JP2010121198A - Surface-treated steel sheet and housing of electronic equipment - Google Patents

Surface-treated steel sheet and housing of electronic equipment Download PDF

Info

Publication number
JP2010121198A
JP2010121198A JP2008298524A JP2008298524A JP2010121198A JP 2010121198 A JP2010121198 A JP 2010121198A JP 2008298524 A JP2008298524 A JP 2008298524A JP 2008298524 A JP2008298524 A JP 2008298524A JP 2010121198 A JP2010121198 A JP 2010121198A
Authority
JP
Japan
Prior art keywords
steel sheet
compound
mass ratio
chemical conversion
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008298524A
Other languages
Japanese (ja)
Other versions
JP5365157B2 (en
Inventor
Hiroyuki Ogata
浩行 尾形
Chiyoko Tada
千代子 多田
Nobue Fujibayashi
亘江 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008298524A priority Critical patent/JP5365157B2/en
Publication of JP2010121198A publication Critical patent/JP2010121198A/en
Application granted granted Critical
Publication of JP5365157B2 publication Critical patent/JP5365157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-treated steel sheet which is remarkably superior in the electroconductivity, corrosion resistance and flaking resistance of a formed and worked part, and has a chemical conversion coating film containing no hexavalent chromium formed on a hot-dip galvannealed steel sheet. <P>SOLUTION: This surface-treated steel sheet has a hot-dip galvannealed layer which is substantially formed of a Γ phase and a δ1 phase and includes 10.5-15 mass% Fe and 0.15-0.30 mass% Al, formed on both sides of a base steel sheet; and has a conversion treatment film on at least one surface of the hot-dip galvannealed layer. The conversion treatment film includes a zirconium compound (a), fine particles of silica (b), a component (c) derived from a silane coupling agent, a vanadate compound (d), a phosphate compound (e), a nickel compound (f) and an acrylic resin (g); and has a Zr deposition amount controlled to 40-1,200 mg/m<SP>2</SP>and a film thickness controlled to 0.1-3 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電磁波をシールドする電子機器の筐体に用いて好適な、成形加工部の導電性、耐食性および耐フレーキング性に著しく優れる、合金化溶融亜鉛めっき層の表面に6価クロムを含まない化成処理を施した表面処理鋼板に関するものである。また、本発明は、上記の表面処理鋼板を用いて成形加工した、電磁波シールド性および耐食性に著しく優れる電子機器の筐体に関するものである。   The present invention includes hexavalent chromium on the surface of an alloyed hot-dip galvanized layer, which is suitable for use in a casing of an electronic device that shields electromagnetic waves, and has excellent conductivity, corrosion resistance, and flaking resistance of a molded portion. The present invention relates to a surface-treated steel sheet subjected to no chemical conversion treatment. The present invention also relates to a housing of an electronic device that is formed using the above-mentioned surface-treated steel sheet and that is remarkably excellent in electromagnetic wave shielding properties and corrosion resistance.

薄型テレビやパソコンなどの電子機器に搭載される部品から発生する電磁波が、筐体から漏洩して人体へ影響を及ぼすことを抑制する、あるいは、外部から侵入する電磁波によって、電子機器が誤動作することを防止するため、これらの電子機器の筐体(以下、電子機器筐体という)には、電磁波シールド性が求められる。   Suppressing electromagnetic waves generated from components mounted on electronic devices such as flat-screen TVs and personal computers from leaking from the housing and affecting the human body, or malfunctioning electronic devices due to electromagnetic waves entering from the outside In order to prevent this, the casings of these electronic devices (hereinafter referred to as electronic device casings) are required to have electromagnetic shielding properties.

電子機器筐体を金属製とすることで、電磁波をシールドすることができることは良く知られている。また、電子機器筐体を構成する金属の導電性が高まると、電磁波のシールド性も向上する。しかしながら、金属製電子機器筐体は、成形加工した金属板を、フランジを介して締結して製作されることが一般的であることから、多くの継目や接合部を有し、これらの継目や接合部に存在する隙間から電磁波が漏洩または侵入する問題があった。この隙間からの電磁波の漏洩または侵入を防止する方法として、継目や接合部にガスケットを挿入して隙間を埋めるガスケット法と、電子機器筐体を構成する金属板の導電性をさらに向上させて、金属板の電磁波吸収能力をさらに高め、継目や接合部に隙間があっても電磁波が漏洩または侵入しないようにする非ガスケット法がある。ガスケットの使用は、電子機器筐体を構成する部品の増加を招き、電子機器筐体の製造コストの上昇につながることから、近年では、非ガスケット法が好まれている。   It is well known that electromagnetic waves can be shielded by making the electronic device casing made of metal. Further, when the conductivity of the metal constituting the electronic device casing is increased, the shielding property of electromagnetic waves is also improved. However, since a metal electronic device casing is generally manufactured by fastening a molded metal plate via a flange, it has many seams and joints. There was a problem that electromagnetic waves leaked or invaded from the gaps present in the joint. As a method of preventing leakage or intrusion of electromagnetic waves from this gap, the gasket method of filling the gap by inserting a gasket at the joint or joint, and further improving the conductivity of the metal plate constituting the electronic device casing, There is a non-gasket method that further enhances the electromagnetic wave absorbing ability of the metal plate and prevents electromagnetic waves from leaking or entering even if there are gaps in the joints or joints. In recent years, the non-gasket method has been preferred because the use of gaskets causes an increase in the number of parts constituting the electronic device casing and leads to an increase in the manufacturing cost of the electronic device casing.

従来、電子機器筐体の金属板には、亜鉛系めっき層の上にクロメート処理皮膜を有する表面処理鋼板(以下、クロメート処理亜鉛系めっき鋼板という)が広く使用されていた。クロメート処理皮膜は膜厚が薄いため、クロメート処理亜鉛系めっき鋼板の導電性は、ほとんど阻害されなかった。しかしながら、クロメート処理液には、環境負荷物質である6価クロムを含有するため、クロメート処理亜鉛系めっき鋼板の使用は、制限されるようになった。そこで、亜鉛系めっき層の上に6価クロムを含まない、いわゆるクロメートフリー化成処理皮膜を有する表面処理鋼板(以下、クロメートフリー化成処理亜鉛系めっき鋼板)が使用されるようになった。しかしながら、クロメート処理皮膜と同等の耐食性を有するクロメートフリー処理皮膜の膜厚は厚いため、クロメートフリー化成処理亜鉛系めっき鋼板の導電性は低く、クロメートフリー化成処理亜鉛系めっき鋼板を使用して製作された電子機器筐体は、ガスケットを用いなければ電磁波をシールドすることができないことが多かった。
なお、「6価クロムを含まない、いわゆるクロメートフリー」とは、不可避的不純物として存在する極微量の6価クロムまでも含まないという趣旨ではなく、また、必要に応じて3価クロムの含有を許容するものとする。
Conventionally, a surface-treated steel sheet (hereinafter referred to as a chromate-treated zinc-based plated steel sheet) having a chromate-treated film on a zinc-based plated layer has been widely used as a metal plate of an electronic device casing. Since the chromate-treated film is thin, the conductivity of the chromate-treated galvanized steel sheet was hardly inhibited. However, since the chromate treatment liquid contains hexavalent chromium, which is an environmental load substance, the use of chromate-treated zinc-based plated steel sheets has been restricted. Accordingly, a surface-treated steel sheet (hereinafter referred to as a chromate-free chemical conversion-treated zinc-based plated steel sheet) that does not contain hexavalent chromium on the zinc-based plated layer and has a so-called chromate-free chemical conversion-treated film has come to be used. However, since the chromate-free treated coating with the same corrosion resistance as the chromate-treated coating is thick, the conductivity of the chromate-free chemically treated zinc-coated steel sheet is low, and it is manufactured using a chromate-free chemically treated zinc-coated steel sheet. In many cases, the electronic device casing cannot shield electromagnetic waves unless a gasket is used.
In addition, “so-called chromate-free that does not contain hexavalent chromium” does not mean that even a very small amount of hexavalent chromium that exists as an unavoidable impurity is included, and the inclusion of trivalent chromium as necessary. It shall be allowed.

クロメートフリー化成処理亜鉛系めっき鋼板の導電性を向上させる方法として、表面全体に微細な凹凸を有する亜鉛系めっき層の上に、クロメートフリー化成処理皮膜を形成する技術がある。かような技術に従う表面処理鋼板は、亜鉛系めっき層の凹部ではクロメートフリー化成処理皮膜の膜厚が局所的に厚く、亜鉛系めっき層の凸部ではクロメートフリー化成処理皮膜から凸部が局所的に露出し、これらの微細な凹部および凸部を亜鉛系めっき層の表面全体に分布させることで、耐食性に対しては膜厚の厚いクロメートフリー化成処理皮膜有する表面処理鋼板として、導電性に対してはクロメートフリー化成処理皮膜から局所的に露出した凸部が導通点として機能し、クロメート処理亜鉛系めっき鋼板と同等の耐食性と導電性を有する。従って、表面全体に微細な凹凸を有する亜鉛系めっき層の上にクロメートフリー化成処理皮膜を有する表面処理鋼板を用いて製作された電子機器筐体は、一定の電磁波シールド性を確保できるようになった。   As a method for improving the conductivity of the chromate-free chemical conversion-treated zinc-based plated steel sheet, there is a technique of forming a chromate-free chemical conversion-treated film on a zinc-based plating layer having fine irregularities on the entire surface. In the surface-treated steel sheet according to such a technique, the thickness of the chromate-free chemical conversion coating film is locally thick at the concave portion of the zinc-based plating layer, and the convex portion from the chromate-free chemical conversion coating film is local at the convex portion of the zinc-based plating layer. By exposing these fine recesses and projections to the entire surface of the zinc-based plating layer, the surface treated steel sheet with a thick chromate-free chemical conversion coating can be used for corrosion resistance. On the other hand, the protrusions locally exposed from the chromate-free chemical conversion coating function as conduction points and have the same corrosion resistance and conductivity as the chromate-treated galvanized steel sheet. Therefore, an electronic device casing manufactured using a surface-treated steel sheet having a chromate-free chemical conversion coating on a zinc-based plating layer having fine irregularities on the entire surface can ensure a certain electromagnetic shielding property. It was.

しかしながら、亜鉛系めっき層の表面全体に微細な凹凸を、溶融亜鉛めっき鋼板ではめっき後に、電気亜鉛めっきの場合にはめっき前に、ダル加工したロールで鋼板を調質圧延することによって形成した場合、製作コストが嵩むだけではなく、このようにして製作されたクロメートフリー化成処理皮膜を有する表面処理鋼板を用いた非ガスケット法による電子機器筐体では、ますます厳しくなる電磁シールド性の要求に応えられなくなってきていた。そこで、クロメートフリー化成処理亜鉛系めっき鋼板の導電性を、低コストで、さらに高めることが望まれていた。   However, when the surface of the galvanized layer is formed with fine irregularities after the galvanized steel sheet is plated, and in the case of electrogalvanization, before the plating, the steel sheet is tempered and rolled with a dulled roll. In addition to increasing the manufacturing cost, the non-gasket method electronic equipment casing using the surface-treated steel sheet with the chromate-free chemical conversion coating manufactured in this way meets the increasingly demanding electromagnetic shielding properties. It was becoming impossible. Therefore, it has been desired to further increase the conductivity of the chromate-free chemical conversion-treated galvanized steel sheet at low cost.

このような問題を解決する技術として、例えば、特許文献1には、合金化処理された溶融亜鉛めっき鋼板(以下、合金化溶融亜鉛めっき鋼板という)の少なくとも一方の面のめっき皮膜の上に、クロメートフリーの防錆処理皮膜を具える表面処理鋼板が開示されている。
特開2006−257456号公報
As a technique for solving such a problem, for example, in Patent Document 1, on a plated film on at least one surface of an alloyed hot-dip galvanized steel sheet (hereinafter referred to as an alloyed hot-dip galvanized steel sheet), A surface-treated steel sheet having a chromate-free rust-proof coating is disclosed.
JP 2006-257456 A

特許文献1に開示される表面処理鋼板は、ダル加工したロールなどで調質圧延してもつぶしきれない、合金化溶融亜鉛めっき層の表面特有の微細な凹凸を利用して、導電性を向上させたものである。   The surface-treated steel sheet disclosed in Patent Document 1 improves conductivity by utilizing fine irregularities peculiar to the surface of an alloyed hot-dip galvanized layer that cannot be crushed even if temper rolled with a dulled roll or the like. It has been made.

しかしながら、特許文献1に記載の表面処理鋼板は、ZnリッチなFeZn13の柱状晶(ζ相)上に化成皮膜が形成された後、化成皮膜層から露出した凸部は成形加工された際の摺動により変形し易く、皮膜面より露出した導通部の比率が低くなり、導電性の向上が十分ではなかった。 However, in the surface-treated steel sheet described in Patent Document 1, after the chemical conversion film is formed on the Zn-rich FeZn 13 columnar crystals (ζ phase), the protrusions exposed from the chemical conversion film layer are formed. The ratio of the conductive part that is easily deformed by sliding and exposed from the film surface is low, and the conductivity is not sufficiently improved.

また、特許文献1に記載の表面処理鋼板は、防錆処理液と合金化溶融亜鉛めっき層との反応性が低いため、防錆処理皮膜と合金化溶融亜鉛めっき層との密着性が低く、耐食性に劣っていた。   Moreover, since the surface-treated steel sheet described in Patent Document 1 has low reactivity between the rust-proofing treatment liquid and the alloyed hot-dip galvanized layer, the adhesion between the antirust-treated film and the alloyed hot-dip galvanized layer is low, It was inferior in corrosion resistance.

電子部品筐体は、鋼板を成形加工して製作されるため、合金化溶融亜鉛めっき鋼板に防錆処理皮膜を形成した表面処理鋼板を使用する場合、合金化溶融亜鉛めっき層が、高い耐フレーキング性を有する必要がある。しかしながら、特許文献1に記載の表面処理鋼板の場合、合金化溶融亜鉛めっき層にζ相を有するため、耐フレーキング性に劣っていた。   Since the electronic component casing is manufactured by forming a steel sheet, when using a surface-treated steel sheet with a rust-proof coating on the alloyed hot-dip galvanized steel sheet, the alloyed hot-dip galvanized layer has a high anti-flame resistance. Must have king characteristics. However, in the case of the surface-treated steel sheet described in Patent Document 1, since the alloyed hot-dip galvanized layer has a ζ phase, the anti-flaking property was inferior.

そこで発明者らは、特願2008−222320号明細書に記載される、素地鋼板の両面に、実質的にΓ層およびδ1相からなる合金化溶融亜鉛めっき層を具え、前記合金化溶融亜鉛めっき層のFe含有量とAl含有量を一定範囲に制限し、かつ前記合金化溶融亜鉛めっき層の少なくとも一方の表面に、6価クロムを含まない化成処理皮膜を一定膜厚範囲で形成させ、成形加工部の導電性、耐食性および耐フレーキング性に優れる表面処理鋼板を提案した。   Therefore, the inventors have provided an alloyed hot-dip galvanized layer substantially composed of a Γ layer and a δ1 phase on both surfaces of a base steel sheet described in Japanese Patent Application No. 2008-222320, and the alloyed hot-dip galvanized steel. The Fe content and the Al content of the layer are limited to a certain range, and a chemical conversion treatment film not containing hexavalent chromium is formed in a certain film thickness range on at least one surface of the alloyed hot dip galvanized layer. We proposed a surface-treated steel sheet with excellent conductivity, corrosion resistance and flaking resistance of the processed parts.

しかしながら、特願2008−222320号明細書に記載される表面処理鋼板は、成形加工部の導電性、耐食性および耐フレーキング性に優れ、電子機器筐体に使用して好適であるが、成形時に高い面圧が鋼板に対して付加される場合、めっき層にフレーキングを生じたり、めっき凸部が圧縮変形し導通点密度が減少することにより、成形加工部の導電性が不充分となる場合がある。フレーキングが激しい場合には、成形加工部の耐食性も不充分となる。また、今後、電子機器筐体の意匠性が重視されるようになり、電子機器筐体に用いられる鋼板は、複雑な形状に成形されることが多くなり、より優れた耐フレーキング性が必要となる。さらに、電子機器筐体の意匠性が重視されることにより、電子機器筐体全体の構造も継目の多い複雑なものとなり、電子機器筐体に用いられる鋼板は、より優れた導電性が必要となる。つまり、電子機器筐体に用いられる鋼板としては、成形加工部の導電性、耐食性および耐フレーキング性により優れる表面処理鋼板が望まれる。   However, the surface-treated steel sheet described in the specification of Japanese Patent Application No. 2008-222320 is excellent in conductivity, corrosion resistance and flaking resistance of the formed portion, and is suitable for use in an electronic device casing. When high surface pressure is applied to the steel plate, flaking occurs in the plating layer, or the plating projections compressively deform and the conduction point density decreases, resulting in insufficient conductivity of the formed parts There is. When the flaking is severe, the corrosion resistance of the molded portion is also insufficient. In the future, the design of electronic equipment casings will become more important, and the steel plates used in electronic equipment casings will often be formed into complex shapes, requiring better anti-flaking resistance. It becomes. Furthermore, the emphasis is placed on the design of the electronic device casing, so that the structure of the entire electronic device casing becomes complicated and the steel plate used for the electronic device casing needs to have better conductivity. Become. That is, as the steel sheet used for the electronic device casing, a surface-treated steel sheet that is superior in terms of conductivity, corrosion resistance, and flaking resistance of the formed portion is desired.

また、発明者らは、特許文献2に記載される、亜鉛系めっき鋼板の表面に、ジルコニウム化合物(a)と、微粒子シリカ(b)と、シランカップリング剤由来成分(c)と、バナジン酸化合物(d)と、リン酸化合物(e)と、ニッケル化合物(f)と、アクリル樹脂(g)とを一定条件を満足するように含有したクロメートフリー化成処理皮膜(以下、化成処理皮膜Aという)を有し、平坦部耐食性、耐黒変性およびプレス成形後の外観と耐久性に優れる、表面処理鋼板を提案した。
特開2008−169470号公報
Further, the inventors have disclosed a zirconium compound (a), fine particle silica (b), a silane coupling agent-derived component (c), and vanadic acid on the surface of a zinc-based plated steel sheet described in Patent Document 2. A chromate-free chemical conversion coating (hereinafter referred to as chemical conversion coating A) containing a compound (d), a phosphoric acid compound (e), a nickel compound (f), and an acrylic resin (g) so as to satisfy certain conditions. The surface-treated steel sheet has been proposed, which has excellent corrosion resistance, blackening resistance, and appearance and durability after press molding.
JP 2008-169470 A

しかしながら、特許文献2に記載される表面処理鋼板は、平板部耐食性、耐黒変性およびプレス成形後の外観と耐食性の向上を目的としたもので、成形加工部の導電性および耐フレーキング性については検討されていない。また、特許文献2に記載される表面処理鋼板は、亜鉛系めっき鋼板として、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、Zn−Ni合金めっき鋼板、溶融Zn−5mass%Mg合金めっき鋼板および溶融Zn−Mg合金めっき鋼板を主として対象にしたものであり、合金化溶融亜鉛めっき鋼板についての検討は充分ではなかった。   However, the surface-treated steel sheet described in Patent Document 2 is intended to improve corrosion resistance, flat plate portion corrosion resistance, blackening resistance, and appearance and corrosion resistance after press molding. Has not been considered. In addition, the surface-treated steel sheet described in Patent Document 2 is an electrogalvanized steel sheet, a hot-dip galvanized steel sheet, a Zn-Ni alloy-plated steel sheet, a molten Zn-5 mass% Mg alloy-plated steel sheet, and a molten Zn- This is mainly for Mg alloy-plated steel sheets, and studies on alloyed hot-dip galvanized steel sheets have not been sufficient.

特許文献2の実施例には、亜鉛系めっき鋼板として、合金化溶融亜鉛めっき層のFe含有量が10mass%である合金化溶融亜鉛めっき鋼板の表面に化成処理皮膜Aを形成した表面処理鋼板が記載されているが、Fe含有量が10mass%であることから、合金化溶融亜鉛めっき層にζ相を含むものと考えられる。従って、合金化溶融亜鉛めっき層が、実質的にΓ相およびδ1相からなる合金化溶融亜鉛めっき鋼板の表面に化成処理皮膜Aを形成した場合ついては検討されていない。   In an example of Patent Document 2, as a zinc-based plated steel sheet, a surface-treated steel sheet in which a chemical conversion coating A is formed on the surface of an alloyed hot-dip galvanized steel sheet in which the Fe content of the alloyed hot-dip galvanized layer is 10 mass%. Although described, since the Fe content is 10 mass%, it is considered that the galvannealed layer contains a ζ phase. Therefore, the case where the alloyed hot-dip galvanized layer is formed with the chemical conversion coating A on the surface of the alloyed hot-dip galvanized steel sheet substantially composed of the Γ phase and the δ1 phase has not been studied.

表面処理鋼板における、成形加工部の導電性、耐食性および耐フレーキング性は、同一のクロメートフリー化成処理液を用いた場合でも、合金化溶融亜鉛めっき層の表面性状や形成するクロメートフリー化成処理皮膜の膜厚によって大きく異なる。従って、素地鋼板の両面に、実質的にΓ層およびδ1相からなる合金化溶融亜鉛めっき層を具え、合金化溶融亜鉛めっき層のFe含有量とAl含有量を一定範囲に制限した合金化溶融亜鉛めっきの表面に、化成処理皮膜Aを形成させた表面処理鋼板における、成形加工部の導電性、耐食性および耐フレーキング性についての調査・検討は充分とはいえない状態であった。   Even if the same chromate-free chemical conversion treatment solution is used, the surface treatment of the alloyed hot-dip galvanized layer and the chromate-free chemical conversion coating formed on the surface-treated steel sheet, even when the same chromate-free chemical conversion treatment solution is used. Varies greatly depending on the film thickness. Therefore, alloyed hot-dip galvanized layers consisting essentially of a Γ layer and δ1 phase are provided on both sides of the base steel sheet, and the alloyed hot-dip galvanized layers are limited to a certain range in terms of Fe content and Al content. In the surface-treated steel sheet in which the chemical conversion coating A is formed on the surface of the galvanized surface, investigations and examinations on the conductivity, corrosion resistance, and flaking resistance of the formed portion have not been sufficient.

本発明は、上記の課題を解決するもので、成形加工部の導電性、耐食性および耐フレーキング性に著しく優れた、合金化溶融亜鉛めっき鋼板にクロメートフリー化成処理皮膜を形成した表面処理鋼板を提供することを目的とする。
また、本発明の表面処理鋼板を用いて成形加工した、部品の電磁波シールド性および耐食性に著しく優れる電子機器筐体を提供することを目的とする。
The present invention solves the above-mentioned problems, and provides a surface-treated steel sheet in which a chromate-free chemical conversion coating film is formed on an alloyed hot-dip galvanized steel sheet that is remarkably excellent in conductivity, corrosion resistance, and flaking resistance of a molded portion. The purpose is to provide.
It is another object of the present invention to provide an electronic device casing that is formed using the surface-treated steel sheet of the present invention and that is remarkably excellent in electromagnetic wave shielding properties and corrosion resistance of components.

上記の実情を解決すべく、発明者らは、素地鋼板の両面に、種々の合金化溶融亜鉛めっき層を形成し、さらに、合金化溶融亜鉛めっき層の少なくとも一方の表面に種々のクロメートフリー化成処理皮膜を形成した表面処理鋼板を作製し、その成形加工部の導電性、耐食性および耐フレーキング性を鋭意調査した。
その結果、合金化溶融亜鉛めっき層が、ζ相を含まず、実質的にΓ相およびδ1相を具え、合金化溶融亜鉛めっき層中のFeおよびAlの含有量が一定範囲内であり、かつ合金化溶融亜鉛めっき層の少なくとも一方の表面に化成処理皮膜Aを所定の皮膜厚で形成した表面処理鋼板は、成形加工部の導電性、耐食性および耐フレーキング性が著しく改善され、併せて高い熱放射率も有することを見出した。
In order to solve the above situation, the inventors formed various alloyed hot-dip galvanized layers on both surfaces of the base steel sheet, and further made various chromate-free chemical conversions on at least one surface of the alloyed hot-dip galvanized layer. A surface-treated steel sheet with a treated film was prepared, and the conductivity, corrosion resistance, and flaking resistance of the molded portion were intensively investigated.
As a result, the alloyed hot-dip galvanized layer does not contain a ζ phase, substantially comprises a Γ phase and a δ1 phase, the content of Fe and Al in the alloyed hot-dip galvanized layer is within a certain range, and The surface-treated steel sheet in which the chemical conversion coating A is formed on at least one surface of the alloyed hot-dip galvanized layer with a predetermined coating thickness has markedly improved conductivity, corrosion resistance, and flaking resistance of the formed portion, and is also high. It has been found that it also has a thermal emissivity.

本発明は、上記の知見にさらに検討を重ねてなされたもので、その要旨構成は、次のとおりである。   The present invention has been made by further studying the above knowledge, and the gist of the present invention is as follows.

1.素地鋼板の両面に、実質的にΓ相およびδ1相からなる合金化溶融亜鉛めっき層を具え、
前記合金化溶融亜鉛めっき層が、Feを10.5〜15質量%、Alを0.15〜0.30質量%含有し、かつ、
前記合金化溶融亜鉛めっき層の少なくとも一方の表面に、ジルコニウム化合物(a)と、微粒子シリカ(b)と、シランカップリング剤由来成分(c)と、バナジン酸化合物(d)と、リン酸化合物(e)と、ニッケル化合物(f)と、アクリル樹脂(g)を下記(1)〜(6)の条件を満足するように含有し、Zr付着量が40〜1200mg/mである、皮膜厚が0.1〜3μm厚の化成処理皮膜を有することを特徴とする表面処理鋼板。
(1)微粒子シリカ(b)とジルコニウム化合物(a)のZr換算量との質量比(b)/(a)=0.1〜1.2
(2)微粒子シリカ(b)およびシランカップリング剤由来成分(c)のSi換算量の合計(Si)とジルコニウム化合物(a)のZr換算量との質量比(Si)/(a)=0.15〜1.0
(3)バナジン酸化合物(d)のV換算量とジルコニウム化合物(a)のZr換算量との質量比(d)/(a)=0.02〜0.15
(4)リン酸化合物(e)のP換算量とジルコニウム化合物(a)のZr換算量との質量比(e)/(a)=0.03〜0.30
(5)ニッケル化合物(f)のNi換算量とジルコニウム化合物(a)のZr換算量との質量比(f)/(a)が0.005〜0.10
(6)アクリル樹脂(g)と皮膜固形分の合計量(x)との質量比(g)/(x)=0.005〜0.18
1. On both sides of the base steel sheet, an alloyed hot-dip galvanized layer consisting essentially of a Γ phase and a δ1 phase is provided,
The alloyed hot-dip galvanized layer contains 10.5 to 15% by mass of Fe, 0.15 to 0.30% by mass of Al, and
At least one surface of the alloyed hot-dip galvanized layer has a zirconium compound (a), fine-particle silica (b), a silane coupling agent-derived component (c), a vanadate compound (d), and a phosphate compound. A coating containing (e), a nickel compound (f), and an acrylic resin (g) so as to satisfy the following conditions (1) to (6) and having a Zr adhesion amount of 40 to 1200 mg / m 2 A surface-treated steel sheet having a chemical conversion film having a thickness of 0.1 to 3 μm.
(1) Mass ratio (b) / (a) = 0.1 to 1.2 of fine particle silica (b) and Zr equivalent amount of zirconium compound (a)
(2) Mass ratio (Si) / (a) = 0 of the total amount (Si) of Si in the fine particle silica (b) and the silane coupling agent-derived component (c) and the amount of Zr in the zirconium compound (a) .15-1.0
(3) Mass ratio (d) / (a) = 0.02 to 0.15 of V converted amount of vanadic acid compound (d) and Zr converted amount of zirconium compound (a)
(4) Mass ratio (e) / (a) = 0.03 to 0.30 of P equivalent of phosphoric acid compound (e) and Zr equivalent of zirconium compound (a)
(5) The mass ratio (f) / (a) between the Ni conversion amount of the nickel compound (f) and the Zr conversion amount of the zirconium compound (a) is 0.005 to 0.10.
(6) Mass ratio (g) / (x) = 0.005 to 0.18 of acrylic resin (g) and total amount (x) of solid content of film

2.前記化成処理皮膜が、さらに、ワックス(h)を下記(7)の条件を満足するように含有することを特徴とする、上記1に記載の表面処理鋼板。
(7)ワックス(h)と皮膜固形分の合計量(x)との質量比(h)/(x)=0.01〜0.10
2. 2. The surface-treated steel sheet according to 1 above, wherein the chemical conversion film further contains wax (h) so as to satisfy the following condition (7).
(7) Mass ratio (h) / (x) = 0.01-0.10 of wax (h) and total amount (x) of film solids

3.前記合金化溶融亜鉛めっき層の表面が、算術平均粗さ:Raで0.5〜1.5μm、かつ、粗さ曲線の平均線方向の長さ25.4mmあたりの山の数:PPIで150〜350を満足することを特徴とする上記1または2に記載の表面処理鋼板。 3. The surface of the alloyed hot-dip galvanized layer has an arithmetic average roughness: Ra of 0.5 to 1.5 μm, and the number of peaks per length of 25.4 mm in the average line direction of the roughness curve: PPI of 150 The surface-treated steel sheet according to 1 or 2 above, which satisfies -350.

4.前記合金化溶融亜鉛めっき層表面の結晶の平均アスペクト比が3以下であることを特徴とする上記1〜3のいずれか1項に記載の表面処理鋼板。 4). 4. The surface-treated steel sheet according to any one of 1 to 3 above, wherein an average aspect ratio of crystals on the surface of the alloyed hot-dip galvanized layer is 3 or less.

5.上記1〜4のいずれか1項に記載の表面処理鋼板を用いて成形加工したことを特徴とする電子機器筐体。 5. 5. An electronic device casing formed by using the surface-treated steel sheet according to any one of 1 to 4 above.

本発明によれば、成形加工部の導電性、耐食性および耐フレーキング性に著しく優れる、合金化溶融亜鉛めっき鋼板に6価クロムを含まない化成処理を施した表面処理鋼板を得ることができる。
また、本発明の表面処理鋼板を用いて成形加工した電子機器筐体は、電磁波シールド性および耐食性に著しく優れる。
ADVANTAGE OF THE INVENTION According to this invention, the surface treatment steel plate which gave the chemical conversion treatment which does not contain hexavalent chromium to the alloyed hot-dip galvanized steel plate which is remarkably excellent in the electroconductivity of a shaping | molding process part, corrosion resistance, and flaking resistance can be obtained.
Moreover, the electronic device housing formed by using the surface-treated steel sheet of the present invention is remarkably excellent in electromagnetic wave shielding properties and corrosion resistance.

以下、本発明の詳細と限定理由を説明する。
本発明の表面処理鋼板は、素地鋼板の両面に、実質的にΓ相およびδ1相からなる合金化溶融亜鉛めっき層を具え、前記合金化溶融亜鉛めっき層が、Feを10.5〜15質量%、Alを0.15〜0.30質量%含有し、かつ、前記合金化溶融亜鉛めっき層の少なくとも一方の表面に、ジルコニウム化合物(a)と、微粒子シリカ(b)と、シランカップリング剤由来成分(c)と、バナジン酸化合物(d)と、リン酸化合物(e)と、ニッケル化合物(f)と、アクリル樹脂(g)を下記(1)〜(6)の条件を満足するように含有し、Zr付着量が40〜1200mg/mである、皮膜厚が0.1〜3μm厚の化成処理皮膜を有する表面処理鋼板である。
(1)微粒子シリカ(b)とジルコニウム化合物(a)のZr換算量との質量比(b)/(a)=0.1〜1.2
(2)微粒子シリカ(b)およびシランカップリング剤由来成分(c)のSi換算量の合計(Si)とジルコニウム化合物(a)のZr換算量との質量比(Si)/(a)=0.15〜1.0
(3)バナジン酸化合物(d)のV換算量とジルコニウム化合物(a)のZr換算量との質量比(d)/(a)=0.02〜0.15
(4)リン酸化合物(e)のP換算量とジルコニウム化合物(a)のZr換算量との質量比(e)/(a)=0.03〜0.30
(5)ニッケル化合物(f)のNi換算量とジルコニウム化合物(a)のZr換算量との質量比(f)/(a)が0.005〜0.10
(6)アクリル樹脂(g)と皮膜固形分の合計量(x)との質量比(g)/(x)=0.005〜0.18
以下、素地鋼板、合金化溶融亜鉛めっき層および化成処理皮膜Aに分けて説明する。
The details of the present invention and the reasons for limitation will be described below.
The surface-treated steel sheet of the present invention comprises an alloyed hot-dip galvanized layer substantially composed of a Γ phase and a δ1 phase on both surfaces of the base steel sheet, and the alloyed hot-dip galvanized layer contains 10.5 to 15 mass of Fe. %, Al is contained in an amount of 0.15 to 0.30% by mass, and at least one surface of the alloyed hot-dip galvanized layer has a zirconium compound (a), fine-particle silica (b), and a silane coupling agent. The derived component (c), vanadic acid compound (d), phosphoric acid compound (e), nickel compound (f), and acrylic resin (g) so as to satisfy the following conditions (1) to (6) It is a surface-treated steel sheet having a chemical conversion treatment film with a film thickness of 0.1 to 3 μm and a Zr adhesion amount of 40 to 1200 mg / m 2 .
(1) Mass ratio (b) / (a) = 0.1 to 1.2 of fine particle silica (b) and Zr equivalent amount of zirconium compound (a)
(2) Mass ratio (Si) / (a) = 0 of the total amount (Si) of Si in the fine particle silica (b) and the silane coupling agent-derived component (c) and the amount of Zr in the zirconium compound (a) .15-1.0
(3) Mass ratio (d) / (a) = 0.02 to 0.15 of V converted amount of vanadic acid compound (d) and Zr converted amount of zirconium compound (a)
(4) Mass ratio (e) / (a) = 0.03 to 0.30 of P equivalent of phosphoric acid compound (e) and Zr equivalent of zirconium compound (a)
(5) The mass ratio (f) / (a) between the Ni conversion amount of the nickel compound (f) and the Zr conversion amount of the zirconium compound (a) is 0.005 to 0.10.
(6) Mass ratio (g) / (x) = 0.005 to 0.18 of acrylic resin (g) and total amount (x) of solid content of film
Hereinafter, the explanation will be divided into the base steel plate, the galvannealed layer and the chemical conversion coating A.

(素地鋼板)
素地鋼板の種類は、電子部品筐体を成形加工する際に割れなどが発生しない強度を有すれば特に限定されるものではないが、引張強さ(TS):270MPa相当の軟鋼板が好ましい。また、絞り比の大きい形状に成形加工する場合には、加工性の良い極低炭素IF鋼相当の鋼板が好ましい。
(Base steel plate)
The type of the base steel plate is not particularly limited as long as it has a strength that does not cause cracks when the electronic component housing is formed, but a mild steel plate equivalent to a tensile strength (TS) of 270 MPa is preferable. Further, when forming into a shape with a large drawing ratio, a steel plate equivalent to an ultra-low carbon IF steel with good workability is preferable.

(合金化溶融亜鉛めっき層)
素地鋼板の両面には、合金化溶融亜鉛めっき層が形成される。合金化溶融亜鉛めっき層は、素地鋼板に溶融亜鉛めっきを施した後、合金化処理を施すことで形成されるが、本発明の表面処理鋼板の合金化溶融亜鉛めっき層は、実質的にΓ相(FeZn10)およびδ1相(FeZn)からなるように合金化処理される。合金化処理が不十分であると、合金化溶融亜鉛めっき層の表面にζ相(FeZn13)が残る。表面にζ相が残った合金化溶融亜鉛めっき層の上にクロメートフリー化成処理皮膜を形成した表面処理鋼板の成形前における導電性は充分なレベルにある。しかしながら、成形加工された後、特に成形時における摺動部の導電性が劣る。ζ相は、Γ相やδ1相に比較してZnリッチな相で柔軟であり、成形時の摺動により凸部がつぶれて変形しやすく、導通点が充分に確保できないためである。従って、かような表面処理鋼板を成形加工して製作した電子機器筐体は、電磁波シールド性に劣る。
(Alloyed hot-dip galvanized layer)
An alloyed hot-dip galvanized layer is formed on both surfaces of the base steel plate. The alloyed hot-dip galvanized layer is formed by subjecting a base steel sheet to hot-dip galvanizing and then alloying treatment, but the alloyed hot-dip galvanized layer of the surface-treated steel sheet of the present invention is substantially Γ. Alloying is performed so as to be composed of a phase (Fe 3 Zn 10 ) and a δ 1 phase (FeZn 7 ). If the alloying treatment is insufficient, the ζ phase (FeZn 13 ) remains on the surface of the alloyed hot-dip galvanized layer. The conductivity of the surface-treated steel sheet in which a chromate-free chemical conversion coating film is formed on the alloyed hot-dip galvanized layer with the ζ phase remaining on the surface is at a sufficient level. However, after the molding process, the conductivity of the sliding portion during molding is inferior. This is because the ζ phase is a Zn-rich phase and flexible compared to the Γ phase and δ1 phase, and the convex portions are crushed and deformed easily by sliding during molding, and a sufficient conduction point cannot be secured. Therefore, an electronic device casing produced by forming such a surface-treated steel sheet is inferior in electromagnetic shielding properties.

また、表面にζ相が、残った合金化溶融亜鉛めっき層は、合金化処理後に施されるクロメートフリー化成処理で、ζ相とクロメートフリー化成処理液との反応性が良好でないことから、クロメートフリー化成処理皮膜と合金化溶融亜鉛めっきとの密着性に劣り、その結果、耐食性の低下を招く。また、ζ相が存在する合金化溶融亜鉛めっき層の上にクロメートフリー化成処理皮膜を形成した表面処理鋼板を成形加工すると、Znリッチなζ相がΓ相やδ1相に比べ柔軟なため、フレーキングと呼ばれるめっき剥離が発生し易い。また、ζ相が柔軟であることにより、成形時の動摩擦係数が高くなり成形性が劣化する。   Also, the alloyed hot-dip galvanized layer with the ζ phase remaining on the surface is a chromate-free chemical conversion treatment performed after the alloying treatment, and the reactivity between the ζ phase and the chromate-free chemical conversion treatment solution is not good. The adhesion between the free chemical conversion coating and the galvannealed coating is inferior, resulting in a decrease in corrosion resistance. In addition, when a surface-treated steel sheet with a chromate-free chemical conversion coating formed on an alloyed hot-dip galvanized layer containing a ζ phase is formed, the Zn-rich ζ phase is more flexible than the Γ phase and δ1 phase. Peeling called king is likely to occur. Further, since the ζ phase is flexible, the dynamic friction coefficient at the time of molding becomes high and the moldability deteriorates.

一方、合金化処理が過剰であると、δ1相が少なく、Γ相が多い合金化溶融亜鉛めっき層となる。Γ相が多い合金化溶融亜鉛めっき層の上にクロメートフリー化成処理皮膜を形成した表面処理鋼板を成形加工すると、Feリッチで脆い相であるΓ相に起因したパウダリングが発生し易い。   On the other hand, if the alloying treatment is excessive, an alloyed hot-dip galvanized layer having a small δ1 phase and a large Γ phase is obtained. When a surface-treated steel sheet in which a chromate-free chemical conversion coating film is formed on an alloyed hot-dip galvanized layer having many Γ phases, powdering due to the Γ phase, which is a Fe-rich and brittle phase, is likely to occur.

従って、合金化溶融亜鉛めっき層は、実質的にΓ1相(18.5〜23.5mol%Fe)を主体としたΓ相およびδ1相からなるものとする。なお、不可避的に形成される極微量の合金相の含有は許容するものとする。本発明において、実質的にΓ相およびδ1相からなる旨は後述するX線回折のΓ相、δ1相およびζ相のピーク強度比により決定されるものとする。   Therefore, the alloyed hot-dip galvanized layer is composed of a Γ phase and a δ1 phase mainly composed of a Γ1 phase (18.5 to 23.5 mol% Fe). In addition, the inclusion of a trace amount of alloy phase that is inevitably formed is allowed. In the present invention, the fact that it substantially consists of a Γ phase and a δ1 phase is determined by the peak intensity ratio of the Γ phase, δ1 phase, and ζ phase of X-ray diffraction described later.

さらに、本発明に従う表面処理鋼板の合金化溶融亜鉛めっき層中のFe含有量およびAl含有量は、以下の条件を満足する必要がある。
・Fe含有量:10.5〜15質量%
Fe含有量が10.5質量%未満では、ζ相を含む合金化溶融亜鉛めっき層となり、耐フレーキング性が劣化するだけでなく、摺動不足による成形時の割れやシワの原因となる。一方、Fe含有量が15質量%を超えると、Γ相が過剰に生成した合金化溶融亜鉛めっき層となり、パウダリング性が劣化する。また、合金化処理時に、合金化温度を高くする必要があり、長い合金化時間を要することからラインスピードの低下を招き、生産性を阻害する。従って、Fe含有量は、10.5〜15質量%の範囲とする。好ましくは、11.0〜14.0質量%の範囲である。
Furthermore, the Fe content and the Al content in the galvannealed layer of the surface-treated steel sheet according to the present invention must satisfy the following conditions.
-Fe content: 10.5-15 mass%
If the Fe content is less than 10.5% by mass, it becomes an alloyed hot-dip galvanized layer containing a ζ phase, which not only deteriorates the flaking resistance, but also causes cracks and wrinkles during molding due to insufficient sliding. On the other hand, when the Fe content exceeds 15% by mass, an alloyed hot-dip galvanized layer in which the Γ phase is excessively formed is obtained, and powdering properties are deteriorated. In addition, it is necessary to increase the alloying temperature during the alloying treatment, and a long alloying time is required. This results in a decrease in line speed and hinders productivity. Therefore, the Fe content is in the range of 10.5 to 15% by mass. Preferably, it is the range of 11.0-14.0 mass%.

・Al含有量:0.15〜0.30質量%
Al含有量が0.15質量%未満の場合には、熱力学的にζ相が安定となり、ζ相が生成し易いだけでなく、合金化速度が速いためにFe含有量の制御が困難となる。一方、Al含有量が0.30質量%を超えると、合金化が極端に遅くなるため、合金化温度を高くし合金化時間を長くする必要があり生産性を阻害する。さらには、合金化を均一に行うための制御が困難となり、鋼板の一部でη相が残存する、いわゆる生焼け状態となる問題が生じる。従って、Al含有量は、0.15〜0.30質量%の範囲とする。好ましくは、0.18〜0.25質量%の範囲である。
-Al content: 0.15-0.30 mass%
When the Al content is less than 0.15% by mass, the ζ phase is thermodynamically stable, and not only the ζ phase is easily generated but also the control of the Fe content is difficult due to the high alloying speed. Become. On the other hand, if the Al content exceeds 0.30% by mass, alloying becomes extremely slow, so that it is necessary to increase the alloying temperature and lengthen the alloying time, thereby inhibiting productivity. Furthermore, it becomes difficult to control for uniform alloying, and a problem arises that the η phase remains in a part of the steel sheet, resulting in a so-called burnt state. Accordingly, the Al content is in the range of 0.15 to 0.30 mass%. Preferably, it is the range of 0.18-0.25 mass%.

次に、合金化処理条件について説明する。実質的にΓ相およびδ1相からなり、Fe含有量およびAl含有量が上記した範囲となる合金化溶融亜鉛めっき層を得るには、素地鋼板が軟鋼である場合、合金化処理条件を次のようにすることが好ましい。   Next, alloying treatment conditions will be described. In order to obtain an alloyed hot-dip galvanized layer substantially consisting of a Γ phase and a δ1 phase and having an Fe content and an Al content within the above ranges, when the base steel plate is mild steel, the alloying treatment conditions are as follows: It is preferable to do so.

・亜鉛付着量:片面あたり25〜60g/m
亜鉛付着量は合金化速度に大きな影響を与える。亜鉛付着量が片面あたり25g/m未満であると、合金化の進行が速く、めっき層中のFe含有量が過剰となり、めっき層の耐パウダリング性が劣化し、一方、片面あたり60g/mを超えると、合金化の進行が遅く、めっき層中のFe含有量が不充分となり、耐フレーキング性が劣化する。従って、亜鉛付着量は、片面あたり25〜60g/mの範囲とすることが好ましい。特に電子機器筐体として使用することを考慮すると、35〜50g/mの範囲とすることが好ましい。
-Zinc adhesion amount: 25-60 g / m 2 per side
The amount of zinc deposited has a great influence on the alloying rate. When the zinc coating weight is less than one side per 25 g / m 2, fast progress of alloying, Fe content in the coating layer becomes excessive, powdering resistance of the plating layer is deteriorated, whereas, per side 60 g / beyond m 2, the progress of alloying is slow, Fe content in the coating layer becomes insufficient, anti-flaking property is deteriorated. Therefore, the zinc adhesion amount is preferably in the range of 25 to 60 g / m 2 per side. In particular, considering use as an electronic device casing, the range of 35 to 50 g / m 2 is preferable.

・合金化処理温度:450〜530℃
合金化処理温度が450℃未満では、ζ相が生成し易くなり、耐フレーキング性が劣化し、また、合金化速度が遅いことから、所望のFe含有量を得るためには、長時間の合金化処理が必要となる。また、鋼板の一部にη相が残存する問題も生じる。一方、合金化処理温度が530℃を超えると、急速な合金化により高いFe含有量になり易く、Γ相の生成量が過剰となり、耐パウダリング性が劣化する。従って、合金化処理温度は、450〜530℃の範囲とすることが好ましい。さらに好ましくは470〜510℃の範囲である。なお、合金化処理のために用いる熱源は、η相が生成し易い低温域での合金化時間を短くするため、急速加熱が可能な誘導加熱とすることが好ましい。
-Alloying temperature: 450-530 ° C
When the alloying treatment temperature is less than 450 ° C., the ζ phase is likely to be generated, the anti-flaking resistance is deteriorated, and the alloying speed is slow. Therefore, in order to obtain a desired Fe content, a long time is required. Alloying treatment is required. Moreover, the problem that the η phase remains in a part of the steel plate also occurs. On the other hand, when the alloying temperature exceeds 530 ° C., the Fe content tends to be high due to rapid alloying, the amount of Γ phase generated becomes excessive, and the powdering resistance deteriorates. Therefore, the alloying treatment temperature is preferably in the range of 450 to 530 ° C. More preferably, it is the range of 470-510 degreeC. The heat source used for the alloying treatment is preferably induction heating capable of rapid heating in order to shorten the alloying time in a low temperature range where the η phase is easily generated.

上記した条件で合金化された合金化溶融亜鉛めっき層が、実質的にΓ相およびδ1相からなることは、ディフラクトメータ法によるX線回折で、Γ相のd(Å)=2.592(ただし、d(Å)は格子面間隔)、δ1相のd(Å)=2.136およびζ相のd(Å)=3.025のピークの強度(cps)をそれぞれ、Ia、IbおよびIcとしたとき、
Ib/Ia>50かつIc/Ia<1.2
を満足することから確認することができる。
The fact that the alloyed hot-dip galvanized layer alloyed under the above conditions is substantially composed of a Γ phase and a δ1 phase is determined by X-ray diffraction by a diffractometer method, and d (Å) = 2.592 of the Γ phase. (Where d (Å) is the lattice spacing), and the peak intensity (cps) of δ1 phase d (Å) = 2.136 and ζ phase d (Å) = 3.025, respectively, Ia, Ib and When Ic
Ib / Ia> 50 and Ic / Ia <1.2
Can be confirmed.

(化成処理皮膜A)
本発明に従う表面処理鋼板の合金化溶融亜鉛めっき層の少なくとも一方の表面には、化成処理皮膜Aを有する。耐食性の要求がそれほど高くない場合には、一方の面のみに化成処理膜Aを形成し、特に電磁波シールド性に優れる表面処理鋼板として提供できる。一方、耐食性の要求が非常に高い場合には、両面に化成処理膜Aを形成することによって、特に耐食性に優れる表面処理鋼板として提供することができる。
(Chemical conversion coating A)
At least one surface of the galvannealed layer of the surface-treated steel sheet according to the present invention has a chemical conversion coating A. When the requirement for corrosion resistance is not so high, the chemical conversion film A can be formed only on one surface, and can be provided as a surface-treated steel sheet that is particularly excellent in electromagnetic shielding properties. On the other hand, when the requirement for corrosion resistance is very high, by forming the chemical conversion treatment film A on both sides, it can be provided as a surface-treated steel sheet that is particularly excellent in corrosion resistance.

次に、化成処理皮膜Aを形成する際に用いる水系クロメートフリー化成処理液について説明する。
この水系クロメートフリー化成処理液は、水を溶媒とし、水溶性ジルコニウム化合物(A)と、水分散性微粒子シリカ(B)と、シランカップリング剤(C)と、バナジン酸化合物(D)と、リン酸化合物(E)と、ニッケル化合物(F)と、アクリル樹脂エマルション(G)を含み、好ましくはこれら成分(A)〜(G)を主成分として含むものである。また、この水系クロメートフリー化成処理液は、必要に応じて、さらにワックス(H)を含むことができる。
前記水溶性ジルコニウム化合物(A)としては、特に制限はないが、例えば、硝酸ジルコニウム、オキシ硝酸ジルコニウム、酢酸ジルコニル、硫酸ジルコニル、炭酸ジルコニルアンモニウム、炭酸ジルコニルカリウム、炭酸ジルコニルナトリウムなどが挙げられ、これらの1種以上を用いることができる。ここで、ジルコンフッ化水素酸やその塩などのような無機フッ素含有化合物を含んでいる場合も水溶性ジルコニウム化合物であり、液が相溶するかぎり使用可能であるが、本発明で用いるクロメートフリー化成処理液は必須成分としてシリカを含有するため、無機フッ素含有化合物を含むと液安定性が損なわれることが多く、したがって、ジルコンフッ化水素酸やその塩はあまり好ましくない。
Next, the aqueous chromate-free chemical conversion treatment solution used when forming the chemical conversion coating A will be described.
This aqueous chromate-free chemical conversion treatment solution uses water as a solvent, a water-soluble zirconium compound (A), water-dispersible fine particle silica (B), a silane coupling agent (C), a vanadate compound (D), It contains a phosphoric acid compound (E), a nickel compound (F), and an acrylic resin emulsion (G), and preferably contains these components (A) to (G) as main components. In addition, the aqueous chromate-free chemical conversion treatment liquid can further contain a wax (H) as necessary.
The water-soluble zirconium compound (A) is not particularly limited, and examples thereof include zirconium nitrate, zirconium oxynitrate, zirconyl acetate, zirconyl sulfate, zirconyl ammonium carbonate, zirconyl potassium carbonate, and zirconyl sodium carbonate. One or more types can be used. Here, even when an inorganic fluorine-containing compound such as zircon hydrofluoric acid or a salt thereof is included, it is a water-soluble zirconium compound and can be used as long as the solution is compatible. Since the treatment liquid contains silica as an essential component, the stability of the liquid is often impaired when an inorganic fluorine-containing compound is contained. Therefore, zircon hydrofluoric acid or a salt thereof is not so preferable.

前記水分散性微粒子シリカ(B)としては、粒径や種類などに特に制限はないが、コロイダルシリカや乾式シリカを用いることができる。コロイダルシリカとしては、例えば、日産化学(株)製のスノーテックス(登録商標)O、C、N、20、OS、OXS(いずれも商品名)などが挙げられ、また、乾式シリカとしては、日本アエロジル(株)製のAEROSIL50、130、200、300、380(いずれも商品名)などが挙げられ、これらの1種以上を用いることができる。
水分散性微粒子シリカ(B)の配合割合は、水分散性微粒子シリカ(B)と水溶性ジルコニウム化合物(A)のZr換算量との質量比(B)/(A)で0.1〜1.2とする。(B)/(A)が0.1未満では耐食性や、プレス成形時に化成処理皮膜が削られやすいことによる耐フレーキング性の低下を招き、一方、質量比(B)/(A)が1.2を超えると皮膜が適切に形成できないため耐食性が低下する。このような観点から、より好ましい質量比(B)/(A)は0.2〜1.0であり、特に好ましくは0.3〜0.8である。
The water-dispersible fine particle silica (B) is not particularly limited in particle size or type, but colloidal silica or dry silica can be used. Examples of colloidal silica include Snowtex (registered trademark) O, C, N, 20, OS, OXS (all trade names) manufactured by Nissan Chemical Co., Ltd., and examples of dry silica include Japan. Aerosil Co., Ltd. AEROSIL50, 130, 200, 300, 380 (all are brand names) etc. are mentioned, One or more of these can be used.
The mixing ratio of the water-dispersible fine particle silica (B) is 0.1 to 1 in mass ratio (B) / (A) between the water-dispersible fine particle silica (B) and the Zr equivalent amount of the water-soluble zirconium compound (A). .2. If (B) / (A) is less than 0.1, the corrosion resistance and the flaking resistance are reduced due to the fact that the chemical conversion coating is easily cut during press molding, while the mass ratio (B) / (A) is 1. If the ratio exceeds 2, the film cannot be formed properly and the corrosion resistance is lowered. From such a viewpoint, the more preferable mass ratio (B) / (A) is 0.2 to 1.0, and particularly preferably 0.3 to 0.8.

前記シランカップリング剤(C)としては、例えば、ビニルメトキシシラン、ビニルエトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルメチルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルトリメトキシシラン、p-スチリルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、γ-イソシアネートプロピルトリエトキシシラン、γ-トリエトキシシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-(ビニルベンジルアミン)-β-アミノエチル-γ-アミノプロピルトリメトキシシランなどが挙げられ、これらの1種以上を用いることができる。   Examples of the silane coupling agent (C) include vinyl methoxy silane, vinyl ethoxy silane, vinyl trichloro silane, vinyl trimethoxy silane, vinyl triethoxy silane, β- (3,4 epoxy cyclohexyl) ethyl trimethoxy silane, γ -Glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (amino Ethyl) γ-aminopropylmethyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyltrimethoxysilane, γ-methacryloxy Propylmethyldiethoxysilane, γ-methacryloxypropylmethyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyltrimethoxysilane, p-styryltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, γ-chloropropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, γ-isocyanatopropyltriethoxysilane, γ-triethoxy Cisilyl-N- (1,3-dimethyl-butylidene) propylamine, N- (vinylbenzylamine) -β-aminoethyl-γ-aminopropyltrimethoxysilane, and the like, and one or more of these should be used Can do.

シランカップリング剤(C)の配合割合は、シランカップリング剤(C)と水溶性ジルコニウム化合物(A)のZr換算量との質量比(C)/(A)で0.5〜3.0とする。質量比(C)/(A)が0.5未満では耐食性や、プレス成形時に化成処理皮膜が削られやすいことによる耐フレーキング性の低下を招き、一方、3.0を超えると皮膜が適切に形成できないため耐食性が低下し、また、処理液の安定性も低下する。このような観点から、より好ましい質量比(C)/(A)は1.0〜2.5であり、特に好ましくは1.2〜2.0である。   The mixing ratio of the silane coupling agent (C) is 0.5 to 3.0 in terms of a mass ratio (C) / (A) between the silane coupling agent (C) and the Zr equivalent amount of the water-soluble zirconium compound (A). And If the mass ratio (C) / (A) is less than 0.5, the corrosion resistance and the flaking resistance will be reduced due to the fact that the chemical conversion film is easily cut during press molding. On the other hand, if it exceeds 3.0, the film is suitable. Therefore, the corrosion resistance is lowered and the stability of the treatment liquid is also lowered. From such a viewpoint, the more preferable mass ratio (C) / (A) is 1.0 to 2.5, and particularly preferably 1.2 to 2.0.

前記バナジン酸化合物(D)としては、例えば、メタバナジン酸アンモニウム、メタバナジン酸ナトリウムなどが挙げられ、これらの1種以上を用いることができる。ここで、バナジン酸化合物のVは5価であるが、4価のバナジウム化合物では耐食性が確保できない。
バナジン酸化合物(D)の配合割合は、バナジン酸化合物(D)のV換算量と水溶性ジルコニウム化合物(A)のZr換算量との質量比(D)/(A)で0.02〜0.15とする。質量比(D)/(A)が0.02未満では耐食性が低下し、一方、0.15を超えると皮膜が着色し、外観を損なう。このような観点から、より好ましい質量比(D)/(A)は0.04〜0.12であり、特に好ましくは0.05〜0.10である。
Examples of the vanadic acid compound (D) include ammonium metavanadate and sodium metavanadate, and one or more of these can be used. Here, V of the vanadic acid compound is pentavalent, but corrosion resistance cannot be ensured with a tetravalent vanadium compound.
The compounding ratio of the vanadic acid compound (D) is 0.02 to 0 in mass ratio (D) / (A) of the V converted amount of the vanadic acid compound (D) and the Zr converted amount of the water-soluble zirconium compound (A). .15. When the mass ratio (D) / (A) is less than 0.02, the corrosion resistance is lowered. On the other hand, when it exceeds 0.15, the film is colored and the appearance is impaired. From such a viewpoint, the more preferable mass ratio (D) / (A) is 0.04 to 0.12, and particularly preferably 0.05 to 0.10.

前記リン酸化合物(E)は液に相溶するものであれば特に制限はなく、このリン酸化合物としては、例えば、リン酸、第一リン酸塩、第二リン酸塩、第三リン酸塩、ピロリン酸、ピロリン酸塩、トリポリリン酸、トリポリリン酸塩などの縮合リン酸塩、亜リン酸、亜リン酸塩、次亜リン酸、次亜リン酸塩、ホスホン酸、ホスホン酸塩などが挙げられる。ホスホン酸塩としては、例えば、ニトリロトリスメチレンホスホン酸、ホスフォノブタントリカルボン酸、エチレンジアミンテトラメリレンホスホン酸、メチルジホスホン酸、メチレンホスホン酸、エチリデンジホスホン酸、およびこれらのアンモニウム塩、アルカリ金属塩などが挙げられる。これらリン酸化合物の1種以上を用いることができる。
リン酸化合物(E)の配合割合は、リン酸化合物(E)のP換算量と水溶性ジルコニウム化合物(A)のZr換算量との質量比(E)/(A)で0.03〜0.30とする。質量比(E)/(A)が0.03未満では耐食性が低下し、一方、0.30を超えるとプレス成形部の耐フレーキング性が低下する。このような観点から、より好ましい質量比(E)/(A)は0.06〜0.20であり、特に好ましくは0.10〜0.18である。
The phosphoric acid compound (E) is not particularly limited as long as it is compatible with the liquid. Examples of the phosphoric acid compound include phosphoric acid, primary phosphate, secondary phosphate, and tertiary phosphate. Salt, pyrophosphate, pyrophosphate, tripolyphosphate, condensed polyphosphate such as tripolyphosphate, phosphorous acid, phosphite, hypophosphorous acid, hypophosphite, phosphonic acid, phosphonate Can be mentioned. Examples of the phosphonate include nitrilotrismethylenephosphonic acid, phosphonobutanetricarboxylic acid, ethylenediaminetetramethylenephosphonic acid, methyldiphosphonic acid, methylenephosphonic acid, ethylidenediphosphonic acid, and ammonium salts and alkali metal salts thereof. Etc. One or more of these phosphoric acid compounds can be used.
The mixing ratio of the phosphoric acid compound (E) is 0.03 to 0 in mass ratio (E) / (A) between the P equivalent amount of the phosphoric acid compound (E) and the Zr equivalent amount of the water-soluble zirconium compound (A). .30. When the mass ratio (E) / (A) is less than 0.03, the corrosion resistance is lowered. On the other hand, when it exceeds 0.30, the flaking resistance of the press-formed part is lowered. From such a viewpoint, the more preferable mass ratio (E) / (A) is 0.06 to 0.20, and particularly preferably 0.10 to 0.18.

前記ニッケル化合物(F)としては、液に相溶するものであれば特に制限はなく、例えば、硝酸ニッケル、硫酸ニッケル、炭酸ニッケル、塩化ニッケル、リン酸ニッケルなどが挙げられ、これらの1種以上を用いることができる。
ニッケル化合物(F)の配合割合は、ニッケル化合物(F)のNi換算量と水溶性ジルコニウム化合物(A)のZr換算量との質量比(F)/(A)で0.005〜0.10とする。質量比(F)/(A)が0.005未満では耐黒変性が低下し、一方、0.10を超えると耐食性が低下する。このような観点から、より好ましい(F)/(A)は0.01〜0.08であり、特に好ましくは0.02〜0.06である。
水分散性微粒子シリカ(B)およびシランカップリング剤(C)のSi換算量の合計(SI)は、水溶性ジルコニウム化合物(A)のZr換算量との質量比(SI)/(A)で0.15〜1.0とする。質量比(SI)/(A)が0.15未満では耐食性や、プレス成形時に化成処理皮膜が削られやすいことによる、耐フレーキング性の低下を招き、一方、1.0を超えると耐食性が低下する。このような観点から、より好ましい質量比(SI)/(A)は0.25〜0.85であり、特に好ましくは0.30〜0.68である。
The nickel compound (F) is not particularly limited as long as it is compatible with the liquid, and examples thereof include nickel nitrate, nickel sulfate, nickel carbonate, nickel chloride, nickel phosphate, and one or more of these. Can be used.
The mixing ratio of the nickel compound (F) is 0.005 to 0.10 in mass ratio (F) / (A) between the Ni conversion amount of the nickel compound (F) and the Zr conversion amount of the water-soluble zirconium compound (A). And When the mass ratio (F) / (A) is less than 0.005, the blackening resistance decreases, whereas when it exceeds 0.10, the corrosion resistance decreases. From such a viewpoint, (F) / (A) is more preferably 0.01 to 0.08, and particularly preferably 0.02 to 0.06.
The sum (SI) of the Si-converted amount of the water-dispersible fine particle silica (B) and the silane coupling agent (C) is the mass ratio (SI) / (A) with the Zr-converted amount of the water-soluble zirconium compound (A). 0.15-1.0. If the mass ratio (SI) / (A) is less than 0.15, the corrosion resistance and the flaking resistance decrease due to the fact that the chemical conversion film is easily cut during press molding, while if it exceeds 1.0, the corrosion resistance is reduced. descend. From such a viewpoint, the more preferable mass ratio (SI) / (A) is 0.25 to 0.85, and particularly preferably 0.30 to 0.68.

前記アクリル樹脂エマルション(G)は、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、スチレン等のビニル系モノマーを乳化重合した水系エマルション樹脂であり、相溶性があれば乳化剤の有無や乳化剤の種類に特に制限はないが、なかでもノニオン系乳化剤は好適に適用できる。また、ノニオン系乳化剤の中でも、ポリエチレンオキサイドやポリプロピレンオキサイドを構造にもつものは、特に好適に適用できる。
アクリル樹脂エマルション(G)の配合割合は、アクリル樹脂エマルション(G)の固形分と水系クロメートフリー化成処理液中の固形分の合計量(X)との質量比(G)/(X)で0.005〜0.18とする。質量比(G)/(X)が0.005未満では耐食性が低下し、一方、0.18を超えると有機成分の増加により化成処理皮膜が削られやすくなるため、耐フレーキング性が低下する。このような観点から、より好ましい質量比(G)/(X)は0.01〜0.16であり、特に好ましくは0.02〜0.14である。
The acrylic resin emulsion (G) is an aqueous emulsion resin obtained by emulsion polymerization of vinyl monomers such as acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, and styrene. Although there is no restriction | limiting in particular in a kind, Especially, a nonionic emulsifier can be applied suitably. Among nonionic emulsifiers, those having a structure having polyethylene oxide or polypropylene oxide can be particularly suitably applied.
The blending ratio of the acrylic resin emulsion (G) is 0 in mass ratio (G) / (X) between the solid content of the acrylic resin emulsion (G) and the total amount (X) of the solid content in the aqueous chromate-free chemical conversion treatment liquid. 0.005 to 0.18. When the mass ratio (G) / (X) is less than 0.005, the corrosion resistance is lowered. On the other hand, when it exceeds 0.18, the chemical conversion film is easily scraped due to an increase in the organic component, so that the flaking resistance is lowered. . From such a viewpoint, the more preferable mass ratio (G) / (X) is 0.01 to 0.16, and particularly preferably 0.02 to 0.14.

また、上記アクリル樹脂エマルション(G)を構成するアクリル樹脂は、下記(1)式で計算されるガラス転移温度(Tg)が10〜30℃であることが好ましい。下記(1)式は、一般にFOXの式と呼ばれる。
1/Tg=Σ(Wi/Tgi) …(1)
ただし、Wi:成分iの重量分率
Tgi:成分iのTg
アクリル樹脂のTgが10℃未満であると化成処理皮膜が削られやすくなるため、耐フレーキング性が低下し、一方、Tgが30℃を超えると耐食性が低下する傾向がある。
The acrylic resin constituting the acrylic resin emulsion (G) preferably has a glass transition temperature (Tg) calculated by the following formula (1) of 10 to 30 ° C. The following equation (1) is generally called a FOX equation.
1 / Tg = Σ (Wi / Tgi) (1)
Where Wi: weight fraction of component i Tgi: Tg of component i
If the Tg of the acrylic resin is less than 10 ° C., the chemical conversion film is easily scraped, so that the anti-flaking property is lowered. On the other hand, if the Tg exceeds 30 ° C., the corrosion resistance tends to be lowered.

本発明の水系クロメートフリー化成処理液のpHは特に制限はないが、処理液安定性の面からはpH6〜11が好ましく、pH8〜10がより好ましい。処理液のpHが6未満では処理液の安定性が低下し、耐食性や皮膜の外観が低下する。一方、pHが11を超えると亜鉛のエッチングが著しくなり、やはり皮膜の外観が低下し、耐食性も低下する傾向となる。このpHに調整するのに用いられるアルカリとしては、アンモニア、アミンが好ましく、酸としてはリン酸化合物が好ましい。   The pH of the aqueous chromate-free chemical conversion treatment liquid of the present invention is not particularly limited, but is preferably pH 6 to 11 and more preferably pH 8 to 10 from the viewpoint of the stability of the treatment liquid. When the pH of the treatment liquid is less than 6, the stability of the treatment liquid is lowered, and the corrosion resistance and the appearance of the film are lowered. On the other hand, when the pH exceeds 11, etching of zinc becomes remarkable, and the appearance of the film also deteriorates and the corrosion resistance tends to decrease. As the alkali used for adjusting the pH, ammonia and amine are preferable, and as the acid, a phosphoric acid compound is preferable.

以上のような水系クロメートフリー化成処理液は、亜鉛系めっき鋼板表面に塗布し、加熱乾燥することにより化成処理皮膜Aが形成される。この加熱乾燥後の化成処理皮膜Aの付着量は、皮膜中のジルコニウム化合物のZr換算量で40〜1200mg/mとする。付着量が40mg/m未満では十分な耐食性が得られず、一方、1200mg/mを超えると皮膜が厚いためにプレス成形後の外観や耐食性が低下する。このような観点から、より好ましい付着量は80〜600mg/mであり、特に好ましくは120〜320mg/mである。
また、加熱乾燥後の化成処理皮膜Aの皮膜厚は、Zr付着量が上記範囲内に入る条件で次のようにする。上述したように、本発明に従う表面処理鋼板の合金化溶融亜鉛めっき層の表面には、ζ相が存在しないことから、上述したクロメートフリー化成処理液との反応性が良い。これらの処理で形成される化成処理皮膜Aの膜厚が0.1μm未満であると、耐食性に不利となり、一方、3μmを超えると、電磁波シールド性に不利となる。従って、化成処理皮膜Aの皮膜厚は、0.1〜3μmの範囲とする。好ましくは、0.2〜1.5μmの範囲、より好ましくは、0.3〜0.8μmの範囲である。
The water-based chromate-free chemical conversion treatment liquid as described above is applied to the surface of the zinc-based plated steel sheet and dried by heating to form the chemical conversion treatment film A. The adhesion amount of the chemical conversion film A after the heat drying is 40 to 1200 mg / m 2 in terms of Zr equivalent of the zirconium compound in the film. When the adhesion amount is less than 40 mg / m 2 , sufficient corrosion resistance cannot be obtained. On the other hand, when it exceeds 1200 mg / m 2 , the coating film is thick and the appearance and corrosion resistance after press molding are lowered. From such a viewpoint, a more preferable adhesion amount is 80 to 600 mg / m 2 , and particularly preferably 120 to 320 mg / m 2 .
The film thickness of the chemical conversion film A after heating and drying is as follows under the condition that the Zr adhesion amount falls within the above range. As described above, since there is no ζ phase on the surface of the alloyed hot-dip galvanized layer of the surface-treated steel sheet according to the present invention, the reactivity with the chromate-free chemical conversion treatment liquid described above is good. When the film thickness of the chemical conversion film A formed by these treatments is less than 0.1 μm, it is disadvantageous for corrosion resistance, whereas when it exceeds 3 μm, it is disadvantageous for electromagnetic wave shielding properties. Therefore, the film thickness of the chemical conversion film A is in the range of 0.1 to 3 μm. Preferably, it is in the range of 0.2 to 1.5 μm, more preferably in the range of 0.3 to 0.8 μm.

水系クロメートフリー化成処理液を亜鉛系めっき鋼板の表面に塗布して化成処理皮膜Aを形成する方法としては、通常行われている方法を用いればよい。例えば、塗布法、浸漬法、スプレー法により、亜鉛系めっき鋼板表面を水系クロメートフリー化成処理液で処理した後、加熱乾燥を行う。塗布法としては、ロールコーター(例えば、3ロール方式、2ロール方式など)、スクイズコーター、バーコーター、スプレーコーターなどいずれの方法でもよい。また、スクイズコーターなどによる塗布処理、あるいは浸漬処理、スプレー処理の後に、エアーナイフ法やロール絞り法により塗布量の調整、外観の均一化、膜厚の均一化を行ってもよい。
加熱乾燥を行う加熱手段としては、特に制限はないが、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができる。加熱乾燥温度は到達板温で50〜250℃が好ましい。250℃を超えると皮膜にクラックが入り、耐食性を低下させることがある。一方、50℃より低い温度では皮膜中の水分残存が多くなり、やはり耐食性が低下することがある。このような観点から、より好ましい加熱乾燥温度は60〜200℃であり、特に好ましくは60〜180℃である。
As a method for forming the chemical conversion coating A by applying a water-based chromate-free chemical conversion treatment liquid to the surface of the zinc-based plated steel sheet, a conventional method may be used. For example, the surface of a zinc-based plated steel sheet is treated with a water-based chromate-free chemical conversion treatment solution by a coating method, a dipping method, or a spray method, followed by heat drying. As a coating method, any method such as a roll coater (for example, a 3-roll system, a 2-roll system), a squeeze coater, a bar coater, or a spray coater may be used. In addition, after the coating process using a squeeze coater or the like, or the dipping process or the spray process, the coating amount may be adjusted, the appearance may be made uniform, or the film thickness may be made uniform by an air knife method or a roll drawing method.
The heating means for performing heat drying is not particularly limited, and a dryer, a hot air furnace, a high frequency induction heating furnace, an infrared furnace, or the like can be used. The heating and drying temperature is preferably 50 to 250 ° C. as the ultimate plate temperature. If it exceeds 250 ° C., cracks may occur in the coating and the corrosion resistance may be reduced. On the other hand, when the temperature is lower than 50 ° C., the moisture remaining in the film increases, and the corrosion resistance may also decrease. From such a viewpoint, a more preferable heating and drying temperature is 60 to 200 ° C, and particularly preferably 60 to 180 ° C.

次に、以上のような水系クロメートフリー化成処理液を用いて得られる、本発明の表面処理鋼板について説明する。
この表面処理鋼板は、上述した合金化溶融亜鉛めっき鋼板の表面に、ジルコニウム化合物(a)と、微粒子シリカ(b)と、シランカップリング剤由来成分(c)と、バナジン酸化合物(d)と、リン酸化合物(e)と、ニッケル化合物(g)と、アクリル樹脂(g)を含み、好ましくはこれらを主成分とする化成処理皮膜Aを有する。また、この化成処理皮膜Aには、必要に応じて、さらにワックス(h)を配合してもよい。
Next, the surface-treated steel sheet of the present invention obtained using the above aqueous chromate-free chemical conversion treatment liquid will be described.
This surface-treated steel sheet has a zirconium compound (a), fine-particle silica (b), a silane coupling agent-derived component (c), and a vanadate compound (d) on the surface of the above-described alloyed hot-dip galvanized steel sheet. The chemical conversion film A includes a phosphoric acid compound (e), a nickel compound (g), and an acrylic resin (g), and preferably contains these as a main component. Moreover, you may mix | blend wax (h) with this chemical conversion treatment film A further as needed.

前記ジルコニウム化合物(a)は、処理液に配合した水溶性ジルコニウム化合物(A)中のZrに由来する成分であり、その水溶性ジルコニウム化合物(A)の詳細はさきに述べたとおりである。
前記微粒子シリカ(b)は、処理液に配合した水分散性微粒子シリカ(B)に由来するものであり、この水分散性微粒子シリカ(B)の詳細はさきに述べたとおりである。
皮膜中での微粒子シリカ(b)の含有割合は、微粒子シリカ(b)とジルコニウム化合物(a)のZr換算量との質量比(b)/(a)で0.1〜1.2とする。(b)/(a)が0.1未満では耐食性や、化成処理皮膜が削られやすくなることによる耐フレーキング性の低下を招き、一方、質量比(b)/(a)が1.2を超えると皮膜が適切に形成できないため耐食性が低下する。このような観点から、より好ましい質量比(b)/(a)は0.2〜1.0であり、特に好ましくは0.3〜0.8である。
The zirconium compound (a) is a component derived from Zr in the water-soluble zirconium compound (A) blended in the treatment liquid, and details of the water-soluble zirconium compound (A) are as described above.
The fine particle silica (b) is derived from the water dispersible fine particle silica (B) blended in the treatment liquid, and details of the water dispersible fine particle silica (B) are as described above.
The content ratio of the fine particle silica (b) in the film is 0.1 to 1.2 in terms of the mass ratio (b) / (a) between the fine particle silica (b) and the Zr equivalent amount of the zirconium compound (a). . If (b) / (a) is less than 0.1, the corrosion resistance and the flaking resistance are lowered due to the chemical conversion coating being easily cut, while the mass ratio (b) / (a) is 1.2. If it exceeds 1, the film cannot be formed properly and the corrosion resistance is lowered. From such a viewpoint, the more preferable mass ratio (b) / (a) is 0.2 to 1.0, and particularly preferably 0.3 to 0.8.

前記シランカップリング剤由来成分(c)は、処理液に配合したシランカップリング剤(C)に由来するものであり、このシランカップリング剤(C)の詳細はさきに述べたとおりである。
ここで、微粒子シリカ(b)およびシランカップリング剤由来成分(c)のSi換算量の合計(Si)は、ジルコニウム化合物(a)のZr換算量との質量比(Si)/(a)で0.15〜1.0とする。質量比(Si)/(a)が0.15未満では耐食性や、化成処理皮膜が削られやすくなることによる耐フレーキング性の低下を招き、一方、1.0を超えると耐食性が低下する。このような観点から、より好ましい質量比(Si)/(a)は0.25〜0.85であり、特に好ましくは0.30〜0.68である。
The component (c) derived from the silane coupling agent is derived from the silane coupling agent (C) blended in the treatment liquid, and details of the silane coupling agent (C) are as described above.
Here, the sum (Si) of the Si equivalent amount of the particulate silica (b) and the silane coupling agent-derived component (c) is the mass ratio (Si) / (a) with the Zr equivalent amount of the zirconium compound (a). 0.15-1.0. If the mass ratio (Si) / (a) is less than 0.15, the corrosion resistance and the flaking resistance are lowered due to the chemical conversion coating being easily scraped. On the other hand, if it exceeds 1.0, the corrosion resistance is lowered. From such a viewpoint, the more preferable mass ratio (Si) / (a) is 0.25 to 0.85, and particularly preferably 0.30 to 0.68.

前記バナジン酸化合物(d)は、処理液に配合したバナジン酸化合物(D)に由来するものであり、このバナジン酸化合物(D)の詳細はさきに述べたとおりである。
皮膜中でのバナジン酸化合物(d)の含有割合は、バナジン酸化合物(d)のV換算量とジルコニウム化合物(a)のZr換算量との質量比(d)/(a)で0.02〜0.15とする。質量比(d)/(a)が0.02未満では耐食性が低下し、一方、0.15を超えると皮膜が着色し、外観を損なう。このような観点から、より好ましい質量比(d)/(a)は0.04〜0.12であり、特に好ましくは0.05〜0.10である。
The vanadic acid compound (d) is derived from the vanadic acid compound (D) blended in the treatment liquid, and details of the vanadic acid compound (D) are as described above.
The content ratio of the vanadic acid compound (d) in the film was 0.02 in terms of the mass ratio (d) / (a) of the V converted amount of the vanadic acid compound (d) and the Zr converted amount of the zirconium compound (a). To 0.15. When the mass ratio (d) / (a) is less than 0.02, the corrosion resistance is lowered. On the other hand, when it exceeds 0.15, the film is colored and the appearance is impaired. From such a viewpoint, the more preferable mass ratio (d) / (a) is 0.04 to 0.12, and particularly preferably 0.05 to 0.10.

前記リン酸化合物(e)は、処理液に配合したリン酸化合物(E)に由来するものであり、このリン酸化合物(E)の詳細はさきに述べたとおりである。
皮膜中でのリン酸化合物(e)の含有割合は、リン酸化合物(e)のP換算量とジルコニウム化合物(a)のZr換算量との質量比(e)/(a)で0.03〜0.30とする。質量比(e)/(a)が0.03未満では耐食性が低下し、一方、0.30を超えると皮膜の外観が低下する。このような観点から、より好ましい質量比(e)/(a)は0.06〜0.20であり、特に好ましくは0.10〜0.18である。
The phosphoric acid compound (e) is derived from the phosphoric acid compound (E) blended in the treatment liquid, and details of the phosphoric acid compound (E) are as described above.
The content ratio of the phosphoric acid compound (e) in the film was 0.03 in mass ratio (e) / (a) between the P equivalent amount of the phosphoric acid compound (e) and the Zr equivalent amount of the zirconium compound (a). ~ 0.30. When the mass ratio (e) / (a) is less than 0.03, the corrosion resistance is lowered. On the other hand, when it exceeds 0.30, the appearance of the film is lowered. From such a viewpoint, the more preferable mass ratio (e) / (a) is 0.06 to 0.20, and particularly preferably 0.10 to 0.18.

前記ニッケル化合物(f)は、処理液に配合したニッケル化合物(F)に由来するものであり、このニッケル化合物(F)の詳細はさきに述べたとおりである。
皮膜中でのニッケル化合物(f)の含有割合は、ニッケル化合物(f)のNi換算量とジルコニウム化合物(a)のZr換算量との質量比(f)/(a)で0.005〜0.10とする。質量比(f)/(a)が0.005未満では皮膜の外観が低下し、一方、0.10を超えると耐食性が低下する。このような観点から、より好ましい(f)/(a)は0.01〜0.08であり、特に好ましくは0.02〜0.06である。
The nickel compound (f) is derived from the nickel compound (F) blended in the treatment liquid, and details of the nickel compound (F) are as described above.
The content ratio of the nickel compound (f) in the film is 0.005 to 0 in mass ratio (f) / (a) between the Ni conversion amount of the nickel compound (f) and the Zr conversion amount of the zirconium compound (a). .10. When the mass ratio (f) / (a) is less than 0.005, the appearance of the film is deteriorated, whereas when it exceeds 0.10, the corrosion resistance is deteriorated. From such a viewpoint, (f) / (a) is more preferably 0.01 to 0.08, and particularly preferably 0.02 to 0.06.

前記アクリル樹脂(g)は、処理液に配合したアクリル樹脂エマルション(G)に由来するものであり、このアクリル樹脂エマルション(G)およびアクリル樹脂の詳細はさきに述べたとおりである。
皮膜中でのアクリル樹脂(g)の含有割合は、アクリル樹脂(g)と皮膜固形分の合計量(x)との質量比(g)/(x)で0.005〜0.18とする。質量比(g)/(x)が0.005未満では耐食性が低下し、一方、0.18を超えると有機成分の増加により化成処理皮膜が削られやすくなるため、耐フレーキング性が低下する。このような観点から、より好ましい質量比(g)/(x)は0.01〜0.16であり、特に好ましくは0.02〜0.14である。
The acrylic resin (g) is derived from the acrylic resin emulsion (G) blended in the treatment liquid, and the details of the acrylic resin emulsion (G) and the acrylic resin are as described above.
The content ratio of the acrylic resin (g) in the film is 0.005 to 0.18 in terms of mass ratio (g) / (x) between the acrylic resin (g) and the total amount (x) of the solid content of the film. . When the mass ratio (g) / (x) is less than 0.005, the corrosion resistance is lowered. On the other hand, when it exceeds 0.18, the chemical conversion film is easily scraped due to an increase in the organic component, so that the flaking resistance is lowered. . From such a viewpoint, the more preferable mass ratio (g) / (x) is 0.01 to 0.16, and particularly preferably 0.02 to 0.14.

本発明により得られる表面処理鋼板において、優れた平板部耐食性およびプレス成形後の耐食性が得られる理由は必ずしも明らかではないが、以下のような機構によるものと考えられる。
まず、水溶性ジルコニウム化合物と水分散性微粒子シリカとシランカップリング剤により皮膜の骨格が形成される。水分散性微粒子シリカは、乾燥した後の皮膜中でもその形状を維持するものと考えられる。また、シランカップリング剤は、水に溶解させると加水分解によりシラノールとアルコールを生じる。生じたシラノールは脱水縮合してポリシロキサンとなる。このポリシロキサンとなった部分をコアにし、外側にアルキル基を向けた二重構造となって水に分散しているものと考えられる。
In the surface-treated steel sheet obtained by the present invention, the reason why excellent flat plate portion corrosion resistance and corrosion resistance after press forming are obtained is not necessarily clear, but is considered to be due to the following mechanism.
First, a film skeleton is formed by a water-soluble zirconium compound, water-dispersible fine particle silica, and a silane coupling agent. The water-dispersible fine particle silica is considered to maintain its shape even in the dried film. Moreover, when a silane coupling agent is dissolved in water, silanol and alcohol are produced by hydrolysis. The resulting silanol is dehydrated and condensed into polysiloxane. This polysiloxane is considered to be dispersed in water in a double structure with the core as the core and an alkyl group on the outside.

水溶性ジルコニウム化合物は、微粒子シリカ(粒子)やポリシロキサンを有する二重構造体の間に浸透し、乾燥後の皮膜ではこれらのバインダーとして働き、微粒子シリカやポリシロキサンを有する二重構造体を繋ぎ留めて皮膜を形成する。このようにして形成された無機質な皮膜は硬質であるがプレス成形時の応力で細かく砕かれ易く、有機高分子のように粘着性を有しない。一方、そのような皮膜は少ない応力で壊れやすいため、耐フレーキング性が得られにくいことがあるが、本発明では、皮膜に特定の樹脂(アクリル樹脂)を適量配合することにより、皮膜が受ける応力を緩和できるようになり、安定した耐フレーキング性を得ることができる。   The water-soluble zirconium compound penetrates between the double structure containing fine particle silica (particles) and polysiloxane, and acts as a binder in the dried film to connect the double structure containing fine particle silica and polysiloxane. To form a film. The inorganic film formed in this way is hard, but is easily crushed by the stress during press molding, and does not have adhesiveness like organic polymers. On the other hand, since such a film is fragile with less stress, it may be difficult to obtain anti-flaking properties. However, in the present invention, the film receives a certain amount of a specific resin (acrylic resin). Stress can be relaxed, and stable flaking resistance can be obtained.

上述したように水溶性ジルコニム化合物、水分散性微粒子シリカ、シランカップリング剤およびアクリル樹脂は皮膜の骨格を形成する成分であり、一旦乾燥すると再度水には溶解せずバリアー的効果を有すると考えられる。これに対して、バナジン酸化合物とリン酸化合物は、皮膜中に均一に分散し、水に溶けやすい形態で存在し、いわゆる亜鉛腐食時のインヒビター効果を有する。すなわち、バナジン酸化合物は不動態化作用により亜鉛の腐食自体を抑制し、リン酸化合物は亜鉛と接触した際に亜鉛をエッチングして、溶解してきた亜鉛と難溶性の金属塩を形成する、あるいは亜鉛の腐食が起きた時に、亜鉛イオンを皮膜中で捕捉して、それ以上の腐食を抑制するものと考えられる。このように腐食抑制機構の異なるインヒビターを併用したことから、優れた平板部耐食性だけでなく、プレス成形後の優れた耐食性も得ることができる。   As mentioned above, water-soluble zirconium compound, water-dispersible fine particle silica, silane coupling agent and acrylic resin are components that form the skeleton of the film, and once dried, do not dissolve in water again and have a barrier effect. It is done. On the other hand, the vanadic acid compound and the phosphoric acid compound are uniformly dispersed in the film and exist in a form that is easily soluble in water, and have an inhibitory effect during so-called zinc corrosion. That is, the vanadic acid compound suppresses the corrosion of zinc itself by a passivating action, and the phosphoric acid compound etches zinc when coming into contact with zinc to form a slightly soluble metal salt with dissolved zinc, or When zinc corrosion occurs, it is considered that zinc ions are trapped in the film and further corrosion is suppressed. Thus, since the inhibitors having different corrosion inhibiting mechanisms are used in combination, not only excellent flat plate portion corrosion resistance but also excellent corrosion resistance after press molding can be obtained.

以上が、本発明の表面処理鋼板の基本構成であるが、必要に応じて次の構成を加えても良い。   The above is the basic configuration of the surface-treated steel sheet of the present invention, but the following configuration may be added as necessary.

本発明の水系クロメートフリー処理液には、プレス成形時の潤滑性能をさらに向上させるためにワックス(H)を添加することができる。
前記ワックス(H)としては、液に相溶するものであれば特に制限はなく、例えば、ポリエチレンなどのポリオレフィンワックス、モンタンワックス、パラフィンワックス、マイクロクリスタリンワックス、カルナバワックス、ラノリン系ワックス、シリコン系ワックス、フッ素系ワックスなどが挙げられ、これらの1種以上を使用することができる。また、前記ポリオレフィンワックスとしては、例えば、ポリエチレンワックス、酸化ポリエチレンワックス、ポリプロピレンワックスなどが挙げられ、これらの1種以上を使用することができる。
ワックス(H)の配合割合は、ワックス(H)の固形分と水系クロメートフリー化成処理液中の固形分の合計量(X)との質量比(H)/(X)で0.01〜0.10とすることが好ましい。質量比(H)/(X)が0.01未満では潤滑性、特にプレス成形時の潤滑性の向上効果が見られず、一方、0.10を超えるとこの効果が飽和するだけでなく、逆に耐食性が低下するおそれがある。このような観点から、より好ましい質量比(H)/(X)は0.02〜0.08である。
Wax (H) can be added to the aqueous chromate-free treatment liquid of the present invention in order to further improve the lubrication performance during press molding.
The wax (H) is not particularly limited as long as it is compatible with the liquid. For example, polyolefin wax such as polyethylene, montan wax, paraffin wax, microcrystalline wax, carnauba wax, lanolin wax, silicon wax , Fluorine wax, and the like, and one or more of these can be used. Examples of the polyolefin wax include polyethylene wax, polyethylene oxide wax, and polypropylene wax, and one or more of these can be used.
The blending ratio of the wax (H) is 0.01 to 0 as a mass ratio (H) / (X) of the solid content of the wax (H) and the total amount (X) of the solid content in the aqueous chromate-free chemical conversion treatment liquid. 10 is preferable. When the mass ratio (H) / (X) is less than 0.01, the effect of improving the lubricity, particularly the lubricity during press molding, is not seen. On the other hand, when the ratio exceeds 0.10, this effect is saturated. Conversely, corrosion resistance may be reduced. From such a viewpoint, a more preferable mass ratio (H) / (X) is 0.02 to 0.08.

このワックス(H)を添加した水系クロメートフリー化成処理液で形成した化成処理皮膜Aは、さらに、ワックス(h)を含有し、連続高速プレス成形時の潤滑性能を向上させる。処理液に配合したワックス(H)に由来するものであり、このワックス(H)の詳細はさきに述べたとおりである。
皮膜中でのワックス(h)の含有割合は、ワックス(h)と皮膜固形分の合計量(x)との質量比(h)/(x)で0.01〜0.10とすることが好ましい。質量比(h)/(x)が0.01未満では潤滑性、特にプレス成形時の潤滑性の向上効果が見られず、一方、0.10を超えるとこの効果が飽和するだけでなく、逆に耐食性が低下するおそれがある。このような観点から、より好ましい質量比(h)/(x)は0.02〜0.08である。
The chemical conversion film A formed with the water-based chromate-free chemical conversion treatment liquid to which the wax (H) is added further contains the wax (h) and improves the lubricating performance during continuous high-speed press molding. This is derived from the wax (H) blended in the treatment liquid, and the details of the wax (H) are as described above.
The content ratio of the wax (h) in the film may be 0.01 to 0.10 in mass ratio (h) / (x) between the wax (h) and the total amount (x) of the film solids. preferable. When the mass ratio (h) / (x) is less than 0.01, the effect of improving the lubricity, particularly the lubricity at the time of press molding, is not seen. On the other hand, when the ratio exceeds 0.10, this effect is saturated, Conversely, corrosion resistance may be reduced. From such a viewpoint, a more preferable mass ratio (h) / (x) is 0.02 to 0.08.

さきに述べたように、化成処理皮膜Aの付着量は、皮膜中のジルコニウム化合物のZr換算で40〜1200mg/mの範囲とする。より好ましくは80〜600mg/m、特に好ましくは120〜320mg/mとする。同じく、表面処理皮膜の厚さは0.1〜3μmの範囲とする。より好ましくは0.2〜1.5μmの範囲、さらに好ましくは0.3〜0.8μmの範囲とすることが望ましい。 As described above, the amount of chemical conversion coating A deposited is in the range of 40 to 1200 mg / m 2 in terms of Zr of the zirconium compound in the coating. More preferably 80~600mg / m 2, particularly preferably at 120~320mg / m 2. Similarly, the thickness of the surface treatment film is in the range of 0.1 to 3 μm. More preferably, it is in the range of 0.2 to 1.5 μm, and further preferably in the range of 0.3 to 0.8 μm.

以上が、本発明の表面処理鋼板の基本構成であるが、必要に応じて次の構成を加えても良い。   The above is the basic configuration of the surface-treated steel sheet of the present invention, but the following configuration may be added as necessary.

本発明に従う表面処理鋼板の合金化溶融亜鉛めっき層の表面が、算術平均粗さ:Raで0.5〜1.5μm、かつ、粗さ曲線の平均線方向の長さ25.4mmあたりの山の数:PPIで150〜350であることが好ましい。また、合金化溶融亜鉛めっき層表面の結晶の平均アスペクト比が3以下であることが好ましい。
以下、算術平均粗さ:Ra、粗さ曲線の平均線方向の長さ25.4mmあたりの山の数:PPI、およびの合金化溶融亜鉛めっき層表面の結晶の平均アスペクト比の限定理由について説明する。
The surface of the alloyed hot-dip galvanized layer of the surface-treated steel sheet according to the present invention has an arithmetic average roughness: Ra of 0.5 to 1.5 μm, and a peak per length of 25.4 mm in the average line direction of the roughness curve. The number of PPI is preferably 150 to 350 in terms of PPI. Moreover, it is preferable that the average aspect ratio of the crystal on the surface of the alloyed hot-dip galvanized layer is 3 or less.
Hereinafter, the reason for limiting the average aspect ratio of the crystal on the surface of the alloyed hot-dip galvanized layer of arithmetic average roughness: Ra, the number of peaks per 25.4 mm in the length of the average line direction of the roughness curve: PPI will be described. To do.

(算術平均粗さ:Ra 0.5〜1.5μm)
算術平均粗さ:Raは、JIS B 0601−1994に準拠するものとする。Raが0.5μm未満の場合、化成処理皮膜Aを塗布した状態でのめっき凸部の被膜率が高くなるため、導通点の比率が低下し導電性が劣化することが問題となる。一方、Raが1.5μmを超えると、化成処理皮膜Aを塗布した状態でのめっき凸部の露出率が高いため、導電性は良好であるが耐食性の劣化が問題となる。従って、Raは、0.5〜1.5μmの範囲が好ましい。より好ましくは、0.7〜1.3μmの範囲である。
(Arithmetic mean roughness: Ra 0.5-1.5 μm)
Arithmetic average roughness: Ra shall conform to JIS B 0601-1994. When Ra is less than 0.5 μm, the coating rate of the plating projections in a state where the chemical conversion coating A is applied is increased, so that there is a problem that the conduction point ratio is lowered and the conductivity is deteriorated. On the other hand, when Ra exceeds 1.5 μm, the exposed rate of the plating projections in a state where the chemical conversion film A is applied is high, and thus the conductivity is good, but the deterioration of the corrosion resistance becomes a problem. Therefore, Ra is preferably in the range of 0.5 to 1.5 μm. More preferably, it is the range of 0.7-1.3 micrometers.

(粗さ曲線の平均線方向の長さ25.4mmあたりの山の数:PPI 150〜350)
粗さ曲線の平均線方向の長さ25.4mmあたりの山の数:PPIは、ピークカウントインデックスと呼ばれるもので、米国のSAE規格で定められたものであり、この値が小さくなると1山の断面積(縦断面積)が大きくなることを意味する。なお、図1に、米国のThe Engineering Society for Advancing Mobility Land Sea Air and Space:SAE J911-JUN 86 「SURFACE TEXTURE MEASUREMENT OF COLD ROLLED SHEET STEEL」で定められたPPIを測定する際の表面粗さの粗さ曲線を示す。図1において、粗さ曲線の平均線から、正負、両方向に一定の基準レベルHを設け、負の基準レベルを超えたあと、正の基準レベルを超えたとき、1カウントする。このカウントを評価長さ:Lnに達するまで繰り返し、数えた個数で表示したものをPPIとする。なお、本発明においては、Lnを25.4mm(1インチ)、2H(ピークカウントレベル:正負の基準レベル間の幅)を1.27μm(50マイクロインチ)とする。
(Number of peaks per 25.4 mm length in the average line direction of the roughness curve: PPI 150-350)
Number of peaks per 25.4 mm length in the average line direction of the roughness curve: PPI is called the peak count index, and is defined by the US SAE standard. It means that the cross-sectional area (vertical cross-sectional area) becomes large. Fig. 1 shows the roughness of the surface roughness when measuring the PPI defined by the US Engineering Society for Advancing Mobility Land Sea Air and Space: SAE J911-JUN 86 “SURFACE TEXTURE MEASUREMENT OF COLD ROLLED SHEET STEEL”. The height curve is shown. In FIG. 1, a constant reference level H is provided in both positive and negative directions from the average line of the roughness curve. After exceeding the negative reference level, one count is made when the positive reference level is exceeded. This count is repeated until the evaluation length: Ln is reached, and the displayed number is designated as PPI. In the present invention, Ln is 25.4 mm (1 inch) and 2H (peak count level: width between positive and negative reference levels) is 1.27 μm (50 microinches).

PPIが150未満の場合、化成処理皮膜Aを塗布した面の一定面積内でのめっき被覆率が高いため、導電性が劣化する。一方、PPIが350を超えると、化成処理皮膜Aを塗布した面の一定面積内でのめっき露出率が高いため、導電性は良好であるが耐食性が劣化する。従って、PPIは、150〜350の範囲が好ましい。より好ましくは、170〜330の範囲である。   When PPI is less than 150, the plating coverage in a certain area of the surface to which the chemical conversion coating A is applied is high, so that the conductivity is deteriorated. On the other hand, when the PPI exceeds 350, the plating exposure rate within a certain area of the surface to which the chemical conversion coating A is applied is high, so that the conductivity is good but the corrosion resistance is deteriorated. Accordingly, the PPI is preferably in the range of 150 to 350. More preferably, it is the range of 170-330.

(合金化溶融亜鉛めっき層表面の結晶の平均アスペクト比:3以下)
合金化溶融亜鉛めっき層表面に存在する結晶のうち、垂直方向から走査型電子顕微鏡(SEM)を用いて観察したときに、アスペクト比(最長辺長さ/最短辺長さ)の大きい方から10個の結晶を選択し、この10個の結晶のアスペクト比の平均値を平均アスペクト比とする。図2は、化成処理皮膜Aを形成する前の合金化溶融亜鉛めっき層の表面を走査型電子顕微鏡(SEM)を用いて1000倍で観察した結果を示す写真であって、(a)は、合金化溶融亜鉛めっき層表面の結晶の平均アスペクト比が3以下である一例を、(b)は、合金化溶融亜鉛めっき層表面の結晶の平均アスペクト比が3を超える一例を示す図である。
(Average aspect ratio of crystals on alloyed hot-dip galvanized layer surface: 3 or less)
Among the crystals existing on the surface of the alloyed hot-dip galvanized layer, when observed from the vertical direction using a scanning electron microscope (SEM), the aspect ratio (longest side length / shortest side length) is 10 Individual crystals are selected, and the average value of the aspect ratios of the ten crystals is defined as the average aspect ratio. FIG. 2 is a photograph showing the result of observing the surface of the alloyed hot-dip galvanized layer before forming the chemical conversion coating A at 1000 times using a scanning electron microscope (SEM), (a) (B) is a figure which shows an example in which the average aspect-ratio of the crystal | crystallization of an alloying hot-dip galvanization layer surface is 3 or less, and (b) shows an example in which the average aspect-ratio of the crystal | crystallization of an alloying hot-dip galvanization layer surface exceeds 3.

合金化溶融亜鉛めっき層表面の結晶の平均アスペクト比が3を超えると、合金化溶融亜鉛めっき層中にZnリッチで柔軟なζ相が存在するため、プレス等の成形時の摺動により凸部がつぶれて変形しやすいため、成形加工部の導電性が不十分となる問題がある。従って、合金化溶融亜鉛めっき層表面の結晶の平均アスペクト比は3以下が好ましい。より好ましくは、2以下である。なお、合金化溶融亜鉛めっき層表面の結晶の平均アスペクト比の下限値については、特に制限はない。   If the average aspect ratio of the crystal on the surface of the alloyed hot-dip galvanized layer exceeds 3, a Zn-rich and soft ζ phase is present in the alloyed hot-dip galvanized layer. Since the material is crushed and easily deformed, there is a problem that the conductivity of the molded portion becomes insufficient. Therefore, the average aspect ratio of crystals on the surface of the alloyed hot-dip galvanized layer is preferably 3 or less. More preferably, it is 2 or less. In addition, there is no restriction | limiting in particular about the lower limit of the average aspect-ratio of the crystal | crystallization of an alloying hot-dip galvanization layer surface.

なお、上述したところは、本発明の実施形態の一例に過ぎず、請求の範囲において種々変更を加えることができる。   In addition, the place mentioned above is only an example of embodiment of this invention, and can change variously in a claim.

次に、実施例について説明する。以下に示すように各サンプルを作製した。まず、鋼板No.S1〜S20の亜鉛系めっき鋼板を準備した。亜鉛系めっきの種類としては、鋼板No.S1〜S15は合金化溶融亜鉛めっき、鋼板No.S16は電気亜鉛めっき、鋼板No.S17は溶融亜鉛めっき(合金化処理なし)、鋼板No.S18はZn−Ni合金めっき(Ni:12mass%)、鋼板No.S19は溶融Zn−5mass%Al−0.5mass%Mg合金めっきおよび鋼板No.S20はZn−Mg合金めっき(Mg:0.5mass%)とした。   Next, examples will be described. Each sample was produced as shown below. First, steel plate No. S1-S20 galvanized steel sheets were prepared. As the type of zinc plating, steel plate No. S1 to S15 are alloyed hot dip galvanized steel plate Nos. S16 is electrogalvanized steel plate No. S17 is hot dip galvanized (no alloying treatment), steel plate No. S18 is Zn—Ni alloy plating (Ni: 12 mass%), steel plate No. S19 is a hot-dip Zn-5 mass% Al-0.5 mass% Mg alloy plating and steel plate No. S20 was Zn—Mg alloy plating (Mg: 0.5 mass%).

(鋼板No.S1〜S12)
素地鋼板として準備した、板厚:1.0mmの極低炭素IF鋼板を、溶融亜鉛めっき浴中に浸入させ、ガスワイピングで亜鉛付着量を片面あたり40g/mに調整した。めっき浴中の溶解Al量は、合金化溶融亜鉛めっき層中のAl含有量が表1に示す0.10〜0.40質量%の範囲となるように、0.110〜0.150質量%の範囲で変化させた。また、めっき浴の温度は、500℃とした。
(Steel plate Nos. S1 to S12)
An ultra-low carbon IF steel plate having a thickness of 1.0 mm prepared as a base steel plate was infiltrated into a hot dip galvanizing bath, and the amount of zinc adhered was adjusted to 40 g / m 2 per side by gas wiping. The amount of dissolved Al in the plating bath is 0.110 to 0.150% by mass so that the Al content in the galvannealed layer is in the range of 0.10 to 0.40% by mass shown in Table 1. The range was changed. The temperature of the plating bath was 500 ° C.

ついで、合金化処理は、熱源として誘導加熱装置を用い、表1に示すように合金化処理温度を470〜500℃の範囲に設定して行った。   Next, the alloying treatment was performed by using an induction heating device as a heat source and setting the alloying treatment temperature within a range of 470 to 500 ° C. as shown in Table 1.

(鋼板No.S13およびS14)
亜鉛付着量を、鋼板No.S13は片面あたり70g/mに、鋼板No.S14は片面あたり30g/mに調整した以外は、鋼板No.S1と同様の方法でサンプルを作製した。
(Steel plate Nos. S13 and S14)
The amount of zinc adhered was measured using steel plate No. S13 is 70 g / m 2 per side, steel plate No. S14 is steel plate No. except that it is adjusted to 30 g / m 2 per side. Samples were prepared in the same manner as in S1.

(鋼板No.S15)
合金化溶融亜鉛めっき層がζ相を有するようにしたこと以外は、鋼板No.S1と同様の方法で鋼板No.S15を作製した。
(Steel plate No. S15)
Except for the fact that the galvannealed layer has a ζ phase, the steel plate No. In the same manner as in S1, the steel plate No. S15 was produced.

(鋼板No.S16〜S20)
参考例として、素地鋼板の両面に合金化溶融亜鉛めっき層以外の亜鉛系めっきを形成した。なお、鋼板No.S16〜S20に形成した亜鉛系めっき層の種類は、表1の「合金化溶融亜鉛めっき」の欄に記載した。
(Steel plate Nos. S16 to S20)
As a reference example, zinc-based plating other than the alloyed hot-dip galvanized layer was formed on both surfaces of the base steel plate. In addition, steel plate No. The type of the zinc-based plating layer formed in S16 to S20 is described in the column of “Alloyed hot dip galvanizing” in Table 1.

なお、各鋼板の準備にあたり、合金化溶融亜鉛めっき層中の合金相の同定、Fe含有量およびAl含有量は、以下のように測定した。また、合金化溶融亜鉛めっき層表面の算術平均粗さ:Raおよび粗さ曲線の平均線方向の長さ25.4mmあたりの山の数:PPIは、以下のように測定した。さらに、合金化溶融亜鉛めっき層表面の結晶の平均アスペクト比は、以下のように測定した。   In preparing each steel plate, the identification of the alloy phase, the Fe content and the Al content in the galvannealed layer were measured as follows. In addition, the arithmetic average roughness of the surface of the alloyed hot-dip galvanized layer: Ra and the number of peaks per length of 25.4 mm in the average line direction of the roughness curve: PPI were measured as follows. Furthermore, the average aspect ratio of crystals on the surface of the alloyed hot-dip galvanized layer was measured as follows.

(合金化溶融亜鉛めっき層中の合金相の同定)
合金化処理の完了した各サンプルを、クロメートフリー化成処理皮膜を形成する前にディフラクトメータ法によるX線回折で、合金化溶融亜鉛めっき層中の合金相を同定した。X線回折条件は次のとおりである。
装置:理学電機社製RU−300
X線源:Co−Kα
管球電圧:30kV
管球電流:100mA
照射時間:30分
速度:2deg/分
ステップ:0.05
スリット:DS=SS=1°、RS=0.3°
回転:なし
ピーク強度:最大値
バックグラウンド処理:スムージング
(Identification of alloy phase in alloyed hot-dip galvanized layer)
Prior to forming the chromate-free chemical conversion coating film, the alloy phase in the alloyed hot-dip galvanized layer was identified for each sample after the alloying treatment by X-ray diffraction using a diffractometer method. The X-ray diffraction conditions are as follows.
Equipment: RU-300 manufactured by Rigaku Corporation
X-ray source: Co-Kα
Tube voltage: 30 kV
Tube current: 100 mA
Irradiation time: 30 minutes Speed: 2 deg / min Step: 0.05
Slit: DS = SS = 1 °, RS = 0.3 °
Rotation: None Peak intensity: Maximum value Background processing: Smoothing

上記した方法で、合金相のピーク強度を測定して、Γ相のd(Å)=2.592、δ1相のd(Å)=2.136およびζ相のd(Å)=3.025のピークの強度をそれぞれ、Ia、IbおよびIcとし、Ib/Ia>50かつIc/Ia<1.2を満足したとき、合金化溶融亜鉛めっき層は、実質的にΓ相およびδ1相のみが存在し、ζ相を含まないと判断した。   The peak intensity of the alloy phase was measured by the method described above, and d (Å) = 2.592 for Γ phase, d (Å) = 2.136 for δ1 phase, and d (Å) = 3.025 for ζ phase. When the peak intensities of Ia, Ib and Ic are respectively satisfied and Ib / Ia> 50 and Ic / Ia <1.2 are satisfied, the alloyed hot-dip galvanized layer has substantially only a Γ phase and a δ1 phase. Was present and judged not to contain a ζ phase.

(合金化溶融亜鉛めっき層中のFe含有量およびAl含有量)
合金化処理を完了し、クロメートフリー化成処理皮膜を形成する前の各サンプルから試料を切り出し、JIS H 0401:2007、5.付着量試験方法、5.2間接法に規定される試験液を用いて合金化溶融亜鉛めっき層を溶解した溶液の湿式化学分析(ICP分析)を行い合金化溶融亜鉛めっき層中のFe含有量およびAl含有量を測定した。
(Fe content and Al content in alloyed hot-dip galvanized layer)
A sample is cut out from each sample before the alloying treatment is completed and a chromate-free chemical conversion treatment film is formed, and JIS H 0401: 2007,5. Amount of Fe in alloyed hot-dip galvanized layer by wet chemical analysis (ICP analysis) of solution in which alloyed hot-dip galvanized layer is dissolved using test solution specified in 5.2 Indirect Method And the Al content was measured.

(算術平均粗さ:Ra)
合金化処理の完了した各サンプルについて、クロメートフリー化成処理皮膜を形成する前に、JIS B 0601−1994に準拠して、算術平均粗さ:Raを測定した。
(Arithmetic mean roughness: Ra)
About each sample which completed the alloying process, arithmetic mean roughness: Ra was measured based on JISB0601-1994, before forming a chromate-free chemical conversion treatment film.

(粗さ曲線の平均線方向の長さ25.4mmあたりの山の数:PPI)
合金化処理の完了した各サンプルについて、クロメートフリー化成処理皮膜を形成する前に、上述したSAE規格に準拠して、粗さ曲線の平均線方向の長さ25.4mmあたりの山の数:PPIを測定した。
(Number of peaks per 25.4 mm length in the average line direction of the roughness curve: PPI)
Before forming a chromate-free chemical conversion coating film for each sample that has been alloyed, the number of peaks per 25.4 mm in length in the average line direction of the roughness curve in accordance with the SAE standard described above: PPI Was measured.

(合金化溶融亜鉛めっき層表面の結晶の平均アスペクト比)
合金化処理の完了した各サンプルについて、クロメートフリー化成処理皮膜を形成する前に、次の要領で平均アスペクト比を求めた。
合金化溶融亜鉛めっき層表面に存在する結晶のうち、垂直方向から走査型電子顕微鏡(SEM)を用いて1000倍で観察したときに、アスペクト比(最長辺長さ/最短辺長さ)の大きい方から10個の結晶を選択し、この10個の結晶のアスペクト比の平均値を平均アスペクト比とした。
(Average aspect ratio of crystals on alloyed galvanized layer surface)
Before forming the chromate-free chemical conversion coating film, the average aspect ratio of each sample that had been alloyed was determined as follows.
Of the crystals present on the surface of the alloyed hot-dip galvanized layer, the aspect ratio (longest side length / shortest side length) is large when observed at 1000 times using a scanning electron microscope (SEM) from the vertical direction. Ten crystals were selected from the above, and the average value of the aspect ratios of the ten crystals was defined as the average aspect ratio.

次にクロメートフリー化成処理について説明する。
表2に示す水溶性ジルコニウム化合物、表3に示す水分散微粒子シリカ、表4に示すシランカップリング剤、表5に示すバナジン酸化合物、表6に示すリン酸化合物、表7に示すニッケル化合物、表8に示すアクリル樹脂エマルション(ノニオン性アクリル樹脂エマルション)、表9に示すワックスを用い、これらの成分を水に適宜配合して表10〜表13に示す水系クロメートフリー化成処理液を作製した。処理液のpHはアンモニアとリン酸で適宜調整した。
Next, the chromate-free chemical conversion treatment will be described.
Water-soluble zirconium compound shown in Table 2, water-dispersed fine particle silica shown in Table 3, silane coupling agent shown in Table 4, vanadic acid compound shown in Table 5, phosphate compound shown in Table 6, nickel compound shown in Table 7, Using the acrylic resin emulsion (nonionic acrylic resin emulsion) shown in Table 8 and the wax shown in Table 9, these components were appropriately blended in water to prepare aqueous chromate-free chemical conversion treatment solutions shown in Tables 10 to 13. The pH of the treatment liquid was appropriately adjusted with ammonia and phosphoric acid.

表1に示した鋼板No.S1〜S20にアルカリ脱脂処理を施し、水洗および乾燥した後、上記水系クロメートフリー化成処理液をバーコーターで鋼板の一方の面に塗布し、両面に化成処理皮膜を施す場合には、鋼板の他方の面にも同様に塗布し、その後、直ちに鋼板表面温度が数秒〜十数秒で所定温度になるように加熱乾燥し、化成処理皮膜Aを形成させ、各サンプルを作製した。この化成処理皮膜Aの膜厚量は水系クロメートフリー化成処理液の濃度により調整し、皮膜のZr付着量はZrを蛍光X線分析装置にて定量した。   Steel plate No. 1 shown in Table 1. After applying alkaline degreasing treatment to S1 to S20, washing with water and drying, the aqueous chromate-free chemical conversion treatment solution is applied to one surface of the steel plate with a bar coater, and when the chemical conversion treatment film is applied to both surfaces, In the same manner, the surface of the steel sheet was coated in the same manner, and then immediately dried by heating so that the surface temperature of the steel sheet reached a predetermined temperature in several seconds to several tens of seconds to form a chemical conversion coating A, and each sample was produced. The film thickness of the chemical conversion coating A was adjusted by the concentration of the aqueous chromate-free chemical conversion treatment solution, and the Zr adhesion amount of the coating was determined by quantifying Zr with a fluorescent X-ray analyzer.

化成処理皮膜Aの皮膜厚の測定は、集束イオンビーム(Focused Ion Beam:FIB)加工装置(日立製作所製「FB2000A」)と付設のマイクロサンプリング装置を用いて断面試料を作製した後、透過電子顕微鏡(Transmission Electron Microscope:TEM)を用いて行った。なお、FIB加工に先立って、断面試料を作製する表面処理鋼板の試料片の表面には、イオンビーム照射によるダメージからこれを保護するため、カーボン(C)の保護膜を約200nmほどフラッシュ蒸着し、さらにその上に金(Au)の保護膜をスパッタコートした。このようにして表面を保護した供試材をFIB加工装置にセットした後、断面試料のサンプリング位置にはさらに、FIB加工装置の化学気相蒸着(Chemical Vapor Deposition:CVD)機構を用いて、厚さ約500nmのカーボン保護膜をコーティングし、イオンビームによる断面試料の切り出し加工を行った。マイクロサンプリング装置を用いて取り出した断面試料(幅方向約20μm、深さ方向約10μm)は、モリブデン製半月板状特殊メッシュの直線部分にCVD機構を使って固定した上で、イオンビームによる切り出し加工でTEM観察に適する厚さ(約0.1μmt)にまで仕上げた。その後、TEMにて断面試料を加速電圧200kVで観察して、約10μmの範囲で3ヶ所の皮膜厚を測定し、その平均値を皮膜厚とした。   The film thickness of the chemical conversion coating A is measured by preparing a cross-section sample using a focused ion beam (FIB) processing apparatus (“FB2000A” manufactured by Hitachi, Ltd.) and an attached microsampling apparatus, and then using a transmission electron microscope. (Transmission Electron Microscope: TEM) was used. Prior to FIB processing, a carbon (C) protective film is flash-deposited to a thickness of about 200 nm on the surface of the sample piece of the surface-treated steel sheet for preparing the cross-section sample to protect it from damage caused by ion beam irradiation. Further, a protective film of gold (Au) was sputter coated thereon. After setting the test material with the surface protected in this manner to the FIB processing apparatus, the chemical vapor deposition (CVD) mechanism of the FIB processing apparatus is further used at the sampling position of the cross-sectional sample. A carbon protective film having a thickness of about 500 nm was coated, and a cross-sectional sample was cut out by an ion beam. A cross-section sample (width direction about 20μm, depth direction about 10μm) taken out using a microsampling device is fixed to a straight part of a molybdenum meniscus special mesh using a CVD mechanism, and then cut out by an ion beam. To a thickness suitable for TEM observation (about 0.1 μmt). Thereafter, the cross-sectional sample was observed with a TEM at an accelerating voltage of 200 kV, and the film thickness at three locations was measured in the range of about 10 μm, and the average value was taken as the film thickness.

かくして得られた各サンプルの、a)成形加工部の導電性、b)平面部の耐食性、c)プレス成形部の耐食性、d)耐フレーキング性、e)耐パウダリング性およびf)熱放射率を以下のように評価した。   For each sample thus obtained, a) conductivity of the molded part, b) corrosion resistance of the flat part, c) corrosion resistance of the press-molded part, d) anti-flaking, e) powdering resistance and f) heat radiation The rate was evaluated as follows.

a)成形加工部の導電性
クロメートフリー化成処理皮膜を形成した各サンプルの両面の表面抵抗値をそれぞれ測定し、各面の表面抵抗値の平均値で各サンプルの導電性を評価した。具体的には、低抵抗測定装置(ロレスタGP:三菱化学(株)製:ESPプローブ)を用い、各サンプル表面の表面抵抗値を測定した。その際、プローブ先端にかける荷重を変化させ、導通時の荷重を測定した。さらに加圧力:196kPa(2kgf/cm)、摺動速度:20mm/sで平面金型にて摺動後、同様に表面抵抗を測定した。評価基準は次のとおりである。
◎:2.9N(300gf)以下
○:2.9N(300gf)を超え4.9N(500gf)以下
△:4.9N(500gf)を超え6.9N(700gf)以下
×:6.9N(700gf)を超える。
a) Conductivity of molded part The surface resistance values of both surfaces of each sample on which the chromate-free chemical conversion coating was formed were measured, and the conductivity of each sample was evaluated by the average value of the surface resistance values of each surface. Specifically, the surface resistance value of each sample surface was measured using a low resistance measuring device (Loresta GP: manufactured by Mitsubishi Chemical Corporation: ESP probe). At that time, the load applied to the probe tip was changed, and the load during conduction was measured. Further, after sliding with a flat mold at a pressure of 196 kPa (2 kgf / cm 2 ) and a sliding speed of 20 mm / s, the surface resistance was measured in the same manner. The evaluation criteria are as follows.
A: 2.9 N (300 gf) or less O: Over 2.9 N (300 gf) and 4.9 N (500 gf) or less Δ: Over 4.9 N (500 gf) and 6.9 N (700 gf) or less X: 6.9 N (700 gf) ).

b)平面部の耐食性
クロメートフリー化成処理皮膜を形成した各サンプルの一方の面について、塩水噴霧試験(JIS−Z−2371)を施し、240時間後の耐白錆性で評価した。評価基準は以下のとおりである。
◎ :白錆面積率5%未満
○ :白錆面積率5%以上、10%未満
○−:白錆面積率10%以上、25%未満
△ :白錆面積率25%以上、50%未満
× :白錆面積率50%以上
b) Corrosion resistance of flat part About one side of each sample in which the chromate-free chemical conversion treatment film was formed, a salt spray test (JIS-Z-2371) was performed, and the white rust resistance after 240 hours was evaluated. The evaluation criteria are as follows.
◎: White rust area ratio less than 5% ○: White rust area ratio 5% or more and less than 10% ○-: White rust area ratio 10% or more and less than 25% △: White rust area ratio 25% or more and less than 50% × : White rust area ratio 50% or more

c)プレス成形部の耐食性
クロメートフリー化成処理皮膜を形成した各サンプルについて、パンチ径:33mm、しわ押さえ荷重:19.6kN(2tf)、ダイス径:66mm、成形速度:300mm/sにて円筒カップ絞り試験を行い、塩水噴霧試験(JIS Z 2371)を施し、48時間後の耐白錆性を評価した。
◎ :白錆面積率5%未満
○ :白錆面積率5%以上、10%未満
○−:白錆面積率10%以上、25%未満
△ :白錆面積率25%以上、50%未満
× :白錆面積率50%以上
d)耐フレーキング性
耐フレーキング性は、限界絞り比で評価した。合金化溶融亜鉛めっき層中に、Γ相やδ1相に比べてFe含有量の低いζ相が多く含有すると、成形時に金型ダイスと合金化溶融亜鉛めっき層表面との摩擦係数が高くなりフレーキングが発生するため限界絞り比が低下する。
クロメートフリー化成処理皮膜を形成した各サンプルについて、パンチ径:33mm、しわ押さえ荷重:19.6kN(2tf)および成形速度300mm/sにて同筒カップ絞り試験を行い、限界絞り比を調査した。評価基準は以下のとおりである。
◎:2.0以上
○:1.9以上2.0未満
△:1.8以上1.9未満
×:1.7以上1.8未満
c) Corrosion resistance of press-molded part For each sample on which a chromate-free chemical conversion coating film was formed, a punch cup diameter: 33 mm, wrinkle holding load: 19.6 kN (2 tf), die diameter: 66 mm, molding speed: 300 mm / s, cylindrical cup A squeeze test was conducted, a salt spray test (JIS Z 2371) was performed, and white rust resistance after 48 hours was evaluated.
◎: White rust area ratio less than 5% ○: White rust area ratio 5% or more and less than 10% ○-: White rust area ratio 10% or more and less than 25% △: White rust area ratio 25% or more and less than 50% × : White rust area ratio of 50% or more d) Flaking resistance Flaking resistance was evaluated by a limit drawing ratio. If the alloyed hot-dip galvanized layer contains a large amount of ζ phase with a lower Fe content than the Γ phase or δ1 phase, the coefficient of friction between the mold die and the surface of the alloyed hot-dip galvanized layer will increase during molding. Since the king occurs, the limit drawing ratio decreases.
About each sample in which the chromate-free chemical conversion treatment film was formed, the same cylinder cup squeeze test was conducted at a punch diameter: 33 mm, a crease pressing load: 19.6 kN (2 tf) and a molding speed of 300 mm / s, and the limit squeeze ratio was investigated. The evaluation criteria are as follows.
A: 2.0 or more
○: 1.9 or more and less than 2.0 △: 1.8 or more and less than 1.9 ×: 1.7 or more and less than 1.8

e)耐パウダリング性
クロメートフリー化成処理皮膜を形成した各サンプルについて、幅:40mmのセロハン粘着テープを貼り、先端Rが0.5mmの90度曲げ金型(凹凸)を使用し、セロハン粘着テープを貼った面が凹部となるように曲げ加工した後、セロハン粘着テープを剥離し、セロハン粘着テープに付着した付着物を、蛍光X線分析装置を用いて測定し、ZnのKα線強度(cps)を25倍してパウダリング指数とし、耐パウダリング性を評価した。評価基準は以下のとおりである。
◎:3000以上4000未満
○:4000以上5000未満
△:5000以上6000未満
×:6000以上
e) Powdering resistance For each sample on which a chromate-free chemical conversion coating was formed, a cellophane adhesive tape with a width of 40 mm was applied, and a 90-degree bending mold (irregularity) with a tip R of 0.5 mm was used. The cellophane adhesive tape is peeled off and the adhering matter adhering to the cellophane adhesive tape is measured using a fluorescent X-ray analyzer, and the Zn K α intensity ( cps) was multiplied by 25 to obtain a powdering index, and the powdering resistance was evaluated. The evaluation criteria are as follows.
◎: 3000 or more and less than 4000 ○: 4000 or more and less than 5000 Δ: 5000 or more and less than 6000 ×: 6000 or more

f)熱放射率
クロメートフリー化成処理皮膜を形成した各サンプルについて、ブルカーオプティクス社製の赤外吸収スペクトル測定装置(IFS66/S)を使用して、2.5〜25μmの波長領域の分光反射スペクトル(R(λ))を測定した。なお、測定には積分球を使用した。この分光反射スペクトル(R(λ))を次式に代入して熱放射率とした。
f) Thermal emissivity For each sample on which a chromate-free chemical conversion coating was formed, using a Bruker Optics infrared absorption spectrum measuring apparatus (IFS66 / S), a spectral reflectance spectrum in a wavelength region of 2.5 to 25 μm. (R (λ)) was measured. An integrating sphere was used for the measurement. This spectral reflection spectrum (R (λ)) was substituted into the following equation to obtain thermal emissivity.

a)〜f)の評価結果を製造条件とともに表14〜17に示す。なお、表14〜表17に示す表面処理亜鉛系めっき鋼板の皮膜構成において、微粒子シリカ(b)とジルコニウム化合物(a)のZr換算量との質量比(b)/(a)、バナジン酸化合物(d)のV換算量とジルコニウム化合物(a)のZr換算量との質量比(d)/(a)、リン酸化合物(e)のP換算量とジルコニウム化合物(a)のZr換算量との質量比(e)/(a)、ニッケル化合物(f)のNi換算量とジルコニウム化合物(a)のZr換算量との質量比(f)/(a)、アクリル樹脂(g)と皮膜固形分の合計量(x)との質量比(g)/(x)、ワックス(h)と皮膜固形分の合計量(x)との質量比(h)/(x)については、表10〜表13に示される水系クロメートフリー化成処理液の組成の質量比(B)/(A)、質量比(D)/(A)、質量比(E)/(A)、(F)/(A)、質量比(G)/(X)、質量比(H)/(X)とそれぞれ同等であるので、表14〜表17には記載しなかった。   The evaluation results of a) to f) are shown in Tables 14 to 17 together with the production conditions. In addition, in the film | membrane structure of the surface treatment zinc-plated steel plate shown in Table 14-Table 17, mass ratio (b) / (a) of fine particle silica (b) and Zr conversion amount of a zirconium compound (a), vanadate compound (D) Mass ratio (d) / (a) of V conversion amount of zirconium compound (a) and Zr conversion amount of zirconium compound (a), P conversion amount of phosphoric acid compound (e) and Zr conversion amount of zirconium compound (a) Mass ratio (e) / (a), mass ratio (f) / (a) of Ni conversion amount of nickel compound (f) and Zr conversion amount of zirconium compound (a), acrylic resin (g), and coating solid For the mass ratio (g) / (x) to the total amount (x) of the minute and the mass ratio (h) / (x) of the total amount (x) of the wax (h) to the coating solids, see Table 10 The mass ratio (B) / (A) of the composition of the aqueous chromate-free chemical conversion treatment solution shown in Table 13, Equivalent to the quantity ratio (D) / (A), mass ratio (E) / (A), (F) / (A), mass ratio (G) / (X), mass ratio (H) / (X), respectively. Therefore, it was not described in Tables 14-17.

表14〜表17から明らかなように、発明例に示す本発明の表面処理鋼板はいずれも、小さい表面抵抗値、すなわち導電性に著しく優れ、また、耐フレーキング性および耐パウダリング性に著しく優れることが確認できた。特に、本発明の表面処理鋼板は、成形加工の前後で導電性が劣化しないことも併せて確認できた。また、高い熱放射率を有することも確認できた。
これに対し、比較例および参考例では、導電性、耐食性、耐フレーキング性、耐パウダリング性および熱放射率の少なくとも1つが劣ることを確認できた。
As is apparent from Tables 14 to 17, all of the surface-treated steel sheets of the present invention shown in the invention examples are remarkably excellent in small surface resistance value, that is, in electrical conductivity, and in anti-flaking and powdering resistance. It was confirmed that it was excellent. In particular, it was confirmed that the surface-treated steel sheet of the present invention was not deteriorated in conductivity before and after forming. Moreover, it has also confirmed having a high thermal emissivity.
On the other hand, in the comparative example and the reference example, it was confirmed that at least one of conductivity, corrosion resistance, flaking resistance, powdering resistance and thermal emissivity was inferior.

本発明によれば、成形加工部の導電性、耐食性および耐フレーキング性に著しく優れる、合金化溶融亜鉛めっき鋼板に6価クロムを含まない化成処理を施した表面処理鋼板を得ることができる。
また、本発明の表面処理鋼板を用いて成形加工した電子機器筐体は、電磁波シールド性および耐食性に著しく優れる。
ADVANTAGE OF THE INVENTION According to this invention, the surface treatment steel plate which gave the chemical conversion treatment which does not contain hexavalent chromium to the alloyed hot-dip galvanized steel plate which is remarkably excellent in the electroconductivity of a shaping | molding process part, corrosion resistance, and flaking resistance can be obtained.
Moreover, the electronic device housing formed by using the surface-treated steel sheet of the present invention is remarkably excellent in electromagnetic wave shielding properties and corrosion resistance.

SAE規格で定められたPPIの定義に関する表面粗さの粗さ曲線を示すグラフである。It is a graph which shows the roughness curve of the surface roughness regarding the definition of PPI defined by the SAE standard. 本発明に従う表面処理鋼板の化成処理皮膜Aを形成する前の合金化溶融亜鉛めっき層の表面を走査型電子顕微鏡(SEM)を用いて1000倍で観察した結果を示す写真である。It is a photograph which shows the result of having observed the surface of the alloying hot-dip galvanization layer before forming the chemical conversion treatment film A of the surface treatment steel plate according to this invention in 1000 time using the scanning electron microscope (SEM).

Claims (5)

素地鋼板の両面に、実質的にΓ相およびδ1相からなる合金化溶融亜鉛めっき層を具え、
前記合金化溶融亜鉛めっき層が、Feを10.5〜15質量%、Alを0.15〜0.30質量%含有し、かつ、
前記合金化溶融亜鉛めっき層の少なくとも一方の表面に、ジルコニウム化合物(a)と、微粒子シリカ(b)と、シランカップリング剤由来成分(c)と、バナジン酸化合物(d)と、リン酸化合物(e)と、ニッケル化合物(f)と、アクリル樹脂(g)を下記(1)〜(6)の条件を満足するように含有し、Zr付着量が40〜1200mg/mである、皮膜厚が0.1〜3μm厚の化成処理皮膜を有することを特徴とする表面処理鋼板。
(1)微粒子シリカ(b)とジルコニウム化合物(a)のZr換算量との質量比(b)/(a)=0.1〜1.2
(2)微粒子シリカ(b)およびシランカップリング剤由来成分(c)のSi換算量の合計(Si)とジルコニウム化合物(a)のZr換算量との質量比(Si)/(a)=0.15〜1.0
(3)バナジン酸化合物(d)のV換算量とジルコニウム化合物(a)のZr換算量との質量比(d)/(a)=0.02〜0.15
(4)リン酸化合物(e)のP換算量とジルコニウム化合物(a)のZr換算量との質量比(e)/(a)=0.03〜0.30
(5)ニッケル化合物(f)のNi換算量とジルコニウム化合物(a)のZr換算量との質量比(f)/(a)が0.005〜0.10
(6)アクリル樹脂(g)と皮膜固形分の合計量(x)との質量比(g)/(x)=0.005〜0.18
On both sides of the base steel sheet, an alloyed hot-dip galvanized layer consisting essentially of a Γ phase and a δ1 phase is provided,
The alloyed hot-dip galvanized layer contains 10.5 to 15% by mass of Fe, 0.15 to 0.30% by mass of Al, and
At least one surface of the alloyed hot-dip galvanized layer has a zirconium compound (a), fine-particle silica (b), a silane coupling agent-derived component (c), a vanadate compound (d), and a phosphate compound. A coating containing (e), a nickel compound (f), and an acrylic resin (g) so as to satisfy the following conditions (1) to (6) and having a Zr adhesion amount of 40 to 1200 mg / m 2 A surface-treated steel sheet having a chemical conversion film having a thickness of 0.1 to 3 μm.
(1) Mass ratio (b) / (a) = 0.1 to 1.2 of fine particle silica (b) and Zr equivalent amount of zirconium compound (a)
(2) Mass ratio (Si) / (a) = 0 of the total amount (Si) of Si in the fine particle silica (b) and the silane coupling agent-derived component (c) and the amount of Zr in the zirconium compound (a) .15-1.0
(3) Mass ratio (d) / (a) = 0.02 to 0.15 of V converted amount of vanadic acid compound (d) and Zr converted amount of zirconium compound (a)
(4) Mass ratio (e) / (a) = 0.03 to 0.30 of P equivalent of phosphoric acid compound (e) and Zr equivalent of zirconium compound (a)
(5) The mass ratio (f) / (a) between the Ni conversion amount of the nickel compound (f) and the Zr conversion amount of the zirconium compound (a) is 0.005 to 0.10.
(6) Mass ratio (g) / (x) = 0.005 to 0.18 of acrylic resin (g) and total amount (x) of solid content of film
前記化成処理皮膜が、さらに、ワックス(h)を下記(7)の条件を満足するように含有することを特徴とする、請求項1に記載の表面処理鋼板。
(7)ワックス(h)と皮膜固形分の合計量(x)との質量比(h)/(x)=0.01〜0.10
The surface-treated steel sheet according to claim 1, wherein the chemical conversion film further contains a wax (h) so as to satisfy the following condition (7).
(7) Mass ratio (h) / (x) = 0.01-0.10 of wax (h) and total amount (x) of film solids
前記合金化溶融亜鉛めっき層の表面が、算術平均粗さ:Raで0.5〜1.5μm、かつ、粗さ曲線の平均線方向の長さ25.4mmあたりの山の数:PPIで150〜350を満足することを特徴とする請求項1または2に記載の表面処理鋼板。   The surface of the alloyed hot-dip galvanized layer has an arithmetic average roughness: Ra of 0.5 to 1.5 μm, and the number of peaks per length of 25.4 mm in the average line direction of the roughness curve: PPI of 150 The surface-treated steel sheet according to claim 1 or 2, which satisfies -350. 前記合金化溶融亜鉛めっき層表面の結晶の平均アスペクト比が3以下であることを特徴とする請求項1〜3のいずれか1項に記載の表面処理鋼板。   The surface-treated steel sheet according to any one of claims 1 to 3, wherein an average aspect ratio of crystals on the surface of the galvannealed layer is 3 or less. 請求項1〜4のいずれか1項に記載の表面処理鋼板を用いて成形加工したことを特徴とする電子機器筐体。   An electronic equipment casing formed by using the surface-treated steel sheet according to any one of claims 1 to 4.
JP2008298524A 2008-11-21 2008-11-21 Surface-treated steel sheet and electronic equipment casing Expired - Fee Related JP5365157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298524A JP5365157B2 (en) 2008-11-21 2008-11-21 Surface-treated steel sheet and electronic equipment casing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298524A JP5365157B2 (en) 2008-11-21 2008-11-21 Surface-treated steel sheet and electronic equipment casing

Publications (2)

Publication Number Publication Date
JP2010121198A true JP2010121198A (en) 2010-06-03
JP5365157B2 JP5365157B2 (en) 2013-12-11

Family

ID=42322781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298524A Expired - Fee Related JP5365157B2 (en) 2008-11-21 2008-11-21 Surface-treated steel sheet and electronic equipment casing

Country Status (1)

Country Link
JP (1) JP5365157B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247399A (en) * 2009-04-14 2010-11-04 Kobe Steel Ltd Resin-coated galvanized steel sheet excellent in spot weldability
JP2012121323A (en) * 2010-11-17 2012-06-28 Nippon Steel Corp Chromate-free colored coated metal sheet
JP2013072549A (en) * 2011-09-29 2013-04-22 Mitsubishi Automob Eng Co Ltd Metal gasket
KR20150113171A (en) 2013-02-08 2015-10-07 제이에프이 스틸 가부시키가이샤 Surface-treatment solution for zinc or zinc alloy coated steel sheet, zinc or zinc alloy coated steel sheet with surface-treatment film and method of producing same
EP2843362A4 (en) * 2012-04-25 2015-12-02 Nippon Steel & Sumitomo Metal Corp METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET
JP2016108629A (en) * 2014-12-09 2016-06-20 新日鐵住金株式会社 Underlayer treatment solution, method for manufacturing organic coated galvanized steel pipe using the same and organic coated galvanized steel pipe
US9927378B2 (en) 2013-10-25 2018-03-27 Nippon Steel & Sumitomo Metal Corporation On-line coating adhesion determination apparatus of galvannealed steel sheet, and galvannealed steel sheet manufacturing line
WO2023132106A1 (en) * 2022-01-04 2023-07-13 Jfeスチール株式会社 Lubricating film-coated zinc-plated steel sheet and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468456A (en) * 1987-09-08 1989-03-14 Nippon Steel Corp Alloyed and zinc hot dipped steel sheet having excellent powdering resistance and flaking resistance
JPH03249162A (en) * 1990-02-27 1991-11-07 Nkk Corp Alloying hot dip galvanized steel sheet
JP2003183801A (en) * 2001-12-20 2003-07-03 Jfe Steel Kk Galvannealed steel sheet and manufacturing method therefor
JP2003253416A (en) * 2002-02-27 2003-09-10 Jfe Steel Kk Hot-dip zincing steel sheet
JP2008169470A (en) * 2006-12-13 2008-07-24 Jfe Steel Kk Surface-treated zinc-coated steel sheet excellent in planar part corrosion resistance, blackening resistance, and appearance and corrosion resistance after press forming, and aqueous surface-treating liquid for zinc-coated steel sheet
JP2008207092A (en) * 2007-02-26 2008-09-11 Jfe Steel Kk Coated steel plate, processed goods and panel for thin-shaped television
JP2010053428A (en) * 2008-08-29 2010-03-11 Jfe Steel Corp Surface-treated steel sheet, and housing for electronic equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468456A (en) * 1987-09-08 1989-03-14 Nippon Steel Corp Alloyed and zinc hot dipped steel sheet having excellent powdering resistance and flaking resistance
JPH03249162A (en) * 1990-02-27 1991-11-07 Nkk Corp Alloying hot dip galvanized steel sheet
JP2003183801A (en) * 2001-12-20 2003-07-03 Jfe Steel Kk Galvannealed steel sheet and manufacturing method therefor
JP2003253416A (en) * 2002-02-27 2003-09-10 Jfe Steel Kk Hot-dip zincing steel sheet
JP2008169470A (en) * 2006-12-13 2008-07-24 Jfe Steel Kk Surface-treated zinc-coated steel sheet excellent in planar part corrosion resistance, blackening resistance, and appearance and corrosion resistance after press forming, and aqueous surface-treating liquid for zinc-coated steel sheet
JP2008207092A (en) * 2007-02-26 2008-09-11 Jfe Steel Kk Coated steel plate, processed goods and panel for thin-shaped television
JP2010053428A (en) * 2008-08-29 2010-03-11 Jfe Steel Corp Surface-treated steel sheet, and housing for electronic equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247399A (en) * 2009-04-14 2010-11-04 Kobe Steel Ltd Resin-coated galvanized steel sheet excellent in spot weldability
JP2012121323A (en) * 2010-11-17 2012-06-28 Nippon Steel Corp Chromate-free colored coated metal sheet
JP2013072549A (en) * 2011-09-29 2013-04-22 Mitsubishi Automob Eng Co Ltd Metal gasket
EP2843362A4 (en) * 2012-04-25 2015-12-02 Nippon Steel & Sumitomo Metal Corp METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET
US9417197B2 (en) 2012-04-25 2016-08-16 Nippon Steel & Sumitomo Metal Corporation Method of measuring thickness of Fe—Zn alloy phase of galvannealed steel sheet and apparatus for measuring the same
KR20150113171A (en) 2013-02-08 2015-10-07 제이에프이 스틸 가부시키가이샤 Surface-treatment solution for zinc or zinc alloy coated steel sheet, zinc or zinc alloy coated steel sheet with surface-treatment film and method of producing same
US9927378B2 (en) 2013-10-25 2018-03-27 Nippon Steel & Sumitomo Metal Corporation On-line coating adhesion determination apparatus of galvannealed steel sheet, and galvannealed steel sheet manufacturing line
JP2016108629A (en) * 2014-12-09 2016-06-20 新日鐵住金株式会社 Underlayer treatment solution, method for manufacturing organic coated galvanized steel pipe using the same and organic coated galvanized steel pipe
WO2023132106A1 (en) * 2022-01-04 2023-07-13 Jfeスチール株式会社 Lubricating film-coated zinc-plated steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP5365157B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5365157B2 (en) Surface-treated steel sheet and electronic equipment casing
JP5088095B2 (en) Surface treated galvanized steel sheet with excellent corrosion resistance, blackening resistance, appearance and corrosion resistance after press molding, and aqueous surface treatment liquid for galvanized steel sheet
JP6653026B2 (en) Solution composition for surface treatment of steel sheet, galvanized steel sheet surface-treated using the same, and method for producing the same
ES2934840T3 (en) Surface Treatment Solution Composition for Ternary Base Hot Dip Zinc Alloy Plated Steel Sheets, Providing Excellent Corrosion Resistance and Tarnishing Resistance, Ternary Base Hot Dip Zinc Alloy Plated Steel Sheets ternary using the same, and manufacturing process thereof
KR101468651B1 (en) Surface treatment liquid for zinc or zinc alloy plated steel sheet, zinc or zinc alloy plated steel sheet, and method of producing the steel sheet
JP2007051365A (en) Chromate-free surface-treated metal material excellent in corrosion resistance, heat resistance, fingerprint resistance, conductivity, coatability and black-dreg resistance at processing
KR101697891B1 (en) Surface-treatment solution for zinc or zinc alloy coated steel sheet, zinc or zinc alloy coated steel sheet with surface-treatment film and method of producing same
JP6604445B2 (en) Surface-treated steel sheet
JP2007291508A (en) Hot dip galvanized steel sheet for hot press, hot dip galvanized steel sheet, and hot-pressed material
JP2012062565A (en) Water-based surface treatment liquid for zinc-based plated steel sheet, and surface-treated zinc-based plated steel sheet
US6677053B2 (en) Surface-treated steel sheet and production method therefor
JP6226148B2 (en) Steel sheet with excellent delayed fracture resistance
JP5773107B1 (en) Zinc-based plated steel sheet with surface treatment film and method for producing the same
JP2010053428A (en) Surface-treated steel sheet, and housing for electronic equipment
JP2017087501A (en) Surface-treated steel plate
JP6296210B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2010007099A (en) Chromate-free surface treated metal plate
JP4283698B2 (en) Precoated steel sheet having excellent end face corrosion resistance and method for producing the same
JP3936657B2 (en) Method for producing non-chromium treated zinc-coated steel sheet
JP2006057145A (en) Sn-BASED PLATED STEEL SHEET HAVING EXCELLENT SOLDERABILITY, CORROSION RESISTANCE AND WHISKER RESISTANCE, AND ITS PRODUCTION METHOD
JP4935099B2 (en) Metal plating material
EP3901296A1 (en) Surface-treated steel sheet
JP3381649B2 (en) Surface treated steel sheet with excellent workability, corrosion resistance and blackening resistance
JP4298563B2 (en) Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same
JP3279196B2 (en) Galvanized steel sheet for organic resin coated steel sheet with excellent processing adhesion and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees