JPH10226862A - Galvannealed steel sheet excellent in press formability and smoothness of plating film - Google Patents

Galvannealed steel sheet excellent in press formability and smoothness of plating film

Info

Publication number
JPH10226862A
JPH10226862A JP33866097A JP33866097A JPH10226862A JP H10226862 A JPH10226862 A JP H10226862A JP 33866097 A JP33866097 A JP 33866097A JP 33866097 A JP33866097 A JP 33866097A JP H10226862 A JPH10226862 A JP H10226862A
Authority
JP
Japan
Prior art keywords
steel sheet
plating
plating layer
phase
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33866097A
Other languages
Japanese (ja)
Inventor
Masahiko Tada
雅彦 多田
Chiaki Kato
千昭 加藤
Kazuya Miyagawa
和也 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP33866097A priority Critical patent/JPH10226862A/en
Publication of JPH10226862A publication Critical patent/JPH10226862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain a galvannealed steel sheet excellent in press formability and smoothness of plating film by regulating the contents of Fe and Al in a galvannealing layer of a steel sheet and the coating weight of plating alloy, respectively. SOLUTION: A steel sheet 1 is passed through a hot dip galvanizing bath 2 to undergo hot dip galvanizing on the surface. After regulation of coating weight by a coating weight regulating device 6, the resultant hot dip galvanized steel sheet is heated in an alloying furnace 13, by which the galvanizing layer is alloyed with the steel sheet. By regulating the components of the hot dip galvanizing bath 2 and properly regulating the temp. of the alloying furnace, the resultant galvannealing layer can be provided with a composition consisting of, by weight, 7-15% Fe, 0.35-1.0% Al, and the balance Zn and the coating weight can be regulated to (15 to 100)g/m per side of the steel sheet. By regulating the thickness of a hard and brittle γ-phase to <=1.0μm and also the amount of an μ-phase of pure zinc to <0.1%, the galvannealed steel sheet, excellent in powdering resistance and flaking resistance, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合金化溶融亜鉛め
っき鋼板に関し、特に、プレス成形性及びめっき皮膜の
平滑性に優れた合金化溶融亜鉛めっき鋼板を新規に提供
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a galvannealed steel sheet, and more particularly, to a novel galvannealed steel sheet having excellent press formability and smoothness of a plating film.

【0002】[0002]

【従来の技術】溶融亜鉛めっき鋼板を加熱処理した所謂
合金化溶融亜鉛めっき鋼板は、自動車を始め、家電、建
材の材料として広く用いられており、プレス成形性、溶
接性、耐食性、塗装性等の性能が要求される。特に、プ
レス成形性として優れた耐パウダリング性、耐フレーキ
ング性が要求される。パウダリングとは、プレス成形時
にめっき層が剥離する現象であり、素地鋼板とめっき層
の界面にFe濃度の高い、固くて脆いГ相が厚く生成さ
れると、発生し易い。一方、フレーキングとは、プレス
加工時の「型かじり」によって起きるめっき層の剥離現
象であり、めっき表層にFe濃度が低く軟質なζ相や、
合金化が未完のη相(純亜鉛相)が残存すると生じる傾
向がある。これらパウダリングやフレーキングが発生す
ると、鋼板のプレス成形に際し、金型に剥離片が付着
し、製品に押し疵等がつくので、プレス金型の清掃が余
儀なくされ、プレス工程の歩留り低下を引き起こすとい
う問題があった。
2. Description of the Related Art A so-called alloyed hot-dip galvanized steel sheet obtained by heat-treating a hot-dip galvanized steel sheet is widely used as a material for automobiles, home appliances and building materials, and has press formability, weldability, corrosion resistance, paintability, etc. Performance is required. In particular, excellent powdering resistance and flaking resistance are required as press moldability. Powdering is a phenomenon in which a plating layer peels off during press forming, and is likely to occur when a hard and brittle Г phase having a high Fe concentration and a large thickness is generated at the interface between the base steel sheet and the plating layer. On the other hand, flaking is a peeling phenomenon of a plating layer caused by "mold seizure" at the time of press working.
When the η phase (pure zinc phase) that has not been alloyed remains tends to occur. When these powdering and flaking occur, a peeled piece adheres to the mold during the press forming of the steel sheet, and the product has a pressing flaw, etc., so the cleaning of the press mold is inevitable and the yield of the pressing process is reduced. There was a problem.

【0003】上記問題を解決するため、特公平3−55
544号公報は、めっき浴中の有効Al量を0.10重
量%以下、浸漬時間3秒、好ましくは2秒以下とするこ
とで、該めっき浴中で形成されるFe−Al合金層を薄
くし、かつ健全なままの状態で合金化炉に導く技術を提
案した。その結果、めっき表層にη相やζ相が存在せ
ず、かつ素地鋼板の界面でのГ相厚さを1μm以下にす
ることができ、耐パウダリング性、耐フレーキング性に
優れた合金化溶融亜鉛めっき鋼板を製造することができ
るようになった。なお、かかるめっき層の組成は、F
e:8〜12重量%、Al:0.05〜0.25重量
%、残部Znからなるものであった。
In order to solve the above problem, Japanese Patent Publication No. 3-55
No. 544 discloses that the effective Al amount in a plating bath is 0.10% by weight or less, and the immersion time is 3 seconds, preferably 2 seconds or less, so that the Fe—Al alloy layer formed in the plating bath is thinned. We have proposed a technology that leads to an alloying furnace in a healthy state. As a result, there is no η phase or ζ phase on the plating surface layer, and the Г phase thickness at the interface of the base steel sheet can be reduced to 1 μm or less, and alloying with excellent powdering resistance and flaking resistance is achieved. Galvanized steel sheets can now be manufactured. The composition of the plating layer is F
e: 8 to 12% by weight, Al: 0.05 to 0.25% by weight, with the balance being Zn.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本発明
者の研究によれば、前記特公平3−55544号公報に
開示された合金化溶融亜鉛めっき鋼板でも、実際の自動
車用途などのより厳しい条件のプレス加工では、耐フレ
ーキング性に問題があることが明らかとなり、その原因
が鋭意検討された。その結果、後述するX線回折法の半
定量によって、前記従来の合金化溶融亜鉛めっき鋼板に
は、ζ相の存在が確認され、さらに該鋼板は、めっき層
中のAlが0.05〜0.25重量%と低いためζ相が
形成し易く、耐フレーキング性に劣ることが判明した。
However, according to the study of the present inventors, even the alloyed hot-dip galvanized steel sheet disclosed in the above-mentioned Japanese Patent Publication No. 3-55544 requires more severe conditions such as actual automotive applications. In the press working, it became clear that there was a problem in the flaking resistance, and the cause was studied diligently. As a result, the presence of the ζ phase was confirmed in the conventional galvannealed steel sheet by the semi-quantitative X-ray diffraction method described below, and the steel sheet contained 0.05 to 0 Al in the plating layer. Since the content was as low as 0.25% by weight, it was found that the Δ phase was easily formed and the flaking resistance was poor.

【0005】従って、従来の合金化溶融亜鉛めっき鋼板
の耐フレーキング性を改善する方法として、単純にめっ
き浴中のAl濃度を増加させてめっき層中のAlを高く
し、上記ζ相の生成を抑制することが考えられるが、め
っき時にFe−Al合金層が必要以上に厚く形成される
ことになる。その結果、めっき後の合金化処理時に、該
合金層内でのFeの拡散が抑制されるので、高温で合金
化するか、あるいは、長時間の合金化で、Fe拡散を促
進する必要がある。
Accordingly, as a method of improving the flaking resistance of the conventional alloyed hot-dip galvanized steel sheet, the Al concentration in the plating layer is simply increased by increasing the Al concentration in the plating bath to increase the Al content in the plating layer. However, the Fe—Al alloy layer is formed thicker than necessary at the time of plating. As a result, at the time of alloying treatment after plating, the diffusion of Fe in the alloy layer is suppressed, so it is necessary to alloy at a high temperature or to promote Fe diffusion by alloying for a long time. .

【0006】ところが、高温での合金化は、素地鋼板と
の界面にГ相が厚く生成されて、耐パウダリング性が劣
るようになるので好ましくない、また、長時間の合金化
は、合金化時間を通常より延長するか、あるいは鋼板速
度を低速にしなければならないので、設備コストの増
大、製品歩留りの低下を引き起こす。さらに、めっき時
にFe−Al合金層が必要以上に厚く生成されると、合
金化めっき層の凹凸化が著しくなってプレス成形時の摺
動抵抗(摩擦係数)が増加するので、耐フレーキング性
が劣化するという問題もあった。
[0006] However, alloying at high temperature is not preferable because a thick phase is generated at the interface with the base steel sheet and the powdering resistance is inferior. Since the time must be prolonged or the steel sheet speed must be reduced, the equipment cost increases and the product yield decreases. Furthermore, if the Fe—Al alloy layer is formed thicker than necessary during plating, the alloyed plating layer becomes significantly uneven and the sliding resistance (coefficient of friction) during press molding increases. However, there is also a problem that the metal is deteriorated.

【0007】本発明は、かかる事情を鑑み、パウダリン
グやフレーキングの発生を抑制し、従来よりプレス成形
性及びめっき皮膜の平滑性に優れた合金化溶融亜鉛めっ
き鋼板を提供することを目的としている。
[0007] In view of such circumstances, an object of the present invention is to provide an alloyed hot-dip galvanized steel sheet which suppresses the occurrence of powdering and flaking, and is superior in press formability and plating film smoothness. I have.

【0008】[0008]

【課題を解決するための手段】発明者は、上記目的を達
成するため、現在実用されているめっき層よりもAlを
多く含有させることに着眼し、高いAlに起因する前記
問題を解決する手段の研究に鋭意努力した。本発明は、
その成果として得られたものであり、すなわち、溶融亜
鉛めっき浴へ鋼板を浸漬し、次いで該鋼板を前記めっき
浴から出して該表面にめっき層を形成させ、引き続き該
鋼板を加熱合金化処理して得られる合金化溶融亜鉛めっ
き鋼板であって、Fe:7〜15重量%、Al:0.3
5〜1.0重量%、残部Zn及び不可避不純物からなる
組成であり、且つ片面当たり15〜100g/m2 であ
るめっき層を少なくとも片面に有すると共に、該めっき
層中のη相を0.1重量%未満、地鉄/めっき層界面の
Г相厚さを1.0μm以下としてなることを特徴とする
プレス成形性及びめっき皮膜の平滑性に優れた合金化溶
融亜鉛めっき鋼板である。
Means for Solving the Problems In order to achieve the above object, the present inventors have focused on making Al more contained than a plating layer currently in practical use, and have solved the above-mentioned problem caused by high Al. I worked hard on my research. The present invention
That is, the steel sheet is immersed in a hot-dip galvanizing bath, and then the steel sheet is removed from the plating bath to form a plating layer on the surface, and then the steel sheet is subjected to a heat alloying treatment. Alloyed hot-dip galvanized steel sheet obtained by Fe: 7 to 15% by weight, Al: 0.3
It has a plating layer having a composition of 5 to 1.0% by weight, the balance being Zn and inevitable impurities, and having a plating layer of 15 to 100 g / m 2 per side on at least one side, and having an η phase in the plating layer of 0.1 to 0.1 g / m 2. It is an alloyed hot-dip galvanized steel sheet having excellent press formability and smoothness of a plating film, characterized in that the thickness thereof is less than 1.0% by weight and less than 1.0 μm at the interface between the base iron and the plating layer.

【0009】また、本発明は、前記地鉄/めっき層界面
にAlが濃化せず、且つめっき層の表面粗さが中心線平
均粗さ(Ra)で1.5μm以下であることを特徴とす
るプレス成形性及びめっき皮膜の平滑性に優れた合金化
溶融亜鉛めっき鋼板である。この場合、前記地鉄/めっ
き層界面のAl濃化層とは、めっき時に地鉄/めっき層
界面に形成されたFe−Al合金層が、合金化処理過程
後にも残存したものである。
Further, the present invention is characterized in that Al is not concentrated at the interface between the base iron and the plating layer, and the surface roughness of the plating layer is 1.5 μm or less in center line average roughness (Ra). It is an alloyed hot-dip galvanized steel sheet excellent in press formability and smoothness of a plating film. In this case, the Al-enriched layer at the interface between the iron / plating layer and the Fe-Al alloy layer formed at the interface between the iron / plating layer during plating remains after the alloying process.

【0010】さらに、本発明は、前記めっき層の付着量
と該めっき層中のFe含有率が以下の関係式を満足する
ことを特徴とするプレス成形性及びめっき皮膜の平滑性
に優れた合金化溶融亜鉛めっき鋼板でもある。 15≦W<60の場合、 [Fe]≦21−W/7.5 60≦W<100の場合、[Fe]≦16−W/20 但し、W:片面当りの付着量(g/m2 ) [Fe]:めっき層中の平均Fe含有率(重量%) 本発明では、合金化溶融亜鉛めっき鋼板を、めっき層中
のη相やζ相の量を抑制し、地鉄/めっき層界面のГ相
厚さを薄くすることで、且つめっき層自体の厚さも薄く
なり、パウダリングやフレーキングの発生を抑制できる
ようになる。つまり、従来よりプレス成形性及びめっき
皮膜の平滑性に優れた合金化溶融亜鉛めっき鋼板が、新
規に得られたのである。
Further, the present invention provides an alloy excellent in press formability and plating film smoothness, characterized in that the adhesion amount of the plating layer and the Fe content in the plating layer satisfy the following relational expression. It is also a galvanized steel sheet. When 15 ≦ W <60, [Fe] ≦ 21−W / 7.5 When 60 ≦ W <100, [Fe] ≦ 16-W / 20, where W is the amount of adhesion per side (g / m 2). [Fe]: Average Fe content in plating layer (% by weight) In the present invention, the alloyed hot-dip galvanized steel sheet is reduced in the amount of η phase and ζ phase in the plating layer, and the iron / plating layer interface is reduced. By reducing the thickness of the Г phase, the thickness of the plating layer itself is also reduced, so that the occurrence of powdering and flaking can be suppressed. In other words, a galvannealed steel sheet excellent in press formability and plating film smoothness has been newly obtained.

【0011】[0011]

【発明の実施の形態】まず、本発明に係わる合金化溶融
亜鉛めっき鋼板は、プレス成形性に対し不利なГ相の厚
み及びη相の量を抑制しなければならない。このため、
地鉄/めっき層界面のГ相の厚みを1.0μmとする。
1.0μmを超えると耐パウダリング製が劣るからであ
る。
DETAILED DESCRIPTION OF THE INVENTION First, in the galvannealed steel sheet according to the present invention, the thickness of the 抑制 phase and the amount of the η phase, which are disadvantageous to press formability, must be suppressed. For this reason,
The thickness of the Г phase at the interface between the base iron and the plating layer is 1.0 μm.
If the thickness exceeds 1.0 μm, the powdering resistance is inferior.

【0012】また、めっき層中のη相は0.1重量%未
満とする。0.1重量%以上ではプレス成形時に型かじ
りが発生し、耐フレーキング性が劣るからである。さら
に、同じくプレス成形性に対し不利なζ相をX線回折の
半定量においてもほとんど検出されない程度にまで低減
させる。このために、めっき層中のAlを0.35〜
1.0重量%、Feを7〜15重量%とする。その理由
は、以下の通りである。 (1)Al:0.35〜1.0重量%の理由 従来のFe:7〜15重量%の範囲において、めっき層
中のAlが0.35重量%未満では、めっき表層にζ相
が残存しやすくなり(図4参照)、Al:0.35重量
%未満において、ζ相の生成を避けるためには、Feを
15%超えとしなければならず、この条件では高温ある
いは長時間の合金化処理が必要となるからである。高温
あるいは長時間の合金化処理を施すと、ζ相の残存は抑
制されるが、一方でΓ相の生成が促進され、該Γ相の厚
みが容易に1μmを超えてしまう。そこで、本発明で
は、めっき層中Alを0.35重量%以上とし、従来の
合金化条件を変えることなくζ相を問題とならない量ま
で抑制した。従って、本発明では、ζ相の量をあえて限
定しない。これは、ζ相の量は、電位測定では明らかに
ならず、通常、定量的に把握することが困難であるから
である。本発明では、それをX線回折法による半定量で
確認した。つまり、図4に、ζ相の特徴的なピークであ
る結晶格子面間隔d=1.26に相当する回折線の強度
を使用して測定され、Fe:7〜15重量%で且つ各種
Al含有量のめっきを合金化処理して得られた合金化溶
融亜鉛めっき鋼板のめっき層中Al含有量とζ層のX線
回折強度を示す。図4より、本発明に係るAl:0.3
5重量%以上の合金化溶融亜鉛めっき鋼板は、従来の合
金化溶融亜鉛めっき鋼板に比べてζ相の生成が抑制され
ていることがわかる。
The η phase in the plating layer is less than 0.1% by weight. If the content is 0.1% by weight or more, mold seizure occurs during press molding, and the flaking resistance is poor. Further, the ζ phase, which is also disadvantageous to press formability, is reduced to such an extent that it is hardly detected even in semi-quantitative X-ray diffraction. For this reason, the Al in the plating layer is reduced by 0.35 to
1.0% by weight and Fe is 7 to 15% by weight. The reason is as follows. (1) Reasons for Al: 0.35 to 1.0% by weight Conventional Fe: 7 to 15% by weight, if Al in the plating layer is less than 0.35% by weight, the ζ phase remains on the plating surface layer When the Al content is less than 0.35% by weight, the content of Fe must exceed 15% in order to avoid the formation of the ζ phase. This is because processing is required. When the alloying treatment is performed at a high temperature or for a long time, the residual of the ζ phase is suppressed, but the formation of the Γ phase is promoted, and the thickness of the Γ phase easily exceeds 1 μm. Thus, in the present invention, the content of Al in the plating layer is set to 0.35% by weight or more, and the Δ phase is suppressed to a level that does not cause a problem without changing the conventional alloying conditions. Therefore, in the present invention, the amount of the ζ phase is not limited. This is because the amount of the ζ phase is not revealed by the potential measurement, and it is usually difficult to grasp quantitatively. In the present invention, it was confirmed by semi-quantitative analysis by the X-ray diffraction method. In other words, FIG. 4 shows that, measured using the intensity of a diffraction line corresponding to the crystal lattice spacing d = 1.26, which is a characteristic peak of the ζ phase, Fe: 7 to 15% by weight and various Al contents 4 shows the Al content in the coating layer of the alloyed hot-dip galvanized steel sheet obtained by alloying a large amount of plating and the X-ray diffraction intensity of the ζ layer. FIG. 4 shows that Al according to the present invention: 0.3
It can be seen that the formation of the ζ phase is suppressed in the alloyed hot-dip galvanized steel sheet of 5% by weight or more as compared with the conventional alloyed hot-dip galvanized steel sheet.

【0013】一方、めっき層中のAlが1.0重量%を
超える場合、めっき浴中のAl濃度を0.5重量%以上
としなければならず、めっき浴中のドロス(Fe−Al
系、Al−O系等)が著しく増加し、めっき時に鋼板に
付着してドロス欠陥を引き起こすという問題があり好ま
しくない。 (2)Fe:7〜15重量%の理由 Feが7重量%未満では、めっき表層にζ相が残存しや
すく、甚だしい場合には、η相が0.1重量%以上残存
する部分が発生する。その結果、耐フレーキング性が著
しく劣化するので、好ましくない。一方、Feが15重
量%を超えると、素地鋼板との界面にГ相が1.0μm
以上の厚みで形成されるので、耐パウダリング性が劣化
して好ましくない。
On the other hand, when Al in the plating layer exceeds 1.0% by weight, the Al concentration in the plating bath must be 0.5% by weight or more, and dross (Fe-Al
System, Al-O system, etc.), which undesirably increases, and adheres to the steel sheet during plating to cause dross defects. (2) Reason for Fe: 7 to 15% by weight When Fe is less than 7% by weight, the ζ phase is likely to remain on the plating surface layer, and in extreme cases, a portion where the η phase remains at 0.1% by weight or more is generated. . As a result, the flaking resistance is remarkably deteriorated, which is not preferable. On the other hand, when Fe exceeds 15% by weight, the Δ phase at the interface with the base steel sheet is 1.0 μm
Since it is formed with the above thickness, the powdering resistance deteriorates, which is not preferable.

【0014】Al,Fe以外のめっき層成分は、Zn及
び不可避不純物である。次に、本発明では、めっき層の
付着量を、片面当り15〜100g/m2 の範囲にある
ことが好ましい。プレス成形性の点からは、付着量は少
ない方が有利であるが、15g/m2 未満では、要求さ
れる耐食性が得られず、一方、100g/m2 を超える
と、Г相の厚みを1μm以下、且つめっき層中のη相を
0.1重量%未満とするには、長時間の合金化加熱処理
が必要となり、実用的ではないからである。本発明のめ
っき層は、両面あるいは片面に形成されていることが好
ましく、必要に応じて片面のみ前述した本発明に係るめ
っき層でも良い。その場合、他方の面は、付着量が異な
るか、あるいは前述した本発明に係るめっき組成、表面
性状が異なるものの場合がある。
The components of the plating layer other than Al and Fe are Zn and unavoidable impurities. Next, in the present invention, it is preferable that the adhesion amount of the plating layer is in the range of 15 to 100 g / m 2 per one side. From the viewpoint of press formability, the adhesion amount is the smaller is advantageous, it is less than 15 g / m 2, can not be obtained corrosion resistance is required, whereas, if it exceeds 100 g / m 2, the thickness of Г phase If the thickness is 1 μm or less and the η phase in the plating layer is less than 0.1% by weight, a long alloying heat treatment is required, which is not practical. The plating layer of the present invention is preferably formed on both surfaces or one surface, and if necessary, may be the plating layer of the present invention described above on only one surface. In that case, the other surface may have a different amount of adhesion, or may have a different plating composition and surface properties according to the present invention described above.

【0015】上記のように、本発明によれば、めっき層
中のAlが0.35重量%を超えた範囲においてζ層の
生成が著しく抑制されることが明らかになり、その結
果、耐フレーキング性が著しく向上した。そこで、従来
から使用している図2に示す溶融亜鉛めっき装置を使用
して、上記めっき層中のAlが0.35重量%以上のめ
っき鋼板を実際に製造しようとした場合の留意点を、以
下に説明する。
As described above, according to the present invention, it is clear that the formation of the layer ζ is remarkably suppressed in the range where the Al content in the plating layer exceeds 0.35% by weight. King performance has been significantly improved. Therefore, a point to be considered when actually attempting to manufacture a plated steel sheet having 0.35% by weight or more of Al in the above-described plating layer using a hot-dip galvanizing apparatus shown in FIG. This will be described below.

【0016】本発明者の研究によれば、鋼板をめっき浴
中に浸漬させる時間を3秒(鋼板速度:100mm/m
in程度で実現できる)とし、且つ浴中のAl濃度を
0.16重量%程度まで増加させることで、めっき層中
のAlが0.35重量%以上のめっき鋼板が製造でき
た。ところが、めっき浴中のAlは、鋼板から溶出する
Feと優先的に反応し、めっき時に鋼板界面にFe−A
l合金層を形成する。すなわち、めっき浴中のAl濃度
を0.16重量%まで増加させてしまうと、鋼板界面の
Fe−Al合金層が厚くなってしまう。その結果、めっ
き後の合金化処理過程での鋼板からのFeの拡散を過度
に抑制することになり、鋼板表面にη相が0.1重量%
を超えて残存したり、高温での合金化あるいは長時間の
合金化を余儀なくされることになる。従って、本発明に
係る鋼板を製造するには、めっき層中のAlが0.35
重量%以上で、且つめっき時の鋼板界面に生成されるF
e−Al合金層を薄く(Fe−Al合金層中のAl量で
0.1g/m3 以下が好ましい)しなければならない。
According to the study of the present inventors, the time for immersing the steel sheet in the plating bath is 3 seconds (steel sheet speed: 100 mm / m
in) and increasing the Al concentration in the bath to about 0.16% by weight, a plated steel sheet containing 0.35% by weight or more of Al in the plating layer could be produced. However, Al in the plating bath reacts preferentially with Fe eluted from the steel sheet, and Fe-A
An alloy layer is formed. That is, if the Al concentration in the plating bath is increased to 0.16% by weight, the Fe-Al alloy layer at the steel sheet interface becomes thick. As a result, the diffusion of Fe from the steel sheet in the alloying process after plating is excessively suppressed, and the η phase is 0.1% by weight on the steel sheet surface.
Or alloying at a high temperature or alloying for a long time is forced. Therefore, in order to manufacture the steel sheet according to the present invention, Al in the plating layer is 0.35.
% By weight or more and F generated at the steel sheet interface during plating
The e-Al alloy layer must be thin (Al content in the Fe-Al alloy layer is preferably 0.1 g / m 3 or less).

【0017】そこで、めっき浴に浸漬される時間を0.
001〜0.5秒程度として、この目的を達成した。浸
漬時間が0.5秒を超えると、めっき層中のAlが0.
35重量%以上で、且つめっき時のFe−Al合金層を
薄くすると言う2つの条件を満足できないからである。
一方、浸漬時間が0.001秒未満であると、めっき時
のFe−Al合金層の形成が過度に抑制され、めっき後
の合金化処理過程での鋼板からめっき層へのFeの拡散
が過度に進行してしまうので、鋼板界面でのГ相の生成
を抑制できず、Г相の厚みが1.0μm以上になり、好
ましくない。本発明者の研究によれば、めっき時に形成
されるFe−Al合金層としては、Fe−Al合金層中
のAl量換算で0.03〜0.1g/m2 が好適であっ
た。さらに、上記適正なFe−Al合金層を形成するた
めには、めっき浴中のAl濃度を0.18〜0.45重
量%とするのが好適であった。
Therefore, the time of immersion in the plating bath is set to 0.
This object was achieved with about 001 to 0.5 seconds. If the immersion time exceeds 0.5 seconds, the Al in the plating layer is reduced to 0.1.
This is because the two conditions of 35% by weight or more and that the Fe—Al alloy layer at the time of plating is made thinner cannot be satisfied.
On the other hand, if the immersion time is less than 0.001 second, the formation of the Fe-Al alloy layer during plating is excessively suppressed, and the diffusion of Fe from the steel sheet to the plating layer during the alloying process after plating is excessive. Therefore, the formation of the Г phase at the steel sheet interface cannot be suppressed, and the thickness of the Г phase becomes 1.0 μm or more, which is not preferable. According to the study of the present inventors, the Fe—Al alloy layer formed at the time of plating was preferably 0.03 to 0.1 g / m 2 in terms of the amount of Al in the Fe—Al alloy layer. Further, in order to form the above-mentioned proper Fe-Al alloy layer, it is preferable to set the Al concentration in the plating bath to 0.18 to 0.45% by weight.

【0018】以上のようなめっき条件にて、鋼板に溶融
亜鉛めっきを施した後、通常の条件で合金化処理するこ
とで、めっき層中Alが0.35重量%以上でめっき層
中のζ相の生成を抑制し、かつめっき層中のη相を0.
1重量%未満、地鉄/めっき層界面のГ相の厚みを1.
0μm以下とした合金化溶融亜鉛めっき鋼板の製造が可
能になったのである。また、かかる方法で製造した本発
明の合金化溶融亜鉛めっき鋼板は、従来の合金化溶融亜
鉛めっき鋼板(特公平3−55544号公報)よりめっ
き層中のAl濃度が高いことで、塗装後の耐食性(JI
S C 0024で評価)も一層向上した。
After the steel sheet is subjected to hot dip galvanizing under the above-described plating conditions and then subjected to alloying treatment under ordinary conditions, the Al content in the plated layer is 0.35% by weight or more, and Phase formation, and reduce the η phase in the plating layer to 0.1%.
Less than 1% by weight.
This enabled the production of an alloyed hot-dip galvanized steel sheet having a thickness of 0 μm or less. In addition, the alloyed hot-dip galvanized steel sheet of the present invention manufactured by such a method has a higher Al concentration in the plating layer than a conventional alloyed hot-dip galvanized steel sheet (Japanese Patent Publication No. 3-55544), and thus the coated galvanized steel sheet after coating is obtained. Corrosion resistance (JI
SC 0024).

【0019】なお、めっき表層に残存する軟質なη相
は、本発明では、電位測定法を用い、全めっき層に対す
るη相の比率として求めた。すなわち、ZnSO4 ・7
2 Oが100g/リットル、NaClが200g/リ
ットルからなる電解液中で、電流密度を20ミリアンペ
ア/dm2 として試料陽極を定電流電解する。そして、
測定電位が−1000mmボルト(対標準電極)以下で
あれば、η相が存在すると判断する(素地鉄の電位は−
400mmボルト(対標準電極)付近である)。また、
地鉄とめっき層との界面に形成される硬くて脆いГ相
は、めっき層の断面を光学顕微鏡にて観察して、該Г相
の厚さを計測した。さらに、合金相の識別は、めっき層
の断面をXMA(X線マイクロアナリシス)にて分析
し、Feの組成が18.5〜31.0重量%にある領域
をГ相と定義した。地鉄とめっき層との界面には、Г相
及びГ1 相が生成されるが、その識別は非常に困難であ
り、本発明でいうГ相とは、Г1 相を含む合金層のこと
である。
In the present invention, the soft η phase remaining on the plating surface layer was determined as a ratio of the η phase to all the plating layers by using a potential measurement method. In other words, ZnSO 4 · 7
The sample anode is subjected to constant current electrolysis at a current density of 20 mA / dm 2 in an electrolytic solution containing 100 g / L of H 2 O and 200 g / L of NaCl. And
If the measured potential is −1000 mm volt (with respect to the standard electrode) or less, it is determined that the η phase exists (the potential of the base iron is −
400 mm volts (around the standard electrode). Also,
For the hard and brittle Г phase formed at the interface between the base iron and the plating layer, the thickness of the Г phase was measured by observing the cross section of the plating layer with an optical microscope. Further, for discrimination of the alloy phase, the cross section of the plating layer was analyzed by XMA (X-ray microanalysis), and the region where the Fe composition was 18.5 to 31.0% by weight was defined as the Δ phase. The interface between the base steel and the plating layer, but .GAMMA phase and .GAMMA 1 phase is generated, the identification is very difficult, the .GAMMA phase in the present invention, it alloy layer containing .GAMMA 1 phase It is.

【0020】引き続いて、以下に、第2の本発明の特徴
を説明する。前述したように、一般にめっき浴中のAl
濃度が増加すると、鋼板がめっき浴に浸漬する間に地鉄
とめっき層の界面にFe−Al合金層が厚く形成され
る。めっき時のFe−Al合金層が必要以上に厚く形成
された場合、めっき後の合金化処理過程での鋼板からの
Feの拡散が極度に抑制され、その結果、合金化処理が
完了した後でも、地鉄とめっき層の界面に、Fe−Al
合金層(Al濃化層)が残存した状態(Alの濃化層)
を有する合金化溶融亜鉛めっき鋼板となってしまう場合
がある。このようなAl濃化層が残存した合金化溶融亜
鉛めっき鋼板は、スポット溶接を行った際の連続打点性
が著しく劣化する。この劣化機構については不明である
が、溶接時の連続打点性の点から、合金化溶融亜鉛めっ
き鋼板のめっき層界面に上記Al濃化層の残存は好まし
くない。
Subsequently, the features of the second present invention will be described below. As described above, generally, Al in the plating bath
When the concentration increases, a thicker Fe-Al alloy layer is formed at the interface between the base iron and the plating layer while the steel sheet is immersed in the plating bath. If the Fe-Al alloy layer at the time of plating is formed thicker than necessary, the diffusion of Fe from the steel sheet during the alloying process after plating is extremely suppressed, and as a result, even after the alloying process is completed. , Fe-Al
State in which alloy layer (Al-enriched layer) remains (Al-enriched layer)
Alloyed hot-dip galvanized steel sheet having Such an alloyed hot-dip galvanized steel sheet in which such an Al-enriched layer remains has significantly deteriorated continuous spotting properties when spot welding is performed. Although the mechanism of this deterioration is unknown, it is not preferable that the above-mentioned Al-enriched layer remains at the interface of the galvannealed steel sheet in view of the continuous hitting point during welding.

【0021】なお、このAlの濃化部分の有無について
は、合金化処理後のめっき層の任意の断面をEPMAで
走査分析し、地鉄とめっき層との界面に出現するAlピ
ークの有無で識別する。すなわち、図3に、合金化溶融
亜鉛めっき鋼板の圧延方向の断面について上記方法で測
定した結果を例示するが、該界面にAlピークが存在し
なければ、Alの濃化部分なしと判別する(図3
(a))。図3(b)は、Al濃化がある場合であ
る)。めっき浴中のAl濃度を増加させると、めっき時
に地鉄表面のFe結晶粒の粒内及び粒界で、Fe−Al
合金層が必要以上に厚く形成され、めっき後の合金化処
理過程での鋼板からのFeの拡散を不均一にする。つま
り、めっき時のFe−Al合金層が厚く、合金化処理過
程でのFeの拡散が必要以上に抑制され、地鉄表面の粒
界からのFeの拡散に比べ、地鉄の粒内からのFeの拡
散が極度に遅くなり、粒界と粒内でFe拡散速度に大き
な差を生じる。その結果、地鉄表面の粒界及び粒内に形
成されるめっき層の合金化度が不均一となって、合金化
めっき層の凹凸が顕著になる。
The presence or absence of the Al-enriched portion is determined by scanning and analyzing an arbitrary cross section of the plated layer after the alloying treatment by EPMA, and determining whether or not there is an Al peak appearing at the interface between the base iron and the plated layer. Identify. That is, FIG. 3 exemplifies a result measured by the above method for a cross section in the rolling direction of the alloyed hot-dip galvanized steel sheet. If there is no Al peak at the interface, it is determined that there is no Al-enriched portion ( FIG.
(A)). FIG. 3B shows the case where there is Al concentration. When the Al concentration in the plating bath is increased, the Fe-Al
The alloy layer is formed thicker than necessary, and makes the diffusion of Fe from the steel sheet uneven during the alloying process after plating. In other words, the Fe-Al alloy layer at the time of plating is thick, the diffusion of Fe in the alloying process is suppressed more than necessary, and compared with the diffusion of Fe from the grain boundaries on the surface of the base iron, The diffusion of Fe becomes extremely slow, causing a large difference in the Fe diffusion rate between the grain boundaries and the grains. As a result, the degree of alloying of the plating layer formed in the grain boundaries and in the grains on the surface of the ground iron becomes non-uniform, and the irregularities of the alloyed plating layer become remarkable.

【0022】一方、めっき時Fe−Al合金層が薄く、
適正に形成されていれば、上記地鉄表面のFe結晶粒の
粒界と粒内でのFe拡散量の差は、許容範囲内におさま
り、平滑な合金化めっき層が形成される。合金化めっき
層の凹凸は、調質圧延することである程度平滑化される
が、極度の凹凸がある場合は、調質圧延後も残存するた
め、合金化めっき層の表面粗さを増大させ、プレス成形
時の摺動抵抗を増加させてしまう。その結果、摺動変形
時に合金化めっき層が剥離してしまう、いわゆる耐フレ
ーキング性の劣化が生じるので、めっき時の過度のFe
−Al合金層の形成は好ましくない。
On the other hand, when plating, the Fe-Al alloy layer is thin,
If properly formed, the difference between the grain boundary of the Fe crystal grains on the surface of the base iron and the amount of Fe diffusion in the grains falls within an allowable range, and a smooth alloyed plating layer is formed. Irregularities of the alloyed plating layer are smoothed to some extent by temper rolling, but if there are extreme irregularities, since they remain after temper rolling, the surface roughness of the alloyed plating layer is increased, The sliding resistance at the time of press molding is increased. As a result, the so-called flaking resistance deteriorates because the alloyed plating layer peels off during sliding deformation.
-The formation of an Al alloy layer is not preferable.

【0023】そこで、上記した合金化加熱処理過程後で
のAl濃化層の残存、及び合金化めっき層の過度の凹凸
化を抑制するためには、めっき時のFe−Al合金層を
適正に形成させる必要があった。具体的には、めっき時
のFe−Al合金層を前述の通りAl量換算で、0.0
3〜0.1g/m2 とするのである。これは、第1の本
発明と同様に、めっき層中のAl:0.35重量%以上
とし、且つ前述しためっき浴中の浸漬時間を0.001
〜0.5秒とし、めっき浴中のAl濃度を0.18〜
0.45重量%とすることで達成できる。その結果、合
金化溶融亜鉛めっき鋼板の界面にAl濃化層は残存せ
ず、かつ中心線平均粗さ(Ra)で1.5μm以下の平
滑な合金化めっき層が形成された。従って、該鋼板は、
ユーザの要求する連続打点性、耐フレーキング性を同時
に満足している。
Therefore, in order to suppress the remaining of the Al-enriched layer after the above-mentioned alloying heat treatment process and the excessive unevenness of the alloyed plating layer, the Fe-Al alloy layer at the time of plating must be properly formed. Had to be formed. Specifically, the Fe-Al alloy layer at the time of plating was converted to an Al amount of 0.0
It is 3 to 0.1 g / m 2 . This is because, as in the first invention, the Al content in the plating layer is 0.35% by weight or more, and the immersion time in the plating bath is 0.001%.
To 0.5 seconds, and the Al concentration in the plating bath is 0.18 to
It can be achieved by adjusting the content to 0.45% by weight. As a result, no Al-enriched layer remained at the interface of the galvannealed steel sheet, and a smooth alloyed plated layer having a center line average roughness (Ra) of 1.5 μm or less was formed. Therefore, the steel sheet
It simultaneously satisfies the continuous hitting and flaking resistance required by the user.

【0024】さらに引き続いて、第3の本発明の特徴に
ついて説明する。Feが15重量%以下の組成であって
も、めっき層の付着量が多い場合には、耐パウダリング
性に劣る合金化溶融亜鉛めっき鋼板になることがある。
すなわち、付着量が多い場合には、めっき層までの合金
化を完了させるには、高温あるいは長時間の合金化処理
を必要とするので、その間に、地鉄/めっき層界面でГ
相の厚みが1.0μm以上に成長することになる。これ
は、耐パウダリング性を劣化するので好ましくない。そ
こで、耐パウダリング性に及ぼすめっき層中の平均Fe
含有率と付着量との関係を調査した。その結果、付着量
が厚くなると共に、同一Fe含有率であっても耐パウダ
リング性は劣化することがわかり、以下の実験式を得
た。つまり、以下の関係式を満足する平均Fe含有率と
付着量にすれば、耐パウダリング性の劣化が防止でき
た。他言すれば、付着量に応じてFe含有率を調整する
と、目的とする耐パウダリング性を得ることができ、か
かる条件で製造したものを第3の本発明としたのであ
る。
Next, the features of the third aspect of the present invention will be described. Even when the composition of Fe is 15% by weight or less, when the amount of the plating layer attached is large, the alloyed hot-dip galvanized steel sheet having poor powdering resistance may be obtained.
That is, when the amount of adhesion is large, alloying up to the plating layer requires a high-temperature or long-time alloying treatment.
The phase will grow to a thickness of 1.0 μm or more. This is not preferable because the powdering resistance is deteriorated. Therefore, the effect of the average Fe in the plating layer on the powdering resistance
The relationship between the content and the amount of adhesion was investigated. As a result, it was found that the amount of adhesion increased and the powdering resistance deteriorated even with the same Fe content, and the following empirical formula was obtained. That is, if the average Fe content and the amount of adhesion satisfy the following relational expression, the deterioration of the powdering resistance could be prevented. In other words, the desired powdering resistance can be obtained by adjusting the Fe content according to the amount of adhesion, and the product manufactured under such conditions is the third invention.

【0025】 15≦W<60の場合、 [Fe]≦21−W/7.5 …(1) 60≦W<100の場合、[Fe]≦16−W/20 …(2) 但し、W:片面当りの付着量(g/m2 ) [Fe]:めっき層中平均Fe含有率(重量%) なお、めっき付着量の調整手段の使用条件や合金化の条
件は下記の通りである。
When 15 ≦ W <60, [Fe] ≦ 21−W / 7.5 (1) When 60 ≦ W <100, [Fe] ≦ 16−W / 20 (2) : Amount per one surface (g / m 2 ) [Fe]: Average Fe content in plating layer (% by weight) The conditions for using the means for adjusting the amount of plating and the conditions for alloying are as follows.

【0026】めっき浴温度:450〜520℃ 鋼帯走行速度:60〜200m/min(なお、該速度
の上限は特に限定されないが合金化炉の能力に応じて決
めることができる) 付着量調整手段:特に、限定しないが、ガスワイピング
装置(窒素ガス使用)を用いた 合金化温度:450〜600℃(好ましくは、470〜
520℃) 合金化時間:5〜30秒(好ましくは、10〜20秒) ところで、従来から使用されている図2に示す連続溶融
亜鉛めっき設備では、鋼板1のめっき浴2中での浸漬長
さが長いので、浸漬時間が最短でも2〜3秒程度にな
る。第1〜第3の本発明に係る合金化溶融亜鉛めっき鋼
板を製造するには、めっき浴中での浸漬時間を0.00
1〜0.5秒以下がより好ましく、鋼板1のめっき浴中
での浸漬時間が短い別形式のめっき装置が必要となる。
そこで、発明者は、その装置に、例えば、特開平4−0
00356号公報や特開昭63−303045号公報に
開示されたシンクロール3を有しない溶融亜鉛めっき鋼
板の製造装置、つまり空中ポット方式を利用することに
した。
Plating bath temperature: 450 to 520 ° C. Steel strip running speed: 60 to 200 m / min (the upper limit of the speed is not particularly limited, but can be determined according to the capacity of the alloying furnace) : Although not particularly limited, alloying temperature using a gas wiping device (using nitrogen gas): 450 to 600 ° C (preferably 470 to 600 ° C)
(520 ° C.) Alloying time: 5 to 30 seconds (preferably, 10 to 20 seconds) By the way, in the conventional continuous galvanizing equipment shown in FIG. 2, the immersion length of the steel sheet 1 in the plating bath 2 is used. Immersion time is about 2-3 seconds at the minimum. In order to produce the first to third galvannealed steel sheets according to the present invention, the immersion time in the plating bath is 0.00
1 to 0.5 second or less is more preferable, and another type of plating apparatus in which the immersion time of the steel sheet 1 in the plating bath is short is required.
Therefore, the inventor has proposed, for example, Japanese Patent Laid-Open No.
No. 3,356, JP-A-63-303045 discloses a hot-dip galvanized steel sheet manufacturing apparatus having no sink roll 3, that is, an aerial pot method.

【0027】[0027]

【実施例】被めっき鋼板1として、板厚:0.8mm、
板幅:1000mmの極低炭素鋼を選び、図1に示す空
中ポット方式の連続溶融めっきライン(周知につき説明
省略)にて、下記の条件で両面にめっき及び合金化処理
を行った。 (めっき条件) めっき浴温度:470℃ 鋼帯走行速度:150m/min 鋼帯のめっき浴への浸漬時間:0.08秒 鋼帯の温度:480〜485℃ (合金化条件) 鋼帯面の加熱温度:470〜550℃ この温度での保持時間:10秒 なお、比較例としては、図2に示した従来から使用され
ている溶融めっき装置(周知につき説明省略)を使用
し、浸漬時間2〜3秒かけて同一鋼板を処理した。両面
にめっきし、その後の処理は、両者ともガスワイピング
装置6にて付着量を調整し、次いで合金化加熱炉にて合
金化処理を施し、表1に示す合金化溶融亜鉛めっき鋼板
を得た。そして、これらの合金化溶融亜鉛めっき鋼板の
任意の位置から試料を採取し、耐パウダリング性、耐フ
レーキング性及び連続溶接性を評価する試験を行った。
EXAMPLE A steel plate 1 to be plated had a thickness of 0.8 mm.
An ultra-low carbon steel sheet having a width of 1000 mm was selected and subjected to plating and alloying on both sides under the following conditions in a continuous hot-dip galvanizing line of an aerial pot type shown in FIG. (Plating conditions) Plating bath temperature: 470 ° C Steel strip running speed: 150 m / min Immersion time of the steel strip in the plating bath: 0.08 seconds Temperature of the steel strip: 480 to 485 ° C (Alloying conditions) Heating temperature: 470-550 ° C. Holding time at this temperature: 10 seconds As a comparative example, a conventional hot-dip plating apparatus shown in FIG. The same steel sheet was processed for ~ 3 seconds. Both sides were plated, and in the subsequent treatment, both were adjusted in the amount of adhesion with a gas wiping device 6, and then subjected to alloying treatment in an alloying heating furnace to obtain an alloyed hot-dip galvanized steel sheet shown in Table 1. . Then, samples were taken from arbitrary positions of these alloyed hot-dip galvanized steel sheets, and a test for evaluating powdering resistance, flaking resistance, and continuous weldability was performed.

【0028】各試験での評価基準は、以下の通りであ
る。 <耐パウダリング性>合金化溶融亜鉛めっき鋼板の圧縮
曲げ側に、セロテープを貼り、90°曲げ戻しテストを
行った後、セロテープを剥し、セロテープに付着した剥
離Znを螢光X線にて測定し、Znのカウント数で評価
した。
The evaluation criteria in each test are as follows. <Powdering resistance> A cellophane tape was stuck on the compression bending side of the alloyed hot-dip galvanized steel sheet, a 90 ° bending-back test was performed, the cellophane tape was peeled off, and the peeled Zn adhered to the cellophane tape was measured by fluorescent X-rays. Then, it was evaluated by the count number of Zn.

【0029】 優 ◎: 1000 cps(剥離Znカウント数/秒)以下 良い 〇: 1000〜3000 cps 普通 △: 3000〜5000 cps 悪い ×: 5000 cps以上 <耐フレーキング性>図5に示すビード型引抜きテスト
(押え荷重:5kgf/cm2 、引抜き速度:500m
m/min)を行った後、合金化溶融亜鉛めっき鋼板の
摺動部にセロテープを貼り、次いでセロテープを剥して
セロテープに付着した剥離Zn量を、耐パウダリング性
の評価と同様に測定して評価した。
Excellent :: 1000 cps (number of peeled Zn counts / second) or less Good Δ: 1000 to 3000 cps Normal Δ: 3000 to 5000 cps Poor ×: 5000 cps or more <Flaking resistance> Bead-type drawing shown in FIG. 5 Test (pressing load: 5 kgf / cm 2 , drawing speed: 500 m
m / min), a cellophane tape was stuck on the sliding portion of the alloyed hot-dip galvanized steel sheet, and then the cellophane tape was peeled off, and the amount of peeled Zn adhered to the cellophane tape was measured in the same manner as in the evaluation of the powdering resistance. evaluated.

【0030】◎:優 〇:良 △:やや不良 ×:不良
(◎、〇は問題なし) <連続溶接性>スポット溶接機にて、2枚の合金化溶融
亜鉛めっき鋼板を重ね連続して打点し、平均ナゲット径
が4√t(t:板厚)になる時の打点数で評価した。 [電極条件] 電極:CF型 電極先端角:90° 電極材質:Cu−Cr [溶接条件] 溶接電流:9.2kアンペア 加圧力:190kgf 通電時間:10サイクル ◎:優 〇:良 △:やや不良 ×:不良(◎、〇は問
題なし) 上記試験の結果を、比較例の結果と共に表1に示す。表
1より、本発明に係る合金化溶融亜鉛めっき鋼板は、い
ずれも、比較例より耐パウダリング性、耐フレーキング
性、溶接性に優れていることが明らかである。
◎: Excellent 〇: Good △: Slightly poor ×: Poor (No problem with ◎, △) <Continuous weldability> Two spots of galvannealed steel sheets are continuously stacked by a spot welding machine. Then, the evaluation was made by the number of hit points when the average nugget diameter became 4√t (t: plate thickness). [Electrode conditions] Electrode: CF type Electrode tip angle: 90 ° Electrode material: Cu-Cr [Welding conditions] Welding current: 9.2 kAamperating force: 190 kgf Energizing time: 10 cycles ◎: Excellent 〇: Good △: Slightly poor ×: Poor (◎, Δ: no problem) The results of the above test are shown in Table 1 together with the results of Comparative Examples. From Table 1, it is clear that all of the galvannealed steel sheets according to the present invention are more excellent in powdering resistance, flaking resistance, and weldability than the comparative examples.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】以上説明したように、本発明により、プ
レス成形性及びめっき皮膜の平滑性に優れた合金化溶融
亜鉛めっき鋼板を、安定して提供できるようになった。
従って、自動車、家電、建材分野の材料等として、従来
よりも苛酷な成形加工を受けても、それに耐えることが
期待できる。
As described above, according to the present invention, a galvannealed steel sheet excellent in press formability and plating film smoothness can be stably provided.
Therefore, it can be expected that the material, such as a material in the fields of automobiles, home appliances, and building materials, can withstand severer molding processing than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る合金化溶融亜鉛めっき鋼板を製造
するめっき装置の縦断面図である。
FIG. 1 is a longitudinal sectional view of a plating apparatus for producing a galvannealed steel sheet according to the present invention.

【図2】従来のめっき装置の縦断面図である。FIG. 2 is a longitudinal sectional view of a conventional plating apparatus.

【図3】EPMAを用いためっき層断面方向の分析結果
を示した図であり、(a)は本発明例、(b)は比較例
である。
3A and 3B are diagrams showing analysis results of a plating layer cross-sectional direction using EPMA, where FIG. 3A is an example of the present invention and FIG. 3B is a comparative example.

【図4】めっき層中のAl量とめっき層に存在するζ相
のX線回折強度(d=1.26)との関係を示した図で
ある。
FIG. 4 is a diagram showing the relationship between the amount of Al in a plating layer and the X-ray diffraction intensity (d = 1.26) of the ζ phase present in the plating layer.

【図5】合金化溶融亜鉛めっき鋼板のビード型耐フレー
キング性の評価試験方法を説明する図である。
FIG. 5 is a diagram illustrating a method for evaluating a bead-type anti-flaking property of a galvannealed steel sheet.

【符号の説明】[Explanation of symbols]

1 鋼板(被めっき鋼板) 2 溶融亜鉛めっき浴 3 シンク・ロール 4 スナウト 5 サポート・ロール 6 付着量調整装置(本実施例ではガスワイピング装
置) 7 デフレクタ・ロール 8 ガイド・ロール 9 シール装置 10 ポット 11 ポンチ 12 ダイス 13 合金化炉 14 補助浴槽 15 めっき浴供給装置 16 ドロス回収装置
DESCRIPTION OF SYMBOLS 1 Steel plate (plated steel plate) 2 Hot-dip galvanizing bath 3 Sink roll 4 Snout 5 Support roll 6 Adhesion amount adjustment device (gas wiping device in this embodiment) 7 Deflector roll 8 Guide roll 9 Sealing device 10 Pot 11 Punch 12 Dice 13 Alloying furnace 14 Auxiliary bath 15 Plating bath supply unit 16 Dross recovery unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶融亜鉛めっき浴へ鋼板を浸漬し、次い
で該鋼板を前記めっき浴から出して該表面にめっき層を
形成させ、引き続き該鋼板を加熱合金化処理して得られ
る合金化溶融亜鉛めっき鋼板であって、 Fe:7〜15重量%、Al:0.35〜1.0重量
%、残部Zn及び不可避不純物からなる組成であり、且
つ片面当たり15〜100g/m2 であるめっき層を少
なくとも片面に有すると共に、該めっき層中のη相を
0.1重量%未満、地鉄/めっき層界面のГ相厚さを
1.0μm以下としてなることを特徴とするプレス成形
性及びめっき皮膜の平滑性に優れた合金化溶融亜鉛めっ
き鋼板。
1. A galvannealed steel sheet obtained by immersing a steel sheet in a hot-dip galvanizing bath, removing the steel sheet from the bath to form a plating layer on the surface, and subsequently subjecting the steel sheet to a heat alloying treatment. A plated steel sheet, comprising: Fe: 7 to 15% by weight, Al: 0.35 to 1.0% by weight, the balance being Zn and unavoidable impurities, and 15 to 100 g / m 2 per side. Press-formability and plating characterized in that at least one surface of the plating layer is formed, the η phase in the plating layer is less than 0.1% by weight, and the thickness of the Г phase at the interface between the base iron and the plating layer is 1.0 μm or less. Alloyed hot-dip galvanized steel sheet with excellent coating smoothness.
【請求項2】 上記地鉄/めっき層界面にAlが濃化せ
ず、且つめっき層の表面粗さが中心線平均粗さ(Ra)
で1.5μm以下であることを特徴とする請求項1記載
のプレス成形性及びめっき皮膜の平滑性に優れた合金化
溶融亜鉛めっき鋼板。
2. The method according to claim 1, wherein Al is not concentrated at the interface between the base iron and the plating layer, and the surface roughness of the plating layer is center line average roughness (Ra).
2. The galvannealed steel sheet according to claim 1, wherein the galvannealed steel sheet is excellent in press formability and smoothness of a plating film.
【請求項3】 上記めっき層の付着量と該めっき層中の
Fe含有率が以下の関係式を満足することを特徴とする
請求項1又は2記載のプレス成形性及びめっき皮膜の平
滑性に優れた合金化溶融亜鉛めっき鋼板。 15≦W<60の場合、 [Fe]≦21−W/7.5 60≦W<100の場合、[Fe]≦16−W/20 但し、W:片面当りの付着量(g/m2 ) [Fe]:めっき層中の平均Fe含有率(重量%)
3. The press formability and the smoothness of a plating film according to claim 1 or 2, wherein the adhesion amount of the plating layer and the Fe content in the plating layer satisfy the following relational expression. Excellent alloyed hot-dip galvanized steel sheet. When 15 ≦ W <60, [Fe] ≦ 21−W / 7.5 When 60 ≦ W <100, [Fe] ≦ 16-W / 20, where W is the amount of adhesion per side (g / m 2). [Fe]: average Fe content in plating layer (% by weight)
JP33866097A 1996-12-09 1997-12-09 Galvannealed steel sheet excellent in press formability and smoothness of plating film Pending JPH10226862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33866097A JPH10226862A (en) 1996-12-09 1997-12-09 Galvannealed steel sheet excellent in press formability and smoothness of plating film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32872396 1996-12-09
JP8-328723 1996-12-09
JP33866097A JPH10226862A (en) 1996-12-09 1997-12-09 Galvannealed steel sheet excellent in press formability and smoothness of plating film

Publications (1)

Publication Number Publication Date
JPH10226862A true JPH10226862A (en) 1998-08-25

Family

ID=26572960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33866097A Pending JPH10226862A (en) 1996-12-09 1997-12-09 Galvannealed steel sheet excellent in press formability and smoothness of plating film

Country Status (1)

Country Link
JP (1) JPH10226862A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002886A1 (en) * 1998-11-18 2000-05-24 Kawasaki Steel Corporation Galvannealed steel sheet and manufacturing method
KR20010063534A (en) * 1999-12-22 2001-07-09 이구택 a method of manufacturing a galvannealed steel sheets with good anti-powdering
JP2006299288A (en) * 2005-04-15 2006-11-02 Jfe Steel Kk High tensile strength hot dip galvannealed steel sheet having excellent plating adhesion
KR100910451B1 (en) * 2002-12-28 2009-08-04 주식회사 포스코 Hot?dip galvannealed steel sheet having superior flaking resistance and method for manufacturing thereof
WO2013002575A3 (en) * 2011-06-28 2013-03-28 주식회사 포스코 Plated steel sheet having plated layer with excellent stability for hot press molding
JP2014088625A (en) * 2009-02-03 2014-05-15 Nippon Steel & Sumitomo Metal Galvanized heat-treated steel material and method of producing the same
CN105951022A (en) * 2016-05-18 2016-09-21 禹州市神运机械有限公司 Galvanization impurity removing device and galvanization process employing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002886A1 (en) * 1998-11-18 2000-05-24 Kawasaki Steel Corporation Galvannealed steel sheet and manufacturing method
US6368728B1 (en) 1998-11-18 2002-04-09 Kawasaki Steel Corporation Galvannealed steel sheet and manufacturing method
KR20010063534A (en) * 1999-12-22 2001-07-09 이구택 a method of manufacturing a galvannealed steel sheets with good anti-powdering
KR100910451B1 (en) * 2002-12-28 2009-08-04 주식회사 포스코 Hot?dip galvannealed steel sheet having superior flaking resistance and method for manufacturing thereof
JP2006299288A (en) * 2005-04-15 2006-11-02 Jfe Steel Kk High tensile strength hot dip galvannealed steel sheet having excellent plating adhesion
JP2014088625A (en) * 2009-02-03 2014-05-15 Nippon Steel & Sumitomo Metal Galvanized heat-treated steel material and method of producing the same
WO2013002575A3 (en) * 2011-06-28 2013-03-28 주식회사 포스코 Plated steel sheet having plated layer with excellent stability for hot press molding
JP2014527120A (en) * 2011-06-28 2014-10-09 ポスコ Plated steel sheet for hot press forming with excellent plating layer stability
US9314997B2 (en) 2011-06-28 2016-04-19 Posco Plated steel sheet having plated layer with excellent stability for hot press molding
CN105951022A (en) * 2016-05-18 2016-09-21 禹州市神运机械有限公司 Galvanization impurity removing device and galvanization process employing same

Similar Documents

Publication Publication Date Title
JP4786769B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
EP2631319A1 (en) Galvanized steel sheet having excellent coatability, coating adhesion, and spot weldability, and method for manufacturing same
US20120100391A1 (en) Hot-dip galvanized steel sheet having excellent plating qualities, plating adhesion and spot weldability and manufacturing method thereof
US5049453A (en) Galvannealed steel sheet with distinguished anti-powdering and anti-flaking properties and process for producing the same
JP4987510B2 (en) Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
JPS5891162A (en) Manufacture of galvanized steel plate
JP2003253416A (en) Hot-dip zincing steel sheet
JPH10226862A (en) Galvannealed steel sheet excellent in press formability and smoothness of plating film
KR20020087484A (en) Alloyed zinc dip galvanized steel sheet
JP2792346B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet with excellent clarity after painting
JP2005256042A (en) Galvannealed steel sheet, and method for manufacturing the same
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JP3886331B2 (en) Hot-dip galvanized steel sheet with excellent plating adhesion and weldability and method for producing the same
JP3931859B2 (en) Galvanized steel for hot forming and hot forming method
CN114761602B (en) Aluminum-based alloy-plated steel sheet excellent in workability and corrosion resistance, and method for producing same
CN114829666B (en) Aluminum-based alloy-plated steel sheet excellent in workability and corrosion resistance, and method for producing same
JP3239831B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3367466B2 (en) Galvannealed steel sheet
JP4039332B2 (en) Alloyed hot-dip galvanized steel sheet excellent in powdering resistance, slidability and sharpness after painting, and method for producing the same
JP2525165B2 (en) Method for manufacturing high strength galvanized steel sheet
JP2576329B2 (en) Method for producing high-strength alloyed hot-dip galvanized steel sheet with excellent coating uniformity and powdering resistance
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
JP5092858B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3838277B2 (en) Alloyed hot-dip galvanized steel sheet with excellent powdering resistance
JP2004197120A (en) Hot dip galvanized steel sheet having excellent chemical conversion treatability, slidability and weldability, and production method therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Effective date: 20050822

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051011