JP2005043083A - 撮影誤差低減システム、撮影誤差低減方法、プログラム、及び記録媒体 - Google Patents

撮影誤差低減システム、撮影誤差低減方法、プログラム、及び記録媒体 Download PDF

Info

Publication number
JP2005043083A
JP2005043083A JP2003200280A JP2003200280A JP2005043083A JP 2005043083 A JP2005043083 A JP 2005043083A JP 2003200280 A JP2003200280 A JP 2003200280A JP 2003200280 A JP2003200280 A JP 2003200280A JP 2005043083 A JP2005043083 A JP 2005043083A
Authority
JP
Japan
Prior art keywords
data
combined
photographing
input device
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003200280A
Other languages
English (en)
Inventor
Kazuo Matsufuji
和夫 松藤
Akira Takakura
章 高倉
Toshiki Hara
豪紀 原
Yoko Hanada
陽子 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2003200280A priority Critical patent/JP2005043083A/ja
Publication of JP2005043083A publication Critical patent/JP2005043083A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

【課題】制作効率が高く、高精度な3次元形状を取得できる撮影誤差低減システムを提供する。
【解決手段】撮影誤差低減システム1において、形状結合処理装置3は、撮影パラメータを3次元形状入力装置5に設定する。3次元形状入力装置5は、レーザ光の強度を変えて計測対象物11の複数の撮影データを取得する。形状結合処理装置3は、3次元形状入力装置5が取得した複数の撮影データを受け取り、結合して高精度な1つの結合データを作成する。この結合データにより、撮影誤差を低減した計測対象物11の3次元形状画像を得る。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、実物体の3次元形状を非接触で計測する3次元形状計測システムにに関するものである。
【0002】
【従来の技術】
近年、コンピュータハードウェアの性能は急速に向上してきている。特にグラフィックスハードウェアやネットワークの情報転送速度はめざましい進歩を遂げており、汎用PCでさえも高性能なハードウェアを搭載し、高速通信が進んできている。また、3次元入力装置を用いた実体物から3次元情報(形状や色)をデータ化し、コンピュータに取り込む技術も進歩してきている。
【0003】
以上のことから、ネットワーク経由で3次元コンピュータグラフィックス(以下3DCG)コンテンツを配信するサービスの需要が高まりつつある。従来の3DCG制作方法(3DCG制作アプリケーションで制作)では、3DCGコンテンツの制作コストが高くなるため、制作コストを低減する3次元形状入力装置が導入されるようになった。
【0004】
例えば、レーザ光を用いた光切断方式の3次元形状入力装置が知られている。即ち、この方式は、レーザ光をスリット状にして対象物をスキャンし、その反射光をCCDカメラで受光する。三角測量法の原理で、レーザ発光部から対象物までの方向と距離とを検出することで、対象物の3次元形状を計測する(特許文献1参照)。
【0005】
また、複数の照射手段を設け、互いに異なる方向から対象物に照射し、収差による影響の低減、および計測精度を向上させる3次元形状計測装置がある(特許文献2参照)。
【0006】
【特許文献1】
特開2000−131031号公報
【特許文献2】
特開2000−329531号公報
【0007】
【発明が解決しようとする課題】
しかしながら、レーザ光を用いた3次元形状入力装置において、反射率の低い対象物(即ち色が黒や濃紺)や、反射率の高い対象物(鏡など)は、レーザ光強度が弱いと、対象物に照射したレーザ光を読み取ることができないため、形状復元が困難となる。
【0008】
レーザ光の強度を上げることで、この制約は低減され、広範囲計測が可能となるが、レーザ強度が上がることで計測誤差が生じやすくなる。これは対象物の色ごとに、計測に適正なレーザ光の強さが存在するためであり、不適正なレーザ光の強度では、計測誤差が生じやすくなるからである。
【0009】
従来、計測誤差が生じた場合、その誤差部分を手動判別し、整形していたため、制作コストが高くなる原因となっていた。
【0010】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、制作効率が高く、高精度な3次元形状を取得できる撮影誤差低減システムを提供することにある。
【0011】
【課題を解決するための手段】
前述した目的を達成するために第1の発明は、対象物の3次元形状を撮影する形状入力装置と、前記形状入力装置が撮影する複数の撮影データを読み取る読取手段と、前記複数の撮影データを結合し、結合データを作成する結合データ作成手段と、前記結合データを記憶する記憶手段とを、具備し、前記形状入力装置は、レーザ強度を変えて前記対象物を複数回撮影し、前記対象物の撮影データを得ることを特徴とする撮影誤差低減システムである。
【0012】
前記結合データ作成手段は、前記複数の撮影データを、重み付け法、最小二乗法、ロバスト推定法等を用いて結合し、結合データを作成する。即ち、レーザ強度を複数段階に変えて得られた複数の撮影データを、最適な手法で結合して高精度な3次元形状を得る。
【0013】
重み付けの手段は、対象物の色に対して、適正なレーザ強度で取得した撮影データに大きく重み付けをする。例えば対象物が「淡色」である場合、レーザ強度が低い撮影データに重みを大きくして撮影データを結合する。
【0014】
最小二乗法は、撮影データと結合データとの差の2乗和が最小となるようなパラメータを決定する手法であり、撮影データの誤差が正規分布を示す時の最尤推定法である。
【0015】
ロバスト推定法は、例外値をある程度含む撮影データであっても、例外値の影響を受けにくい推定法である。
【0016】
前記結合データ作成手段は、前記複数の撮影データを、レーザ強度が弱い撮影データほど優先して結合する。レーザ強度が弱いほど測定精度が高いので、レーザ強度が弱い撮影データを優先して結合する結合手法である。
【0017】
形状入力装置は、レーザ光を用いた光切断方式の3次元形状入力装置である。レーザ照射機から照射されたレーザ光を、円筒形レンズでスリット状にし、ガルバノミラーで方向を変え、対象物に照射する。対象物をスキャンして反射光をCCD等の画像撮影装置で取り込み、三角測量法の原理で、レーザ発光部から対象物までの距離と方向を検出して、対象物の3次元形状を計測する。
【0018】
撮影データとは、レーザ光をガルバノミラーで走査し、1回のスキャンで例えば640点×480点の計測を行い、各点ごとに対象物の奥行き情報(距離情報)を測定したデータである。本実施の形態では、レーザ強度を変えて、複数の撮影データを得る。
【0019】
結合データとは、得られた複数の撮影データに、前述のいずれかの結合データ作成手段を施して得られる、高精度な対象物の3次元形状データである。
【0020】
第1の発明の撮影誤差低減システムは、対象物の3次元形状を撮影する形状入力装置の複数の撮影データを読み取り、複数の撮影データを結合して結合データを作成する。形状入力装置は、レーザ強度を変えて対象物を複数回撮影し、対象物の撮影データを得る。結合データ作成手段は、重み付けの方法、最小二乗法を利用する方法、ロバスト推定法、レーザ強度が弱い撮影データを優先させる方法等がある。
【0021】
第2の発明は、形状入力装置が対象物の3次元形状を撮影して得る、複数の撮影データを読み取る読取工程と、前記複数の撮影データを結合し、結合データを作成する結合データ作成工程と、前記結合データを記憶する記憶工程とを、具備し、前記形状入力装置は、レーザ強度を変えて前記対象物を複数回撮影し、前記対象物の撮影データを得ることを特徴とする撮影誤差低減方法である。
【0022】
第2の発明の撮影誤差低減方法は、形状入力装置が対象物の3次元形状を撮影して得る、複数の撮影データを読み取り、複数の撮影データを結合して結合データを作成する方法である。形状入力装置は、レーザ強度を変えて対象物を複数回撮影し、対象物の撮影データを得る。
【0023】
第3の発明は、コンピュータを、請求項1から請求項3記載のいずれかの撮影誤差低減システムとして機能させるためのプログラムである。
【0024】
第3の発明のプログラムは、請求項1から請求項3記載の撮影誤差低減システムを機能させるものであり、このプログラムをネットワークを介して流通させることもできる。
【0025】
第4の発明は、コンピュータを、請求項1から請求項3記載のいずれかの撮影誤差低減システムとして機能させるためのプログラムを記録した記録媒体である。
【0026】
第4の発明の記録媒体は、請求項1から請求項3記載の撮影誤差低減システムを機能させるプログラムを記憶しており、この記録媒体を流通させることもでき、またこのプログラムをネットワークを介して流通させることもできる。
【0027】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を詳細に説明する。図1は、本発明の実施の形態に係る撮影誤差低減システム1の構成を示す図である。
【0028】
(1.構成)
撮影誤差低減システム1は、計測対象物11の3次元形状を、非接触で測定するシステムであり、形状結合処理装置3と、3次元形状入力装置5とで構成される。
【0029】
(1−1.形状結合処理装置3の構造)
形状結合処理装置3は、図1に示すように、CPU(中央処理装置)等の制御部15と、ハードディスク等の記憶部13と、ディスプレイ等の表示装置7と、キーボードやマウスなどの入力装置9等で構成される。
【0030】
操作者は、入力装置9から撮影パラメータの入力を行う。撮影パラメータとは、計測対象物11までの距離、撮影に使われるレーザ強度、画像撮影時の輝度などである。尚、幾つかのパターンの撮影パラメータを記憶部13に登録し、それを選択するようにしても良い。
【0031】
表示装置7は、CRTや液晶ディスプレイ等の機器であり、撮影パラメータの設定項目や、計測された3次元コンピュータグラフィックスデータ(ポリゴン化された形状情報、及びテクスチャ情報)を表示する。
【0032】
記憶部13は、ハードディスクやCD−ROM等の機器である。図3に記憶部13の内容を示す。3次元形状入力装置5で測定された計測対象物11の撮影データ29、及び色情報39を登録する。また、撮影データ29を結合した結合データ31を登録する。また、結合データ31に色情報39をつけて作成される3DCGデータ41を登録する。
【0033】
制御部15は、入力装置9から入力される撮影パラメータを、3次元形状入力装置5に設定し、撮影処理の管理を行う。また、3次元形状入力装置5から、計測対象物11の奥行き情報、及び色情報39を読み込み、加工処理と結合処理を施して表示装置7に出力する。制御部15の詳細構造を図2に示す。
【0034】
制御部15は、コンピュータのCPU等であり、処理機能により図2のような構造に分けられる。即ち制御部15は、その機能により、3次元形状入力装置管理部23と、撮影データ処理部25と、撮影処理管理部21と、結合処理部27とで構成される。図2により、処理の流れとともに、制御部15の各機能を説明する。
【0035】
撮影処理管理部21は、入力装置9から入力(ステップ401)された撮影パラメータを、3次元形状入力装置管理部23に送り、更に形状入力装置管理部23に対し撮影実行の命令を行う(ステップ402)。
【0036】
3次元形状入力装置管理部23は、撮影パラメータを3次元形状入力装置5に設定し、撮影処理を実行させる(ステップ403)。また、3次元形状入力装置5からの、計測対象物11の奥行き情報(撮影データ29)と色情報39を取得し(ステップ404)、撮影データ処理部25に送る(ステップ405)。
【0037】
撮影データ処理部25は、3次元形状入力装置管理部23から計測対象物11の奥行き情報(撮影データ29)と色情報39を読み込み、修正及び変換した後、撮影処理管理部21に送る(ステップ406)。
【0038】
撮影処理管理部21は、撮影データ処理部25から計測対象物11の奥行き情報(撮影データ29)と色情報39を読み込み、結合処理部27に送る(ステップ407)。
【0039】
結合処理部27は、レーザ強度の異なる奥行き情報(撮影データ29)、及び色情報39を撮影処理管理部21から読み込み、結合して結合データ31、3DCGデータ41を作成し、撮影処理管理部21に送る(ステップ408)。
【0040】
撮影処理管理部21は、奥行き情報(撮影データ29)、色情報39、結合データ31、3DCGデータ41を記憶部13に登録する(ステップ409)。また、撮影処理管理部21は、3DCGデータ41を記憶部13から読み出して(ステップ410)、表示装置7に3次元画像として表示させる(ステップ411)。
【0041】
(1−2.3次元形状入力装置5の構造)
3次元形状入力装置5は、レーザ光による光切断方式を採用しており、レーザ照射装置17と画像撮影装置19とを備える。レーザ照射装置17は、3次元形状入力装置管理部23により設定された撮影パラメータを基に、計測対象物11に対してレーザ光を照射する。図4に3次元形状入力装置5の構成を示す。
【0042】
レーザ照射装置17は、レーザ照射機33と、円筒型レンズ35と、ガルバノミラー37とで構成される。レーザ照射機33から照射されるレーザ光を、円筒型レンズ35でスリット状にし、さらにガルバノミラー37で方向を変えて計測対象物11に照射する。計測対象物11で反射されたレーザ光を、CCD等の画像撮影装置19が受光する。レーザ光は、一般照明光と比べて輝度が高いため、入力された画像内のレーザ照射部分を読み取ることができる。
【0043】
レーザ照射機33とガルバノミラー37の位置関係、及びガルバノミラー37の角度と受光データから、三角測量法を用いて計測対象物11の奥行き情報(距離情報)を得る。ガルバノミラー37の角度を変え、計測対象物11を1回走査することで、画像撮影装置19は例えば640点×480点の奥行き情報を取得する。
【0044】
また、レーザを照射していないときの計測対象物11の色を収集することで、色情報39を取得し、奥行き情報と合わせて、計測対象物11の3次元形状を復元する。
【0045】
尚、3次元形状入力装置5は、レーザ強度が弱い時の方が、計測対象物11の測定誤差が少ない。また、レーザ強度が弱い場合には、計測対象物11の色が白っぽいものしか撮影できない。レーザ強度を上げることで、黒っぽい色の計測対象物11が撮影できるが、測定誤差が生じ易くなる。
【0046】
画像撮影装置19は、撮影後の計測対象物11の奥行き情報と色情報39を、3次元形状入力装置管理部23に送る。
【0047】
(2.フローチャート)
次に、図5に本実施の形態における撮影誤差低減システム1のフローチャートを示す。
【0048】
まず計測対象物11の撮影準備として、操作者は計測対象物11の設置、及び照明の調整などを行う。また、制御部15は、入力された撮影パラメータ(計測対象物11までの距離、レーザ強度、撮影時の輝度など)を、3次元形状入力装置5に設定する(ステップ101)。
【0049】
次に、3次元形状入力装置5は、制御部15が設定する撮影パラメータに従い、レーザ強度を変更しつつ同一視点から計測対象物11を複数回撮影し撮影データ29(計測対象物11の奥行き情報)を得る(ステップ102)。
【0050】
また、3次元形状入力装置5は、制御部15の指示によりレーザ光を照射しないで計測対象物11の色情報39を収集し、撮影データ29とともに形状結合処理装置3(制御部15)に送る。
【0051】
形状結合処理装置3の3次元形状入力装置管理部23は、撮影データ29と色情報39を撮影データ処理部25に送る。撮影データ処理部25では、撮影データ29を、格子状(640×480)のデータ配列に変換し、撮影処理管理部21に送る。撮影処理管理部21は、変換された複数の撮影データ29を結合処理部27に送り、結合処理部27では、全撮影データの結合処理を行い結合データ31を作成する(ステップ103)。また結合データ31と色情報39を3DCGデータ41に変換する。結合処理方法については後述する。
【0052】
撮影処理管理部21は、結合処理部27から、作成された3DCGデータ41を読み出し、記憶部13に登録する(ステップ104)。尚、記憶部13には、撮影データ29、結合データ31、色情報39を登録してもよい。
【0053】
(3.撮影データ29のデータ結合方法)
結合処理部27における撮影データ29のデータ結合処理について説明する。結合方法にはいくつかの手段が考えられ、ここでは2種類のデータ結合処理のフローチャートを図5、図6に示す。ただしフローチャート内で利用される結合方法は、記載された手法だけとは限らない。
【0054】
撮影データ29は、格子状の奥行き情報群として撮影データ29配列F(x、y)、1≦i≦n(n:撮影回数)に格納される。例えばx=640、y=480の格子状の2次元配列であるとすると、配列(640、480)の座標ごとに奥行き情報が格納されている。
【0055】
尚、奥行き情報のない座標には、NOVALUE値が格納されている。例えば図8の撮影データ29F(x、y)では、計測対象物11の奥行き情報のある領域53には奥行き情報が格納されているが、領域51には奥行き情報がなくNOVALUE値が格納されている。
【0056】
また、全撮影データ29の結合結果を結合データ31配列S(x、y)に格納する。初期値として結合データ31配列S(x、y)の全座標に、NOVALUE値を格納する。
【0057】
(3−1.撮影データ29の第1のデータ結合方法)
撮影データ29の、第1のデータ結合方法のフローチャートを図6に示す。また、第1のデータ結合方法を図8に示す。まず初期設定として、結合データ31配列S(x、y)の全座標に、NOVALUE値を格納する。
【0058】
結合処理部27は、撮影処理管理部21から取得した全撮影データ29の配列F(x、y)〜F(x、y)から、同一座標(x、y)の奥行き情報をn個抽出する(ステップ201)。
【0059】
抽出したn個のデータから、奥行き情報が格納されている(即ちNOVALUE値ではない)座標を抽出する。ここではm個(0≦m≦n)が抽出されたとする(ステップ202)。
【0060】
次に結合処理部27は、抽出したm個の奥行き情報を結合する。結合方法には、
(a)重み付け
(b)最小二乗法
(c)ロバスト推定法
等の方法を行い(ステップ203)、結合データ31配列S(x、y)の座標(x、y)に結合した値を代入する(ステップ204)。
【0061】
(a)重み付けは、奥行き情報F(x、y)〜F(x、y)に、それぞれ適切な重みを付け、式(1)を用いて算出する。
【0062】
【数1】
Figure 2005043083
【0063】
ただし、重みαは式(2)のとおりとする。
【0064】
【数2】
Figure 2005043083
【0065】
(b)最小二乗法は、測定値(撮影データ29)とモデル関数から得られる理論値(結合データ31)の差の2乗和が最小となるようなモデル関数のパラメータを決定する手法のことで、式(3)が最小となるようなS(x,y)の値を求める。
【0066】
【数3】
Figure 2005043083
【0067】
最小二乗法は、撮影データ29の誤差が正規分布を示す時、最尤推定法といえる。
【0068】
(c)ロバスト推定法は、例外値をある程度含むデータ群であっても、比較的安定に代表値を推定できる方法である。式(4)は、ロバスト推定法の1つである、M−estimatorの評価関数である。式(4)が最小値をとるよう、S(x,y)の値を求める。
【0069】
【数4】
Figure 2005043083
【0070】
尚、式(4)のρ関数は、
ρ(t)=t/(σ+t) ……(5)
と表される。tは代表値との誤差であり、ρ(t)は、t=0で唯一最小値を持つ正規関数である。即ち、代表値から離れた値は、代表値算出には殆ど影響力がなくなる。
【0071】
以上のように、1座標ずつ、複数の撮影データ29の結合処理を行い結合データ31を算出して配列S(x、y)の対応する座標に代入する。例えばx=640、y=480ならば、640×480個の座標に同様の結合処理を行い(ステップ205のNO、ステップ206)、結合処理を終了する。
【0072】
図8を用いて説明すると、レーザ強度の異なる、それぞれの撮影データ29配列F(x、y)、F(x、y)、・・、F(x、y)について、結合処理を行い、奥行き情報のある部分、即ち領域53、領域57、領域61のデータについて、同じ座標(x、y)同士で結合処理を行う。
【0073】
例えばx=10、y=10の座標で、F(10、10)=320、F(10、10)=314、F(10、10)=NOVALUE、・・、F(10、10)=310、とすると、奥行き情報のある撮影データ29のみを抽出、即ちF(10、10)=NOVALUEは除外して、上記何れかの結合方法を用い結合データ31配列S(10、10)を算出する。全ての座標について結合処理を行い、結合データ31を作成する。計測対象物11の、レーザ強度の異なる複数の撮影データ29を結合処理し、精度の高い3DCGデータとして結合データ31S(x、y)を得る。
【0074】
(3−2.撮影データ29の第2のデータ結合方法)
撮影データ29の、第2のデータ結合方法のフローチャートを図7に示す。また、第2のデータ結合方法を図9に示す。
【0075】
第2のデータ結合方法では、まず撮影データ29配列F(x、y)〜F(x、y)を、撮影時のレーザ強度の低い順に並べ替える。即ち撮影データ29配列F(x、y)のデータが、最もレーザ強度の低い撮影データであるので、最も撮影精度が高い撮影データである。第2の結合方法は、この配列F(x、y)を最も優先順位を高く設定し、順にF(x、y)、F(x、y)・・と、優先順位を落として結合し、結合データ31を作成していく。
【0076】
まず、結合データ31配列S(x、y)を初期化する。即ち結合データ31配列S(x、y)の全座標に、NOVALUE値を格納する(ステップ301)。全撮影回数をn回とし、i=1を設定する。
【0077】
次に、結合処理部27は、i番目の撮影データ29配列F(x、y)を取得する(ステップ302)。i=1のとき、撮影データ29配列F(x、y)を取得する。
【0078】
次に、結合データ31配列Sの座標(x、y)の値を、DataSに読み込み(ステップ303)、DataSに奥行き情報が格納されていなければ(ステップ304のNO)、撮影データ29配列Fの座標(x、y)の値をDataFに読み込む(ステップ305)。DataSに奥行き情報が格納されている場合、即ち結合データ31配列S(x、y)にデータが格納されていれば(ステップ304のYES)、ステップ308に進む。
【0079】
DataFに奥行き情報があれば(ステップ306のYES)、結合データ31配列S(x、y)にDataFを代入し(ステップ307)、ステップ308に進む。DataFに奥行き情報がない場合、即ち撮影データ29配列F(x、y)がNOVALUE値であるとき(ステップ306のNO)、ステップ308に進む。
【0080】
ステップ308では、全座標(x、y)の、結合データ31配列S(x、y)の格納値調査が終了していない場合(ステップ308のNO)、結合データ31配列S(x、y)の次の座標に移動して(ステップ309)、ステップ303に戻る。例えば、結合データ31配列S(100、100)の次の座標S(100、101)の格納値の調査に移る。
【0081】
ステップ308で、全座標(x、y)の、結合データ31配列S(x、y)の格納値調査が終了した場合で(ステップ308のYES)、かつ最後の撮影データ29配列F(x、y)であった場合は(ステップ310のYES)、結合処理は終了する。未処理の撮影データ29がある場合は(ステップ310のNO)、次の撮影データ29配列Fi+1(x、y)へ移動し(ステップ311)、ステップ302に戻る。
【0082】
図9に、上記図7のフローチャートによる、複数の撮影データ29の結合処理を示す。撮影データ29配列F(x、y)が、最もレーザ強度が弱い時の撮影データである。
【0083】
撮影データ29配列F(x、y)の奥行き情報のある領域69が、まず優先されて結合データ31配列S(x、y)に格納される。
【0084】
次に、撮影データ29配列F(x、y)の奥行き情報のある領域73のうちの、重複領域69を除く部分が結合データ31配列S(x、y)に結合される。
【0085】
このようにして、図7のフローチャートに従うと、レーザ強度が弱いものから順に優先されて、結合データ31配列S(x、y)が作成される。
【0086】
従って、レーザ強度が弱い撮影データ29ほど撮影精度が高いので、誤差の影響を抑えながら、複数の撮影データ29を高精度な1つの結合データ31にまとめることができる。
【0087】
(4.効果など)
撮影データ29の結合方法は、計測対象物11の色や形状により、上記説明した方法等から最適な方法を選択することができる。例えば、計測対象物11の色が白っぽい場合には、レーザ強度の弱い撮影データ29を優先するように設定する。尚、撮影データ29の結合方法は、上記説明した方法に限らない。
【0088】
また、複数の結合方法で結合データ31を作成し、表示装置7に計測対象物11の3DCG画像をそれぞれの結合方法の結果として表示し、作成された3次元形状を比較検討してもよい。
【0089】
本実施の形態によれば、計測対象物11に対し、レーザ光の強度を変えて撮影し、計測誤差の影響を低減する方法で1つの結合データを作成するので、高精度な3次元画像を作成できる。
【0090】
また、計測対象物11が様々な色を備える場合であっても、複数のレーザ強度で撮影データ29を取得して結合するので、色の制約が低減される。
【0091】
また、色ごとに計測誤差が少ない適正なレーザ強度があるので、それぞれの色に対する最適な撮影データ29に重み付けを大きくして結合し、高精度な3次元画像を作成することができる。
【0092】
また、本実施の形態によれば、撮影時に生じる計測誤差を手動で整形する工程を削除できるので、高精度な3次元画像の制作効率を上げ、制作コストを低減する効果がある。
【0093】
尚、本発明の技術的範囲は、前述した実施の形態に限られるものではない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【0094】
【発明の効果】
以上、詳細に説明したように本発明によれば、制作効率が高く、高精度な3次元形状を取得できる撮影誤差低減システムを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る撮影誤差低減システム1の構成を示す図
【図2】制御部15の構成を示す図
【図3】記憶部13を示す図
【図4】3次元形状入力装置5の構成を示す図
【図5】撮影誤差低減システム1のフローチャート
【図6】第1のデータ結合処理を示すフローチャート
【図7】第2のデータ結合処理を示すフローチャート
【図8】第1のデータ結合処理を示す図
【図9】第2のデータ結合処理を示す図
【符号の説明】
1・・・ 撮影誤差低減システム
3・・・ 形状結合処理装置
5・・・ 3次元形状入力装置
7・・・ 表示装置
9・・・ 入力装置
11・・・ 計測対象物
13・・・ 記憶部
15・・・ 制御部
17・・・ レーザ照射装置
19・・・ 画像撮影装置
21・・・ 撮影処理管理部
23・・・ 3次元形状入力装置管理部
25・・・ 撮影データ処理部
27・・・ 結合処理部
29・・・ 撮影データ
31・・・ 結合データ
33・・・ 結合照射機
35・・・ 円筒型レンズ
37・・・ ガルバノミラー
39・・・ 色情報
41・・・ 3DCGデータ
51、55、59、63、67、71、75、79・・・ NOVALUEデータ
53、57、61、65、69、73、77・・・ 奥行きデータ

Claims (8)

  1. 対象物の3次元形状を撮影する形状入力装置と、
    前記形状入力装置が撮影する複数の撮影データを読み取る読取手段と、
    前記複数の撮影データを結合し、結合データを作成する結合データ作成手段と、
    前記結合データを記憶する記憶手段と、
    を、具備し、
    前記形状入力装置は、レーザ強度を変えて前記対象物を複数回撮影し、前記対象物の撮影データを得ることを特徴とする撮影誤差低減システム。
  2. 前記結合データ作成手段は、
    前記複数の撮影データを、重み付け法、最小二乗法、ロバスト推定法等を用いて結合し、結合データを作成することを特徴とする請求項1記載の撮影誤差低減システム。
  3. 前記結合データ作成手段は、
    前記複数の撮影データを、レーザ強度が弱い撮影データほど優先して結合することを特徴とする請求項1記載の撮影誤差低減システム。
  4. 形状入力装置が対象物の3次元形状を撮影して得る、複数の撮影データを読み取る読取工程と、
    前記複数の撮影データを結合し、結合データを作成する結合データ作成工程と、
    前記結合データを記憶する記憶工程と、
    を、具備し、
    前記形状入力装置は、レーザ強度を変えて前記対象物を複数回撮影し、前記対象物の撮影データを得ることを特徴とする撮影誤差低減方法。
  5. 前記結合データ作成工程は、
    前記複数の撮影データを、重み付け法、最小二乗法、ロバスト推定法等を用いて結合し、結合データを作成することを特徴とする請求項4記載の撮影誤差低減方法。
  6. 前記結合データ作成工程は、
    前記複数の撮影データを、レーザ強度が弱い撮影データほど優先して結合することを特徴とする請求項4記載の撮影誤差低減方法。
  7. コンピュータを、請求項1から請求項3記載のいずれかの撮影誤差低減システムとして機能させるためのプログラム。
  8. コンピュータを、請求項1から請求項3記載のいずれかの撮影誤差低減システムとして機能させるためのプログラムを記録した記録媒体。
JP2003200280A 2003-07-23 2003-07-23 撮影誤差低減システム、撮影誤差低減方法、プログラム、及び記録媒体 Pending JP2005043083A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200280A JP2005043083A (ja) 2003-07-23 2003-07-23 撮影誤差低減システム、撮影誤差低減方法、プログラム、及び記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200280A JP2005043083A (ja) 2003-07-23 2003-07-23 撮影誤差低減システム、撮影誤差低減方法、プログラム、及び記録媒体

Publications (1)

Publication Number Publication Date
JP2005043083A true JP2005043083A (ja) 2005-02-17

Family

ID=34260741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200280A Pending JP2005043083A (ja) 2003-07-23 2003-07-23 撮影誤差低減システム、撮影誤差低減方法、プログラム、及び記録媒体

Country Status (1)

Country Link
JP (1) JP2005043083A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007079718A (ja) * 2005-09-12 2007-03-29 National Institute Of Advanced Industrial & Technology 人体形状復元装置および人体形状復元方法
JP2008215975A (ja) * 2007-03-02 2008-09-18 Pulstec Industrial Co Ltd 3次元形状測定装置および3次元形状測定方法
JP2008216098A (ja) * 2007-03-06 2008-09-18 Pulstec Industrial Co Ltd 3次元形状測定装置および3次元形状測定方法
JP2008281391A (ja) * 2007-05-09 2008-11-20 Pulstec Industrial Co Ltd 3次元形状測定装置および3次元形状測定方法
CN100454291C (zh) * 2005-06-07 2009-01-21 乐必峰软件公司 使用容许误差区检测三维测量数据的方法
CN113776457A (zh) * 2021-08-31 2021-12-10 中国铁道科学研究院集团有限公司 基于虚实结合的曲线段钢轨轮廓测量误差修正方法及装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454291C (zh) * 2005-06-07 2009-01-21 乐必峰软件公司 使用容许误差区检测三维测量数据的方法
JP2007079718A (ja) * 2005-09-12 2007-03-29 National Institute Of Advanced Industrial & Technology 人体形状復元装置および人体形状復元方法
JP2008215975A (ja) * 2007-03-02 2008-09-18 Pulstec Industrial Co Ltd 3次元形状測定装置および3次元形状測定方法
JP2008216098A (ja) * 2007-03-06 2008-09-18 Pulstec Industrial Co Ltd 3次元形状測定装置および3次元形状測定方法
JP2008281391A (ja) * 2007-05-09 2008-11-20 Pulstec Industrial Co Ltd 3次元形状測定装置および3次元形状測定方法
CN113776457A (zh) * 2021-08-31 2021-12-10 中国铁道科学研究院集团有限公司 基于虚实结合的曲线段钢轨轮廓测量误差修正方法及装置
CN113776457B (zh) * 2021-08-31 2023-08-08 中国铁道科学研究院集团有限公司 基于虚实结合的曲线段钢轨轮廓测量误差修正方法及装置

Similar Documents

Publication Publication Date Title
EP3392831B1 (en) Three-dimensional sensor system and three-dimensional data acquisition method
JP4915859B2 (ja) 物体の距離導出装置
JP4290733B2 (ja) 3次元形状計測方法及びその装置
US7986321B2 (en) System and method for generating structured light for 3-dimensional image rendering
JP5132832B1 (ja) 計測装置および情報処理装置
JP6841863B2 (ja) Oct網膜画像データレンダリング方法、oct網膜画像データレンダリングプログラムを記憶した記憶媒体、oct網膜画像データレンダリングプログラム及びoct網膜画像データレンダリング装置
JP2018514237A (ja) 歯科用3dスキャナ用のテクスチャマッピングの装置及び方法
JP5955028B2 (ja) 画像処理装置、画像処理方法および画像処理用のプログラム
JP2007256091A (ja) レンジファインダ校正方法及び装置
KR102479827B1 (ko) 화상 처리 장치 및 화상 처리 방법
US20180322329A1 (en) Image processing device, imaging device, microscope device, image processing method, and image processing program
JP2009168658A (ja) 三次元形状計測装置
WO2019076192A1 (zh) 图像重建方法、装置及显微成像装置
JP2014153149A (ja) 形状測定装置、構造物製造システム、形状測定方法、及びプログラム
WO2022050279A1 (ja) 三次元計測装置
JP2005043083A (ja) 撮影誤差低減システム、撮影誤差低減方法、プログラム、及び記録媒体
Gu et al. 3dunderworld-sls: an open-source structured-light scanning system for rapid geometry acquisition
CN107534730B (zh) 图像处理装置及图像处理方法
JP2019120590A (ja) 視差値算出装置、視差値算出方法及びプログラム
US8818124B1 (en) Methods, apparatus, and systems for super resolution of LIDAR data sets
CN111583388A (zh) 一种三维扫描系统的扫描方法及设备
KR20210050365A (ko) 영상 정합 장치 및 방법
EP4193905A1 (en) Intraoral scanner, intraoral scanning system, method for performing intraoral scans and computer program product
JP2005043084A (ja) 撮影画像合成システム、撮影画像合成方法、プログラム、及び記録媒体
JP2016065785A (ja) 画像処理装置、画像処理方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819