JP2005041702A - Method for producing optical fiber glass preform and optical fiber glass preform produced thereby - Google Patents

Method for producing optical fiber glass preform and optical fiber glass preform produced thereby Download PDF

Info

Publication number
JP2005041702A
JP2005041702A JP2003199885A JP2003199885A JP2005041702A JP 2005041702 A JP2005041702 A JP 2005041702A JP 2003199885 A JP2003199885 A JP 2003199885A JP 2003199885 A JP2003199885 A JP 2003199885A JP 2005041702 A JP2005041702 A JP 2005041702A
Authority
JP
Japan
Prior art keywords
glass
optical fiber
quartz pipe
deposition
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003199885A
Other languages
Japanese (ja)
Inventor
Tetsutaro Katayama
哲太郎 片山
Shinji Ishikawa
真二 石川
Tetsuya Haruna
徹也 春名
Toshiki Taru
稔樹 樽
Ichiro Tsuchiya
一郎 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003199885A priority Critical patent/JP2005041702A/en
Publication of JP2005041702A publication Critical patent/JP2005041702A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an optical fiber glass preform, which method is for forming a glass layer inside a quartz pipe and comprises using a raw material containing an organometallic compound to lower the OH group content and to provide an optical fiber glass preform having a core having a low OH group content and containing Cl and produced by the method. <P>SOLUTION: The low OH group content Cl-containing optical fiber glass preform is obtained in the following way. A glass stock gas (including an additive stock gas) and at least one organometallic compound gas are introduced into a quartz pipe and are subjected to an oxidation reaction within the pipe to deposit one or more glass microparticle layers. The layers are transparentized after dehydration. Collapsing is performed after performing the deposition-dehydration-transparentization one or more times. The dehydration process intervenes between the deposition and the transparentization to avoid transparentization immediately after deposition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は出発石英パイプ内面にガラス微粒子を堆積させ、堆積したガラス微粒子を透明化する光ファイバ用ガラス母材の製造方法及びこれにより製造される光ファイバ用ガラス母材に関する。
【0002】
【従来の技術】
石英系の光ファイバ用ガラス母材製造方法として、MCVD法が知られており、この方法は図5の(a) 及び(b) に示すように原料としてガラス形成原料ガス、キャリアガス及び酸化用のOガス等を出発石英パイプ1内に導入し、出発石英パイプ1の外部に設けた移動可能な熱源5をガス供給側から排気側方向に移動させながら該出発石英パイプ1を加熱することにより前記ガラス原料ガス等とOガスが反応してガラス微粒子(SiO)が生成して出発石英パイプ1内面に付着し、ガラス微粒子堆積層2を形成する。該ガラス微粒子堆積層2は堆積に引き続き熱源5により加熱されることにより直ちに透明ガラス化して合成ガラス層3を形成する。合成ガラス層3を形成された出発石英パイプ1は後工程においてコラップスすることにより中実化され、ガラス母材となる。
上記のMCVD法において、ガラス形成原料ガスとして主原料となるSiClや屈折率調整剤のGeCl、POCl、BCl等に加え、塩化物(例えばAlCl等)ガス、有機金属化合物ガスを含ませることにより、当該金属を含有したSiO(ガラス)層を形成する方法がすでに提案されている(例えば、特許文献1〜5参照)。この有機金属化合物として例えば希土類元素含有有機化合物を用いると、希土類元素を含有するガラスを製造することができる。例えばコアにエルビウム等の希土類イオンをドープした光ファイバは、増幅用光ファイバとして開発がその進められているものである。
また、ガラス原料として例えば一般式RSi(OR′)4−n で表されるようなエステルシランを用いる方法も提案されている(例えば特許文献6参照)。
【0003】
【特許文献1】
米国特許第4826288号明細書
【特許文献2】
特開昭63−260853号公報
【特許文献3】
米国特許第4501602号明細書
【特許文献4】
米国特許第4378987号明細書
【特許文献5】
特開平09−025135号公報
【特許文献6】
特公平4−59254号公報
【0004】
【発明が解決しようとする課題】
従来のMCVD法では、有機金属化合物、有機シラン等を原料に用いた場合、得られるガラス母材中に多量のOH基が含まれ、該母材から製造したファイバはOH基の光吸収に基づく伝送損失増加が大きいという欠点があった。
本発明はこのような現状に鑑み、出発石英パイプ内にガラス層を合成して含有OH基量の低減されたガラス母材を製造できる方法を課題とするものである。
さらに本発明は、OH基含有量が低く特性の向上した光ファイバ用ガラス母材の提供をも課題とする。
【0005】
【課題を解決するための手段】
本発明は下記(1) 〜(8) の構成により、前記課題を解決するものである。
(1) 出発石英パイプ内面にガラス微粒子を堆積させ、堆積したガラス微粒子を透明化して光ファイバ用ガラス母材を製造する方法において、前記出発石英パイプとして無水石英パイプを用い、原料中に少なくとも1種類以上の有機金属化合物を含み、前記堆積したガラス微粒子を透明化前に脱水処理することを特徴とする光ファイバ用ガラス母材の製造方法。
(2) 前記脱水処理時の温度が前記透明化時の温度よりも低く、かつガラス微粒子堆積時の温度が800〜1600℃であることを特徴とする前記(1) 記載の光ファイバ用ガラス母材の製造方法。
(3) 前記出発石英パイプ内に前記ガラス微粒子を1層堆積させる毎に前記脱水処理及び前記透明化を行うことを特徴とする前記(1) 又は(2) に記載の光ファイバ用ガラス母材の製造方法。
(4) 前記出発石英パイプ内に前記ガラス微粒子を2層以上堆積させた後に前記脱水処理及び前記透明化を行うことを特徴とする前記(1) 又は (2)のいずれかに記載の光ファイバ用ガラス母材の製造方法。
(5) 前記堆積したガラス微粒子の前記脱水処理及び前記透明化を一のトラバースにおいて連続して行うことを特徴とする前記(1) ないし(4) のいずれかに記載の光ファイバ用ガラス母材の製造方法。
(6) 前記脱水処理の際に前記石英パイプ中に前記ガラス微粒子に添加する元素を含む塩化物ガスを供給することを特徴とする前記(1) ないし(5) のいずれかに記載の光ファイバ用ガラス母材の製造方法。
(7) 前記堆積したガラス微粒子の嵩密度が0.1g/cm〜1.0g/cmであることを特徴とする前記(1) ないし(6) のいずれかに記載の光ファイバ用ガラス母材の製造方法。
(8) 前記(1) 〜(7) のいずれかに記載の製造方法により製造され、前記透明化されたガラス中にClを含有することを特徴とする光ファイバ用ガラス母材。
なお、前記(2) において、ガラス微粒子堆積時の温度とは、ガラス微粒子堆積時の石英パイプ表面温度であり、例えば放射温度計等で測定できる。
【0006】
【発明の実施の形態】
従来のMCVD法において有機金属化合物や有機シラン化合物(両者をまとめて有機金属化合物と総称する)を原料中に含ませた場合にOH基の残留がみられる原因について、本発明者らは検討・考察を重ねた結果、ガラス原料と共に出発石英パイプ内に供給された有機金属化合物が外部熱源で高温に加熱されることにより該有機化合物中のOH基が解離してCO,CO、HClを生成し、これがガラス中に取り込まれてSiOHを形成するためではないかと考えついた。すなわち、従来法ではガラス微粒子堆積と同時に透明ガラス化が行われるため上記のように生成したOH基はそのままガラス中に取り込まれてしまい、たとえコラップス前に脱水処理工程に付してもガラス層からこのOH基を十分には除去できないので、この母材から線引きした光ファイバは残留OH基の光吸収による大きな伝送損失を有するものとなる。
【0007】
これに対し、本発明ではガラス原料ガス中に有機金属化合物を含む原料を無水石英からなる出発石英パイプ中に供給しつつ外部から加熱することにより、当該金属元素を含むガラス微粒子層を堆積するが、堆積と同時に透明化することは回避し、前記ガラス微粒子を1層又は2層以上堆積した後に、脱水処理を施し、次いで透明化する〔上記(1) 発明〕、あるいは前記ガラス微粒子を1層又は2層以上堆積した後に、脱水処理と同時に透明化する〔上記(3) 及び(4) 発明〕ことにより、OH基の残留を低減する。堆積と同時の透明化を回避するため、脱水処理時温度は透明化時温度より低く、かつ堆積時温度を800〜1600℃とする〔上記(2) 発明〕。この温度範囲とするのはガラス微粒子層の嵩密度を脱水可能な範囲とするためであり、具体的には嵩密度が0.1g/cm〜1.0g/cmであることが望ましい〔上記(7) 発明〕。本発明においては、脱水処理に付されるまでガラス微粒子層は多孔質のままであるため、脱水が十分に行われる。また、出発石英パイプとして市販の無水石英管を用いることにより、クラッド層の殆どあるいは全てを形成するためのガラス微粒子堆積を不要とし、製造時間、コストを低減する。
本発明は、前記有機金属化合物として希土類の有機化合物を用いることにより、希土類元素を含有し、OH基含有量の十分に低い光ファイバ用ガラス母材を低コストに製造できる。
また、本発明によれば透明化されたガラス中にClを含有する光ファイバ用母材〔上記(8) 発明〕となるので、希土類元素とClを含有し、かつOH基含有量の十分に低い光ファイバ用ガラス母材が実現できる。
【0008】
図1は本発明の工程順と出発石英パイプの長手方向軸に対して垂直な断面形状の変化を模式的に示す説明図であり、図中1は出発石英パイプ、2は堆積したガラスの層(以下、ガラス微粒子堆積層)、3はガラス微粒子堆積層2が透明化されてなる合成ガラス層、4はジャケット層を示す。各工程について以下に詳細に説明するが、本発明の装置構成は図2に示すように、図5に示した従来のMCVD法と同様のものでよく、図5と共通する符号は同じものを示し、6はガラス旋盤を示す。
本発明の出発石英パイプ1としては、無水石英パイプを用いる。無水石英パイプとは、例えばOH基含有量が1ppm以下(すなわち、赤外線分光器による測定で測定限界以下)のものであり、例えば、信越石英(株)製、SUPRASIL−F300(商品名)等の市販品を用いることができる。ただしガラス堆積工程に用いる前に脱水剤含有ガス等を供給して内表面を脱水しておいてもよい。
クラッドをSiO微粒子の堆積により形成するとすれば相当量の堆積が必要になる。また、縮径を防ぐためにPを添加すると、これに伴う屈折率の上昇を防ぐためにFの添加を行う必要がある。これらの要因のためクラッドを堆積させる工程を含むと不経済である。現在ではOHの十分低い出発石英パイプが製造されており、無水パイプを使用すれば、クラッドのOH基を気にする必要はない。
【0009】
ガラス旋盤6に取付け回転させている無水石英からなる出発石英パイプ1の一端から原料(ガス)として例えばSiCl等のガラス原料ガス、GeCl等の添加剤原料ガス、添加しようとする金属(希土類金属やその他のの金属)の有機化合物ガス、キャリアガス、反応性ガスとしてO(キャリアガスをかねてもよい)等を供給し、外部の熱源5(図1では酸水素バーナ)を出発石英パイプ1とは相対的に原料供給側から排気側に移動させつつ加熱し、出発石英パイプ1内で原料が気相反応することにより生成するガラス微粒子を出発石英パイプ1内壁面に堆積させ多孔質のガラス微粒子堆積層2を得る。
【0010】
本発明のガラス原料ガスとしては、例えばSiCl、RSi(OR′)4−n で表されるエステルシラン類〔ここでRはH原子、メチル基又はエチル基、R′はメチル基又はエチル基、nは0〜4の正の整数を表す〕、Al(AlCl)等が、屈折率調整用等の添加剤としては、例えばGeO(GeCl)、B(BCl、BBr)、P(POCl)、SiF、BF、SF、Ge(OR′′)、B(OR′′)〔ここでR′′は一価炭化水素基を荒らす〕等が挙げられる。 また、Al(CH、Zn(CH、Be(CH等の有機金属化合物はハロゲン化合物(例えばBFやHCl)等と反応してAlF、ZnF、BeF等のガラス原料又は添加物原料となることができる。
ガラス原料ガス、屈折率調整用等の添加剤ガスは、通常バブリング法により、キャリアガスと共に出発石英パイプ内に供給される。キャリアガスとしては、例えば、H、Ar、He、空気等が挙げられる。また、Oガスをキャリアガスとすることもできる。
【0011】
本発明の有機金属化合物としては、Li,Na,Be,Mg,Al,Cu,Zn,Cd,Ga,Sc,Y,Ti,Zr,Hf,Bi,等の金属又はCe,Eu,Gd,Dy,Er,Tm,Yb等の希土類金属等と配位子との化合物が挙げられる。前記配位子として例えば、1,1,1−トリフルオロ−2,4−ペンタンジオン(トリフルオロアセチルアセトン)、1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオン(ヘキサフルオロアセチルアセトン〔(hfa〕と略記〕)、2,2,6,6−テトラメチル−3,5−ヘプタンジオン〔(thd)と略記〕、1,1,1,2,2,3,3−ヘプタフルオロ−7,7−ジメチル−4,6−オクタジオン、2,2,7−トリメチル−3,5−オクタンジオン、1,1,5,5,6,6,7,7,7−デカフルオロ−2,4−ヘプタンジオン、1,1,1−トリフルオロ−6−メチル−2,4−ヘプタンジオン、1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオン、アセチルアセトン、ジピバロイルメタン等が挙げられる。
これらの化合物は加熱により昇華させ、キャリアガスと共に出発石英パイプ内に供給される。キャリアガスとしては、例えば前記したキャリアガスやOを用いることができる。
【0012】
有機金属化合物の具体例としては、例えばEr(C1119、Er(CH、Er(C、Er(C、Dy(C、Dy(C1119、Eu(C、Eu(C1119、Gd(C1119、Tm(C、Tm(C1119等が挙げられる〔前記において、(C1119:Tris(2,2,6,6,−tetramethyl−3,5−heptanedion) 、(C:Tris(2,4−pentanedione)、(CH:Tris(methylcyclopentadienyl)、(C:Tri(sethylcyclopentadienyl) 、C:Tris(cyclopentadienyl)〕。
【0013】
本発明の堆積工程の加熱温度は800〜1600℃の範囲内が好ましく〔上記(2) 発明〕、この温度範囲内で加熱することにより、ガラス微粒子(堆積層)2の嵩密度を0.1g/cm〜1.0g/cmの範囲内とすることができる。図3は、ガラス微粒子堆積時の石英パイプ表面温度(ガラス微粒子堆積時の温度という)とガラス微粒子堆積体の嵩密度及び添加GeO濃度の関係を示すグラフであり、このグラフからガラス微粒子堆積体の嵩密度を0.1g/cm〜1.0g/cmにするためには、前記ガラス微粒子堆積時の温度が800〜1600℃である必要があることがわかる。なお、石英パイプ表面温度は放射温度計にて測定できる。1600℃を越えて加熱すると、堆積と同時に透明化が開始する恐れがある。透明化してしまうと脱水が困難になる。あまりに低温では反応効率が低く、ガラスの嵩密度が小さくなり物理的強度が低くなる。
【0014】
ガラス微粒子堆積の後、出発石英パイプ1内に脱水剤ガス又は脱水剤ガスと不活性ガス、例えばHe、Ar、N等との混合ガスを供給し、熱源5と出発石英パイプ1を相対的に移動させることにより、該パイプ1の一端から他端まで加熱する(これを一トラバースという)ことによりガラス微粒子堆積層の脱水処理を行う。ガラス微粒子堆積体の嵩密度が0.1g/cm〜1.0g/cmの範囲内であると、十分に脱水できる。前記嵩密度の更に好ましい範囲は0.2〜0.9g/cmであり、格別好ましい範囲としては0.4〜0.8g/cmである。このときの加熱温度(石英パイプの外側から放射温度計で測定した温度)は800〜1200℃の範囲内であることが透明化せず十分な脱水効果を得る上で好ましい。
脱水剤としては、例えば、Cl、SiCl、GeCl、POCl、BCl等が挙げられ、これらの脱水ガス単独(100%)で供給してもよいし、また例えばO、Ar又はHe等のガスとの混合ガスとして供給してもよい。
【0015】
原料中にGeO、B又はP等を添加することにより、ガラス微粒子堆積層2にGe、B又はPを添加した場合には、脱水剤としてClを含有する雰囲気ガスを供給すると、これらの成分が反応して塩化物を形成し、蒸発する。そこで、脱水処理用雰囲気ガスとして、添加した元素に対応するその塩化物、すなわち、GeCl、BCl又はPOClを脱水剤例えばClに加えて供給することが特に好ましい〔上記(6) 発明〕。また、これらの塩化物は、脱水処理用雰囲気ガスにOを混合している場合、Oガスと反応することによりClガスを発生するので、更に脱水効果が得られる。
【0016】
本発明の脱水処理と同時に、すなわち1トラバースの間に、透明化を行えば、工程が簡略となり製造時間を短縮できる。
ただし、脱水処理の後に別工程として熱源を一体から他端まで相対的に移動させるトラバースにより透明化してもよい。
透明化を別工程で行う場合の雰囲気ガスとしては、例えばHe、O、Ar、N、Cl等が挙げられる。本発明の透明化工程の加熱温度(石英パイプの外側から放射温度計にて測定)は、脱水と同時に行う場合には1500℃〜2000℃、脱水工程とは別のトラバースで透明化する場合には1400℃〜1800℃の範囲内であることが好ましい。
【0017】
図4は脱水処理時の温度(℃)と透明化処理の温度(℃)〔いずれも石英パイプ外側の測定温度〕とGeO濃度(重量%)の関係を示すグラフであり、このグラフから添加するGeO濃度と脱水、透明化の最適温度との関係が判る。
【0018】
本発明ではガラス微粒子堆積層を1層堆積させる毎に(同一トラバースで又は別工程のトラバースで)脱水処理及び透明化を行うことができる〔上記(3) 発明〕。これにより、屈折率組成の精密な制御と複雑なプロファイルの実現が可能になる。あるガラス微粒子層と次の層の間で屈折率や組成をを変えたい場合に、焼結を行わずに層を重ねていくと多孔質体であるため成分がお互いの層に拡散し、組成や屈折率の制御が困難になるが、このように層毎に脱水することによりOH基の拡散なく確実に脱水できる。
また、本発明は希土類元素を含有し、OH基含有量の十分に低い光ファイバ用ガラス母材を低コストに製造できる方法の提供を課題とする。
【0019】
ただし、光ファイバの用途によって、前記したような層毎の組成、屈折率分布を必要としない場合には、ガラス微粒子層を2層以上堆積させた後、(同一トラバースで又は別工程のトラバースで)脱水処理及び透明化を行うことができる〔上記(4) 発明〕。
【0020】
透明化を終了した後、その内部に金属元素及びClを添加された合成ガラス層3を形成された石英パイプを、外部の熱源により温度1800℃〜2100℃程度に加熱してコラップスする。以上により、金属元素及びClを含有する中心部(コア)を有するガラス母材が得られる。
図1の例では、コラップスして得られた合成ガラス層3と外周の石英ガラス層1からなる本発明のガラス母材を更にジャケット付工程に付し、ジャケット層4を形成している。
【0021】
【実施例】
以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例にのみ限定されるところはない。なお、以下の各実施例、比較例においては熱源として酸水素バーナを使用しているが、その他プラズマバーナ、抵抗炉、誘導炉等の熱源を使用しても同様に有効である。
【0022】
〔実施例1〕
図2に示した構成で本発明に従い、光ファイバ用ガラス母材を作製した。
出発石英パイプとしては、信越石英(株)製SUPRASIL−F300(商品名)の無水石英パイプ(含有OH基量:1ppm未満、サイズ:外径25mm、内径16mm、長さ1000mm)を用いる。原料のうち、SiCl、GeClはHeをキャリアガスとしてバブラから供給、Er(C1119の粉末はバブラ内に保持して加熱し、昇華させ、Heをキャリアガスとして供給する。またOは単独ラインで供給した。各原料ガスは出発石英パイプ内で混合すると同時に、外部の熱源(酸水素バーナ)で加熱し反応させ、生成したガラス微粒子を7層堆積させ多孔質のガラス微粒子堆積層を形成させる(図2)。堆積時に放射温度計で測定した出発石英パイプ表面の温度は1200℃、堆積したガラス微粒子堆積層の嵩密度は0.6g/cmであった〔堆積工程〕。このガラス微粒子層を堆積させたガラス管内にClを流し、酸水素バーナ(温度1400℃)を相対的に移動させながら加熱することにより脱水処理する(脱水工程)。次にパイプ内に導入するガス雰囲気をHeとし、引き続きこのガラス管を1980℃で加熱して透明ガラス化し、その後2100℃に加熱してコラップスを行い、光ファイバ用母材とした。得られたガラス母材は中心の合成ガラス3からなる部分(コア部に相当)がGe、Er及びClが添加されたSiO(Cl:650ppm、GeO:17.5重量%、Er3+:860ppmがコア部にのみ含まれる)、外周部(出発石英パイプ)がSiOからなるものである。この母材に従来の技術でジャケット付けを行いジャケット層4を有する母材とした後、線引きする。その結果、波長1.24μmでのOH基の光吸収による伝送損失増が3.4dB/kmと低OH基の光ファイバが得られる。
【0023】
〔比較例1〕
比較のために脱水処理を施さず、図5の(a) ,(b)に示す堆積と同時に透明化する従来のMCVD法により、すなわち実施例1において堆積時の出発石英パイプ表面温度を1700℃として堆積と同時に透明化した以外は、実施例1と同様にして合成ガラス層を形成し、以下は実施例1と同様にコラップス、ジャケット付けし、得られた光ファイバ用母材を線引きして得られる光ファイバは、波長1.24μmにおけるOH基の光吸収による伝送損失増が9.3dB/kmと大きい。ファイバのコア部(合成したガラス層)にのみ、Cl:300ppm、GeO:17.5重量%、Er3+:860ppmが含まれる。実施例1に比較してコア部のCl含有量が低い。
【0024】
〔実施例2〕
図2に示した構成で本発明に従い、光ファイバ用ガラス母材を作製する。
出発石英パイプとしては、実施例1で用いたものと同様のものを用いる。原料のうち、SiCl、GeClはHeをキャリアガスとしてバブラから供給、Er(CHの粉末はバブラ内に保持して加熱し、昇華させ、Heをキャリアガスとして供給する。またOは単独ラインで供給する。各原料ガスは出発石英パイプ内で混合すると同時に、外部の熱源(酸水素バーナ)で加熱し反応させ、生成したガラス微粒子を7層堆積させ多孔質のガラス微粒子堆積層を形成させる(図2)。堆積時の出発石英パイプ表面温度(放射温度計で測定)は1300℃、堆積したガラス微粒子堆積層の嵩密度は0.52g/cmである〔堆積工程〕。このガラス微粒子層を堆積させたガラス管内にCl、GeCl及びOを流し、酸水素バーナ(温度1550℃)を相対的に移動させながら加熱することにより脱水処理する(脱水工程)。次にパイプ内に導入するガス雰囲気をHeとし、引き続きこのガラス管を2150℃で加熱して透明ガラス化し、上記堆積工程〜透明化工程を8回繰り返す。その後1900℃に加熱してコラップスを行い、光ファイバ用母材とした。得られたガラス母材は中心の合成ガラス3からなる部分がGe、Er及びCl(910ppm)が添加されたSiO、外周部(出発石英パイプ)がSiOからなるものである。この母材に従来の技術でジャケット付けを行いジャケット層4を有する母材とした後、線引きする。その結果、波長1.24μmでOH基の光吸収による伝送損失増が2.7dB/kmと低OH基の光ファイバが得られる。
【0025】
〔比較例2〕
脱水を行わず、図5の(a) ,(b)に示す堆積と同時に透明化する従来のMCVD法によった以外は実施例3と同様に行い作製した光ファイバ用ガラス母材から線引きする光ファイバの波長1.24μmでのOH基の光吸収による伝送損失増は10.3dB/kmである。
【0026】
〔実施例3〕
図2に示した構成で本発明に従い、光ファイバ用ガラス母材を作製する。
出発石英パイプとしては、実施例1で用いたものと同様のものを用いる。原料のうち、SiCl、GeClはHeをキャリアガスとしてバブラから供給、Er(Cの粉末はバブラ内に保持して加熱し、昇華させ、Heをキャリアガスとして供給する。またOは単独ラインで供給する。各原料ガスは出発石英パイプ内で混合すると同時に、外部の熱源(酸水素バーナ)で加熱し反応させ、生成したガラス微粒子を8層堆積させ多孔質のガラス微粒子堆積層を形成させる(図2)。堆積時の出発石英パイプ表面温度(放射温度計で測定)は1300℃、堆積したガラス微粒子堆積層の嵩密度は0.95g/cmであった〔堆積工程〕。このガラス微粒子層を堆積させたガラス管内にCl及びOを流し、酸水素バーナ(温度1500℃)を相対的に移動させながら加熱することにより脱水処理する(脱水工程)。次にパイプ内に導入するガス雰囲気をHeとし、引き続きこのガラス管を1950℃で加熱して透明ガラス化し、上記堆積工程〜透明化工程を8回繰り返した。その後2100℃に加熱してコラップスを行い、光ファイバ用母材とした。得られたガラス母材は中心の合成ガラス3からなる部分がGe、Er及びCl(760ppm)が添加されたSiO、外周部(出発石英パイプ)がSiOからなるものである。この母材に従来の技術でジャケット付けを行いジャケット層4を有する母材とした後、線引きする。その結果、波長1.24μmでのOH基の光吸収による伝送損失増が3.8dB/kmと低OH基の光ファイバが得られる。
【0027】
〔比較例3〕
脱水を行わず、図5の(a) ,(b)に示す堆積と同時に透明化する従来のMCVD法によった以外は実施例3と同様に行い作製した光ファイバ用ガラス母材から線引きする光ファイバの波長1.24μmでのOH基の光吸収による伝送損失増は9.8dB/kmである。
【0028】
〔実施例4〕
図2に示した構成で本発明に従い、光ファイバ用ガラス母材を作製した。
出発石英パイプとしては、実施例1で用いたものと同様のものを用いる。原料のうち、SiCl、GeClはHeをキャリアガスとしてバブラから供給、Er(Cの粉末はバブラ内に保持して加熱し、昇華させ、Heをキャリアガスとして供給する。またOは単独ラインで供給する。各原料ガスは出発石英パイプ内で混合すると同時に、外部の熱源(酸水素バーナ)で加熱し反応させ、生成したガラス微粒子を3層堆積させ多孔質のガラス微粒子堆積層を形成させる(図2)。堆積時の出発石英パイプ温度(放射温度計で測定)は1080℃、堆積したガラス微粒子堆積層の嵩密度は0.42g/cmであった〔堆積工程〕。このガラス微粒子層を堆積させたガラス管内にGeCl及びOを流し、酸水素バーナ(温度1350℃)を相対的に移動させながら加熱することにより脱水処理する(脱水工程)。次にパイプ内に導入するガス雰囲気をHeとし、引き続きこのガラス管を2000℃で加熱して透明ガラス化し、上記堆積工程〜透明化工程を3回繰り返した。その後2150℃に加熱してコラップスを行い、光ファイバ用母材とした。得られたガラス母材は中心の合成ガラス3からなる部分がGe、Er及びCl(1050ppm)が添加されたSiO、外周部(出発石英パイプ)がSiOからなるものである。この母材に従来の技術でジャケット付けを行いジャケット層4を有する母材とした後、線引きする。その結果、波長1.24μmでのOH基の光吸収による伝送損失増が3.2dB/kmと低OH基の光ファイバが得られる。
【0029】
〔比較例4〕
脱水を行わず、図5の(a) ,(b)に示す堆積と同時に透明化する従来のMCVD法によった以外は実施例4と同様に行い、作製した光ファイバ用ガラス母材から線引きする光ファイバの波長1.24μmでのOH基の光吸収による伝送損失増は9.7dB/kmである。
【0030】
〔実施例5〕
図2に示した構成で本発明に従い、ガラス母材を作製した。出発石英パイプとしては、実施例1で用いたものと同様のものを用いる。原料のうち、SiCl、PはHeをキャリアガスとしてバブラから供給、Er(C1119の粉末はバブラ内に保持して加熱し、昇華させ、Heをキャリアガスとして供給する。またOは単独ラインで供給する。各原料ガスは出発石英パイプ内で混合すると同時に、外部の熱源(酸水素バーナ)で加熱し反応させ、生成したガラス微粒子を4層堆積させ多孔質のガラス微粒子堆積層を形成させる(図2)。堆積時の出発石英パイプ表面温度(放射温度計で測定)は900℃、堆積したガラス微粒子堆積層の嵩密度は0.23g/cmであった〔堆積工程〕。このガラス微粒子層を堆積させたガラス管内にCl、POCl及びOを流し、酸水素バーナ(温度1390℃)を相対的に移動させながら加熱することにより脱水処理する(脱水工程)。次にパイプ内に導入するガス雰囲気をHeとし、引き続きこのガラス管を2050℃で加熱して透明ガラス化し、上記堆積工程〜透明化工程を3回繰り返した。その後2250℃に加熱してコラップスを行い、光ファイバ用母材とした。得られたガラス母材は中心の合成ガラス3からなる部分がGe、Er及びCl(1400ppm)が添加されたSiO、外周部(出発石英パイプ)がSiOからなるものである。この母材に従来の技術でジャケット付けを行いジャケット層4を有する母材とした後、線引きする。その結果、波長1.24μmでのOH基の光吸収による伝送損失増が3.4dB/kmと低OH基の光ファイバが得られる。
【0031】
〔比較例5〕
脱水を行わず、図5の(a) ,(b)に示す堆積と同時に透明化する従来のMCVD法によった以外は実施例4と同様に行い、作製した光ファイバ用ガラス母材から線引きする光ファイバの波長1.24μmでのOH基の光吸収による伝送損失増は9.9dB/kmである。
【0032】
以上の実施例1〜5の条件及び評価結果を表1にまとめて示す。表1及び比較例1〜5の結果から次のことが判る。
堆積したガラス微粒子を透明化前に脱水処理することにより、得られる光ファイバ用ガラス母材の波長1.24μmにおけるOH基の光吸収による伝送損失増が1/3程度に低減できる。すなわち、本発明の母材はOH基含有量が低減された光ファイバを得ることのできる光ファイバ用母材である。
【0033】
【表1】

Figure 2005041702
【0034】
【発明の効果】
本発明によれば石英パイプ中に合成ガラス層を形成する方法により、有機金属化合物を添加した光ファイバ用ガラス母材をOH基含有量を低減して製造できる。また本発明の製法による光ファイバ用ガラス母材は、Cl及び金属を含有する。有機金属化合物を添加することにより希土類元素等金属添加物を含有し、かつOH基含有量を低く抑えた特性の良好な母材が得られる。本発明は、希土類元素等の機能性添加物含有光ファイバの製造に用いて有利である。
【図面の簡単な説明】
【図1】本発明を工程順に模式的に示した説明図である。
【図2】本発明の製法の一実施形態を示す説明図である。
【図3】ガラス微粒子堆積時の温度(℃)とガラス微粒子堆積体の嵩密度(g/cm)及びガラス中のGeO濃度(重量%)の関係を示すグラフ図である。
【図4】脱水処理時の温度(℃)と透明化の際の温度(℃)及びガラス中のGeO濃度(重量%)の関係を示すグラフ図である。
【図5】従来法の装置構成と工程及び出発石英パイプ断面形状の変化を説明する図である。
【符号の説明】
1 出発石英パイプ
2 ガラス微粒子堆積層
3 合成ガラス層
4 ジャケット層
5 熱源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a glass preform for optical fiber, in which glass fine particles are deposited on the inner surface of a starting quartz pipe, and the deposited glass fine particles are made transparent, and to a glass preform for optical fibers produced thereby.
[0002]
[Prior art]
An MCVD method is known as a method for producing a silica-based glass base material for an optical fiber. This method includes a glass forming raw material gas, a carrier gas, and an oxidizing material as raw materials as shown in FIGS. 5 (a) and 5 (b). O 2 The glass is introduced by introducing gas or the like into the starting quartz pipe 1 and heating the starting quartz pipe 1 while moving the movable heat source 5 provided outside the starting quartz pipe 1 from the gas supply side to the exhaust side. Source gas and O 2 The gas reacts to form glass particles (SiO 2 ) And adheres to the inner surface of the starting quartz pipe 1 to form a glass fine particle deposition layer 2. The glass fine particle deposition layer 2 is heated by a heat source 5 subsequent to the deposition to immediately become a transparent glass to form a synthetic glass layer 3. The starting quartz pipe 1 on which the synthetic glass layer 3 is formed is solidified by collapsing in a subsequent process, and becomes a glass base material.
In the above MCVD method, SiCl which is a main raw material as a glass forming raw material gas 4 And the refractive index regulator GeCl 4 , POCl 3 , BCl 3 In addition to chlorides (eg AlCl 3 Etc.) By including gas, organometallic compound gas, SiO containing the metal 2 A method of forming a (glass) layer has already been proposed (see, for example, Patent Documents 1 to 5). For example, when a rare earth element-containing organic compound is used as the organometallic compound, a glass containing a rare earth element can be produced. For example, an optical fiber having a core doped with rare earth ions such as erbium is being developed as an amplification optical fiber.
Further, as a glass raw material, for example, the general formula R n Si (OR ') 4-n A method using an ester silane represented by the formula (1) is also proposed (for example, see Patent Document 6).
[0003]
[Patent Document 1]
U.S. Pat. No. 4,826,288
[Patent Document 2]
JP-A 63-260853
[Patent Document 3]
U.S. Pat. No. 4,510,602
[Patent Document 4]
U.S. Pat. No. 4,378,987
[Patent Document 5]
Japanese Patent Application Laid-Open No. 09-025135
[Patent Document 6]
Japanese Patent Publication No. 4-59254
[0004]
[Problems to be solved by the invention]
In the conventional MCVD method, when an organic metal compound, organosilane, or the like is used as a raw material, a large amount of OH groups are contained in the obtained glass base material, and a fiber manufactured from the base material is based on light absorption of the OH group. There was a drawback that transmission loss increased greatly.
In view of such a current situation, an object of the present invention is to provide a method capable of producing a glass base material with a reduced content of OH groups by synthesizing a glass layer in a starting quartz pipe.
Another object of the present invention is to provide a glass preform for optical fiber having a low OH group content and improved characteristics.
[0005]
[Means for Solving the Problems]
This invention solves the said subject with the structure of following (1)-(8).
(1) In the method of depositing glass fine particles on the inner surface of the starting quartz pipe and transparentizing the deposited glass fine particles to produce a glass preform for optical fiber, an anhydrous quartz pipe is used as the starting quartz pipe, and at least 1 is contained in the raw material. A method for producing a glass preform for an optical fiber, comprising at least one kind of organometallic compound, wherein the deposited glass fine particles are dehydrated before being made transparent.
(2) The glass mother for an optical fiber according to (1), wherein the temperature during the dehydration treatment is lower than the temperature during the transparentization, and the temperature during glass fine particle deposition is 800 to 1600 ° C. A method of manufacturing the material.
(3) The glass base material for an optical fiber according to (1) or (2), wherein the dehydration treatment and the transparency are performed each time one layer of the glass fine particles is deposited in the starting quartz pipe. Manufacturing method.
(4) The optical fiber according to any one of (1) and (2), wherein the dehydration treatment and the transparency are performed after two or more layers of the glass fine particles are deposited in the starting quartz pipe. Method for manufacturing glass base material.
(5) The glass base material for an optical fiber according to any one of (1) to (4), wherein the dehydration treatment and the transparency of the deposited glass fine particles are continuously performed in one traverse. Manufacturing method.
(6) The optical fiber according to any one of (1) to (5), wherein a chloride gas containing an element added to the glass fine particles is supplied into the quartz pipe during the dehydration process. Method for manufacturing glass base material.
(7) The bulk density of the deposited glass particles is 0.1 g / cm. 3 ~ 1.0 g / cm 3 The method for producing a glass preform for optical fiber according to any one of (1) to (6), wherein:
(8) A glass base material for an optical fiber, which is produced by the production method according to any one of (1) to (7) and contains Cl in the transparent glass.
In the above (2), the temperature at the time of glass particle deposition is the quartz pipe surface temperature at the time of glass particle deposition, and can be measured, for example, with a radiation thermometer.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the conventional MCVD method, the present inventors have examined the cause of residual OH groups when organometallic compounds and organosilane compounds (both are collectively referred to as organometallic compounds) are included in the raw material. As a result of repeated studies, the organic metal compound supplied into the starting quartz pipe together with the glass raw material is heated to a high temperature by an external heat source, so that the OH group in the organic compound is dissociated and CO, CO 2 It was thought that HCl was produced and this was taken into the glass to form SiOH. In other words, in the conventional method, transparent vitrification is performed simultaneously with the deposition of the glass fine particles, so that the OH groups generated as described above are taken into the glass as they are, and even if subjected to a dehydration treatment step before the collapse, from the glass layer Since this OH group cannot be removed sufficiently, the optical fiber drawn from this base material has a large transmission loss due to light absorption of the residual OH group.
[0007]
In contrast, in the present invention, a glass fine particle layer containing the metal element is deposited by heating from the outside while supplying a raw material containing an organometallic compound in a glass raw material gas into a starting quartz pipe made of anhydrous quartz. The glass particles are prevented from becoming transparent simultaneously with the deposition, and after the glass fine particles are deposited in one layer or two or more layers, they are dehydrated and then transparentized (the above (1) invention), or the glass fine particles are formed in one layer. Alternatively, after two or more layers are deposited, the residual OH group is reduced by making it transparent at the same time as the dehydration treatment (the above (3) and (4) invention). In order to avoid the transparency at the same time as the deposition, the temperature during the dehydration treatment is lower than the temperature during the transparency, and the temperature during the deposition is set to 800 to 1600 ° C. The temperature range is set so that the bulk density of the glass fine particle layer can be dehydrated. Specifically, the bulk density is 0.1 g / cm. 3 ~ 1.0 g / cm 3 [(7) Invention] is desirable. In the present invention, the glass fine particle layer remains porous until it is subjected to a dehydration treatment, so that the dehydration is sufficiently performed. Further, by using a commercially available anhydrous quartz tube as the starting quartz pipe, it is not necessary to deposit glass fine particles for forming most or all of the cladding layer, thereby reducing manufacturing time and cost.
In the present invention, by using a rare earth organic compound as the organometallic compound, a glass preform for an optical fiber containing a rare earth element and having a sufficiently low OH group content can be produced at low cost.
Further, according to the present invention, since it becomes a preform for optical fiber containing the Cl in the transparent glass [(8) Invention], the rare earth element and Cl are contained, and the OH group content is sufficient. A low optical fiber glass preform can be realized.
[0008]
FIG. 1 is an explanatory view schematically showing the process sequence of the present invention and the change in cross-sectional shape perpendicular to the longitudinal axis of the starting quartz pipe, wherein 1 is the starting quartz pipe and 2 is the deposited glass layer. (Hereinafter referred to as glass fine particle deposition layer) 3 is a synthetic glass layer formed by making the glass fine particle deposition layer 2 transparent, and 4 is a jacket layer. Each process will be described in detail below. As shown in FIG. 2, the apparatus configuration of the present invention may be the same as the conventional MCVD method shown in FIG. 5, and the same reference numerals as those in FIG. 6 indicates a glass lathe.
An anhydrous quartz pipe is used as the starting quartz pipe 1 of the present invention. An anhydrous quartz pipe has, for example, an OH group content of 1 ppm or less (that is, a measurement limit or less as measured by an infrared spectrometer). For example, SUPRASIL-F300 (trade name) manufactured by Shin-Etsu Quartz Co., Ltd. Commercial products can be used. However, the inner surface may be dehydrated by supplying a dehydrating agent-containing gas or the like before being used in the glass deposition step.
Cladding the SiO 2 If it is formed by deposition of fine particles, a considerable amount of deposition is required. In order to prevent diameter reduction, P 2 O 5 When F is added, it is necessary to add F in order to prevent the increase in the refractive index accompanying this. Because of these factors, it is uneconomical to include a step of depositing the cladding. Currently, starting quartz pipes with sufficiently low OH have been produced, and if anhydrous pipes are used, there is no need to worry about the OH groups in the cladding.
[0009]
As a raw material (gas) from one end of a starting quartz pipe 1 made of anhydrous quartz mounted on a glass lathe 6 and rotated, for example, SiCl 4 Glass source gas such as GeCl 4 Additive source gas such as, organic compound gas of the metal to be added (rare earth metal and other metals), carrier gas, reactive gas O 2 (Which may also serve as a carrier gas) and the like, and the external heat source 5 (oxyhydrogen burner in FIG. 1) is heated while moving from the raw material supply side to the exhaust side relative to the starting quartz pipe 1 to start quartz. Glass particulates generated by the gas phase reaction of raw materials in the pipe 1 are deposited on the inner wall surface of the starting quartz pipe 1 to obtain a porous glass particulate deposition layer 2.
[0010]
As the glass source gas of the present invention, for example, SiCl 4 , R n Si (OR ') 4-n [Wherein R represents an H atom, a methyl group or an ethyl group, R ′ represents a methyl group or an ethyl group, and n represents a positive integer of 0 to 4], Al 2 O 3 (Al 2 Cl 6 ) Etc., as an additive for adjusting the refractive index, for example, GeO 2 (GeCl 4 ), B 2 O 3 (BCl 3 , BBr 3 ), P 2 O 5 (POCl 3 ), SiF 4 , BF 3 , SF 6 , Ge (OR ″) 4 , B (OR ") 3 [Wherein R ″ is a monovalent hydrocarbon group]. Al (CH 3 ) 3 , Zn (CH 3 ) 3 , Be (CH 3 ) 3 Organometallic compounds such as halogen compounds (eg BF 3 And HCl) to react with AlF 3 ZnF 3 , BeF 2 It can be a glass raw material or additive raw material.
An additive gas such as a glass raw material gas and a refractive index adjusting agent is usually supplied into the starting quartz pipe together with a carrier gas by a bubbling method. As a carrier gas, for example, H 2 , Ar, He, air and the like. O 2 The gas can also be a carrier gas.
[0011]
Examples of the organometallic compound of the present invention include metals such as Li, Na, Be, Mg, Al, Cu, Zn, Cd, Ga, Sc, Y, Ti, Zr, Hf, Bi, or Ce, Eu, Gd, Dy. , Er, Tm, Yb, and other rare earth metals, and a ligand. Examples of the ligand include 1,1,1-trifluoro-2,4-pentanedione (trifluoroacetylacetone), 1,1,5,5,5-hexafluoro-2,4-pentanedione (hexafluoro). Acetylacetone [abbreviated as (hfa]]), 2,2,6,6-tetramethyl-3,5-heptanedione [abbreviated as (thd)], 1,1,1,2,2,3,3-hepta Fluoro-7,7-dimethyl-4,6-octadione, 2,2,7-trimethyl-3,5-octanedione, 1,1,5,5,6,6,7,7,7-decafluoro- 2,4-heptanedione, 1,1,1-trifluoro-6-methyl-2,4-heptanedione, 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione, acetylacetone Dipivaloylmethane And the like.
These compounds are sublimated by heating and supplied into the starting quartz pipe together with the carrier gas. As the carrier gas, for example, the aforementioned carrier gas or O 2 Can be used.
[0012]
Specific examples of the organometallic compound include, for example, Er (C 11 H 19 O 2 ) 3 , Er (CH 3 C 5 H 4 ) 3 , Er (C 2 H 5 C 5 H 4 ) 3 , Er (C 5 H 7 O 2 ) 3 , Dy (C 5 H 7 O 2 ) 3 , Dy (C 11 H 19 O 2 ) 3 , Eu (C 5 H 7 O 2 ) 3 , Eu (C 11 H 19 O 2 ) 3 , Gd (C 11 H 19 O 2 ) 3 , Tm (C 5 H 7 O 2 ) 3 , Tm (C 11 H 19 O 2 ) 3 [In the above, (C 11 H 19 O 2 ) 3 : Tris (2,2,6,6, -tetramethyl-3,5-heptanedion), (C 5 H 7 O 2 ) 3 : Tris (2,4-pentanevision), (CH 3 C 5 H 4 ) 3 : Tris (methylcyclopentadienyl), (C 2 H 5 C 5 H 4 ) 3 : Tri (setylcyclopentadienyl), C 5 H 5 ) 3 : Tris (cyclovalenteneyl)].
[0013]
The heating temperature in the deposition step of the present invention is preferably within the range of 800 to 1600 ° C. [(2) Invention]. By heating within this temperature range, the bulk density of the glass fine particles (deposition layer) 2 is 0.1 g. / Cm 3 ~ 1.0 g / cm 3 Can be within the range. FIG. 3 shows the surface temperature of the quartz pipe during deposition of glass particles (referred to as the temperature during glass particle deposition), the bulk density of the glass particle deposit, and the added GeO. 2 It is a graph which shows the relationship of density | concentration, From this graph, the bulk density of a glass particulate deposit is 0.1 g / cm. 3 ~ 1.0 g / cm 3 In order to achieve this, it is understood that the temperature during the deposition of the glass fine particles needs to be 800 to 1600 ° C. The quartz pipe surface temperature can be measured with a radiation thermometer. When heated above 1600 ° C., transparency may start simultaneously with deposition. If it becomes transparent, dehydration becomes difficult. If the temperature is too low, the reaction efficiency is low, the bulk density of the glass is small, and the physical strength is low.
[0014]
After the glass fine particle deposition, a dehydrating agent gas or a dehydrating agent gas and an inert gas such as He, Ar, N, etc. 2 By supplying a mixed gas and the like, and relatively moving the heat source 5 and the starting quartz pipe 1 to heat the pipe 1 from one end to the other end (this is referred to as one traverse). Perform dehydration. The bulk density of the glass particulate deposit is 0.1 g / cm 3 ~ 1.0 g / cm 3 If it is within the range, sufficient dehydration can be achieved. A more preferable range of the bulk density is 0.2 to 0.9 g / cm. 3 As a particularly preferable range, 0.4 to 0.8 g / cm 3 It is. The heating temperature at this time (temperature measured with a radiation thermometer from the outside of the quartz pipe) is preferably in the range of 800 to 1200 ° C. in order to obtain a sufficient dehydration effect without becoming transparent.
Examples of the dehydrating agent include Cl 2 , SiCl 4 , GeCl 4 , POCl 3 , BCl 3 These dehydration gases may be supplied alone (100%), and for example, O 2 Alternatively, it may be supplied as a mixed gas with a gas such as Ar or He.
[0015]
GeO in the raw material 2 , B 2 O 3 Or P 2 O 5 When Ge, B, or P is added to the glass fine particle deposition layer 2 by adding, for example, Cl as a dehydrating agent. 2 When an atmospheric gas containing is supplied, these components react to form chlorides and evaporate. Therefore, as an atmospheric gas for dehydration, the chloride corresponding to the added element, that is, GeCl 4 , BCl 3 Or POCl 3 Dehydrating agents such as Cl 2 It is particularly preferable to supply in addition to [Invention (6) above]. In addition, these chlorides are added to the atmospheric gas for dehydration treatment. 2 Is mixed, O 2 Cl reacts with the gas 2 Since gas is generated, further dehydration effect can be obtained.
[0016]
If the clarification is performed simultaneously with the dehydration treatment of the present invention, that is, during one traverse, the process is simplified and the manufacturing time can be shortened.
However, the heat source may be made transparent by a traverse in which the heat source is relatively moved from the one to the other end after the dehydration process.
As an atmospheric gas when the transparency is performed in a separate process, for example, He, O 2 , Ar, N 2 , Cl 2 Etc. The heating temperature (measured with a radiation thermometer from the outside of the quartz pipe) of the clarification process of the present invention is 1500 ° C. to 2000 ° C. when performing at the same time as dehydration. Is preferably in the range of 1400 ° C to 1800 ° C.
[0017]
Fig. 4 shows the temperature during dehydration (° C) and the temperature during clarification (° C) [both measured temperatures outside the quartz pipe] and GeO. 2 It is a graph which shows the relationship of density | concentration (weight%), GeO added from this graph 2 You can see the relationship between the concentration and the optimum temperature for dehydration and transparency.
[0018]
In the present invention, each time a single glass particle deposition layer is deposited (in the same traverse or in a separate traverse), dehydration and transparency can be performed [(3) Invention]. This makes it possible to precisely control the refractive index composition and realize a complex profile. If you want to change the refractive index and composition between one glass fine particle layer and the next layer, if the layers are stacked without sintering, the components diffuse into each other's layers because they are porous. Although it becomes difficult to control the refractive index, dehydration can be reliably performed without diffusion of OH groups by dehydrating each layer in this way.
Another object of the present invention is to provide a method capable of producing a glass preform for an optical fiber containing a rare earth element and having a sufficiently low OH group content at a low cost.
[0019]
However, depending on the use of the optical fiber, when the composition and refractive index distribution for each layer as described above are not required, after depositing two or more glass fine particle layers (in the same traverse or in another traverse) ) Dehydration treatment and clearing can be performed [(4) Invention].
[0020]
After completing the transparency, the quartz pipe formed with the synthetic glass layer 3 to which the metal element and Cl are added is heated to a temperature of about 1800 ° C. to 2100 ° C. by an external heat source to be collapsed. As described above, a glass base material having a central portion (core) containing a metal element and Cl is obtained.
In the example of FIG. 1, the glass base material of the present invention comprising the synthetic glass layer 3 obtained by collapsing and the quartz glass layer 1 on the outer periphery is further subjected to a jacketing step to form the jacket layer 4.
[0021]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not a place limited only to these Examples. In each of the following examples and comparative examples, an oxyhydrogen burner is used as a heat source. However, other heat sources such as a plasma burner, a resistance furnace, and an induction furnace are also effective.
[0022]
[Example 1]
According to the present invention, a glass preform for an optical fiber was produced with the configuration shown in FIG.
As the starting quartz pipe, an anhydrous quartz pipe (containing OH group content: less than 1 ppm, size: outer diameter 25 mm, inner diameter 16 mm, length 1000 mm) manufactured by SUPRASIL-F300 (trade name) manufactured by Shin-Etsu Quartz Co., Ltd. is used. Of the raw materials, SiCl 4 , GeCl 4 Supplied from bubbler with He as carrier gas, Er (C 11 H 19 O 2 ) 3 The powder is held in a bubbler, heated, sublimated, and He is supplied as a carrier gas. Also O 2 Was supplied on a single line. Each source gas is mixed in the starting quartz pipe and simultaneously heated and reacted with an external heat source (oxyhydrogen burner) to deposit seven layers of the generated glass particles to form a porous glass particle deposition layer (FIG. 2). . The temperature of the surface of the starting quartz pipe measured with a radiation thermometer at the time of deposition was 1200 ° C., and the bulk density of the deposited glass fine particle deposition layer was 0.6 g / cm 3 [Deposition process]. In the glass tube on which the glass fine particle layer is deposited, Cl is added. 2 The oxyhydrogen burner (temperature 1400 ° C.) is heated while being moved relatively to perform dehydration treatment (dehydration step). Next, the gas atmosphere introduced into the pipe was set to He, and the glass tube was subsequently heated to 1980 ° C. to be transparent glass, and then heated to 2100 ° C. to perform collapse to obtain an optical fiber preform. In the obtained glass base material, a portion composed of the central synthetic glass 3 (corresponding to the core portion) is SiO to which Ge, Er and Cl are added. 2 (Cl: 650 ppm, GeO 2 : 17.5% by weight, Er 3+ : 860 ppm is contained only in the core part), and the outer peripheral part (starting quartz pipe) is SiO 2 It consists of The base material is jacketed by a conventional technique to form a base material having the jacket layer 4 and then drawn. As a result, an optical fiber having a low OH group with a transmission loss increase of 3.4 dB / km due to light absorption of the OH group at a wavelength of 1.24 μm can be obtained.
[0023]
[Comparative Example 1]
For comparison, the surface temperature of the starting quartz pipe at the time of deposition is set to 1700 ° C. by the conventional MCVD method in which the dehydration treatment is not performed and transparency is performed simultaneously with the deposition shown in FIGS. 5 (a) and 5 (b). A synthetic glass layer is formed in the same manner as in Example 1 except that it is made transparent at the same time as deposition, and the following is performed by collapsing and jacketing in the same manner as in Example 1 and drawing the obtained optical fiber preform. The resulting optical fiber has a large transmission loss increase of 9.3 dB / km due to light absorption of OH groups at a wavelength of 1.24 μm. Cl: 300 ppm, GeO only in the fiber core (synthesized glass layer) 2 : 17.5% by weight, Er 3+ : 860 ppm is contained. Compared to Example 1, the Cl content in the core is low.
[0024]
[Example 2]
In accordance with the present invention, a glass preform for an optical fiber is produced with the configuration shown in FIG.
As the starting quartz pipe, the same one used in Example 1 is used. Of the raw materials, SiCl 4 , GeCl 4 Supplied from bubbler with He as carrier gas, Er (CH 3 C 5 H 4 ) 3 The powder is held in a bubbler, heated, sublimated, and He is supplied as a carrier gas. Also O 2 Is supplied on a single line. Each source gas is mixed in the starting quartz pipe and simultaneously heated and reacted with an external heat source (oxyhydrogen burner) to deposit seven layers of the generated glass particles to form a porous glass particle deposition layer (FIG. 2). . The starting quartz pipe surface temperature during deposition (measured with a radiation thermometer) is 1300 ° C., and the bulk density of the deposited glass particulate deposition layer is 0.52 g / cm. 3 [Deposition process]. In the glass tube on which the glass fine particle layer is deposited, Cl is added. 2 , GeCl 4 And O 2 The oxyhydrogen burner (temperature 1550 ° C.) is heated while being moved relatively to perform dehydration treatment (dehydration step). Next, the gas atmosphere introduced into the pipe is set to He, and the glass tube is subsequently heated at 2150 ° C. to become transparent vitrified, and the above-described deposition step to clearing step are repeated eight times. Thereafter, it was heated to 1900 ° C. and collapsed to obtain an optical fiber preform. In the obtained glass base material, a portion made of synthetic glass 3 at the center is SiO to which Ge, Er, and Cl (910 ppm) are added. 2 The outer periphery (starting quartz pipe) is SiO 2 It consists of The base material is jacketed by a conventional technique to form a base material having the jacket layer 4 and then drawn. As a result, an optical fiber having a wavelength of 1.24 μm and an increase in transmission loss due to light absorption of OH groups of 2.7 dB / km and a low OH group can be obtained.
[0025]
[Comparative Example 2]
Drawing is performed from a glass preform for an optical fiber manufactured in the same manner as in Example 3 except that the conventional MCVD method is used, which does not perform dehydration and becomes transparent simultaneously with the deposition shown in FIGS. 5 (a) and 5 (b). The increase in transmission loss due to light absorption of OH groups at the wavelength of 1.24 μm of the optical fiber is 10.3 dB / km.
[0026]
Example 3
In accordance with the present invention, a glass preform for an optical fiber is produced with the configuration shown in FIG.
As the starting quartz pipe, the same one used in Example 1 is used. Of the raw materials, SiCl 4 , GeCl 4 Supplied from bubbler with He as carrier gas, Er (C 2 H 5 C 5 H 4 ) 3 The powder is held in a bubbler, heated, sublimated, and He is supplied as a carrier gas. Also O 2 Is supplied on a single line. Each source gas is mixed in the starting quartz pipe and simultaneously heated and reacted with an external heat source (oxyhydrogen burner) to deposit eight layers of the generated glass particles to form a porous glass particle deposition layer (FIG. 2). . The starting quartz pipe surface temperature during deposition (measured with a radiation thermometer) is 1300 ° C., and the bulk density of the deposited glass particulate deposition layer is 0.95 g / cm 3 [Deposition process]. In the glass tube on which the glass fine particle layer is deposited, Cl is added. 2 And O 2 The oxyhydrogen burner (temperature 1500 ° C.) is heated while being relatively moved to perform dehydration treatment (dehydration step). Next, the gas atmosphere introduced into the pipe was set to He, and this glass tube was subsequently heated at 1950 ° C. to become transparent vitrified, and the above deposition step to the clearing step were repeated 8 times. Thereafter, it was heated to 2100 ° C. and collapsed to obtain an optical fiber preform. In the obtained glass base material, a portion made of synthetic glass 3 at the center is SiO to which Ge, Er and Cl (760 ppm) are added. 2 The outer periphery (starting quartz pipe) is SiO 2 It consists of The base material is jacketed by a conventional technique to form a base material having the jacket layer 4 and then drawn. As a result, an optical fiber having a low OH group with a transmission loss increase of 3.8 dB / km due to light absorption of the OH group at a wavelength of 1.24 μm is obtained.
[0027]
[Comparative Example 3]
Drawing is performed from a glass preform for an optical fiber manufactured in the same manner as in Example 3 except that the conventional MCVD method is used, which does not perform dehydration and becomes transparent simultaneously with the deposition shown in FIGS. 5 (a) and 5 (b). The increase in transmission loss due to light absorption of OH groups at a wavelength of 1.24 μm of the optical fiber is 9.8 dB / km.
[0028]
Example 4
According to the present invention, a glass preform for an optical fiber was produced with the configuration shown in FIG.
As the starting quartz pipe, the same one used in Example 1 is used. Of the raw materials, SiCl 4 , GeCl 4 Supplied from bubbler with He as carrier gas, Er (C 2 H 5 C 5 H 4 ) 3 The powder is held in a bubbler, heated, sublimated, and He is supplied as a carrier gas. Also O 2 Is supplied on a single line. Each source gas is mixed in the starting quartz pipe and simultaneously heated and reacted with an external heat source (oxyhydrogen burner) to deposit three layers of the generated glass particles to form a porous glass particle deposition layer (FIG. 2). . The starting quartz pipe temperature during deposition (measured with a radiation thermometer) is 1080 ° C., and the bulk density of the deposited glass fine particle deposition layer is 0.42 g / cm. 3 [Deposition process]. The GeCl is deposited in the glass tube on which the glass fine particle layer is deposited. 4 And O 2 The oxyhydrogen burner (temperature: 1350 ° C.) is heated while being moved relatively to perform dehydration treatment (dehydration step). Next, the gas atmosphere introduced into the pipe was set to He, and this glass tube was subsequently heated at 2000 ° C. to become transparent glass, and the above deposition step to the transparency step were repeated three times. Thereafter, it was heated to 2150 ° C. and collapsed to obtain an optical fiber preform. In the obtained glass base material, a portion made of synthetic glass 3 at the center is SiO to which Ge, Er, and Cl (1050 ppm) are added. 2 The outer periphery (starting quartz pipe) is SiO 2 It consists of The base material is jacketed by a conventional technique to form a base material having the jacket layer 4 and then drawn. As a result, an optical fiber having a low OH group with a transmission loss increase of 3.2 dB / km due to light absorption of the OH group at a wavelength of 1.24 μm is obtained.
[0029]
[Comparative Example 4]
Drawing is performed from the produced glass preform for an optical fiber in the same manner as in Example 4 except that the conventional MCVD method is used, which is transparent at the same time as the deposition shown in FIGS. 5 (a) and 5 (b) without dehydration. The increase in transmission loss due to light absorption of OH groups at the wavelength of 1.24 μm of the optical fiber is 9.7 dB / km.
[0030]
Example 5
A glass base material was produced according to the present invention with the configuration shown in FIG. As the starting quartz pipe, the same one used in Example 1 is used. Of the raw materials, SiCl 4 , P 2 O 5 Supplied from bubbler with He as carrier gas, Er (C 11 H 19 O 2 ) 3 The powder is held in a bubbler, heated, sublimated, and He is supplied as a carrier gas. Also O 2 Is supplied on a single line. Each source gas is mixed in the starting quartz pipe and simultaneously heated and reacted with an external heat source (oxyhydrogen burner) to deposit four layers of the generated glass particles to form a porous glass particle deposition layer (FIG. 2). . The starting quartz pipe surface temperature during deposition (measured with a radiation thermometer) is 900 ° C., and the bulk density of the deposited glass particulate deposition layer is 0.23 g / cm. 3 [Deposition process]. In the glass tube on which the glass fine particle layer is deposited, Cl is added. 2 , POCl 3 And O 2 The oxyhydrogen burner (temperature: 1390 ° C.) is heated while being relatively moved to perform dehydration treatment (dehydration step). Next, the gas atmosphere introduced into the pipe was set to He, and this glass tube was subsequently heated at 2050 ° C. to form a transparent glass, and the above deposition step to the transparentization step were repeated three times. Thereafter, it was heated to 2250 ° C. and collapsed to obtain an optical fiber preform. In the obtained glass base material, a portion made of synthetic glass 3 at the center is SiO to which Ge, Er and Cl (1400 ppm) are added. 2 The outer periphery (starting quartz pipe) is SiO 2 It consists of The base material is jacketed by a conventional technique to form a base material having the jacket layer 4 and then drawn. As a result, an optical fiber having a low OH group with a transmission loss increase of 3.4 dB / km due to light absorption of the OH group at a wavelength of 1.24 μm can be obtained.
[0031]
[Comparative Example 5]
Drawing is performed from the produced glass preform for an optical fiber in the same manner as in Example 4 except that the conventional MCVD method is used, which is transparent at the same time as the deposition shown in FIGS. 5 (a) and 5 (b) without dehydration. The transmission loss increase due to the light absorption of the OH group at the wavelength of 1.24 μm of the optical fiber is 9.9 dB / km.
[0032]
The conditions and evaluation results of Examples 1 to 5 are summarized in Table 1. The following can be understood from the results of Table 1 and Comparative Examples 1 to 5.
By dehydrating the deposited glass fine particles before making them transparent, an increase in transmission loss due to light absorption of OH groups at a wavelength of 1.24 μm in the obtained optical fiber glass preform can be reduced to about 1/3. That is, the base material of the present invention is an optical fiber base material from which an optical fiber with a reduced OH group content can be obtained.
[0033]
[Table 1]
Figure 2005041702
[0034]
【The invention's effect】
According to the present invention, a glass preform for an optical fiber to which an organometallic compound is added can be produced with a reduced OH group content by a method of forming a synthetic glass layer in a quartz pipe. Moreover, the glass preform for optical fiber according to the production method of the present invention contains Cl and metal. By adding the organometallic compound, a base material having a good characteristic containing a metal additive such as a rare earth element and keeping the OH group content low can be obtained. The present invention is advantageous for use in the production of optical fibers containing functional additives such as rare earth elements.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram schematically showing the present invention in the order of steps.
FIG. 2 is an explanatory view showing an embodiment of the production method of the present invention.
FIG. 3 shows the temperature (° C.) during deposition of glass particles and the bulk density (g / cm) of the glass particle deposit. 3 ) And GeO in glass 2 It is a graph which shows the relationship of density | concentration (weight%).
FIG. 4 shows the temperature during dehydration (° C.), the temperature during clarification (° C.), and GeO in glass. 2 It is a graph which shows the relationship of density | concentration (weight%).
FIG. 5 is a diagram for explaining the apparatus configuration and process of the conventional method and the change in the cross-sectional shape of the starting quartz pipe.
[Explanation of symbols]
1 Starting quartz pipe
2 Glass particulate layer
3 Synthetic glass layer
4 Jacket layer
5 heat sources

Claims (8)

出発石英パイプ内面にガラス微粒子を堆積させ、堆積したガラス微粒子を透明化して光ファイバ用ガラス母材を製造する方法において、前記出発石英パイプとして無水石英パイプを用い、原料中に少なくとも1種類以上の有機金属化合物を含み、前記堆積したガラス微粒子を透明化前に脱水処理することを特徴とする光ファイバ用ガラス母材の製造方法。In the method of depositing glass fine particles on the inner surface of a starting quartz pipe and transparentizing the deposited glass fine particles to produce a glass preform for an optical fiber, an anhydrous quartz pipe is used as the starting quartz pipe, and at least one kind or more is contained in the raw material. A method for producing a glass preform for an optical fiber, comprising an organic metal compound, wherein the deposited glass fine particles are dehydrated before being transparentized. 前記脱水処理時の温度が前記透明化時の温度よりも低く、かつガラス微粒子堆積時の温度が800〜1600℃であることを特徴とする請求項1記載の光ファイバ用ガラス母材の製造方法。The method for producing a glass preform for an optical fiber according to claim 1, wherein a temperature during the dehydration treatment is lower than a temperature during the transparentization, and a temperature during deposition of the glass fine particles is 800 to 1600 ° C. . 前記出発石英パイプ内に前記ガラス微粒子を1層堆積させる毎に前記脱水処理及び透明化を行うことを特徴とする請求項1又は2に記載の光ファイバ用ガラス母材の製造方法。3. The method for producing a glass preform for an optical fiber according to claim 1, wherein the dehydration treatment and the transparentization are performed each time one layer of the glass fine particles is deposited in the starting quartz pipe. 前記出発石英パイプ内に前記ガラス微粒子を2層以上堆積させた後に前記脱水処理及び透明化を行うことを特徴とする請求項1又は2に記載の光ファイバ用ガラス母材の製造方法。3. The method for producing a glass preform for an optical fiber according to claim 1, wherein the dehydration treatment and the transparency are performed after two or more layers of the glass fine particles are deposited in the starting quartz pipe. 前記堆積したガラス微粒子の前記脱水処理及び前記透明化を一のトラバースにおいて連続して行うことを特徴とする請求項1ないし4のいずれかに記載の光ファイバ用ガラス母材の製造方法。The method for producing a glass preform for an optical fiber according to any one of claims 1 to 4, wherein the dehydration treatment and the transparentization of the deposited glass particles are continuously performed in one traverse. 前記脱水処理の際に前記石英パイプ中に前記堆積したガラス微粒子に添加された元素を含む塩化物のガスを供給することを特徴とする請求項1ないし5のいずれかに記載の光ファイバ用ガラス母材の製造方法。6. The glass for optical fibers according to claim 1, wherein a chloride gas containing an element added to the deposited glass fine particles is supplied into the quartz pipe during the dehydration process. A manufacturing method of a base material. 前記堆積したガラス微粒子の嵩密度が0.1g/cm〜1.0g/cmであることを特徴とする請求項1ないし6のいずれかに記載の光ファイバ用ガラス母材の製造方法。Process for producing a glass preform for optical fiber according to any one of claims 1 to 6, characterized in that the bulk density of the glass fine particles said deposition is 0.1g / cm 3 ~1.0g / cm 3 . 請求項1〜7のいずれかに記載の製造方法により製造され、前記透明化されたガラス中にClを含有することを特徴とする光ファイバ用ガラス母材。A glass base material for an optical fiber manufactured by the manufacturing method according to claim 1, wherein Cl is contained in the transparent glass.
JP2003199885A 2003-07-22 2003-07-22 Method for producing optical fiber glass preform and optical fiber glass preform produced thereby Pending JP2005041702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199885A JP2005041702A (en) 2003-07-22 2003-07-22 Method for producing optical fiber glass preform and optical fiber glass preform produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199885A JP2005041702A (en) 2003-07-22 2003-07-22 Method for producing optical fiber glass preform and optical fiber glass preform produced thereby

Publications (1)

Publication Number Publication Date
JP2005041702A true JP2005041702A (en) 2005-02-17

Family

ID=34260511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199885A Pending JP2005041702A (en) 2003-07-22 2003-07-22 Method for producing optical fiber glass preform and optical fiber glass preform produced thereby

Country Status (1)

Country Link
JP (1) JP2005041702A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029555A1 (en) * 2005-09-01 2007-03-15 Sumitomo Electric Industries, Ltd. Process for producing glass material and process for producing optical fiber
JP2009167049A (en) * 2008-01-15 2009-07-30 Sumitomo Electric Ind Ltd Producing method of preform, optical fiber added with rare earth element and optical fiber amplifier
JP2010186868A (en) * 2009-02-12 2010-08-26 Mitsubishi Cable Ind Ltd Rare earth element doped-fiber with bf3 added therein, and method of manufacturing same
JP2011238882A (en) * 2010-05-13 2011-11-24 Mitsubishi Cable Ind Ltd Rare earth element doped optical fiber and manufacturing method thereof
CN116813207A (en) * 2023-08-25 2023-09-29 武汉长进光子技术股份有限公司 Anti-radiation polarization-maintaining erbium-doped fiber and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029555A1 (en) * 2005-09-01 2007-03-15 Sumitomo Electric Industries, Ltd. Process for producing glass material and process for producing optical fiber
JP2009167049A (en) * 2008-01-15 2009-07-30 Sumitomo Electric Ind Ltd Producing method of preform, optical fiber added with rare earth element and optical fiber amplifier
EP2108624B1 (en) * 2008-01-15 2016-10-19 Sumitomo Electric Industries, Ltd. Rare-earth-doped optical fiber, optical fiber amplifier, and method of manufacturing a preform for such a fiber
JP2010186868A (en) * 2009-02-12 2010-08-26 Mitsubishi Cable Ind Ltd Rare earth element doped-fiber with bf3 added therein, and method of manufacturing same
JP2011238882A (en) * 2010-05-13 2011-11-24 Mitsubishi Cable Ind Ltd Rare earth element doped optical fiber and manufacturing method thereof
CN116813207A (en) * 2023-08-25 2023-09-29 武汉长进光子技术股份有限公司 Anti-radiation polarization-maintaining erbium-doped fiber and preparation method and application thereof
CN116813207B (en) * 2023-08-25 2024-01-30 武汉长进光子技术股份有限公司 Anti-radiation polarization-maintaining erbium-doped fiber and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR100342189B1 (en) Method for producing rare earth elements-added optical fiber by using volatile composite
JP4870573B2 (en) Alkali-doped optical fiber, preform thereof and method for producing the same
US6109065A (en) Method of making optical waveguide devices using perchloryl fluoride to make soot
EP0225884A1 (en) Multiconstituent optical fiber and method for producing same.
US9783450B2 (en) Method of producing glass preform and optical fiber
US6474106B1 (en) Rare earth and alumina-doped optical fiber preform process
EP1602630B1 (en) Glass-body-producing method
JP2005041702A (en) Method for producing optical fiber glass preform and optical fiber glass preform produced thereby
JPH0314789B2 (en)
US7752870B1 (en) Hydrogen resistant optical fiber formation technique
EP0135126B1 (en) Preparation of glass for optical fibers
JPH0463365B2 (en)
JPS6289B2 (en)
JPH02275724A (en) Production of optical fiber matrix
JP2002274876A (en) Method of manufacturing glass article
JPS6144725A (en) Method of treating quartz porous glass layer
JP2540056B2 (en) Method for manufacturing fluorine-containing clad optical fiber foam
JPS632900B2 (en)
JPH0425212B2 (en)
JP3788073B2 (en) Manufacturing method of optical fiber preform
JP3449488B2 (en) Manufacturing method of preform for optical fiber
JPS6150888B2 (en)
JPH0656454A (en) Production of optical fiber preform
JP2002087827A (en) Method for manufacturing rare earth-added glass
JP2005119899A (en) Method for manufacturing glass preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051104

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070319

A977 Report on retrieval

Effective date: 20080620

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028