JP2002087827A - Method for manufacturing rare earth-added glass - Google Patents

Method for manufacturing rare earth-added glass

Info

Publication number
JP2002087827A
JP2002087827A JP2000281884A JP2000281884A JP2002087827A JP 2002087827 A JP2002087827 A JP 2002087827A JP 2000281884 A JP2000281884 A JP 2000281884A JP 2000281884 A JP2000281884 A JP 2000281884A JP 2002087827 A JP2002087827 A JP 2002087827A
Authority
JP
Japan
Prior art keywords
glass
glass tube
tube
particle layer
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000281884A
Other languages
Japanese (ja)
Inventor
Masahiro Takagi
政浩 高城
Shinji Endo
信次 遠藤
Tadashi Enomoto
正 榎本
Yuichi Oga
裕一 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000281884A priority Critical patent/JP2002087827A/en
Publication of JP2002087827A publication Critical patent/JP2002087827A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01838Reactant delivery systems, e.g. reactant deposition burners for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the deposited glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing rare earth-added glass which is capable of preventing the peeling and crack of glass particulate deposition layers. SOLUTION: This method for manufacturing the rare earth-added glass includes a first process step of introducing glass-forming material vapor into a glass tube and forming glass particulate layers within this glass tube by gaseous phase reaction, a second process step of packing a metal element- containing solution into the glass particulate layer, a third process step of drying the glass particulate layers after removing the solution from the inside of the glass tube or as it is, a fourth state of forming the composite glass tube by heating the glass particulate layers to make the layers transparent and a fifth process step of making the composite glass tube solid. The viscosity at >=500 deg.C of the glass constituting the first glass particulate layers formed in contact with the inside surface of the glass tube by forming a plurality of the glass particulate layers in the glass tube is lower than the viscosity of the glass constituting the other glass particulate layers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類元素添加ガ
ラス製品の製造技術、特に、希土類元素添加ガラスファ
イバ用母材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for producing a glass product containing a rare earth element, and more particularly to a method for producing a preform for a glass fiber containing a rare earth element.

【0002】[0002]

【従来の技術】光ファイバプリフォームは、内付けCV
D法(MCVD法)により製造されるが、通常は、酸素
ガスと共に、SiCl4 又はGeCl4 などの金属塩化
物反応ガスを回転するガラス管の内部に導入し、この管
を外部のトーチにより加熱し管内部の反応ガスと酸素と
を均一に反応させる。こうして、管の内壁面にシリカ微
粒子堆積体(スス堆積層)が薄い多孔質膜として形成さ
れる。
2. Description of the Related Art An optical fiber preform has an internal CV.
It is manufactured by the D method (MCVD method). Usually, a metal chloride reaction gas such as SiCl 4 or GeCl 4 is introduced into a rotating glass tube together with oxygen gas, and this tube is heated by an external torch. The reaction gas inside the pipe and oxygen are caused to react uniformly. Thus, a silica fine particle deposit (soot deposition layer) is formed on the inner wall surface of the tube as a thin porous film.

【0003】この方法では、一般にリン又はホウ素など
のドーパントを、気体状ハロゲン化物のような反応ガス
の形態で導入し、堆積工程後、管をコラプスしてプリフ
ォームとする。しかし、レーザや増幅器などのような光
デバイスにとって重要な特定のドーパントには通常の光
ファイバ用ガラス原料として用いられる原料と同程度の
蒸気圧を持つ適当な気体状又は揮発性ハロゲン化物が存
在しない。例えば、MCVD法に好適な、エルビウム、
イットリウム、プラセオジミウム又はネオジムなどのよ
うな希土類元素の気体状化合物は存在しない。このよう
なドーパントは一般的に溶液ドーピングを用いて導入す
ることができる。
In this method, a dopant such as phosphorus or boron is generally introduced in the form of a reactive gas such as a gaseous halide, and after a deposition step, the tube is collapsed into a preform. However, certain dopants that are important for optical devices, such as lasers and amplifiers, do not have a suitable gaseous or volatile halide having a vapor pressure comparable to that of the raw materials used as ordinary glass materials for optical fibers. . For example, erbium suitable for the MCVD method,
There are no gaseous compounds of rare earth elements such as yttrium, praseodymium or neodymium. Such dopants can generally be introduced using solution doping.

【0004】上記の溶液ドーピング法では、プリフォー
ム毎のドーパント濃度、プリフォームから線引きされる
光ファイバの長さに沿ったドーパント濃度の変動が生
じ、そのためこれらの欠点を解消することのできる方法
の開発が望まれていた。溶液ドーピングされたプリフォ
ームにおける不均一性を解消するため、MCVD法にお
いて、N2 Oのような反応温度を低下させるガスを用い
ることが提案された(特開2000−56144号公
報)。
[0004] In the above-mentioned solution doping method, fluctuations in the dopant concentration for each preform and the dopant concentration along the length of the optical fiber drawn from the preform occur, so that a method capable of solving these drawbacks is required. Development was desired. In order to eliminate the non-uniformity in the solution-doped preform, it has been proposed to use a gas such as N 2 O to lower the reaction temperature in the MCVD method (Japanese Patent Laid-Open No. 2000-56144).

【0005】また、コア中心部の希土類元素濃度が極端
に低下することがない希土類ドープファイバ及びそのプ
リフォームを製造する方法を提供する目的で、希土類元
素がドープされていない第1のコアガラスを形成して一
次コラプスを行ったのち、希土類元素がドープされた第
2のスート状コアガラスを形成して最終コラプスを行う
ようにして、希土類元素をドープするコラプス工程にお
ける加熱用バーナの走査回数を一回で済ますようにする
ことが提案された(特開平3−211504号公報)。
In order to provide a rare earth doped fiber and a method of manufacturing a preform thereof in which the concentration of the rare earth element in the center of the core is not extremely reduced, a first core glass not doped with a rare earth element is used. After forming and performing the primary collapse, the second soot-like core glass doped with the rare earth element is formed to perform the final collapse, and the number of scans of the heating burner in the collapse step of doping the rare earth element is reduced. It has been proposed that the processing be performed only once (Japanese Patent Application Laid-Open No. 3-212504).

【0006】[0006]

【発明が解決しようとする課題】上記した従来法による
溶液ドーピング法では、プリフォーム毎のドーパント濃
度とか光ファイバの長さ方向に沿ったドーパント濃度の
不均一が避けられないという問題があり、ガラス微粒子
堆積層を複数層形成する方法でも、非常に精密なガラス
微粒子堆積条件の制御が必要であり、ガラス微粒子堆積
層が割れたり剥離したりして歩留りが低下してしまう。
また、前記ドーパントをより高濃度で添加するために
は、嵩密度が低いスス粒子層を形成する必要があり、そ
の結果、ガラス管とスス粒子層の密着度が低下し、ガラ
ス微粒子層の割れ、剥離が生じてしまう。本発明は、希
土類添加ガラス製品の製造方法における、上記従来技術
の問題点を解決するために開発されたもので、ガラス微
粒子堆積層(スス堆積層)の剥離、割れを防止しつつ、
希土類元素、共添加材等を高濃度で添加することが可能
な希土類添加ガラスの製造方法を提供することを目的と
する。
The solution doping method according to the above-mentioned conventional method has a problem that inconsistency in the dopant concentration for each preform or the dopant concentration along the length of the optical fiber is unavoidable. Even in the method of forming a plurality of fine particle deposition layers, very precise control of glass fine particle deposition conditions is required, and the glass fine particle deposition layer is cracked or peeled off, and the yield is reduced.
Further, in order to add the dopant at a higher concentration, it is necessary to form a soot particle layer having a low bulk density, and as a result, the adhesion between the glass tube and the soot particle layer is reduced, and the glass fine particle layer is broken. , Peeling occurs. The present invention has been developed in order to solve the above-mentioned problems of the prior art in the method of manufacturing a rare-earth-added glass product, and prevents separation and cracking of a glass fine particle deposition layer (soot deposition layer),
An object of the present invention is to provide a method for producing a rare earth-added glass to which a rare earth element, a co-additive, and the like can be added at a high concentration.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明及びその態様を以下に要約して示す: (1)ガラス管内部にガラス形成材料蒸気を導入し、気
相反応により前記ガラス管内部にガラス微粒子層を形成
する第一の工程と、前記ガラス微粒子層に、希土類元素
含有溶液を充填する第二の工程と、前記溶液をガラス管
内から除去した後又はそのまま前記ガラス微粒子層を乾
燥する第三の工程と、前記ガラス微粒子層を加熱透明化
して複合ガラス管を形成する第四の工程と、前記複合ガ
ラス管を中実化する第五の工程とを含む希土類添加ガラ
スの製造方法において、前記ガラス管内部にガラス微粒
子層を複数層形成し、ガラス管内表面に接して形成する
第一のガラス微粒子層を構成するガラスの500℃以上
の温度における粘度が、その他のガラス微粒子層を構成
するガラスの粘度よりも小さいことを特徴とする希土類
添加ガラスの製造方法。
The present invention and its embodiments for achieving the above object are summarized below: (1) A glass-forming material vapor is introduced into a glass tube, and the vapor-phase reaction is carried out by a gas phase reaction. A first step of forming a glass particle layer inside the glass tube, a second step of filling the glass particle layer with a rare earth element-containing solution, and after removing the solution from the glass tube or as it is, A third step of drying, a fourth step of heating and clearing the glass fine particle layer to form a composite glass tube, and a fifth step of solidifying the composite glass tube. In the manufacturing method, a plurality of glass fine particle layers are formed inside the glass tube, and the viscosity of the glass constituting the first glass fine particle layer formed in contact with the inner surface of the glass tube at a temperature of 500 ° C. or more is: A method for producing a rare earth-doped glass, wherein the viscosity of the glass is lower than that of another glass constituting the glass fine particle layer.

【0008】(2)前記第一のガラス微粒子層の嵩密度
が、前記その他のガラス微粒子層の嵩密度より高いこと
を特徴とする上記(1)に記載の希土類添加ガラスの製
造方法。 (3)前記第一のガラス微粒子層を形成する際、石英に
対し屈折率を上昇させる添加材と、石英に対し屈折率を
低下させる添加材とを少なくともいずれか一つ以上添加
することを特徴とする上記(1)又は(2)に記載の希
土類添加ガラスの製造方法。
(2) The method for producing a rare earth-doped glass according to the above (1), wherein the bulk density of the first glass fine particle layer is higher than the bulk density of the other glass fine particle layers. (3) When forming the first glass particle layer, at least one of an additive for increasing the refractive index with respect to quartz and an additive for decreasing the refractive index with respect to quartz is added. The method for producing a rare earth-added glass according to the above (1) or (2).

【0009】[0009]

【発明の実施の形態】上記発明(1)において、ガラス
管内部に導入されるガラス形成材料としては、4塩化珪
素、4塩化ゲルマニウム、3塩化ホウ素、3塩化リン等
必要な粘度及び屈折率条件を満たすように選択された蒸
気に加え酸素を混合したガスを用いる。通常の高温MC
VD法により、中空状の石英ガラス管内に上記混合ガス
を導入すると共に外部より酸水素ガスにより形成される
火炎にて加熱し、石英ガラス管内部に厚み範囲が好まし
くは0.005〜0.1mmのガラス微粒子層を形成す
る。その際、石英ガラス管の表面温度は約1200〜1
500℃となるよう調整する。ここで用いられるガラス
管は上記のような石英製のみならず、石英に種々の添加
材を既に添加したガラスを管状に成形したものであれば
良く、これらは最終的に得ようとする光ファイバの構造
を基に適宜選択されるものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the above invention (1), the required viscosity and refractive index conditions such as silicon tetrachloride, germanium chloride, boron trichloride, and phosphorous chloride are used as the glass forming material introduced into the glass tube. Gas mixed with oxygen in addition to the steam selected to satisfy the above. Normal high temperature MC
By the VD method, the mixed gas is introduced into a hollow quartz glass tube and heated by a flame formed by an oxyhydrogen gas from the outside, and the thickness range is preferably 0.005 to 0.1 mm inside the quartz glass tube. Is formed. At this time, the surface temperature of the quartz glass tube is about 1200 to 1
Adjust to 500 ° C. The glass tube used here is not only made of quartz as described above, but also may be a glass formed by adding various additives to quartz in a tubular shape, and these are optical fibers finally obtained. Is appropriately selected based on the structure of

【0010】この処理中は、管を回転させることが好ま
しい。第一の層は、SiCl4 と酸素の混合物をベース
にした常法通りに生成されるガラスであり、リン、ゲル
マニウム、フッ素、ホウ素、アルミニウムなどの添加物
を適宜加えることが出来る。また、上記元素をドープす
るために用いられる先駆体となるべき原料としては、P
OCl3 、PCl3 、GeCl4 、C2 6 、CF4
SiF4 、SF6 、BCl3 、AlCl3 などが一般的
に用いられるが、これに限られるものではない。この第
一のガラス微粒子層は、前記ドープする材料の種類、比
率により、適宜屈折率も調整することが可能であり、ク
ラッドまたはコアのどちらにすることも可能である。
[0010] Preferably, the tube is rotated during this process. The first layer is a conventionally produced glass based on a mixture of SiCl 4 and oxygen, to which additives such as phosphorus, germanium, fluorine, boron and aluminum can be added as appropriate. Raw materials to be used as precursors for doping the above elements include P
OCl 3, PCl 3, GeCl 4 , C 2 F 6, CF 4,
SiF 4 , SF 6 , BCl 3 , AlCl 3 and the like are generally used, but are not limited thereto. The refractive index of the first glass particle layer can be appropriately adjusted depending on the type and ratio of the material to be doped, and either the clad or the core can be used.

【0011】次に4塩化珪素、4塩化ゲルマニウム等、
必要な粘度及び屈折率条件を満たすように選択された蒸
気に加え酸素を混合した混合ガスを前記と同様に導入
し、石英ガラス管内部に厚み範囲が好ましくは0.05
〜0.2mmのガラス微粒子層を形成する。その際、石
英ガラス管の表面温度は約1200〜1400℃となる
よう調整する。
Next, silicon tetrachloride, germanium chloride, etc.
A mixed gas obtained by mixing oxygen in addition to steam selected so as to satisfy the necessary viscosity and refractive index conditions is introduced in the same manner as described above, and the thickness range is preferably 0.05 mm inside the quartz glass tube.
A glass fine particle layer of about 0.2 mm is formed. At that time, the surface temperature of the quartz glass tube is adjusted to be about 1200 to 1400 ° C.

【0012】このように、本発明では、ガラス微粒子層
を複数層形成することを特徴の一つとし、ガラス管内表
面に接して形成する第1のガラス微粒子層を構成するガ
ラスの500℃以上の温度における粘度が、その他のガ
ラス微粒子層を構成するガラスの粘度より小さくする。
この状態を実現するのには、一般にいずれか一方、若し
くは双方にゲルマニウム、ホウ素、のほか慣用の添加
材、例えば、リン、フッ素等の少なくとも1種を適宜に
添加することにより行う。すなわち、ガラス管内面とガ
ラス微粒子堆積層との境界部に粘度の低いガラス微粒子
堆積層を形成することで、接着剤の役目を果たし、低温
でのガラス微粒子堆積を行っても、ガラス管内面とガラ
ス微粒子堆積層の密着力を維持ないし上昇させることが
でき、以後の工程でのガラス微粒子堆積層の剥離、割れ
を防止しつつ、希土類元素、共添加材等を高濃度で添加
することが可能となる。この場合、粘度の大小の測定
は、予め所定の添加材比率で形成したガラス試料を作
成、分析しておくことで確認することができ、この結果
に従い所定の添加材比率を持つガラス層を形成すればよ
い。粘度の測定法自体はガラスの粘度測定に慣用される
ものを用いる。
As described above, one of the features of the present invention is that a plurality of glass fine particle layers are formed, and the glass constituting the first glass fine particle layer formed in contact with the inner surface of the glass tube has a temperature of 500 ° C. or higher. The viscosity at the temperature is made smaller than the viscosity of the glass constituting the other glass particle layer.
In order to realize this state, generally, one or both of them is appropriately added with at least one of germanium, boron, and a commonly used additive, for example, phosphorus, fluorine and the like. That is, by forming a low-viscosity glass particle deposition layer at the boundary between the inner surface of the glass tube and the glass particle deposition layer, it serves as an adhesive, and even when performing glass particle deposition at a low temperature, the inner surface of the glass tube can be maintained. It can maintain or increase the adhesion of the glass fine particle deposition layer, and it is possible to add rare earth elements, co-additives, etc. at high concentration while preventing peeling and cracking of the glass fine particle deposition layer in subsequent steps Becomes In this case, the measurement of the viscosity can be confirmed by preparing and analyzing a glass sample formed at a predetermined additive ratio in advance, and forming a glass layer having a predetermined additive ratio according to the result. do it. As a method of measuring the viscosity itself, a method commonly used for measuring the viscosity of glass is used.

【0013】次に、好ましくは、管内部にエルビウム、
イットリビウム、プラセオジミウム及びネオジムから選
択される少なくとも一種の希土類元素を濃度0.001
〜0.1モル/リットル、また必要に応じてアルミニウ
ム又はコバルトを濃度0.1〜10モル/リットルに調
整した水溶液又はアルコール溶液を充填し、溶液及び石
英ガラス管全体を約20〜80℃に保持したまま0.5
〜50時間保持する。
Next, preferably, erbium is contained inside the tube.
0.001 concentration of at least one rare earth element selected from yttrium, praseodymium and neodymium
To 0.1 mol / L, and if necessary, an aqueous solution or an alcohol solution in which aluminum or cobalt is adjusted to a concentration of 0.1 to 10 mol / L, and the solution and the whole quartz glass tube are cooled to about 20 to 80 ° C. 0.5 while holding
Hold for ~ 50 hours.

【0014】次に、上記溶液をガラス管内部から除去
し、又はそのまま直接に石英ガラス管内部に乾燥窒素を
流して内部を乾燥する。その際、乾燥窒素ガスは必要に
応じ加熱しても良い。次に、ガラス管内部を塩素を含む
ガス雰囲気とし、ガラス管を外部から加熱し、脱水処理
を行った後、ガラス微粒子堆積層を透明化する。
Next, the above solution is removed from the inside of the glass tube, or dry nitrogen is flowed directly into the quartz glass tube to dry the inside. At that time, the dry nitrogen gas may be heated if necessary. Next, the inside of the glass tube is set to a gas atmosphere containing chlorine, and the glass tube is heated from the outside to perform a dehydration treatment, and then the glass fine particle deposition layer is made transparent.

【0015】上記発明(2)は、前記第1のガラス微粒
子層の嵩密度が、前記その他のガラス微粒子層の嵩密度
より高くすることを特徴とする。これはガラス微粒子の
剥離を防止するのに有効であり、この状態を実現するた
めの有利な手段としては、一般に、第一のスス粒子層を
形成するガラスの粘度を低下させるような組成とするこ
とに加え、必要に応じ、堆積の際の温度を高くするのが
好ましい。また嵩密度については、予め所定の温度、添
加材比率で形成したスス堆積層を作成、重量、体積を測
定することで確認することができ、この結果に従い添加
材比率、堆積温度を調整すればよい。粒子間の一体化
(焼結)の進行具合は、スス体(粒子群)がどれだけの
温度で、どれだけ加熱されたか、で決まり、また同じ加
熱温度、時間でもスス粒子が軟らかいほど(=粘度に依
存して)焼結は進行するのでこれらの条件により、スス
体の嵩密度が最終的に決定される。
The invention (2) is characterized in that the bulk density of the first glass fine particle layer is higher than the bulk density of the other glass fine particle layers. This is effective in preventing the exfoliation of the glass fine particles, and as an advantageous means for realizing this state, generally, a composition which reduces the viscosity of the glass forming the first soot particle layer is used. In addition, it is preferable to increase the temperature during deposition, if necessary. In addition, the bulk density can be confirmed by preparing a soot deposition layer formed at a predetermined temperature and additive material ratio in advance, measuring the weight and volume, and adjusting the additive material ratio and the deposition temperature according to the result. Good. The progress of the integration (sintering) between the particles is determined by the temperature and how much the soot body (particle group) is heated, and the softer the soot particles are at the same heating temperature and time (= As sintering proceeds (depending on viscosity), these conditions ultimately determine the bulk density of the soot body.

【0016】上記発明(3)において、前記第1のガラ
ス微粒子層を形成する際、石英に対し屈折率を上昇させ
る添加材としては、例えばリン、ゲルマニウム、アルミ
ニウム、チタン、窒素などを用い、石英に対し屈折率を
低下させる添加材としては、例えば、フッ素、ホウ素、
などを用いる。該添加材の添加方法は、例えば、先駆体
となる材料蒸気をガラス形成と同時にガラス管内に流し
反応させることによって行う。また、上記添加材の添加
は粘度調整の一つの手段でも有り、アルミニウム、窒素
等を添加すると粘度が増加し、一方、それ以外の添加材
を添加すると粘度が減少する。
In the above invention (3), when forming the first glass fine particle layer, for example, phosphorus, germanium, aluminum, titanium, nitrogen, or the like is used as an additive for increasing the refractive index with respect to quartz. As an additive for lowering the refractive index, for example, fluorine, boron,
And so on. The method of adding the additive is performed, for example, by flowing a precursor vapor into the glass tube at the same time as the formation of the glass to cause a reaction. Further, the addition of the above-mentioned additives is also one means of adjusting the viscosity. The viscosity increases when aluminum, nitrogen or the like is added, while the viscosity decreases when other additives are added.

【0017】[0017]

【実施例】以下本発明を実施例により更に詳細に説明す
るが限定を意図するものではない。 (実施例1)外径20mm、内径10mmの石英ガラス
管内部に、毎分、4塩化珪素蒸気100cc、4塩化ゲ
ルマニウム蒸気100cc、3塩化ホウ素蒸気30c
c、酸素1000ccを導入すると共に、外部より酸水
素ガスにより形成される火炎にて加熱し、前記石英ガラ
ス管内部に厚み約0.03mmのガラス微粒子層を形成
した。その際、ガラス管表面の温度は約1200℃にな
るよう調整した。次に、4塩化珪素蒸気を500cc、
4塩化ゲルマニウム蒸気を480cc、酸素1500c
cに変え、前記と同様に、石英ガラス管内部に更に厚み
約0.3mmのガラス微粒子層を形成した。この時のガ
ラス管表面の温度も約1200℃になるよう調整した。
ついで管内部に、エルビウム濃度0.01モル/リット
ル、アルミニウム濃度3モル/リットルとなるように調
整した水溶液を充填し、溶液及び石英ガラス管全体を約
40℃に保温したまま、48時間保持した。次に、溶液
から石英ガラス管全体を取り出した後、石英ガラス管内
部に温度50℃の乾燥窒素を毎分5リットル流し、約7
2時間継続することで、内部を完全に乾燥させた。次
に、ガラス管内部に塩素を毎分100cc流しながら、
外部から酸水素火炎にて加熱し、ガラス微粒子堆積層を
完全に透明化させた。得られたガラス管を更に加熱し徐
々に中空部を減少させ、最終的に、直径約12mmのガ
ラスロッドを得た。このガラスロッドを直径約8mmに
加熱延伸後、更に外径25mm、内径10mmの石英管
内部に挿入し、加熱一体化し、最終的に、直径約25m
mの希土類添加光ファイバ用母材を得た。上記各工程の
間、ガラス微粒子層の剥離、割れは全く生じなかった。
また、上記ガラスロッドの一部を切断し、ICP発光分
析を用い中心部分のエルビウム、アルミニウム含有濃度
を調べたところ、それぞれ700質量ppm、6.5質
量%添加されていた。
The present invention will be described in more detail with reference to the following examples, which are not intended to limit the present invention. (Example 1) Inside a quartz glass tube having an outer diameter of 20 mm and an inner diameter of 10 mm, 100 cc of silicon tetrachloride vapor, 100 cc of germanium chloride vapor, and 30 c of boron trichloride vapor every minute.
c, while introducing 1000 cc of oxygen and heating from the outside with a flame formed by oxyhydrogen gas, a glass fine particle layer having a thickness of about 0.03 mm was formed inside the quartz glass tube. At that time, the temperature of the surface of the glass tube was adjusted to about 1200 ° C. Next, 500cc of silicon tetrachloride vapor,
480cc of germanium tetrachloride vapor and 1500c of oxygen
In the same manner as described above, a glass particle layer having a thickness of about 0.3 mm was further formed inside the quartz glass tube. At this time, the temperature of the surface of the glass tube was adjusted to about 1200 ° C.
Next, the inside of the tube was filled with an aqueous solution adjusted to have an erbium concentration of 0.01 mol / l and an aluminum concentration of 3 mol / l. . Next, after taking out the whole quartz glass tube from the solution, 5 liters of dry nitrogen at a temperature of 50 ° C. per minute was flown into the quartz glass tube for about 7 minutes.
By continuing for 2 hours, the inside was completely dried. Next, while flowing 100 cc of chlorine per minute inside the glass tube,
Heat was applied from the outside with an oxyhydrogen flame to completely clarify the glass particle deposition layer. The obtained glass tube was further heated to gradually reduce the hollow portion, and finally a glass rod having a diameter of about 12 mm was obtained. After stretching this glass rod by heating to a diameter of about 8 mm, the glass rod is further inserted into a quartz tube having an outer diameter of 25 mm and an inner diameter of 10 mm, and integrated by heating.
m of rare earth-doped optical fiber preform was obtained. During the above steps, no peeling or cracking of the glass fine particle layer occurred.
A part of the glass rod was cut, and the concentration of erbium and aluminum in the central portion was examined by ICP emission spectroscopy. As a result, 700 ppm by mass and 6.5% by mass were added, respectively.

【0018】(比較例1)実施例1の2回目のガラス微
粒子堆積層形成の際と同一条件にて、石英ガラス管内表
面に厚み約0.25mmのガラス微粒子層を形成した。
ついで以降は実施例1と同様の工程、条件により、溶液
の充填、乾燥、加熱透明化を行った。すると、窒素を使
った乾燥の際、管内部のガラス微粒子堆積層の一部が完
全に脱離してしまい、透明なガラスを得るには至らなか
った。
Comparative Example 1 A glass particle layer having a thickness of about 0.25 mm was formed on the inner surface of a quartz glass tube under the same conditions as in the second formation of the glass particle deposited layer in Example 1.
Subsequently, filling, drying, and heat transparency were performed under the same steps and conditions as in Example 1. Then, during drying using nitrogen, a part of the glass particle deposition layer inside the tube was completely detached, and a transparent glass was not obtained.

【0019】(比較例2)比較例1と同様にして、ガラ
ス微粒子堆積層を形成した。但し、その際の石英管表面
の最高温度は約1350℃となるようにした。同様の工
程、条件により、溶液の充填、乾燥、加熱透明化を行っ
た。溶液の充填、乾燥、加熱透明化は全く問題なくでき
たものの、実施例1と同様にICP発光分析を用い中心
部分のエルビウム、アルミニウム含有濃度を調べたとこ
ろ、200質量ppm、1.5質量%しか添加されてい
なかった。
Comparative Example 2 In the same manner as in Comparative Example 1, a glass fine particle deposition layer was formed. However, the maximum temperature of the quartz tube surface at that time was set to about 1350 ° C. The solution was filled, dried, and heated and clarified under the same steps and conditions. Although the filling of the solution, the drying, and the heating and clearing could be performed without any problem, the concentration of erbium and aluminum in the central portion was examined by ICP emission analysis in the same manner as in Example 1. As a result, 200 mass ppm and 1.5 mass% were obtained. Only had been added.

【0020】(実施例2)実施例1と同様に2層のガラ
ス微粒子堆積層を形成した。第1の層を形成する際に、
4塩化ゲルマニウム蒸気、3塩化ホウ素蒸気のかわり
に、3塩化リン蒸気50ccを添加し、ガラス管表面の
温度は約1200℃になるよう調整した。次に、4塩化
珪素蒸気を500cc、4塩化ゲルマニウム蒸気を48
0cc、酸素1500ccに変え、実施例1と同様に、
石英ガラス管内部に更に厚み約0.3mmのガラス微粒
子層を形成した。この時のガラス管表面の温度も約11
00℃になるよう調整した。以下実施例1と同様に、溶
液含漬、乾燥透明化等を行ったところ、ガラス微粒子層
の剥離、割れは全く生じなかった。また、上記ガラスロ
ッドの一部を切断し、ICP発光分析を用い中心部分の
エルビウム、アルミニウム含有濃度を調べたところ、そ
れぞれ650質量ppm、6.3質量%添加されてい
た。
(Example 2) In the same manner as in Example 1, two glass fine particle deposition layers were formed. When forming the first layer,
Instead of germanium tetrachloride vapor and boron trichloride vapor, 50 cc of phosphorus trichloride vapor was added, and the temperature of the glass tube surface was adjusted to about 1200 ° C. Next, 500 cc of silicon tetrachloride vapor and 48 germanium tetrachloride vapor were used.
0 cc and oxygen 1500 cc, as in Example 1,
A glass particle layer having a thickness of about 0.3 mm was further formed inside the quartz glass tube. At this time, the temperature of the glass tube surface was about 11
It was adjusted to be 00 ° C. Thereafter, in the same manner as in Example 1, when the solution was immersed, dried and made transparent, etc., no peeling or cracking of the glass fine particle layer occurred. When a part of the glass rod was cut and the concentration of erbium and aluminum in the center portion was examined by ICP emission analysis, 650 mass ppm and 6.3 mass% were added, respectively.

【0021】[0021]

【発明の効果】本発明に従い、ガラス管内面とガラス微
粒子堆積層との境界部に粘度の低いガラス微粒子堆積層
を形成することで、接着剤の役目を果たし、低温でのガ
ラス微粒子堆積を行っても、ガラス管内面とガラス微粒
子堆積層の密着力を維持ないし上昇させることができ、
以後の工程でのガラス微粒子堆積層の剥離、割れを防止
しつつ、希土類元素、共添加材等を高濃度で添加するこ
とが可能となる。
According to the present invention, a low-viscosity glass particle deposition layer is formed at the boundary between the inner surface of the glass tube and the glass particle deposition layer, thereby serving as an adhesive and performing glass particle deposition at a low temperature. Even, it is possible to maintain or increase the adhesion between the inner surface of the glass tube and the glass particle deposition layer,
It is possible to add a rare earth element, a co-additive, or the like at a high concentration while preventing peeling and cracking of the glass fine particle deposition layer in the subsequent steps.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榎本 正 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 大賀 裕一 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 Fターム(参考) 4G014 AH23 4G021 EA02 EB24 5F072 AB09 AK06 JJ05 YY17  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadashi Enomoto 1 Tayacho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works (72) Inventor Yuichi Oga 1-Tagamachi, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Ki Kogyo Co., Ltd. Yokohama Works F-term (reference) 4G014 AH23 4G021 EA02 EB24 5F072 AB09 AK06 JJ05 YY17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラス管内部にガラス形成材料蒸気を導
入し、気相反応により前記ガラス管内部にガラス微粒子
層を形成する第一の工程と、前記ガラス微粒子層に、金
属元素を含む溶液を充填する第二の工程と、前記溶液を
ガラス管内から除去した後又はそのまま前記ガラス微粒
子層を乾燥する第三の工程と、前記ガラス微粒子層を加
熱透明化して複合ガラス管を形成する第四の工程と、前
記複合ガラス管を中実化する第五の工程とを含む希土類
添加ガラスの製造方法において、前記ガラス管内部にガ
ラス微粒子層を複数層形成し、ガラス管内表面に接して
形成する第一のガラス微粒子層を構成するガラスの50
0℃以上の温度における粘度が、その他のガラス微粒子
層を構成するガラスの粘度よりも小さいことを特徴とす
る希土類添加ガラスの製造方法。
1. A first step of introducing a glass forming material vapor into a glass tube and forming a glass fine particle layer inside the glass tube by a gas phase reaction, and applying a solution containing a metal element to the glass fine particle layer. A second step of filling, a third step of drying the glass fine particle layer after removing the solution from the inside of the glass tube or as it is, and a fourth step of heating and clearing the glass fine particle layer to form a composite glass tube. And a fifth step of solidifying the composite glass tube, the method comprising the steps of: forming a plurality of glass fine particle layers inside the glass tube and forming the glass particle layer in contact with the inner surface of the glass tube. 50 of the glass constituting one glass particle layer
A method for producing a rare earth-doped glass, wherein the viscosity at a temperature of 0 ° C. or higher is lower than the viscosity of the glass constituting the other glass particle layer.
【請求項2】 前記第一のガラス微粒子層の嵩密度が、
前記その他のガラス微粒子層の嵩密度より高いことを特
徴とする特許請求項第1項記載の希土類添加ガラスの製
造方法。
2. The bulk density of the first glass fine particle layer is as follows:
The method for producing a rare-earth-added glass according to claim 1, wherein the bulk density is higher than the bulk density of the other glass particle layer.
【請求項3】 前記第一のガラス微粒子層を形成する
際、石英に対し屈折率を上昇させる添加材と、石英に対
し屈折率を低下させる添加材とを少なくともいずれか一
つ以上添加することを特徴とする特許請求項第1または
2項記載の希土類添加ガラスの製造方法。
3. When forming the first glass particle layer, at least one of an additive for increasing the refractive index with respect to quartz and an additive for decreasing the refractive index with respect to quartz is added. The method for producing a rare-earth-added glass according to claim 1 or 2, characterized in that:
JP2000281884A 2000-09-18 2000-09-18 Method for manufacturing rare earth-added glass Pending JP2002087827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000281884A JP2002087827A (en) 2000-09-18 2000-09-18 Method for manufacturing rare earth-added glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000281884A JP2002087827A (en) 2000-09-18 2000-09-18 Method for manufacturing rare earth-added glass

Publications (1)

Publication Number Publication Date
JP2002087827A true JP2002087827A (en) 2002-03-27

Family

ID=18766477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000281884A Pending JP2002087827A (en) 2000-09-18 2000-09-18 Method for manufacturing rare earth-added glass

Country Status (1)

Country Link
JP (1) JP2002087827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193362A (en) * 2005-01-12 2006-07-27 Sumitomo Electric Ind Ltd Method for determining condition for producing glass body and method for producing glass body
JP2014001113A (en) * 2012-06-20 2014-01-09 Fujikura Ltd Method for manufacturing optical fiber preform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193362A (en) * 2005-01-12 2006-07-27 Sumitomo Electric Ind Ltd Method for determining condition for producing glass body and method for producing glass body
JP4742589B2 (en) * 2005-01-12 2011-08-10 住友電気工業株式会社 Glass body manufacturing condition determination method and glass body manufacturing method
JP2014001113A (en) * 2012-06-20 2014-01-09 Fujikura Ltd Method for manufacturing optical fiber preform

Similar Documents

Publication Publication Date Title
US3982916A (en) Method for forming optical fiber preform
EP0547335B1 (en) Method of making fluorine/boron doped silica tubes
US3933454A (en) Method of making optical waveguides
US6109065A (en) Method of making optical waveguide devices using perchloryl fluoride to make soot
US4292063A (en) Manufacture of an optical fiber preform with micro-wave plasma activated deposition in a tube
JP4870573B2 (en) Alkali-doped optical fiber, preform thereof and method for producing the same
EP0198510B1 (en) Method of producing glass preform for optical fiber
EP0196671A1 (en) Method of producing glass preform for optical fiber
JPH02293340A (en) Production of glass object having zones of different refraction of light
CN1243811A (en) Manufacture of pre-fabricated bars for layered fiber core optical guide
CN104661972B (en) Hydrogen-supported fluorination of soot bodies
KR102235333B1 (en) Plasma deposition process with removal of substrate tube
US6418757B1 (en) Method of making a glass preform
JPH06298542A (en) Production of optical fiber preform
JP2021534059A (en) Method for manufacturing halogen-doped silica preform for optical fiber
JP2002087827A (en) Method for manufacturing rare earth-added glass
KR20050065398A (en) Method of manufacturing fluorine doped silica glass article, and method of manufacturing optical fiber preform and optical fiber using the method, and optical fiber made by such method
JP2005206452A (en) Method of manufacturing fluorine-added silica glass body, optical fiber preform, method of manufacturing optical fiber and optical fiber
JPH0476936B2 (en)
JPH0742131B2 (en) Method for manufacturing glass base material for optical fiber
EP0135126B1 (en) Preparation of glass for optical fibers
JPH0479981B2 (en)
JPH0463365B2 (en)
JPH0460930B2 (en)
US11655183B2 (en) System and method for optical fiber preform preparation via high-surface-area coating