JP3753062B2 - Alloyed hot-dip galvanized steel sheet and method for producing the same - Google Patents

Alloyed hot-dip galvanized steel sheet and method for producing the same Download PDF

Info

Publication number
JP3753062B2
JP3753062B2 JP2001387299A JP2001387299A JP3753062B2 JP 3753062 B2 JP3753062 B2 JP 3753062B2 JP 2001387299 A JP2001387299 A JP 2001387299A JP 2001387299 A JP2001387299 A JP 2001387299A JP 3753062 B2 JP3753062 B2 JP 3753062B2
Authority
JP
Japan
Prior art keywords
steel sheet
dip galvanized
less
hot
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001387299A
Other languages
Japanese (ja)
Other versions
JP2003183801A (en
Inventor
亘江 藤林
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001387299A priority Critical patent/JP3753062B2/en
Publication of JP2003183801A publication Critical patent/JP2003183801A/en
Application granted granted Critical
Publication of JP3753062B2 publication Critical patent/JP3753062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、合金化溶融亜鉛めっき鋼板及びその製造方法に係わり、特に自動車用防錆表面処理鋼板として用いられ、摺動性に優れた合金化溶融亜鉛めっき鋼板及びその製造技術に関する。
【0002】
【従来の技術】
合金化溶融亜鉛めっき鋼板(以下、GA鋼板という)は、比較的安価で防食性に優れるため、自動車用鋼板として多用されている。近年、コスト削減の観点より、車体等の一体成形化が進み、使用する鋼板に対して摺動性、耐パウダリング性、耐低温チッピング性等の性能が以前より一層優れていることが要求されるようになっている。
【0003】
摺動性を改善する従来技術としては、例えば特開平3−191045号公報で開示されているように、GA鋼板の上層にFe系の電気めっき層を施すことが提案されている。しかしながら、この技術は、摺動性を良好にするが、製造コストは上昇するという欠点がある。
【0004】
また、特公平3−55544号公報は、合金化めっき層の摺動性に不利な軟質なη相及びζ相を低減し、摺動性に有利なδ1単相に近い状態にすることを提案している。しかしながら、上記の軟質な相を消滅させるには、高温で、且つ長時間にわたる合金化作業が必要となり、希望しないr相が別途多量に生成する。そのため、該特公平3−55544号公報記載の技術は、GA鋼板の耐パウダリング性を劣化させるという問題を有している。
【0005】
さらに、特開平11−30281号公報は、合金化めっき表層のAl−O量、並びにη相及びζ相の量をある範囲に規定し、摺動性を改善することを提案している。そして、具体的にAl−O量を低減するには、GA鋼板のアルカリ液への浸漬やブラシロールでの表面研削を、η相、ζ相の低減には、酸溶液への浸漬を行うと良いことが開示されている。しかしながら、この技術は、合金化溶融亜鉛めっき後に2度にわたって別の処理を施すことであり、その処理を行うための新規な設備が必要であり、製造コストの上昇を招く。
【0006】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、プレス加工を行っても従来より摺動性が良好で、且つ安価な合金化溶融亜鉛めっき鋼板、さらにはその製造方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
発明者は、上記目的を達成するため、種々の表面形状を変化させたGA鋼板を多種類試作し、金型を用いた摺動試験によってそれらの摺動性を調査した。その結果、金型面に接触する合金化めっき層の表面形状、つまり表面粗さや、山谷のうねり、さらには、表面に存在する山部の存在状態がGA鋼板の摺動特性に大きな影響を及ぼしていることを見出し、その知見に基づき本発明を完成させた。
【0008】
すなわち、本発明は、表面に合金化溶融亜鉛めっき層を有する鋼板であって、前記合金化溶融亜鉛めっき層中の鉄含有率が11〜14質量%であり、前記合金化溶融亜鉛めっき層の表面は、表面粗さ(Ra)が0.6〜1.0μmであり、長さ1インチあたりの山頂数(PPI)が350以下であり、山谷のうねり値(Wca)が0.4μm以下であり、且つ、表面粗さの確率振幅密度分布における中央値より2μm山頂方向へ寄った高さにおける山部の存在確率が0.05以下であり、前記高さにおける面積が10-5〜10-3mm2となる前記山部の個数が、3×102個/mm2以下であることを特徴とする合金化溶融亜鉛めっき鋼板である。
【0009】
また、本発明は、鋼板を、溶融亜鉛めっき浴へ浸漬させて鋼板表面に溶融亜鉛めっき層を形成させ、加熱して該溶融亜鉛めっき層の合金化を施した後、調質圧延を施す合金化溶融亜鉛めっき鋼板の製造方法において、前記溶融亜鉛めっき浴中のA1濃度を0.130〜0.145質量%浴温を450〜465℃とし、該溶融亜鉛めっき浴への前記鋼板の進入時の板温を465℃以下とすると共に、前記合金化の際の加熱温度を510〜540℃とし、さらに、前記調質圧延を、表面粗さ(Ra)が0.3〜0.8μm、長さ1インチあたり山頂数(PPI)が400〜600の表面を有するワークロールを用いて、伸び率0.5〜1.2%として行うことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法である。
【0010】
本発明では、合金化溶融亜鉛めっき鋼板の合金化されためっき層表面の凹凸における山部の面積や密度等を、該鋼板の摺動性に対して適切になるようにしたので、この鋼板を自動車用部品の素材に利用してもプレス成形性が従来よりも良好になる。しかも、従来の製造工程を何ら変更するものでないので、製造コストは安価に維持できる。
【0011】
【発明の実施の形態】
以下に、発明をなすに至った経緯に沿い、本発明の実施の形態を詳細に説明する。
【0012】
まず、合金化されためっき層(以下、単にめっき層という)中の鉄含有率であるが、その値が大きい方がめっき層が硬くなり、変形し難くなるので、摺動時に金型面との摩擦抵抗が小さく、有利である。これは、鉄含有量が多いと合金化時にめっき層表面に生成し易い、軟らかなζ相(ビッカース硬度で約200Hv.)の量が減少し、比較的硬いδ1相(ビッカース硬度で約300Hv,)が多く生成するためである。そこで、本発明者が鋭意検討したところ、めっき層中の鉄含有率は11〜14質量%が良いことを見出した。11質量%未満では、前記δ1相が十分に生成されず、14質量%超えでは、プレス加工時にめっき層がパウダリングと称される粉状の剥離を起こすようになるからである。この上限については、好ましくは13質量%である。
【0013】
また、めっき層の表面粗さ(JISで規定する算術平均粗さ:記号Ra)だけを変化させたGA鋼板で調査したところ、それらの摺動性は、Raが0.6〜1.0μmの範囲にあると、良好になる傾向のあることがわかった。これは、図1に示すように、Raを比較的小さく、平坦にした方(具体的には、Ra1.0μm以下)が、金型1の面がめっき層表面の山部2で引っかかりが少なくなり、摺動抵抗が小さくなるからである。ただし、Raを0.6μm未満まで小さくすると、山部は小さくなるが、同時に凹部3も小さくなる。その結果、摺動時に用いる潤滑油の油溜まり効果(凹部より潤滑油が凸部へ吹き出し、金型1の面との摩擦抵抗を減少させる)が小さくなり、GA鋼板の摺動性はかえって劣化する。そこで、本発明では、めっき層の表面粗さ(Ra)は、0.6〜1.0μmにすることにした。
【0014】
さらに、発明者は、めっき層表面上の多くの位置で、長さ1インチ当たりの山頂数(記号:PPIで表す、Peak per inchの略)を測定し、鋼板の摺動性との関係を調査した。その結果、PPIは小さい方が摺動性は良好になる傾向のあることがわかった。具体的には、350個以下が好ましい。これは、図2に示すように、PPIが大きいと、金型1の面との接触部分で接触角(図中のθ)が大きくなり、山部2との抵抗が大きくなって摺動性が劣化するためと考えられる。一方、PPIが小さい場合には,前記図2に示したように、大きい山部2が存在するようになり、山部2との接触角が小さくなって、抵抗が比較的抑制されるようになる。
【0015】
そこで、本発明では、めっき層表面のPPIを350個以下に限定することにした。
【0016】
加えて、発明者は、GA鋼板の板厚方向断面視で、めっき層表面の山部(凸部ともいう)及び谷部(凹部ともいう)が形成する波状面のうねり状態に着眼し、うねりをJIS B 0610に規定された方法で測定し、中心線うねりの値(記号:Wca)で評価することにした。そして、そのWca値と摺動性との関係を調査したところ、Wca値が0.4μm以下であると、摺動性が良好になることを見出し、このことを本発明の要件に加えることにした。これは、Wcaが0.4μmを超えると、Raが大きい場合と同様に金型との摩擦抵抗が大きくなり、摺動性が低下するからである。
【0017】
しかしながら、これまでに述べためっき層の鉄含有率、表面粗さ(Ra)、山頂数(PPI)及びうねり状態(Wca値)だけではGA鋼板の摺動性に与える影響を完全に配慮したことにならないと考え、さらなる研究を重ねた。
【0018】
まず、発明者らは、GA鋼板と金型との摺動性に関して、GA鋼板表面の凹凸における山部の先端と金型との接触状態が摺動性に影響を及ぼすと考えた。そして、プレス時には、ある程度の面圧にて金型により鋼板を押さえつけることとなるが、このとき、山部先端が潰され、潰された山部先端と金型とが接触することとなるので、この接触面積が小さい方が、金型と鋼板表面との摩擦係数が小さくなって摺動性が向上するという発想に至った。そして、GA鋼板のめっき層が上述の鉄含有率であり、めっき層表面が上述の表面粗さ(Ra)、うねり値(Wca)、長さ1インチあたりの山頂数(PPI)の範囲を満たす場合には、鋼板表面において金型と接触するのは、鋼板表面の表面粗さの確率振幅分布の中央値より2μm程度山頂方向へ寄った高さの部分であることがわかった。
【0019】
すなわち、表面粗さの確率振幅密度分布の中央値より2μm山頂方向へ寄った高さにおける山部の存在確率が、金型との摩擦係数に大きな相関があることを見出した。ここで、確率振幅分布とは、表面形状の凹凸曲線をある高さの直線で切った時、その直線と凹凸曲線の交点の数をその高さの頻度とし、それぞれの高さにおける頻度の分布を確率分布とすることにより求められるものである。高さに対する頻度をヒストグラムに表わせば、図3に示すような確率振幅分布曲線が得られる。そして、この確率振幅分布の中央値より2μm山頂方向へ寄った高さにおける山部の存在確率とは、図4に示すように、所定寸法のサンプルについて、中央値より2μm山頂方向へ寄った高さでの平面により切断される山部の面積(図4中斜線部で示される面積)の総和をサンプル面積(L×W)で除した値で求められるものである。
【0020】
発明者は、通常の圧延工程にて熱間圧延、酸洗、冷間圧延を順次行い、板厚0.8mmの冷延鋼板を製造し、その鋼板を、焼鈍温度800℃で再結晶焼鈍を行ってから、Al濃度0.135質量%、浴温460℃の溶融亜鉛めっき浴に浸漬してめっきを施した後、520℃に加熱してめっき層の合金化を行って合金化溶融亜鉛めっき鋼板(GA鋼板)とし、さらに、調質圧延を行ったものよりサンプルを切り出した。サンプルの表面形状は、調質圧延時のワークロールの表面形状、伸び率の変更により各値に調整した。ここで、表面粗さ(Ra)は0.6〜1.0μmの範囲に、長さ1インチあたりの山頂数(PPI)は350以下に、山谷のうねり値(Wca)は0.4μm以下に調整し、前記山部の存在確率を変化させ、山部の存在確率が摺動性に及ぼす影響を調査した。なお、表面粗さ(Ra)、長さ1インチあたりの山頂数(PPI)、山谷のうねり値(Wca)は、それぞれ以下のようにしてその値を確認した。
Raの測定
測定長さ2.5mm、カットオフ0.8mmで2次元表面粗さの測定を行うことで求めた(JIS B 0601参照)。
PPIの測定
測定長さ2.5mm、カットオフ0.8mmで2次元表面粗さの測定を行い、1インチ当たりの山の数を求めた。基準レベルは0.254μmとした。
Wcaの測定
測定長さ24mm、カットオフ0.8〜8mmとして求めた(JIS B 0610参照)。
【0021】
山部の存在確率は、明伸工機(株)製の表面形状解析装置(SAS−2010)にて、先端径2μmの触針を用いて、測定面積2mm×1mm=2mm2について、x方向に1μm間隔にて2mm(2000points)の測定を、y方向に10μm間隔にて1mm(100本)の測定を行った。この測定データをもとに、表面粗さの確率振幅密度分布を求め、この確率振幅密度分布で中央値より2μm寄った平面を境界面として、それ以上の高さの部分(該平面より高い凸部分)とそれ未満の高さの部分とを白黒で表した2値化マップを作成した。
【0022】
2値化マップの例を図5に示す。図5に示した2値化マップでは黒色部分が境界面の高さ以上に高い部分、白色部分が境界面より低い部分を示している。そして、この2値化マップより、画像解析装置で前記山部の存在確率、すなわち、黒色部の面積(mm2)/2(mm2)の値を求めた。なお、図5(a)は山存在確率が0.061である例であり、図5(b)は山存在確率が0.048である例である。
【0023】
さらに、各サンプルについて、防錆油を1.5g/m2塗油し、金型との面圧9.8MPaで摺動距離100mm、摺動速度500mm/minの条件で平板摺動試験を行い、摩擦係数を求めた。
【0024】
確率振幅分布における中央値から2μm山頂方向へ寄った高さでの平断面における山部の存在確率(図5においては黒色部の面積率)と、摩擦係数との関係を図6に示す。図6から、確率振幅分布における中央値から2μm山頂方向へ寄った高さにおける山部の存在確率が0.05以下となると、摩擦係数が低下し、0.130以下を確保できることがわかる。
【0025】
以上のことから、本発明では、表面粗さの確率振幅密度分布における中央値より2μm山頂方向へ寄った高さでの平断面における山部の存在確率が0.05以下であること必要とする。
【0026】
また、さらに検討を行ったところ、上記のように表面粗さの確率振幅密度分布における中央値より2μm山頂方向へ寄った高さにおける山部の存在確率が0.05以下となるようにし、さらに、前記山部のうち面積が小さいもの、すなわち、図5において面積の小さい黒色部の個数を少なくすると、摺動性がより向上することがわかった。これは、微小の山部が多いと、図7に示すように、微小の山部がヤスリのような効果をもたらし、金型面との摩擦抵抗を大きくするためと推定される。そして、面積が10-5〜10-3mm2である山部の個数が金型面との摩擦係数に影響を及ぼすことがわかった。図8に、面積が10-5〜10-3mm2の山部の個数と摩擦係数との関係を示す。面積が10-5〜10-3mm2の山部の個数を300個/mm2以下とすることで、摩擦係数がより低下することがわかる。
【0027】
したがって、本発明では、前記山部の面積が10-5〜10-3mm2の山部の個数を3×102個/mm2以下とする必要がある。ここで、3×102個/mm2以下に個数規定を行う山部を、前記山部を前記平断面で切断したときの面積が10-5〜10-3mm2の範囲にある山部とした理由は、該面積が10-5mm2未満の山部は、存在したとしても金型との接触面積が小さすぎて金型面との摩擦抵抗に影響を及ぼさないためであり、また、該面積が10-3mm2超の山部は、存在したとしても、前述の存在確率の範囲内であれば金型との摩擦係数は増大しないためである。
【0028】
なお、表面粗さの確率振幅密度分布における中央値より2μm山頂方向へ寄った高さにおける面積が10-5〜10-3mm2の山部の個数については、前述の2値化マップより、画像解析装置を用いて測定した。
【0029】
次に、以上述べた本発明に係るGA鋼板の製造方法を説明する。
【0030】
それは、従来通り、鋼板を溶融亜鉛をめっきする工程、めっきを合金化する工程及び合金化後の鋼板を調質圧延する工程を順次経て製造される。ただし、各工程では、本発明に係るGA鋼板とするために、各種の操業条件及び装置に配慮がなされている。
【0031】
まず、溶融亜鉛めっきの条件としては、亜鉛浴のAl濃度、浴温及び浴へ進入させる鋼板の温度(以下、進入板温という)を適切にする必要がある。つまり、GA鋼板の表面を平滑にして、低表面粗さ(Ra)化,低PPI化,山個数の低減を行うのである。検討の結果、そのためには、溶融亜鉛めっき浴(以下めっき浴という)中のAl濃度、浴温及び進入板温をいずれも低目にすることが有効であることを知った。
【0032】
具体的には、めっき浴のAl濃度が高いと、めっき時に合金化を抑制するFe−Al合金が多量に形成され、鋼板の粒界等、Feの拡散が速いところで局所的な合金化が起こり、めっき表面の凹凸が大きくなり、表面粗さ(Ra)、長さ1インチあたりの山頂数(PPI)の両方を前述の範囲とすることが困難となる。そのため、本発明では、該Al濃度を0.145質量%以下に、好ましくは0.140質量%以下に抑えることにした。なお、Alは、GA鋼板の耐パウダリング性の確保のためにめっき浴中に含有させるが、このためには0.130質量%以上とすることが好ましい。
【0033】
また、浴温、進入板温を高くすると、同様にめっき表面のPPIが大きくなり易い。これも、めっき時に形成するFe−Al合金が関与していると考えられ、低浴温、低進入板温として、鋼板の結晶粒界でのFeの拡散速度を低下させることが望ましい。そこで、検討を重ねたところ、板温は450〜465℃、進入板温は465℃以下とするのが良いことを知った。
【0034】
さらに、めっき後の合金化においては、摺動性に悪影響を及ぼすζ相の出現を低減することが望ましい。そこで、本発明では、ζ相が不安定となる高温度で合金化するのが良いと考え、510℃以上の温度で合金化することにした。合金化時の加熱温度が510℃に満たないとζ相の低減を十分に行った状態でFe含有率を11〜14%の範囲にできない。本発明では、前記したようなめっき層の鉄含有率を11〜14質量%に抑制するため、通常510℃以上の温度では、10〜20秒程度の保持時間とすれば良いが、この保持時間は適宜変更してもかまわない。
【0035】
加えて、合金化後に常温まで冷却されたGA鋼板を調質圧延する必要がある。
【0036】
本発明では、この調質圧延を低Ra,高PPIのワークロールで圧延するのが特徴である。検討の結果、具体的には、上述のめっき条件、合金化条件にて製造したGA鋼板に対して、Raが0.3〜0.8μmで、PPIが400〜600の表面形状を備えたワークロールを用い、且つ鋼板の伸び率を0.5〜1.2%として調質圧延を施せば、GA鋼板表面のRa、PPI、山部の存在状態を上述した範囲にできることを見出した。つまり、この調質圧延で、合金化で形成された細かい凹凸を比較的平坦なロールで消滅させるのである。
【0037】
なお、鋼板表面のうねり値(Wca)を0.4μm以下とするには、被めっき原板となる鋼板として、Wcaが0.4μm以下の鋼板を用いることで達成可能であり、被めっき原板のWcaを0.40μm以下とするには、冷間圧延時等に使用するワークロールのうねり値を小さくする等、めっき原板製造時の圧延条件を適宜選択すれば良い。
【0038】
【実施例】
通常の圧延工程にて熱間圧延、酸洗、冷間圧延を順次行い、板厚0.8mmの冷延鋼板を製造した。その冷延鋼板を、連続溶融亜鉛めっきライン(CGL)にて、焼鈍温度800℃で再結晶焼鈍を行ってから、表1に示す条件にて溶融亜鉛めっき及び合金化を施した。ここで、めっき浴中のAl濃度は0.135質量%とし、鋼No.13だけは比較のために0.150質量%とした。さらに、合金化後の鋼板に表1に示す圧延条件により調質圧延を施した。得られた合金化溶融亜鉛めっき鋼板から、各種試験用の試料を採取して、めっき層中の鉄含有量、鋼板の表面形状、および摺動性の調査を行った。
【0039】
【表1】

Figure 0003753062
【0040】
なお、めっき層中の鉄含有量は、めっき層を溶解して湿式分析により行った。また、表中のアンダラインを施した数値は、本発明の条件から外れるものである。
表面形状の調査は、表面粗さRa(μm)、長さ1インチあたりの山頂数PPI、中心線うねり値Wca(μm)、表面粗さの確率振幅密度分布における中央値より2μm山頂方向へ寄った高さにおける山部の存在確率、この高さにおける面積が10-5〜10-3mm2である前記山部の単位面積当たりの個数(個/mm)について調査した。これらの調査方法については前述のとおりである。摺動性の調査は、前述の摺動試験と同様の方法で金型との摩擦係数を求め、摩擦係数が0.130超を×、0.125超〜0.130を○、0.125以下を◎として評価した。表2に表面形状と摺動性の調査結果を示す。
【0041】
【表2】
Figure 0003753062
【0042】
表1、表2から、発明例である鋼No.1、3、5、7、8は、摩擦係数が◎あるいは○であり、良好な摺動性を示すことがわかる。これに対し、鋼No.2、6、9は、調質圧延時に用いたワークロールの表面形状が、Raが大き過ぎたり、PPIが小さすぎたりするので、得られる鋼板の山存在確率またはRaが大きくなり、摩擦係数が大きくなっている。また、鋼No.4は、合金化温度が低すぎるため、めっき層中の鉄含有率が本発明の範囲を満たさず、摩擦係数が大きい。さらに、鋼No.10は、めっき浴温が高すぎるため鋼板のPPIが大きく、また、鋼No.11は、めっき浴温および進入板温が高いため鋼板のPPIおよび山部密度が大きく、鋼No.12は、めっき浴温および進入板温が高く、合金化温度が低いためPPI、山存在確率、山部密度が高く、いずれも摩擦係数が大きくなっている。また、鋼No.13は、めっき浴中のAl濃度が高すぎるため、Ra、PPIともに大きくなっており、摩擦係数が大きい。
【0043】
【発明の効果】
以上述べたように、本発明により、構造の複雑な自動車用部品の素材に利用しても、プレス成形性の良好な合金化溶融亜鉛めっき鋼板が提供できるようになる。しかも、従来の製造工程において、めっき条件、調質圧延条件に若干の変更を加えることで製造が可能であるので、製造コストは安価に維持できる。
【図面の簡単な説明】
【図1】GA鋼板の表面粗さが該鋼板の摺動性に与える影響を説明する図である。
【図2】GA鋼板の表面上でのPPIが該鋼板の摺動性に与える影響を説明する図である。
【図3】GA鋼板の表面粗さの確率振幅密度分布を説明する図である。
【図4】表面粗さの確率振幅密度分布における中央値より2μm山頂方面へ寄った高さにおける山部の存在確率を説明する図である。
【図5】GA鋼板の表面粗さの確率振幅密度分布で、中央値より山頂方向へ2μm寄った位置を基準に2値化した鋼板表面のマップである。
【図6】山部存在確率と摩擦係数との関係を示すグラフである。
【図7】GA鋼板表面の微小山部の個数が該鋼板の摺動性に与える影響を説明する図である。
【図8】微小山部の山個数と摩擦係数との関係を示すグラフである。
【符号の説明】
1 金型
2 山部
3 凹部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alloyed hot-dip galvanized steel sheet and a method for producing the same, and more particularly to an alloyed hot-dip galvanized steel sheet that is used as a rust-proof surface-treated steel sheet for automobiles and has excellent slidability, and a production technique thereof.
[0002]
[Prior art]
Alloyed hot-dip galvanized steel sheets (hereinafter referred to as GA steel sheets) are widely used as automotive steel sheets because they are relatively inexpensive and excellent in corrosion resistance. In recent years, from the viewpoint of cost reduction, integration of car bodies and the like has progressed, and it has been required that the steel sheets used have better performance such as slidability, powdering resistance, and low temperature chipping resistance than before. It has become so.
[0003]
As a conventional technique for improving the slidability, for example, as disclosed in Japanese Patent Laid-Open No. 3-191045, it has been proposed to apply an Fe-based electroplating layer on the upper layer of the GA steel sheet. However, this technique has good slidability, but has the disadvantage of increasing manufacturing costs.
[0004]
Japanese Patent Publication No. 3-55544 discloses that the soft η phase and ζ phase, which are disadvantageous for the slidability of the alloyed plating layer, are reduced to a state close to δ 1 single phase which is advantageous for slidability. is suggesting. However, in order to eliminate the soft phase, an alloying operation is required at a high temperature for a long time, and an undesired r phase is generated in a large amount separately. Therefore, the technique described in Japanese Patent Publication No. 3-55544 has a problem of deteriorating the powdering resistance of the GA steel sheet.
[0005]
Furthermore, Japanese Patent Application Laid-Open No. 11-30281 proposes that the Al—O amount of the alloyed plating surface layer and the amounts of η phase and ζ phase are regulated within a certain range to improve the slidability. And in order to specifically reduce the amount of Al-O, immersion of the GA steel sheet in an alkaline solution or surface grinding with a brush roll is performed. To reduce the η phase and ζ phase, immersion in an acid solution is performed. It is disclosed that it is good. However, this technique is to perform another treatment twice after galvannealing and requires new equipment for performing the treatment, resulting in an increase in manufacturing cost.
[0006]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide an alloyed hot-dip galvanized steel sheet that is more slidable than conventional ones even if press working is performed, and further provides a method for producing the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventor made various types of GA steel sheets having various surface shapes changed, and investigated their slidability by a sliding test using a mold. As a result, the surface shape of the alloyed plating layer in contact with the mold surface, that is, the surface roughness, the undulation of the valleys, and the presence of the peaks existing on the surface have a great influence on the sliding characteristics of the GA steel sheet. The present invention was completed based on the findings.
[0008]
That is, the present invention is a steel plate having an alloyed hot-dip galvanized layer on the surface, wherein the iron content in the alloyed hot-dip galvanized layer is 11 to 14% by mass, The surface has a surface roughness (Ra) of 0.6 to 1.0 μm, a peak number per inch (PPI) of 350 or less, and a undulation value (Wca) of a valley and valley of 0.4 μm or less. In addition, the probability of existence of a peak at a height of 2 μm from the median in the probability amplitude density distribution of the surface roughness is 0.05 or less, and the area at the height is 10 −5 to 10 −. An alloyed hot-dip galvanized steel sheet characterized in that the number of the crests to be 3 mm 2 is 3 × 10 2 pieces / mm 2 or less.
[0009]
The present invention also relates to an alloy in which a steel sheet is immersed in a hot dip galvanizing bath to form a hot dip galvanized layer on the surface of the steel sheet, and after heating and alloying the hot dip galvanized layer, the alloy is subjected to temper rolling. In the manufacturing method of the hot dip galvanized steel sheet, the A1 concentration in the hot dip galvanizing bath is 0.130 to 0.145% by mass , the bath temperature is 450 to 465 ° C., and the steel sheet enters the hot dip galvanizing bath. The plate temperature at the time is 465 ° C. or less, the heating temperature at the time of alloying is 510 to 540 ° C., and the temper rolling is performed with a surface roughness (Ra) of 0.3 to 0.8 μm, A method for producing an alloyed hot-dip galvanized steel sheet characterized by using a work roll having a surface with 400 to 600 peaks per inch (PPI) at an elongation of 0.5 to 1.2% It is.
[0010]
In the present invention, the area and density of the ridges in the irregularities on the surface of the alloyed hot-dip galvanized steel sheet are appropriate for the slidability of the steel sheet. Even when used as a material for automobile parts, the press formability is better than before. Moreover, since the conventional manufacturing process is not changed at all, the manufacturing cost can be kept low.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the following, the embodiment of the present invention will be described in detail along with the process leading to the invention.
[0012]
First, the iron content in the alloyed plating layer (hereinafter simply referred to as the plating layer), the higher the value, the harder the plating layer and the more difficult it is to deform. The frictional resistance is small and advantageous. This is because when the iron content is high, the amount of soft ζ phase (about 200 Hv. In Vickers hardness) that is likely to be formed on the surface of the plating layer during alloying is reduced, and the relatively hard δ 1 phase (about 300 Hv in Vickers hardness). )) Is generated in large numbers. Then, when this inventor earnestly examined, it discovered that the iron content rate in a plating layer was 11-14 mass%. If the amount is less than 11% by mass, the δ 1 phase is not sufficiently generated. If the amount exceeds 14% by mass, the plating layer causes powdery peeling called powdering during press working. About this upper limit, Preferably it is 13 mass%.
[0013]
Moreover, when investigated by the GA steel plate which changed only the surface roughness (arithmetic mean roughness: symbol Ra prescribed | regulated by JIS) of a plating layer, those slidability is Ra 0.6-1.0 micrometer. It turned out that it exists in the tendency which becomes favorable when it exists in a range. This is because, as shown in FIG. 1, when Ra is relatively small and flat (specifically, Ra 1.0 μm or less), the surface of the mold 1 is less likely to get caught at the crest 2 on the surface of the plating layer. This is because the sliding resistance is reduced. However, when Ra is reduced to less than 0.6 μm, the peak portion is reduced, but at the same time, the concave portion 3 is also reduced. As a result, the oil pool effect of the lubricating oil used during sliding (the lubricating oil blows out from the concave portion to the convex portion and reduces the frictional resistance with the surface of the mold 1) is reduced, and the slidability of the GA steel plate is rather deteriorated. To do. Therefore, in the present invention, the surface roughness (Ra) of the plating layer is set to 0.6 to 1.0 μm.
[0014]
Furthermore, the inventor measured the number of peaks per inch (symbol: PPI, abbreviation of Peak per inch) at many positions on the surface of the plating layer, and showed the relationship with the slidability of the steel sheet. investigated. As a result, it was found that the smaller the PPI, the better the slidability. Specifically, 350 or less is preferable. As shown in FIG. 2, when the PPI is large, the contact angle (θ in the figure) becomes large at the contact portion with the surface of the mold 1, and the resistance with the peak portion 2 becomes large and the sliding property is increased. This is thought to be due to deterioration. On the other hand, when the PPI is small, as shown in FIG. 2, there is a large peak 2 so that the contact angle with the peak 2 is small and the resistance is relatively suppressed. Become.
[0015]
Therefore, in the present invention, the PPI on the plating layer surface is limited to 350 or less.
[0016]
In addition, the inventors focused on the waviness of the wavy surface formed by the peaks (also referred to as protrusions) and valleys (also referred to as recesses) on the surface of the plating layer in the thickness direction cross-sectional view of the GA steel sheet. Was measured by the method defined in JIS B 0610, and the center line waviness value (symbol: Wca) was evaluated. And when investigating the relationship between the Wca value and the slidability, it was found that the slidability was improved when the Wca value was 0.4 μm or less, and this was added to the requirements of the present invention. did. This is because, when Wca exceeds 0.4 μm, the frictional resistance with the mold increases as in the case where Ra is large, and the slidability decreases.
[0017]
However, the iron content, surface roughness (Ra), number of peaks (PPI) and waviness (Wca value) of the plating layer described so far have fully considered the effect on the slidability of the GA steel sheet. I thought that it wouldn't be, and I did more research.
[0018]
First, the inventors considered that the slidability between the GA steel sheet and the mold was affected by the contact state between the tip of the crest and the mold on the unevenness of the GA steel sheet surface. And, at the time of pressing, the steel plate will be pressed by a mold with a certain surface pressure, but at this time, the tip of the crest is crushed, and the crushed crest tip and the mold come into contact with each other, The smaller contact area has led to the idea that the coefficient of friction between the mold and the steel sheet surface becomes smaller and the slidability is improved. And the plating layer of GA steel plate is the above-mentioned iron content rate, and the plating layer surface satisfies the above-mentioned surface roughness (Ra), waviness value (Wca), and the number of peaks (PPI) per inch of length. In some cases, it was found that the portion in contact with the mold on the surface of the steel plate was a portion having a height approaching the summit direction by about 2 μm from the median value of the probability amplitude distribution of the surface roughness of the steel plate surface.
[0019]
That is, the present inventors have found that the existence probability of a peak at a height that is 2 μm away from the median value of the probability amplitude density distribution of the surface roughness has a large correlation with the friction coefficient with the mold. Here, the probability amplitude distribution is the distribution of frequency at each height when the surface shape uneven curve is cut by a straight line of a certain height and the number of intersections of the straight line and the uneven curve is the frequency of that height. Is a probability distribution. If the frequency with respect to the height is represented in the histogram, a probability amplitude distribution curve as shown in FIG. 3 is obtained. And the existence probability of the ridge at the height near the peak of 2 μm from the median of the probability amplitude distribution, as shown in FIG. 4, is the height near the peak of 2 μm from the median for the sample of a predetermined size. This is obtained by dividing the sum of the areas of the peaks cut by the plane (area shown by the hatched portion in FIG. 4) by the sample area (L × W).
[0020]
The inventor sequentially performs hot rolling, pickling, and cold rolling in a normal rolling process to produce a cold-rolled steel sheet having a thickness of 0.8 mm and subjecting the steel sheet to recrystallization annealing at an annealing temperature of 800 ° C. Then, after immersing in a hot dip galvanizing bath with an Al concentration of 0.135% by mass and a bath temperature of 460 ° C., heating to 520 ° C. to alloy the plated layer and then alloying hot dip galvanizing A steel plate (GA steel plate) was used, and a sample was cut out from the one subjected to temper rolling. The surface shape of the sample was adjusted to each value by changing the surface shape and elongation rate of the work roll during temper rolling. Here, the surface roughness (Ra) is in the range of 0.6 to 1.0 μm, the number of peaks (PPI) per inch is 350 or less, and the undulation value (Wca) of the valley is 0.4 μm or less. Adjustments were made to change the existence probability of the mountain portion, and the influence of the mountain portion existence probability on the slidability was investigated. The surface roughness (Ra), the number of peaks (inch per inch) (PPI), and the undulation value (Wca) of the valleys were confirmed as follows.
Measurement of Ra It was determined by measuring the two-dimensional surface roughness with a measurement length of 2.5 mm and a cutoff of 0.8 mm (see JIS B 0601).
Measurement of PPI Two-dimensional surface roughness was measured at a measurement length of 2.5 mm and a cutoff of 0.8 mm, and the number of peaks per inch was determined. The reference level was 0.254 μm.
Measurement of Wca It was determined as a measurement length of 24 mm and a cut-off of 0.8 to 8 mm (see JIS B 0610).
[0021]
The existence probability of the mountain part is measured in the x direction for a measurement area of 2 mm × 1 mm = 2 mm 2 using a stylus having a tip diameter of 2 μm using a surface shape analyzer (SAS-2010) manufactured by Meishin Koki Co., Ltd. Measurements of 2 mm (2000 points) were performed at 1 μm intervals, and 1 mm (100 pieces) were measured at 10 μm intervals in the y direction. Based on this measurement data, a probability amplitude density distribution of the surface roughness is obtained, and a plane that is 2 μm away from the median value in this probability amplitude density distribution is used as a boundary surface (a convex portion higher than the plane). A binarized map in which the portion) and a portion with a height less than that were expressed in black and white was created.
[0022]
An example of the binarization map is shown in FIG. In the binarized map shown in FIG. 5, the black portion indicates a portion higher than the height of the boundary surface, and the white portion indicates a portion lower than the boundary surface. Then, from the binarized map, the existence probability of the mountain portion, that is, the value of the area (mm 2 ) / 2 (mm 2 ) of the black portion was obtained by the image analysis apparatus. 5A is an example in which the mountain existence probability is 0.061, and FIG. 5B is an example in which the mountain existence probability is 0.048.
[0023]
Further, each sample was coated with 1.5 g / m 2 of rust-preventive oil, and a flat plate sliding test was performed under conditions of a sliding distance of 100 mm and a sliding speed of 500 mm / min with a surface pressure of 9.8 MPa with the mold. The coefficient of friction was determined.
[0024]
FIG. 6 shows the relationship between the existence probability of a peak portion in a flat section at a height close to the 2 μm peak direction from the median value in the probability amplitude distribution (the area ratio of the black portion in FIG. 5) and the friction coefficient. From FIG. 6, it can be seen that when the peak probability of the peak at a height of 2 μm from the median value in the probability amplitude distribution is 0.05 or less, the friction coefficient is reduced and 0.130 or less can be secured.
[0025]
From the above, in the present invention, it is necessary that the existence probability of the peak portion in the plane section at a height closer to the summit direction by 2 μm than the median value in the probability amplitude density distribution of the surface roughness is 0.05 or less. .
[0026]
Further, as a result of further investigation, as described above, the existence probability of the peak at a height that is 2 μm away from the median value in the probability amplitude density distribution of the surface roughness is 0.05 or less, and It has been found that the slidability is further improved by reducing the number of the black portions having a small area, that is, the number of black portions having a small area in FIG. This is presumed to be because, when there are many minute ridges, as shown in FIG. 7, the minute ridges provide a file-like effect and increase the frictional resistance with the mold surface. And it turned out that the number of the peak parts whose area is 10 <-5 > -10 <-3> mm < 2 > affects the friction coefficient with a metal mold | die surface. FIG. 8 shows the relationship between the number of peaks having an area of 10 −5 to 10 −3 mm 2 and the friction coefficient. Area With 10-5 to the number of crests of -3 mm 2 300 pieces / mm 2 or less, it can be seen that the friction coefficient is reduced more.
[0027]
Therefore, in the present invention, it is necessary to set the number of peak portions having an area of 10 −5 to 10 −3 mm 2 to 3 × 10 2 pieces / mm 2 or less. Here, the crest of the ridges to perform the number specified in 3 × 10 2 cells / mm 2 or less, the area at which the ridges and cut in said flat section is in the range of 10 -5 ~10 -3 mm 2 The reason for this is that, even if a peak portion having an area of less than 10 −5 mm 2 is present, the contact area with the mold is too small to affect the frictional resistance with the mold surface, and This is because, even if there is a peak having an area of more than 10 −3 mm 2 , the coefficient of friction with the mold does not increase as long as it is within the range of the aforementioned existence probability.
[0028]
Note that the number of areas in the height closer than the median to 2μm summit direction in the probability amplitude density distribution of the surface roughness is 10 -5 to 10 crests of -3 mm 2, more binary map described above, Measurements were made using an image analyzer.
[0029]
Next, the manufacturing method of the GA steel plate which concerns on this invention described above is demonstrated.
[0030]
It is manufactured through a step of plating a steel sheet with hot dip zinc, a step of alloying the plating, and a step of temper rolling the steel plate after alloying as usual. However, in each process, consideration is given to various operating conditions and apparatuses in order to obtain the GA steel sheet according to the present invention.
[0031]
First, as the conditions for hot dip galvanization, it is necessary to appropriately set the Al concentration of the zinc bath, the bath temperature, and the temperature of the steel sheet that enters the bath (hereinafter referred to as the entrance plate temperature). That is, the surface of the GA steel plate is smoothed to reduce the surface roughness (Ra), reduce the PPI, and reduce the number of peaks. As a result of the study, it has been found that for that purpose, it is effective to lower the Al concentration, bath temperature and entry plate temperature in the hot dip galvanizing bath (hereinafter referred to as plating bath).
[0032]
Specifically, if the Al concentration in the plating bath is high, a large amount of Fe-Al alloy that suppresses alloying during plating is formed, and local alloying occurs where Fe diffusion is fast, such as the grain boundary of the steel sheet. The unevenness of the plating surface becomes large, and it becomes difficult to make both the surface roughness (Ra) and the number of peaks (inch per peak) (PPI) within the above-mentioned range. Therefore, in the present invention, the Al concentration is suppressed to 0.145% by mass or less, preferably 0.140% by mass or less. Al is contained in the plating bath in order to ensure the powdering resistance of the GA steel sheet. For this purpose, it is preferably 0.130% by mass or more.
[0033]
Further, when the bath temperature and the approach plate temperature are increased, the PPI on the plating surface is likely to increase. This is also considered to be related to the Fe—Al alloy formed at the time of plating, and it is desirable to lower the diffusion rate of Fe at the grain boundary of the steel sheet as a low bath temperature and a low intrusion plate temperature. Therefore, as a result of repeated studies, it was found that the plate temperature should be 450 to 465 ° C. and the entry plate temperature should be 465 ° C. or less.
[0034]
Furthermore, in alloying after plating, it is desirable to reduce the appearance of the ζ phase that adversely affects slidability. Therefore, in the present invention, it was considered that the alloying should be performed at a high temperature at which the ζ phase becomes unstable, and the alloying was performed at a temperature of 510 ° C. or higher. If the heating temperature at the time of alloying is less than 510 ° C., the Fe content cannot be in the range of 11 to 14% in a state where the ζ phase is sufficiently reduced. In the present invention, in order to suppress the iron content of the plating layer as described above to 11 to 14% by mass, the holding time is usually about 10 to 20 seconds at a temperature of 510 ° C. or higher. May be changed as appropriate.
[0035]
In addition, it is necessary to temper roll the GA steel sheet cooled to room temperature after alloying.
[0036]
In the present invention, this temper rolling is characterized by rolling with a work roll of low Ra and high PPI. As a result of the study, specifically, a workpiece having a surface shape with a Ra of 0.3 to 0.8 μm and a PPI of 400 to 600 with respect to the GA steel sheet manufactured under the above-described plating conditions and alloying conditions. It has been found that if rolls are used and the temper rolling is performed with the elongation percentage of the steel sheet being 0.5 to 1.2%, the presence of Ra, PPI, and peaks on the surface of the GA steel sheet can be within the above-described ranges. That is, in this temper rolling, fine irregularities formed by alloying are eliminated with a relatively flat roll.
[0037]
In addition, in order to make the waviness value (Wca) of the steel plate surface to be 0.4 μm or less, it can be achieved by using a steel plate having a Wca of 0.4 μm or less as a steel plate to be plated. In order to set the thickness to 0.40 μm or less, the rolling conditions at the time of producing the plating original sheet may be appropriately selected, for example, by reducing the waviness value of the work roll used during cold rolling or the like.
[0038]
【Example】
In the normal rolling process, hot rolling, pickling, and cold rolling were sequentially performed to produce a cold-rolled steel sheet having a thickness of 0.8 mm. The cold rolled steel sheet was subjected to recrystallization annealing at an annealing temperature of 800 ° C. in a continuous hot dip galvanizing line (CGL), and then hot dip galvanized and alloyed under the conditions shown in Table 1. Here, the Al concentration in the plating bath was 0.135% by mass, and steel No. Only 13 was set to 0.150% by mass for comparison. Furthermore, the steel sheet after alloying was subjected to temper rolling under the rolling conditions shown in Table 1. Samples for various tests were collected from the obtained galvannealed steel sheet, and the iron content in the plating layer, the surface shape of the steel sheet, and the slidability were investigated.
[0039]
[Table 1]
Figure 0003753062
[0040]
The iron content in the plating layer was determined by wet analysis after dissolving the plating layer. Moreover, the numerical value which gave the underline in a table | surface remove | deviates from the conditions of this invention.
The surface shape survey was 2 μm away from the median value in the surface roughness Ra (μm), the number of peaks PPI per inch in length, the centerline waviness value Wca (μm), and the probability amplitude density distribution of surface roughness. The existence probability of the ridge at the height, and the number (units / mm 2 ) per unit area of the ridge where the area at the height is 10 −5 to 10 −3 mm 2 were investigated. These investigation methods are as described above. In the investigation of the sliding property, the coefficient of friction with the mold is obtained in the same manner as the above-mentioned sliding test, the friction coefficient is over 0.130 x, 0.125 to 0.130 is ○, 0.125 The following were evaluated as ◎. Table 2 shows the survey results of the surface shape and slidability.
[0041]
[Table 2]
Figure 0003753062
[0042]
From Table 1 and Table 2, steel No. which is an invention example is shown. 1, 3, 5, 7, and 8 have a coefficient of friction of ◎ or ◯, indicating that they have good slidability. On the other hand, Steel No. Nos. 2, 6, and 9 have the surface shape of the work roll used during the temper rolling, because Ra is too large or PPI is too small, so that the probability of existence of the mountain of the obtained steel sheet or Ra is increased, and the friction coefficient is increased. It is getting bigger. Steel No. Since the alloying temperature of No. 4 is too low, the iron content in the plating layer does not satisfy the scope of the present invention, and the friction coefficient is large. Furthermore, steel no. No. 10 has a large PPI of the steel sheet because the plating bath temperature is too high. No. 11 has high PPI and peak density because the plating bath temperature and the approach plate temperature are high. No. 12 has a high plating bath temperature and an entrance plate temperature, and a low alloying temperature. Therefore, PPI, mountain existence probability, and mountain density are high, and the friction coefficient is high. Steel No. In No. 13, since the Al concentration in the plating bath is too high, both Ra and PPI are large, and the coefficient of friction is large.
[0043]
【The invention's effect】
As described above, according to the present invention, an alloyed hot-dip galvanized steel sheet having good press formability can be provided even when used as a raw material for automotive parts having a complicated structure. Moreover, in the conventional manufacturing process, the manufacturing cost can be kept low because the manufacturing can be performed by slightly changing the plating conditions and the temper rolling conditions.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the influence of the surface roughness of a GA steel sheet on the slidability of the steel sheet.
FIG. 2 is a diagram for explaining the influence of PPI on the surface of a GA steel sheet on the slidability of the steel sheet.
FIG. 3 is a diagram for explaining the probability amplitude density distribution of the surface roughness of a GA steel sheet.
FIG. 4 is a diagram for explaining the existence probability of a ridge at a height of 2 μm toward the summit direction from the median in the probability amplitude density distribution of surface roughness.
FIG. 5 is a map of the steel plate surface binarized with reference to a position 2 μm away from the median in the peak direction in the probability amplitude density distribution of the surface roughness of the GA steel plate.
FIG. 6 is a graph showing a relationship between a peak existence probability and a friction coefficient.
FIG. 7 is a diagram for explaining the influence of the number of minute ridges on the surface of a GA steel sheet on the slidability of the steel sheet.
FIG. 8 is a graph showing the relationship between the number of ridges of a minute ridge and the friction coefficient.
[Explanation of symbols]
1 Mold 2 Mountain 3 Recess

Claims (2)

表面に合金化溶融亜鉛めっき層を有する鋼板であって
前記合金化溶融亜鉛めっき層中の鉄含有率が11〜14質量%であり、前記合金化溶融亜鉛めっき層の表面は、表面粗さ(Ra)が0.6〜1.0μmであり、長さ1インチあたりの山頂数(PPI)が350以下であり、山谷のうねり値(Wca)が0.4μm以下であり、且つ、表面粗さの確率振幅密度分布における中央値より2μm山頂方向へ寄った高さにおける山部の存在確率が0.05以下であり、前記高さにおける面積が10-5〜10-3mm2である前記山部の個数が、3×102個/mm2以下であることを特徴とする合金化溶融亜鉛めっき鋼板。
It is a steel plate having an alloyed hot-dip galvanized layer on its surface, the iron content in the alloyed hot-dip galvanized layer is 11 to 14% by mass, and the surface of the alloyed hot-dip galvanized layer has a surface roughness ( Ra) is 0.6 to 1.0 μm, the number of peaks (PPI) per inch is 350 or less, the waviness value (Wca) of the valleys is 0.4 μm or less, and the surface roughness The mountain having a peak portion having a probability of 0.05 or less at a height close to the peak value of 2 μm from the median in the probability amplitude density distribution of the peak, and an area at the height of 10 −5 to 10 −3 mm 2 An alloyed hot-dip galvanized steel sheet characterized in that the number of parts is 3 × 10 2 pieces / mm 2 or less.
鋼板を、溶融亜鉛めっき浴へ浸漬させて鋼板表面に溶融亜鉛めっき層を形成させ、加熱して該溶融亜鉛めっき層の合金化を施した後、調質圧延を施す合金化溶融亜鉛めっき鋼板の製造方法において、
前記溶融亜鉛めっき浴中のA1濃度を0.130〜0.145質量%浴温を450〜465℃とし、該溶融亜鉛めっき浴への前記鋼板の進入時の板温を465℃以下とすると共に、前記合金化の際の加熱温度を510〜540℃とし、さらに、前記調質圧延を、表面粗さ(Ra)が0.3〜0.8μm、長さ1インチあたり山頂数(PPI)が400〜600の表面を有するワークロールを用いて、伸び率0.5〜1.2%として行うことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
The steel sheet is immersed in a hot dip galvanizing bath to form a hot dip galvanized layer on the surface of the steel sheet, heated and alloyed with the hot dip galvanized layer, and then subjected to temper rolling. In the manufacturing method,
The A1 concentration in the hot dip galvanizing bath is 0.130 to 0.145% by mass , the bath temperature is 450 to 465 ° C., and the plate temperature when the steel plate enters the hot dip galvanizing bath is 465 ° C. or lower. In addition, the heating temperature at the time of alloying is set to 510 to 540 ° C., and the temper rolling is performed with a surface roughness (Ra) of 0.3 to 0.8 μm and a peak number per inch (PPI). A method for producing a galvannealed steel sheet, characterized in that the elongation is 0.5 to 1.2% using a work roll having a surface of 400 to 600.
JP2001387299A 2001-12-20 2001-12-20 Alloyed hot-dip galvanized steel sheet and method for producing the same Expired - Fee Related JP3753062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001387299A JP3753062B2 (en) 2001-12-20 2001-12-20 Alloyed hot-dip galvanized steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001387299A JP3753062B2 (en) 2001-12-20 2001-12-20 Alloyed hot-dip galvanized steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003183801A JP2003183801A (en) 2003-07-03
JP3753062B2 true JP3753062B2 (en) 2006-03-08

Family

ID=27596179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001387299A Expired - Fee Related JP3753062B2 (en) 2001-12-20 2001-12-20 Alloyed hot-dip galvanized steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP3753062B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4039332B2 (en) * 2003-07-29 2008-01-30 Jfeスチール株式会社 Alloyed hot-dip galvanized steel sheet excellent in powdering resistance, slidability and sharpness after painting, and method for producing the same
JP4773278B2 (en) * 2006-06-14 2011-09-14 株式会社神戸製鋼所 Resin-coated metal plate with excellent electromagnetic shielding properties
JP2010053428A (en) * 2008-08-29 2010-03-11 Jfe Steel Corp Surface-treated steel sheet, and housing for electronic equipment
JP5365157B2 (en) * 2008-11-21 2013-12-11 Jfeスチール株式会社 Surface-treated steel sheet and electronic equipment casing
WO2016055227A1 (en) * 2014-10-09 2016-04-14 Thyssenkrupp Steel Europe Ag Cold-rolled and recrystallisation annealed flat steel product, and method for the production thereof
US20180312955A1 (en) * 2015-09-30 2018-11-01 Thyssenkrupp Steel Europe Ag Flat Steel Product Having a Zn-Galvannealed Protective Coating, and Method for the Production Thereof
JP2019155474A (en) * 2018-03-12 2019-09-19 Jfeスチール株式会社 Roll for rolling, surface treatment steel plate, cool rolling steel plate and production method thereof
CN115948677B (en) * 2022-12-26 2024-07-12 首钢集团有限公司 Method for producing steel sheet with plating layer

Also Published As

Publication number Publication date
JP2003183801A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
US9334555B2 (en) Hot dip galvannealed steel sheet and method for producing the same
KR20050061533A (en) Steel sheet plated by hot dipping with alloyed zinc with excellent adhesion and process for producing the same
JP2008240046A (en) High-strength steel sheet having excellent scale adhesion upon hot pressing, and method for producing the same
JP3753062B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
KR20120105048A (en) Hot-dip zinc-coated steel sheet
JP6369659B1 (en) Hot-pressed plated steel sheet, hot-pressed plated steel sheet manufacturing method, hot-press formed product manufacturing method, and vehicle manufacturing method
JP3139232B2 (en) Galvannealed steel sheet with excellent press formability
JP3139231B2 (en) Alloyed hot-dip galvanized steel sheet with excellent press formability and clarity after painting
JP3886331B2 (en) Hot-dip galvanized steel sheet with excellent plating adhesion and weldability and method for producing the same
TWI303672B (en) Coated steel sheet provided with electrodeposition painting having superior appearance
JP2648679B2 (en) Manufacturing method of painted aluminum plated steel sheet with excellent corrosion resistance and workability
JP3149801B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2002004019A (en) Galvanized steel sheet
JP2007231376A (en) Galvannealed steel sheet
JP3800475B2 (en) Alloyed hot-dip galvanized steel sheet with excellent press formability
JP2792393B2 (en) Alloyed hot-dip galvanized steel sheet for automobiles and manufacturing method thereof
JP3903835B2 (en) Manufacturing method of plated steel sheet
JP3097472B2 (en) Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same
JP3979275B2 (en) Manufacturing method of hot-dip galvanized steel sheet with excellent press formability
JP2003306756A (en) Hot dip galvanized steel sheet and method of producing the same
JP2004130352A (en) Thin steel sheet for working less prone to cause star mark
JPH11217660A (en) Hot dip galvannealed steel sheet and its production
JP2003290804A (en) Galvanized steel sheet
JP2000017417A (en) Hot dip galvannealed steel sheet
JP2001329352A (en) Galvannealed steel sheet excellent in slidability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees