防食性に優れるため、自
動車用鋼板として多用されている。近年、コスト削減の
観点より、車体等の一体成形化が進み、使用する鋼板に
対して摺動性、耐パウダリング性、耐低温チッピング性
等の性能が以前より一層優れていることが要求されるよ
うになっている。
2. Description of the Related Art Alloyed hot-dip galvanized steel sheet (hereinafter referred to as GA
Steel plate) is relatively inexpensive and has excellent corrosion resistance, and is therefore widely used as a steel plate for automobiles. In recent years, from the viewpoint of cost reduction, the integral molding of car bodies and the like has progressed, and it is required that the steel sheets used have better performance such as slidability, powdering resistance, and low temperature chipping resistance. It has become so.

【0003】摺動性を改善する従来技術としては、例え
ば特開平3−191045号公報で開示されているよう
に、GA鋼板の上層にFe系の電気めっき層を施すこと
が提案されている。しかしながら、この技術は、摺動性
を良好にするが、製造コストは上昇するという欠点があ
る。
As a conventional technique for improving slidability, it has been proposed to provide an Fe-based electroplating layer on the upper layer of a GA steel sheet, as disclosed in, for example, Japanese Patent Laid-Open No. 3-19145. However, although this technique improves the slidability, it has the drawback of increasing the manufacturing cost.

【0004】また、特公平3−55544号公報は、合
金化めっき層の摺動性に不利な軟質なη相及びζ相を低
減し、摺動性に有利なδ1単相に近い状態にすることを
提案している。しかしながら、上記の軟質な相を消滅さ
せるには、高温で、且つ長時間にわたる合金化作業が必
要となり、希望しないr相が別途多量に生成する。その
ため、該特公平3−55544号公報記載の技術は、G
A鋼板の耐パウダリング性を劣化させるという問題を有
している。
Further, Japanese Patent Publication No. 3-55544 discloses that the soft η phase and ζ phase, which are disadvantageous to the slidability of the alloyed plating layer, are reduced to a state close to a δ 1 single phase advantageous to slidability. I suggest you do. However, in order to eliminate the above-mentioned soft phase, alloying work at high temperature for a long time is required, and a large amount of undesired r phase is separately generated. Therefore, the technique described in the Japanese Patent Publication No. 3-55544 is G
There is a problem that the powdering resistance of the steel sheet A is deteriorated.

【0005】さらに、特開平11−30281号公報
は、合金化めっき表層のAl−O量、並びにη相及びζ
相の量をある範囲に規定し、摺動性を改善することを提
案している。そして、具体的にAl−O量を低減するに
は、GA鋼板のアルカリ液への浸漬やブラシロールでの
表面研削を、η相、ζ相の低減には、酸溶液への浸漬を
行うと良いことが開示されている。しかしながら、この
技術は、合金化溶融亜鉛めっき後に2度にわたって別の
処理を施すことであり、その処理を行うための新規な設
備が必要であり、製造コストの上昇を招く。
Further, Japanese Patent Laid-Open No. 11-30281 discloses that the amount of Al-O in the surface layer of the alloyed plating, and the η phase and ζ.
It is proposed to regulate the amount of phases within a certain range to improve slidability. Then, specifically, to reduce the amount of Al-O, dipping the GA steel plate in an alkaline solution or surface grinding with a brush roll is performed, and to reduce the η phase and the ζ phase, dipping in an acid solution. Good things are disclosed. However, this technique is to perform another treatment twice after the galvannealing, which requires new equipment for performing the treatment, which causes an increase in manufacturing cost.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、プレス加工を行っても従来より摺動性が良好
で、且つ安価な合金化溶融亜鉛めっき鋼板、さらにはそ
の製造方法を提供することを目的としている。
In view of such circumstances, the present invention provides an alloyed hot-dip galvanized steel sheet which has better slidability and is cheaper than before even when press working, and a method for producing the same. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】発明者は、上記目的を達
成するため、種々の表面形状を変化させたGA鋼板を多
種類試作し、金型を用いた摺動試験によってそれらの摺
動性を調査した。その結果、金型面に接触する合金化め
っき層の表面形状、つまり表面粗さや、山谷のうねり、
さらには、表面に存在する山部の存在状態がGA鋼板の
摺動特性に大きな影響を及ぼしていることを見出し、そ
の知見に基づき本発明を完成させた。
In order to achieve the above-mentioned object, the inventor made many kinds of GA steel plates having various surface shapes changed, and conducted a sliding test using a die to evaluate their sliding properties. investigated. As a result, the surface shape of the alloyed plating layer in contact with the mold surface, that is, the surface roughness, the undulations of the valleys,
Furthermore, the present invention was completed based on the finding that the presence state of the ridges existing on the surface has a great influence on the sliding characteristics of the GA steel sheet.

【0008】すなわち、本発明は、表面に合金化溶融亜
鉛めっき層を有する鋼板であって、前記合金化溶融亜鉛
めっき層中の鉄含有率が11〜14質量%であり、前記
合金化溶融亜鉛めっき層の表面は、表面粗さ(Ra)が
0.6〜1.0μmであり、長さ1インチあたりの山頂
数(PPI)が350以下であり、山谷のうねり値(W
ca)が0.4μm以下であり、且つ、表面粗さの確率
振幅密度分布における中央値より2μm山頂方向へ寄っ
た高さにおける山部の存在確率が0.05以下であり、
前記高さにおける面積が10-5〜10-3mm2となる前
記山部の個数が、3×102個/mm2以下であることを
特徴とする合金化溶融亜鉛めっき鋼板である。
That is, the present invention is a steel sheet having an alloyed hot-dip galvanized layer on the surface, wherein the iron content in the alloyed hot-dip galvanized layer is 11 to 14% by mass. The surface of the plating layer has a surface roughness (Ra) of 0.6 to 1.0 μm, a peak number per inch of length (PPI) of 350 or less, and a waviness value (W) of mountains and valleys.
ca) is 0.4 μm or less, and the existence probability of the mountain portion is 0.05 or less at the height closer to the peak direction of 2 μm from the median value in the probability amplitude density distribution of the surface roughness,
The hot-dip galvanized steel sheet is characterized in that the number of the peaks whose area at the height is 10 −5 to 10 −3 mm 2 is 3 × 10 2 pieces / mm 2 or less.

【0009】また、本発明は、鋼板を、溶融亜鉛めっき
浴へ浸漬させて鋼板表面に溶融亜鉛めっき層を形成さ
せ、加熱して該溶融亜鉛めっき層の合金化を施した後、
調質圧延を施す合金化溶融亜鉛めっき鋼板の製造方法に
おいて、前記溶融亜鉛めっき浴中のAl濃度を0.14
5質量%以下、浴温を450〜465℃とし、該溶融亜
鉛めっき浴への前記鋼板の進入時の板温を465℃以下
とすると共に、前記合金化の際の加熱温度を510℃以
上とし、さらに、前記調質圧延を、表面粗さ(Ra)が
0.3〜0.8μm、長さ1インチあたり山頂数(PP
I)が400〜600の表面を有するワークロールを用
いて、伸び率0.5〜1.2%として行うことを特徴と
する合金化溶融亜鉛めっき鋼板の製造方法である。
Further, according to the present invention, the steel sheet is immersed in a hot dip galvanizing bath to form a hot dip galvanized layer on the surface of the steel sheet and heated to alloy the hot dip galvanized layer,
In the method for producing an alloyed hot-dip galvanized steel sheet which is temper-rolled, the Al concentration in the hot-dip galvanizing bath is set to 0.14.
5% by mass or less, a bath temperature of 450 to 465 ° C., a plate temperature when the steel sheet enters the hot dip galvanizing bath is 465 ° C. or less, and a heating temperature at the time of alloying is 510 ° C. or more. Further, the temper rolling is performed so that the surface roughness (Ra) is 0.3 to 0.8 μm, and the number of peaks per inch (PP).
I) is a method for producing an alloyed hot-dip galvanized steel sheet, which is performed by using a work roll having a surface of 400 to 600 and an elongation of 0.5 to 1.2%.

【0010】本発明では、合金化溶融亜鉛めっき鋼板の
合金化されためっき層表面の凹凸における山部の面積や
密度等を、該鋼板の摺動性に対して適切になるようにし
たので、この鋼板を自動車用部品の素材に利用してもプ
レス成形性が従来よりも良好になる。しかも、従来の製
造工程を何ら変更するものでないので、製造コストは安
価に維持できる。
In the present invention, the area and density of the peaks in the unevenness of the alloyed plating layer surface of the galvannealed steel sheet are adapted to the slidability of the steel sheet. Even when this steel sheet is used as a material for automobile parts, the press formability becomes better than before. Moreover, since the conventional manufacturing process is not changed, the manufacturing cost can be kept low.

【0011】[0011]

【発明の実施の形態】以下に、発明をなすに至った経緯
に沿い、本発明の実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the present invention will be described in detail below along with the background of the invention.

【0012】まず、合金化されためっき層(以下、単に
めっき層という)中の鉄含有率であるが、その値が大き
い方がめっき層が硬くなり、変形し難くなるので、摺動
時に金型面との摩擦抵抗が小さく、有利である。これ
は、鉄含有量が多いと合金化時にめっき層表面に生成し
易い、軟らかなζ相(ビッカース硬度で約200H
v.)の量が減少し、比較的硬いδ1相(ビッカース硬
度で約300Hv,)が多く生成するためである。そこ
で、本発明者が鋭意検討したところ、めっき層中の鉄含
有率は11〜14質量%が良いことを見出した。11質
量%未満では、前記δ 1相が十分に生成されず、14質
量%超えでは、プレス加工時にめっき層がパウダリング
と称される粉状の剥離を起こすようになるからである。
この上限については、好ましくは13質量%である。
First, an alloyed plating layer (hereinafter, simply
It is the iron content in the plating layer), but the value is large.
Since the plating layer will be harder and less likely to be deformed, sliding
At times, the frictional resistance with the mold surface is small, which is advantageous. this
Is produced on the surface of the plating layer during alloying with a high iron content.
Easy and soft ζ phase (Vickers hardness of about 200H
v. ) Is reduced, and relatively hard δ1Phase (Vickers hard
This is because a large amount of about 300 Hv,) is generated. There
The inventors of the present invention have made extensive studies and found that the iron content in the plating layer is
It was found that the ratio is preferably 11 to 14% by mass. 11 quality
If the amount is less than%, the above δ 114 phases not fully produced
If the amount exceeds%, the plating layer will be powdered during press working.
This is because powdery peeling, which is called
This upper limit is preferably 13% by mass.

【0013】また、めっき層の表面粗さ(JISで規定
する算術平均粗さ:記号Ra)だけを変化させたGA鋼
板で調査したところ、それらの摺動性は、Raが0.6
〜1.0μmの範囲にあると、良好になる傾向のあるこ
とがわかった。これは、図1に示すように、Raを比較
的小さく、平坦にした方(具体的には、Ra1.0μm
以下)が、金型1の面がめっき層表面の山部2で引っか
かりが少なくなり、摺動抵抗が小さくなるからである。
ただし、Raを0.6μm未満まで小さくすると、山部
は小さくなるが、同時に凹部3も小さくなる。その結
果、摺動時に用いる潤滑油の油溜まり効果(凹部より潤
滑油が凸部へ吹き出し、金型1の面との摩擦抵抗を減少
させる)が小さくなり、GA鋼板の摺動性はかえって劣
化する。そこで、本発明では、めっき層の表面粗さ(R
a)は、0.6〜1.0μmにすることにした。
Further, when a GA steel sheet in which only the surface roughness of the plating layer (arithmetic mean roughness defined by JIS: symbol Ra) was changed was examined, the sliding properties thereof were such that Ra was 0.6.
It was found that when the thickness was in the range of up to 1.0 μm, it tended to be favorable. As shown in FIG. 1, this means that Ra is relatively small and flat (specifically, Ra 1.0 μm).
The following) is because the surface of the mold 1 is less likely to be caught at the mountain portion 2 on the surface of the plating layer, and the sliding resistance is reduced.
However, when Ra is reduced to less than 0.6 μm, the peaks are reduced, but at the same time, the recesses 3 are also reduced. As a result, the oil accumulation effect of the lubricating oil used during sliding (the lubricating oil blows out from the concave portion to the convex portion and reduces the frictional resistance with the surface of the mold 1) becomes small, and the slidability of the GA steel sheet deteriorates rather. To do. Therefore, in the present invention, the surface roughness (R
In the case of a), it is decided that the thickness is 0.6 to 1.0 μm.

【0014】さらに、発明者は、めっき層表面上の多く
の位置で、長さ1インチ当たりの山頂数(記号:PPI
で表す、Peak per inchの略)を測定し、鋼板の摺動
性との関係を調査した。その結果、PPIは小さい方が
摺動性は良好になる傾向のあることがわかった。具体的
には、350個以下が好ましい。これは、図2に示すよ
うに、PPIが大きいと、金型1の面との接触部分で接
触角(図中のθ)が大きくなり、山部2との抵抗が大き
くなって摺動性が劣化するためと考えられる。一方、P
PIが小さい場合には,前記図2に示したように、大き
い山部2が存在するようになり、山部2との接触角が小
さくなって、抵抗が比較的抑制されるようになる。
Furthermore, the inventor has found that at many positions on the surface of the plating layer, the number of peaks per inch (symbol: PPI).
The abbreviation for Peak per inch) was measured and the relationship with the slidability of the steel sheet was investigated. As a result, it was found that the smaller the PPI, the better the slidability. Specifically, 350 or less are preferable. This is because, as shown in FIG. 2, when the PPI is large, the contact angle (θ in the figure) at the contact portion with the surface of the mold 1 becomes large, and the resistance to the mountain portion 2 becomes large, and the slidability is increased. Is considered to be deteriorated. On the other hand, P
When the PI is small, as shown in FIG. 2, the large peak portion 2 exists, the contact angle with the peak portion 2 becomes small, and the resistance is relatively suppressed.

【0015】そこで、本発明では、めっき層表面のPP
Iを350個以下に限定することにした。
Therefore, in the present invention, the PP on the surface of the plating layer is
We decided to limit I to 350 or less.

【0016】加えて、発明者は、GA鋼板の板厚方向断
面視で、めっき層表面の山部(凸部ともいう)及び谷部
(凹部ともいう)が形成する波状面のうねり状態に着眼
し、うねりをJIS B 0610に規定された方法で
測定し、中心線うねりの値(記号:Wca)で評価する
ことにした。そして、そのWca値と摺動性との関係を
調査したところ、Wca値が0.4μm以下であると、
摺動性が良好になることを見出し、このことを本発明の
要件に加えることにした。これは、Wcaが0.4μm
を超えると、Raが大きい場合と同様に金型との摩擦抵
抗が大きくなり、摺動性が低下するからである。
[0016] In addition, the inventor has noticed, in a cross-sectional view in the plate thickness direction of the GA steel plate, the waviness of the wavy surface formed by the peaks (also referred to as projections) and the valleys (also referred to as recesses) on the surface of the plating layer. However, the waviness was measured by the method specified in JIS B 0610, and the value of the centerline waviness (symbol: Wca) was evaluated. When the relationship between the Wca value and slidability was investigated, it was found that the Wca value was 0.4 μm or less.
It was found that the slidability was improved, and this was added to the requirements of the present invention. This has a Wca of 0.4 μm
If it exceeds, the frictional resistance with the mold increases and the slidability decreases, as in the case where Ra is large.

【0017】しかしながら、これまでに述べためっき層
の鉄含有率、表面粗さ(Ra)、山頂数(PPI)及び
うねり状態(Wca値)だけではGA鋼板の摺動性に与
える影響を完全に配慮したことにならないと考え、さら
なる研究を重ねた。
However, the iron content, surface roughness (Ra), peak number (PPI), and waviness (Wca value) of the plating layer described above completely affect the sliding property of the GA steel sheet. I thought that it would not be considered and repeated further research.

【0018】まず、発明者らは、GA鋼板と金型との摺
動性に関して、GA鋼板表面の凹凸における山部の先端
と金型との接触状態が摺動性に影響を及ぼすと考えた。
そして、プレス時には、ある程度の面圧にて金型により
鋼板を押さえつけることとなるが、このとき、山部先端
が潰され、潰された山部先端と金型とが接触することと
なるので、この接触面積が小さい方が、金型と鋼板表面
との摩擦係数が小さくなって摺動性が向上するという発
想に至った。そして、GA鋼板のめっき層が上述の鉄含
有率であり、めっき層表面が上述の表面粗さ(Ra)、
うねり値(Wca)、長さ1インチあたりの山頂数(P
PI)の範囲を満たす場合には、鋼板表面において金型
と接触するのは、鋼板表面の表面粗さの確率振幅分布の
中央値より2μm程度山頂方向へ寄った高さの部分であ
ることがわかった。
First, regarding the slidability between the GA steel plate and the mold, the inventors considered that the contact state between the tip of the ridge and the mold on the surface of the GA steel plate affects the slidability. .
Then, at the time of pressing, the steel plate is pressed by the mold with a certain amount of surface pressure, but at this time, the tip of the crest portion is crushed and the crushed crest portion tip comes into contact with the mold, The idea that the smaller the contact area is, the smaller the coefficient of friction between the die and the surface of the steel sheet and the better the slidability is. And, the plating layer of the GA steel plate has the above-mentioned iron content, and the plating layer surface has the above-mentioned surface roughness (Ra),
Waviness value (Wca), number of peaks per inch (P
If the range of (PI) is satisfied, it is possible that the surface of the steel sheet that comes into contact with the mold is a portion that is approximately 2 μm away from the median of the probability amplitude distribution of the surface roughness of the steel sheet in the peak direction. all right.

【0019】すなわち、表面粗さの確率振幅密度分布の
中央値より2μm山頂方向へ寄った高さにおける山部の
存在確率が、金型との摩擦係数に大きな相関があること
を見出した。ここで、確率振幅分布とは、表面形状の凹
凸曲線をある高さの直線で切った時、その直線と凹凸曲
線の交点の数をその高さの頻度とし、それぞれの高さに
おける頻度の分布を確率分布とすることにより求められ
るものである。高さに対する頻度をヒストグラムに表わ
せば、図3に示すような確率振幅分布曲線が得られる。
そして、この確率振幅分布の中央値より2μm山頂方向
へ寄った高さにおける山部の存在確率とは、図4に示す
ように、所定寸法のサンプルについて、中央値より2μ
m山頂方向へ寄った高さでの平面により切断される山部
の面積(図4中斜線部で示される面積)の総和をサンプ
ル面積(L×W)で除した値で求められるものである。
That is, it was found that the existence probability of peaks at a height of 2 μm closer to the peak direction from the median of the probability amplitude density distribution of surface roughness has a large correlation with the friction coefficient with the mold. Here, the probability amplitude distribution, when the uneven curve of the surface shape is cut by a straight line of a certain height, the number of intersections of the straight line and the uneven curve is taken as the frequency of that height, and the distribution of the frequency at each height Is a probability distribution. If the frequency with respect to height is represented in a histogram, a probability amplitude distribution curve as shown in FIG. 3 is obtained.
Then, as shown in FIG. 4, the existence probability of the mountain portion at a height of 2 μm closer to the peak direction from the median of the probability amplitude distribution is 2 μm from the median for a sample of a predetermined size.
It is obtained by dividing the sum total of the areas of the peaks (areas indicated by the shaded areas in FIG. 4) cut by the plane at a height closer to the m peak direction by the sample area (L × W). .

【0020】発明者は、通常の圧延工程にて熱間圧延、
酸洗、冷間圧延を順次行い、板厚0.8mmの冷延鋼板
を製造し、その鋼板を、焼鈍温度800℃で再結晶焼鈍
を行ってから、Al濃度0.135質量%、浴温460
℃の溶融亜鉛めっき浴に浸漬してめっきを施した後、5
20℃に加熱してめっき層の合金化を行って合金化溶融
亜鉛めっき鋼板(GA鋼板)とし、さらに、調質圧延を
行ったものよりサンプルを切り出した。サンプルの表面
形状は、調質圧延時のワークロールの表面形状、伸び率
の変更により各値に調整した。ここで、表面粗さ(R
a)は0.6〜1.0μmの範囲に、長さ1インチあた
りの山頂数(PPI)は350以下に、山谷のうねり値
(Wca)は0.4μm以下に調整し、前記山部の存在
確率を変化させ、山部の存在確率が摺動性に及ぼす影響
を調査した。なお、表面粗さ(Ra)、長さ1インチあ
たりの山頂数(PPI)、山谷のうねり値(Wca)
は、それぞれ以下のようにしてその値を確認した。Raの測定 測定長さ2.5mm、カットオフ0.8mmで2次元表
面粗さの測定を行うことで求めた(JIS B 060
1参照)。PPIの測定 測定長さ2.5mm、カットオフ0.8mmで2次元表
面粗さの測定を行い、1インチ当たりの山の数を求め
た。基準レベルは0.254μmとした。Wcaの測定 測定長さ24mm、カットオフ0.8〜8mmとして求
めた(JIS B 0610参照)。
The inventor has conducted hot rolling in a normal rolling process,
Pickling and cold rolling are sequentially performed to produce a cold-rolled steel sheet having a thickness of 0.8 mm, and the steel sheet is recrystallized and annealed at an annealing temperature of 800 ° C., and then Al concentration is 0.135% by mass and bath temperature is 460
5 after immersing in hot dip galvanizing bath at ℃
A sample was cut out from the alloyed hot-dip galvanized steel sheet (GA steel sheet) obtained by alloying the plated layer by heating to 20 ° C. and further temper rolling. The surface shape of the sample was adjusted to each value by changing the surface shape and elongation of the work roll during temper rolling. Here, the surface roughness (R
a) is adjusted in the range of 0.6 to 1.0 μm, the number of peaks per inch of length (PPI) is adjusted to 350 or less, and the undulation value (Wca) of peaks and valleys is adjusted to 0.4 μm or less. The influence of the existence probability of the mountain portion on the slidability was investigated by changing the existence probability. The surface roughness (Ra), the number of peaks per inch (PPI), and the undulation value of mountains and valleys (Wca)
Respectively confirmed the value as follows. Ra measurement It was obtained by measuring the two-dimensional surface roughness with a measurement length of 2.5 mm and a cutoff of 0.8 mm (JIS B 060).
1). Measurement of PPI Two-dimensional surface roughness was measured with a measurement length of 2.5 mm and a cutoff of 0.8 mm to determine the number of peaks per inch. The reference level was 0.254 μm. Measurement of Wca It was determined with a measurement length of 24 mm and a cutoff of 0.8 to 8 mm (see JIS B 0610).

【0021】山部の存在確率は、明伸工機(株)製の表
面形状解析装置(SAS−2010)にて、先端径2μ
mの触針を用いて、測定面積2mm×1mm=2mm2
について、x方向に1μm間隔にて2mm(2000p
oints)の測定を、y方向に10μm間隔にて1m
m(100本)の測定を行った。この測定データをもと
に、表面粗さの確率振幅密度分布を求め、この確率振幅
密度分布で中央値より2μm寄った平面を境界面とし
て、それ以上の高さの部分(該平面より高い凸部分)と
それ未満の高さの部分とを白黒で表した2値化マップを
作成した。
The existence probability of the mountain portion was determined by using a surface shape analyzer (SAS-2010) manufactured by Meishing Machinery Co., Ltd. and a tip diameter of 2 μ
Measurement area 2 mm x 1 mm = 2 mm 2 using a stylus of m
About 2mm (2000p
oints) for 1 m at 10 μm intervals in the y direction
m (100) was measured. Based on this measurement data, the probability amplitude density distribution of the surface roughness is obtained, and the plane that is 2 μm closer to the median in this probability amplitude density distribution is taken as the boundary surface, and the portion with a height higher than that (convex higher than the plane is projected. (Part) and a part having a height less than that are shown in black and white.

【0022】2値化マップの例を図5に示す。図5に示
した2値化マップでは黒色部分が境界面の高さ以上に高
い部分、白色部分が境界面より低い部分を示している。
そして、この2値化マップより、画像解析装置で前記山
部の存在確率、すなわち、黒色部の面積(mm2)/2
(mm2)の値を求めた。なお、図5(a)は山存在確
率が0.061である例であり、図5(b)は山存在確
率が0.048である例である。
An example of the binarization map is shown in FIG. In the binarized map shown in FIG. 5, a black portion indicates a portion higher than the height of the boundary surface, and a white portion indicates a portion lower than the boundary surface.
Then, from this binarized map, the existence probability of the mountain portion, that is, the area of the black portion (mm 2 ) / 2 in the image analysis device
The value of (mm 2 ) was determined. Note that FIG. 5A is an example in which the mountain existence probability is 0.061, and FIG. 5B is an example in which the mountain existence probability is 0.048.

【0023】さらに、各サンプルについて、防錆油を
1.5g/m2塗油し、金型との面圧9.8MPaで摺
動距離100mm、摺動速度500mm/minの条件
で平板摺動試験を行い、摩擦係数を求めた。
Furthermore, for each sample, 1.5 g / m 2 of rust preventive oil was applied, and a flat plate was slid under the conditions of a surface pressure of 9.8 MPa and a sliding distance of 100 mm and a sliding speed of 500 mm / min. A test was conducted to determine the friction coefficient.

【0024】確率振幅分布における中央値から2μm山
頂方向へ寄った高さでの平断面における山部の存在確率
(図5においては黒色部の面積率)と、摩擦係数との関
係を図6に示す。図6から、確率振幅分布における中央
値から2μm山頂方向へ寄った高さにおける山部の存在
確率が0.05以下となると、摩擦係数が低下し、0.
130以下を確保できることがわかる。
FIG. 6 shows the relationship between the friction coefficient and the existence probability of the peak portion (the area ratio of the black portion in FIG. 5) in the plane cross section at a height closer to the peak of 2 μm from the median in the probability amplitude distribution. Show. From FIG. 6, when the existence probability of the peak portion at a height closer to the peak of 2 μm from the median in the probability amplitude distribution is 0.05 or less, the friction coefficient decreases, and
It can be seen that 130 or less can be secured.

【0025】以上のことから、本発明では、表面粗さの
確率振幅密度分布における中央値より2μm山頂方向へ
寄った高さでの平断面における山部の存在確率が0.0
5以下であること必要とする。
From the above, according to the present invention, the probability of existence of peaks in a flat section at a height of 2 μm closer to the peak direction from the median value of the probability amplitude density distribution of surface roughness is 0.0.
It must be 5 or less.

【0026】また、さらに検討を行ったところ、上記の
ように表面粗さの確率振幅密度分布における中央値より
2μm山頂方向へ寄った高さにおける山部の存在確率が
0.05以下となるようにし、さらに、前記山部のうち
面積が小さいもの、すなわち、図5において面積の小さ
い黒色部の個数を少なくすると、摺動性がより向上する
ことがわかった。これは、微小の山部が多いと、図7に
示すように、微小の山部がヤスリのような効果をもたら
し、金型面との摩擦抵抗を大きくするためと推定され
る。そして、面積が10-5〜10-3mm2である山部の
個数が金型面との摩擦係数に影響を及ぼすことがわかっ
た。図8に、面積が10-5〜10-3mm2の山部の個数
と摩擦係数との関係を示す。面積が10-5〜10-3mm
2の山部の個数を300個/mm2以下とすることで、摩
擦係数がより低下することがわかる。
Further, as a result of further examination, as described above, the probability of existence of peaks at a height of 2 μm closer to the crest direction than the median in the probability amplitude density distribution of surface roughness is 0.05 or less. Furthermore, it was found that the slidability is further improved by reducing the number of the peaks having a small area, that is, the number of black portions having a small area in FIG. It is presumed that this is because, if there are many small ridges, the small ridges produce a file-like effect and increase the frictional resistance with the die surface, as shown in FIG. It was also found that the number of peaks having an area of 10 −5 to 10 −3 mm 2 affects the coefficient of friction with the die surface. FIG. 8 shows the relationship between the number of peaks having an area of 10 −5 to 10 −3 mm 2 and the friction coefficient. Area is 10 -5 to 10 -3 mm
It can be seen that the coefficient of friction is further reduced by setting the number of the crests of 2 to 300 / mm 2 or less.

【0027】したがって、本発明では、前記山部の面積
が10-5〜10-3mm2の山部の個数を3×102個/m
2以下とする必要がある。ここで、3×102個/mm
2以下に個数規定を行う山部を、前記山部を前記平断面
で切断したときの面積が10 -5〜10-3mm2の範囲に
ある山部とした理由は、該面積が10-5mm2未満の山
部は、存在したとしても金型との接触面積が小さすぎて
金型面との摩擦抵抗に影響を及ぼさないためであり、ま
た、該面積が10-3mm2超の山部は、存在したとして
も、前述の存在確率の範囲内であれば金型との摩擦係数
は増大しないためである。
Therefore, in the present invention, the area of the mountain portion is
Is 10-Five-10-3mm2The number of mountain parts is 3 × 102Pieces / m
m2Must be: Where 3 × 102Pieces / mm
2The ridges whose number is specified below are
Area when cut with 10 -Five-10-3mm2In the range of
The reason for setting a certain mountain part is that the area is 10-Fivemm2Less than a mountain
Part, the contact area with the mold is too small even if it exists
This is because it does not affect the frictional resistance with the mold surface.
Also, the area is 10-3mm2As the super mountain part existed
Also, if it is within the range of existence probability mentioned above, the friction coefficient with the mold
Is not increased.

【0028】なお、表面粗さの確率振幅密度分布におけ
る中央値より2μm山頂方向へ寄った高さにおける面積
が10-5〜10-3mm2の山部の個数については、前述
の2値化マップより、画像解析装置を用いて測定した。
The number of peaks having an area of 10 -5 to 10 -3 mm 2 at a height closer to the peak of 2 μm from the median in the probability amplitude density distribution of surface roughness is binarized as described above. The map was measured using an image analyzer.

【0029】次に、以上述べた本発明に係るGA鋼板の
製造方法を説明する。
Next, a method of manufacturing the GA steel sheet according to the present invention described above will be described.

【0030】それは、従来通り、鋼板を溶融亜鉛をめっ
きする工程、めっきを合金化する工程及び合金化後の鋼
板を調質圧延する工程を順次経て製造される。ただし、
各工程では、本発明に係るGA鋼板とするために、各種
の操業条件及び装置に配慮がなされている。
As is conventional, it is manufactured through a step of plating a steel sheet with molten zinc, a step of alloying the plating, and a step of temper rolling the steel sheet after alloying. However,
In each process, various operating conditions and devices are taken into consideration in order to obtain the GA steel sheet according to the present invention.

【0031】まず、溶融亜鉛めっきの条件としては、亜
鉛浴のAl濃度、浴温及び浴へ進入させる鋼板の温度
(以下、進入板温という)を適切にする必要がある。つ
まり、GA鋼板の表面を平滑にして、低表面粗さ(R
a)化,低PPI化,山個数の低減を行うのである。検
討の結果、そのためには、溶融亜鉛めっき浴(以下めっ
き浴という)中のAl濃度、浴温及び進入板温をいずれ
も低目にすることが有効であることを知った。
First, as the conditions for hot dip galvanizing, it is necessary to make appropriate the Al concentration of the zinc bath, the bath temperature, and the temperature of the steel sheet to be introduced into the bath (hereinafter referred to as the entry sheet temperature). That is, the surface of the GA steel plate is made smooth and the low surface roughness (R
a), low PPI, and reduction in the number of peaks. As a result of the study, it has been found that for that purpose, it is effective to lower the Al concentration, the bath temperature and the entry plate temperature in the hot dip galvanizing bath (hereinafter referred to as the plating bath).

【0032】具体的には、めっき浴のAl濃度が高い
と、めっき時に合金化を抑制するFe−Al合金が多量
に形成され、鋼板の粒界等、Feの拡散が速いところで
局所的な合金化が起こり、めっき表面の凹凸が大きくな
り、表面粗さ(Ra)、長さ1インチあたりの山頂数
(PPI)の両方を前述の範囲とすることが困難とな
る。そのため、本発明では、該Al濃度を0.145質
量%以下に、好ましくは0.140質量%以下に抑える
ことにした。なお、Alは、GA鋼板の耐パウダリング
性の確保のためにめっき浴中に含有させるが、このため
には0.130質量%以上とすることが好ましい。
Specifically, when the Al concentration in the plating bath is high, a large amount of Fe-Al alloy that suppresses alloying is formed during plating, and the local alloy is present at the grain boundary of the steel sheet where Fe diffusion is fast. As a result, the unevenness of the plated surface becomes large, and it becomes difficult to set both the surface roughness (Ra) and the number of peaks per inch (PPI) within the above range. Therefore, in the present invention, the Al concentration is limited to 0.145 mass% or less, preferably 0.140 mass% or less. It should be noted that Al is contained in the plating bath in order to secure the powdering resistance of the GA steel plate, but for this purpose, it is preferably 0.130 mass% or more.

【0033】また、浴温、進入板温を高くすると、同様
にめっき表面のPPIが大きくなり易い。これも、めっ
き時に形成するFe−Al合金が関与していると考えら
れ、低浴温、低進入板温として、鋼板の結晶粒界でのF
eの拡散速度を低下させることが望ましい。そこで、検
討を重ねたところ、板温は450〜465℃、進入板温
は465℃以下とするのが良いことを知った。
When the bath temperature and the entrance plate temperature are increased, the PPI on the plating surface is likely to increase similarly. This is also considered to be related to the Fe-Al alloy formed during plating, and as a low bath temperature and a low entry plate temperature, F at the grain boundary of the steel plate is considered.
It is desirable to reduce the diffusion rate of e. Therefore, as a result of repeated studies, it was found that the plate temperature should be 450 to 465 ° C and the approach plate temperature should be 465 ° C or less.

【0034】さらに、めっき後の合金化においては、摺
動性に悪影響を及ぼすζ相の出現を低減することが望ま
しい。そこで、本発明では、ζ相が不安定となる高温度
で合金化するのが良いと考え、510℃以上の温度で合
金化することにした。合金化時の加熱温度が510℃に
満たないとζ相の低減を十分に行った状態でFe含有率
を11〜14%の範囲にできない。本発明では、前記し
たようなめっき層の鉄含有率を11〜14質量%に抑制
するため、通常510℃以上の温度では、10〜20秒
程度の保持時間とすれば良いが、この保持時間は適宜変
更してもかまわない。
Furthermore, in alloying after plating, it is desirable to reduce the appearance of the ζ phase which adversely affects the slidability. Therefore, in the present invention, it is preferable to alloy at a high temperature at which the ζ phase becomes unstable, and it is decided to alloy at a temperature of 510 ° C. or higher. If the heating temperature during alloying is less than 510 ° C., the Fe content cannot be in the range of 11 to 14% while the ζ phase is sufficiently reduced. In the present invention, in order to suppress the iron content of the plating layer as described above to 11 to 14% by mass, at a temperature of 510 ° C. or higher, a holding time of about 10 to 20 seconds may be used. May be changed as appropriate.

【0035】加えて、合金化後に常温まで冷却されたG
A鋼板を調質圧延する必要がある。
In addition, G which has been cooled to room temperature after alloying
It is necessary to temper-roll A steel sheet.

【0036】本発明では、この調質圧延を低Ra,高P
PIのワークロールで圧延するのが特徴である。検討の
結果、具体的には、上述のめっき条件、合金化条件にて
製造したGA鋼板に対して、Raが0.3〜0.8μm
で、PPIが400〜600の表面形状を備えたワーク
ロールを用い、且つ鋼板の伸び率を0.5〜1.2%と
して調質圧延を施せば、GA鋼板表面のRa、PPI、
山部の存在状態を上述した範囲にできることを見出し
た。つまり、この調質圧延で、合金化で形成された細か
い凹凸を比較的平坦なロールで消滅させるのである。
In the present invention, this temper rolling is performed with low Ra and high P.
It is characterized by rolling with PI work rolls. As a result of the investigation, specifically, Ra was 0.3 to 0.8 μm for the GA steel plate manufactured under the above-mentioned plating conditions and alloying conditions.
Then, if a work roll having a surface shape of PPI of 400 to 600 is used and temper rolling is performed with the elongation rate of the steel sheet being 0.5 to 1.2%, Ra, PPI of the GA steel sheet surface,
It was found that the existence state of the mountain portion can be set within the above range. That is, in this temper rolling, fine irregularities formed by alloying are eliminated by a relatively flat roll.

【0037】なお、鋼板表面のうねり値(Wca)を
0.4μm以下とするには、被めっき原板となる鋼板と
して、Wcaが0.4μm以下の鋼板を用いることで達
成可能であり、被めっき原板のWcaを0.40μm以
下とするには、冷間圧延時等に使用するワークロールの
うねり値を小さくする等、めっき原板製造時の圧延条件
を適宜選択すれば良い。
The waviness value (Wca) of the steel plate surface can be set to 0.4 μm or less by using a steel plate having a Wca of 0.4 μm or less as a steel plate to be plated. In order to set the Wca of the original plate to 0.40 μm or less, the rolling conditions at the time of producing the original plate may be appropriately selected, for example, by reducing the waviness value of the work roll used during cold rolling.

【0038】[0038]

【実施例】通常の圧延工程にて熱間圧延、酸洗、冷間圧
延を順次行い、板厚0.8mmの冷延鋼板を製造した。
その冷延鋼板を、連続溶融亜鉛めっきライン(CGL)
にて、焼鈍温度800℃で再結晶焼鈍を行ってから、表
1に示す条件にて溶融亜鉛めっき及び合金化を施した。
ここで、めっき浴中のAl濃度は0.135質量%と
し、鋼No.13だけは比較のために0.150質量%
とした。さらに、合金化後の鋼板に表1に示す圧延条件
により調質圧延を施した。得られた合金化溶融亜鉛めっ
き鋼板から、各種試験用の試料を採取して、めっき層中
の鉄含有量、鋼板の表面形状、および摺動性の調査を行
った。
[Example] Hot rolling, pickling and cold rolling were sequentially performed in a normal rolling process to produce a cold rolled steel sheet having a sheet thickness of 0.8 mm.
Continuously hot dip galvanizing line (CGL)
Then, recrystallization annealing was performed at an annealing temperature of 800 ° C., and then hot dip galvanizing and alloying were performed under the conditions shown in Table 1.
Here, the Al concentration in the plating bath was 0.135% by mass, and the steel No. Only 13 is 0.150 mass% for comparison
And Further, the alloyed steel sheet was temper-rolled under the rolling conditions shown in Table 1. Samples for various tests were taken from the obtained galvannealed steel sheet, and the iron content in the plated layer, the surface shape of the steel sheet, and the slidability were investigated.

【0039】[0039]

【表1】 [Table 1]

【0040】なお、めっき層中の鉄含有量は、めっき層
を溶解して湿式分析により行った。また、表中のアンダ
ラインを施した数値は、本発明の条件から外れるもので
ある。表面形状の調査は、表面粗さRa(μm)、長さ
1インチあたりの山頂数PPI、中心線うねり値Wca
(μm)、表面粗さの確率振幅密度分布における中央値
より2μm山頂方向へ寄った高さにおける山部の存在確
率、この高さにおける面積が10-5〜10-3mm2であ
る前記山部の単位面積当たりの個数(個/mm )につ
いて調査した。これらの調査方法については前述のとお
りである。摺動性の調査は、前述の摺動試験と同様の方
法で金型との摩擦係数を求め、摩擦係数が0.130超
を×、0.125超〜0.130を○、0.125以下
を◎として評価した。表2に表面形状と摺動性の調査結
果を示す。
The iron content in the plating layer is
Was dissolved and analyzed by wet analysis. Also, the under
The numbers given by the line are outside the conditions of the present invention.
is there. Surface roughness is measured by surface roughness Ra (μm) and length
Number of peaks per inch PPI, center line waviness value Wca
(Μm), median value of the probability amplitude density distribution of surface roughness
The existence of the mountain part at a height closer to the peak of 2 μm
Rate, the area at this height is 10-Five-10-3mm2And
The number of the above-mentioned mountain parts per unit area (pieces / mm Two)
I investigated. For these survey methods, see above.
It is Ri. For the slidability investigation, use the same method as the above sliding test.
The coefficient of friction with the mold is calculated by the method, and the coefficient of friction exceeds 0.130.
X, 0.125 to 0.130 o, 0.125 or less
Was evaluated as ⊚. Table 2 shows the survey results of surface shape and slidability
Show the result.

【0041】[0041]

【表2】 [Table 2]

【0042】表1、表2から、発明例である鋼No.
1、3、5、7、8は、摩擦係数が◎あるいは○であ
り、良好な摺動性を示すことがわかる。これに対し、鋼
No.2、6、9は、調質圧延時に用いたワークロール
の表面形状が、Raが大き過ぎたり、PPIが小さすぎ
たりするので、得られる鋼板の山存在確率またはRaが
大きくなり、摩擦係数が大きくなっている。また、鋼N
o.4は、合金化温度が低すぎるため、めっき層中の鉄
含有率が本発明の範囲を満たさず、摩擦係数が大きい。
さらに、鋼No.10は、めっき浴温が高すぎるため鋼
板のPPIが大きく、また、鋼No.11は、めっき浴
温および進入板温が高いため鋼板のPPIおよび山部密
度が大きく、鋼No.12は、めっき浴温および進入板
温が高く、合金化温度が低いためPPI、山存在確率、
山部密度が高く、いずれも摩擦係数が大きくなってい
る。また、鋼No.13は、めっき浴中のAl濃度が高
すぎるため、Ra、PPIともに大きくなっており、摩
擦係数が大きい。
From Tables 1 and 2, steel No. as an example of the invention is shown.
It can be seen that Nos. 1, 3, 5, 7, and 8 have a friction coefficient of ⊚ or ∘, and exhibit good slidability. On the other hand, Steel No. In Nos. 2, 6 and 9, the surface shape of the work roll used during temper rolling was too large Ra or too small PPI, so the probability of existence of ridges or Ra of the obtained steel sheet was large, and the friction coefficient was It is getting bigger. Also, steel N
o. In No. 4, the alloying temperature was too low, so the iron content in the plating layer did not satisfy the range of the present invention, and the friction coefficient was large.
Further, steel No. No. 10 had a large PPI of the steel sheet because the plating bath temperature was too high. In No. 11, since the plating bath temperature and the entry plate temperature are high, the PPI and the peak density of the steel plate are large. No. 12 has a high plating bath temperature and a high entry plate temperature, and a low alloying temperature, so that PPI, mountain existence probability,
The peak density is high, and the friction coefficient is high in both cases. In addition, steel No. In No. 13, since the Al concentration in the plating bath is too high, both Ra and PPI are large and the friction coefficient is large.

【0043】[0043]

【発明の効果】以上述べたように、本発明により、構造
の複雑な自動車用部品の素材に利用しても、プレス成形
性の良好な合金化溶融亜鉛めっき鋼板が提供できるよう
になる。しかも、従来の製造工程において、めっき条
件、調質圧延条件に若干の変更を加えることで製造が可
能であるので、製造コストは安価に維持できる。
As described above, according to the present invention, an alloyed hot-dip galvanized steel sheet having good press formability can be provided even when it is used as a material for automobile parts having a complicated structure. Moreover, in the conventional manufacturing process, the manufacturing cost can be kept low because the manufacturing can be performed by slightly changing the plating conditions and the temper rolling conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】GA鋼板の表面粗さが該鋼板の摺動性に与える
影響を説明する図である。
FIG. 1 is a diagram for explaining the influence of the surface roughness of a GA steel sheet on the slidability of the steel sheet.

【図2】GA鋼板の表面上でのPPIが該鋼板の摺動性
に与える影響を説明する図である。
FIG. 2 is a diagram for explaining the effect of PPI on the surface of a GA steel plate on the slidability of the steel plate.

【図3】GA鋼板の表面粗さの確率振幅密度分布を説明
する図である。
FIG. 3 is a diagram illustrating a probability amplitude density distribution of surface roughness of a GA steel plate.

【図4】表面粗さの確率振幅密度分布における中央値よ
り2μm山頂方面へ寄った高さにおける山部の存在確率
を説明する図である。
FIG. 4 is a diagram for explaining the existence probability of peaks at a height closer to the peak of 2 μm from the median in the probability amplitude density distribution of surface roughness.

【図5】GA鋼板の表面粗さの確率振幅密度分布で、中
央値より山頂方向へ2μm寄った位置を基準に2値化し
た鋼板表面のマップである。
5 is a probability amplitude density distribution of surface roughness of a GA steel plate, which is a map of the steel plate surface binarized based on a position 2 μm away from the median in the peak direction. FIG.

【図6】山部存在確率と摩擦係数との関係を示すグラフ
である。
FIG. 6 is a graph showing a relationship between a mountain portion existence probability and a friction coefficient.

【図7】GA鋼板表面の微小山部の個数が該鋼板の摺動
性に与える影響を説明する図である。
FIG. 7 is a diagram for explaining the influence of the number of minute peaks on the surface of a GA steel plate on the slidability of the steel plate.

【図8】微小山部の山個数と摩擦係数との関係を示すグ
ラフである。
FIG. 8 is a graph showing the relationship between the number of peaks in a minute peak and the coefficient of friction.

【符号の説明】[Explanation of symbols]

1 金型 2 山部 3 凹部 1 mold 2 Yamabe 3 recess

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B21D 22/02 B21D 22/02 E Fターム(参考) 4E002 AD06 BB20 BC05 4K027 AA05 AA22 AB02 AB05 AB07 AB28 AB36 AB37 AB42 AC72 AC73 AC87 AE02 AE03 AE25─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // B21D 22/02 B21D 22/02 EF term (reference) 4E002 AD06 BB20 BC05 4K027 AA05 AA22 AB02 AB05 AB07 AB28 AB36 AB37 AB42 AC72 AC73 AC87 AE02 AE03 AE25

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面に合金化溶融亜鉛めっき層を有する
鋼板であって前記合金化溶融亜鉛めっき層中の鉄含有率
が11〜14質量%であり、前記合金化溶融亜鉛めっき
層の表面は、表面粗さ(Ra)が0.6〜1.0μmで
あり、長さ1インチあたりの山頂数(PPI)が350
以下であり、山谷のうねり値(Wca)が0.4μm以
下であり、且つ、表面粗さの確率振幅密度分布における
中央値より2μm山頂方向へ寄った高さにおける山部の
存在確率が0.05以下であり、前記高さにおける面積
が10-5〜10-3mm2である前記山部の個数が、3×
102個/mm2以下であることを特徴とする合金化溶融
亜鉛めっき鋼板。
1. A steel sheet having an alloyed hot-dip galvanized layer on the surface, wherein the iron content in the alloyed hot-dip galvanized layer is 11 to 14% by mass, and the surface of the alloyed hot-dip galvanized layer is , The surface roughness (Ra) is 0.6 to 1.0 μm, and the number of peaks (PPI) per inch is 350.
The undulation value (Wca) of ridges and valleys is 0.4 μm or less, and the existence probability of ridges at a height 2 μm closer to the peak direction from the median value of the probability amplitude density distribution of surface roughness is 0. No more than 05, and the number of the peaks having an area at the height of 10 −5 to 10 −3 mm 2 is 3 ×
An alloyed hot-dip galvanized steel sheet characterized by being 10 2 pieces / mm 2 or less.
【請求項2】 鋼板を、溶融亜鉛めっき浴へ浸漬させて
鋼板表面に溶融亜鉛めっき層を形成させ、加熱して該溶
融亜鉛めっき層の合金化を施した後、調質圧延を施す合
金化溶融亜鉛めっき鋼板の製造方法において、 前記溶融亜鉛めっき浴中のAl濃度を0.145質量%
以下、浴温を450〜465℃とし、該溶融亜鉛めっき
浴への前記鋼板の進入時の板温を465℃以下とすると
共に、前記合金化の際の加熱温度を510℃以上とし、
さらに、前記調質圧延を、表面粗さ(Ra)が0.3〜
0.8μm、長さ1インチあたりの山頂数(PPI)が
400〜600の表面を有するワークロールを用いて、
伸び率0.5〜1.2%として行うことを特徴とする合
金化溶融亜鉛めっき鋼板の製造方法。
2. A steel sheet is dipped in a hot dip galvanizing bath to form a hot dip galvanized layer on the surface of the steel sheet, which is then heated to alloy the hot-dip galvanized layer, followed by temper rolling. In the method for producing a hot-dip galvanized steel sheet, the Al concentration in the hot-dip galvanizing bath is 0.145% by mass.
Hereinafter, the bath temperature is 450 to 465 ° C., the plate temperature when the steel plate enters the hot dip galvanizing bath is 465 ° C. or less, and the heating temperature at the time of alloying is 510 ° C. or more,
Further, the temper rolling has a surface roughness (Ra) of 0.3 to
Using a work roll having a surface of 0.8 μm and a peak number per inch (PPI) of 400 to 600,
A method for producing an alloyed hot-dip galvanized steel sheet, which is performed at an elongation of 0.5 to 1.2%.
JP2001387299A 2001-12-20 2001-12-20 Alloyed hot-dip galvanized steel sheet and method for producing the same Expired - Fee Related JP3753062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001387299A JP3753062B2 (en) 2001-12-20 2001-12-20 Alloyed hot-dip galvanized steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001387299A JP3753062B2 (en) 2001-12-20 2001-12-20 Alloyed hot-dip galvanized steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003183801A true JP2003183801A (en) 2003-07-03
JP3753062B2 JP3753062B2 (en) 2006-03-08

Family

ID=27596179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001387299A Expired - Fee Related JP3753062B2 (en) 2001-12-20 2001-12-20 Alloyed hot-dip galvanized steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP3753062B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048198A (en) * 2003-07-29 2005-02-24 Jfe Steel Kk Hot dip galvannealed steel sheet having excellent powdering resistance, slidableness and image clarity after coating, and its production method
JP2010053428A (en) * 2008-08-29 2010-03-11 Jfe Steel Corp Surface-treated steel sheet, and housing for electronic equipment
JP2010121198A (en) * 2008-11-21 2010-06-03 Jfe Steel Corp Surface-treated steel sheet and housing of electronic equipment
CN101090005B (en) * 2006-06-14 2010-10-13 株式会社神户制钢所 Resin coated metal sheet with excellent electromagnetic wave shielding performance
JP2017534758A (en) * 2014-10-09 2017-11-24 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Cold rolled and recrystallized annealed flat steel product and method for producing the same
JP2018535313A (en) * 2015-09-30 2018-11-29 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Flat steel product having a Zn galvanic treatment protective coating and method for producing the same
JP2019155474A (en) * 2018-03-12 2019-09-19 Jfeスチール株式会社 Roll for rolling, surface treatment steel plate, cool rolling steel plate and production method thereof
CN115948677A (en) * 2022-12-26 2023-04-11 首钢集团有限公司 Alloy, preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048198A (en) * 2003-07-29 2005-02-24 Jfe Steel Kk Hot dip galvannealed steel sheet having excellent powdering resistance, slidableness and image clarity after coating, and its production method
CN101090005B (en) * 2006-06-14 2010-10-13 株式会社神户制钢所 Resin coated metal sheet with excellent electromagnetic wave shielding performance
JP2010053428A (en) * 2008-08-29 2010-03-11 Jfe Steel Corp Surface-treated steel sheet, and housing for electronic equipment
JP2010121198A (en) * 2008-11-21 2010-06-03 Jfe Steel Corp Surface-treated steel sheet and housing of electronic equipment
JP2017534758A (en) * 2014-10-09 2017-11-24 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Cold rolled and recrystallized annealed flat steel product and method for producing the same
US10683560B2 (en) 2014-10-09 2020-06-16 Thyssenkrupp Steel Europe Ag Cold-rolled and recrystallization annealed flat steel product, and method for the production thereof
JP2018535313A (en) * 2015-09-30 2018-11-29 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Flat steel product having a Zn galvanic treatment protective coating and method for producing the same
JP2019155474A (en) * 2018-03-12 2019-09-19 Jfeスチール株式会社 Roll for rolling, surface treatment steel plate, cool rolling steel plate and production method thereof
CN115948677A (en) * 2022-12-26 2023-04-11 首钢集团有限公司 Alloy, preparation method and application thereof

Also Published As

Publication number Publication date
JP3753062B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
US6564604B2 (en) Process for the manufacture of a part with very high mechanical properties, formed by stamping of a strip of rolled steel sheet and more particularly hot rolled and coated
JP6004102B2 (en) Hot stamp molded body and method for producing hot stamp molded body
KR100675565B1 (en) Steel sheet plated by hot dipping with alloyed zinc with excellent adhesion and process for producing the same
JP2004003004A (en) Hot-dip galvanized steel sheet showing excellent press formability and its manufacturing process
JP2003183801A (en) Galvannealed steel sheet and manufacturing method therefor
JP4238153B2 (en) High-strength electrogalvanized steel sheet excellent in uniform appearance and method for producing the same
JP2991928B2 (en) Cr-Ni diffusion treated steel sheet excellent in workability and corrosion resistance and method for producing the same
JP2005256042A (en) Galvannealed steel sheet, and method for manufacturing the same
JP3163986B2 (en) Galvannealed steel sheet
JP3149801B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3886331B2 (en) Hot-dip galvanized steel sheet with excellent plating adhesion and weldability and method for producing the same
JP2002004019A (en) Galvanized steel sheet
EP1391539A2 (en) Coated steel sheet provided with electrodeposition painting having superior appearance
JP2007231376A (en) Galvannealed steel sheet
JP3239831B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2787371B2 (en) Manufacturing method of aluminum plated steel sheet with excellent plating adhesion and appearance
JP3979275B2 (en) Manufacturing method of hot-dip galvanized steel sheet with excellent press formability
JP2002302753A (en) Galvannealed steel sheet
JP3302910B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability and sharpness
JP3271568B2 (en) Ti-IF steel sheet with excellent surface appearance
JP2003290804A (en) Galvanized steel sheet
JP2003306756A (en) Hot dip galvanized steel sheet and method of producing the same
JP3903835B2 (en) Manufacturing method of plated steel sheet
JP2001329352A (en) Galvannealed steel sheet excellent in slidability
WO2023218729A1 (en) Steel sheet, member, and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees