JP2010186868A - Rare earth element doped-fiber with bf3 added therein, and method of manufacturing same - Google Patents

Rare earth element doped-fiber with bf3 added therein, and method of manufacturing same Download PDF

Info

Publication number
JP2010186868A
JP2010186868A JP2009030104A JP2009030104A JP2010186868A JP 2010186868 A JP2010186868 A JP 2010186868A JP 2009030104 A JP2009030104 A JP 2009030104A JP 2009030104 A JP2009030104 A JP 2009030104A JP 2010186868 A JP2010186868 A JP 2010186868A
Authority
JP
Japan
Prior art keywords
doped
rare earth
glass
core
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009030104A
Other languages
Japanese (ja)
Other versions
JP5384133B2 (en
Inventor
Seichin Kin
成珍 金
Tetsuya Yamamoto
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2009030104A priority Critical patent/JP5384133B2/en
Publication of JP2010186868A publication Critical patent/JP2010186868A/en
Application granted granted Critical
Publication of JP5384133B2 publication Critical patent/JP5384133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth element doped-fiber with BF<SB>3</SB>added therein, and a method of manufacturing the same. <P>SOLUTION: This method of manufacturing this rare earth element doped-fiber includes: a deposition process of forming a glass particulate layer by depositing one or more layers of glass particulates on the inner surface of a pipe; an immersion process of impregnating the glass particulate layer with a solution containing a rare-earth element; a drying process of drying the glass particulate layer after the immersion process; a transparency process of converting the glass particulate layer to transparent glass after the drying process; and a collapsing process of collapsing an anhydrous quartz pipe; deposited at 1,200-1,500°C, and another deposition process of forming a glass particulate layer with BF<SB>3</SB>doped therein is executed at 1,000-1,190°C after the deposition process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、コアにBFを添加した希土類元素ドープファイバおよびその製造方法に関する。 The present invention relates to a rare earth element-doped fiber having BF 3 added to a core and a method for manufacturing the same.

希土類元素をドープしたファイバレーザおよびファイバ増幅器は高い変換効率や高いビーム品質が得られることから、レーザ加工技術分野で多くの関心を集めている。希土類元素をドープした母材の製造方法としては、VAD(Vapor phase Axial Deposition)法、OVD(Outside Vapor Deposition)法、MCVD(Modified Chemical Vapor Deposition)法、気相CVD(Chemical Vapor Deposition)法等が挙げられ、MCVD法に液浸法を適用した希土類元素ドープコアを有する光ファイバ用母材の製造方法等が知られている(特許文献1)。
希土類元素ドープファイバから高品質レーザを得るために、広い利得スペクトル、低い再吸収、レーザの安定性、特に高い変換効率等の物性が要求される。とりわけ、エネルギー利用効率や装置の軽量化の観点から高い変換効率を有する希土類元素ドープファイバを製造する必要がある。
Since fiber lasers and fiber amplifiers doped with rare earth elements have high conversion efficiency and high beam quality, they have attracted a lot of interest in the field of laser processing technology. As a method for producing a base material doped with a rare earth element, a VAD (Vapor Phase Axial Deposition) method, an OVD (Outside Vapor Deposition) method, an MCVD (Modified Chemical Vapor Deposition) method, a vapor phase CVD (Ve. For example, a manufacturing method of an optical fiber preform having a rare earth element-doped core obtained by applying a liquid immersion method to the MCVD method is known (Patent Document 1).
In order to obtain a high-quality laser from a rare earth element-doped fiber, physical properties such as a wide gain spectrum, low reabsorption, laser stability, and particularly high conversion efficiency are required. In particular, it is necessary to manufacture a rare earth element-doped fiber having high conversion efficiency from the viewpoint of energy utilization efficiency and weight reduction of the apparatus.

例えば、高い変換効率のYbドープファイバを製造するためには、Ybドーピング濃度を上げ、吸収係数を上げる必要があるが、Ybドーピング濃度を上げるとYbクラスタリングの影響により消光が起こり、変換効率や信頼性が低下する問題が指摘される。当該問題を解決するためにAlをco−ドーピングする方法等が提案されているが(特許文献2および非特許文献1)、Alを入れることによりコアの屈折率が上がり、NAが高くなってしまい、レーザビームの品質改善に必要な低NAファイバを製造することが難しくなる。   For example, in order to manufacture a Yb-doped fiber with high conversion efficiency, it is necessary to increase the Yb doping concentration and increase the absorption coefficient. However, when the Yb doping concentration is increased, quenching occurs due to the influence of Yb clustering, and conversion efficiency and reliability are increased. It is pointed out that there is a problem of lowering the sex. In order to solve the problem, a method of co-doping Al or the like has been proposed (Patent Document 2 and Non-Patent Document 1). However, by adding Al, the refractive index of the core increases and NA increases. It becomes difficult to manufacture a low NA fiber necessary for improving the quality of the laser beam.

そこで屈折率を低下することができるF、B等の元素をコア内にドーピングする方法が考えられるが、MCVD法ではBFドープのスス付けとYbのドープを個別に行うためにBFドープ層とYbドープ層が分離されてしまうことがある。かかる分離が起きると均一な屈折率プロファイルを有するコア作製は困難であることは勿論、BF層とYbドープ層の熱膨張係数が異なるために中実化する際コア扁平の問題が生じる。 Therefore F the refractive index can be lowered, a method of doping element such as B in the core may be considered, BF 3 doped layer in order to perform the BF 3 doped soot deposition and Yb doped individually in MCVD method And the Yb doped layer may be separated. When such separation occurs, it is difficult to produce a core having a uniform refractive index profile, and the problem of flattening of the core occurs when it is solidified because the thermal expansion coefficients of the BF 3 layer and the Yb doped layer are different.

特開2003−277098号公報JP 2003-277098 A 特開平8−46278号公報JP-A-8-46278

Optics Express Vol.16(no.20), pp.15540−15545 (2008)Optics Express Vol. 16 (no. 20), pp. 15540-15545 (2008)

コアにBFを添加した希土類元素ドープファイバおよびその製造方法を提供することを課題とする。 It is an object of the present invention to provide a rare earth element-doped fiber in which BF 3 is added to a core and a manufacturing method thereof.

そこで本発明者等は、上記の課題を解消するべく鋭意研究した結果、無水石英パイプ内面にガラス微粒子を1層または複数層堆積させてガラス微粒子層を形成するに際して、加工温度を1200〜1500℃とし、かつ、該堆積の後に、さらにBFをドープしたガラス微粒子層を形成する堆積工程を1000〜1190℃の温度で行うことにより、上記のようなBFドープ層とYbドープ層が分離されてしまう問題を生じず、コアにBFを添加した希土類元素ドープファイバが製造できることを見出し、本発明を完成するに至った。
すなわち本発明は、以下のとおりである。
〔1〕パイプ内面にガラス微粒子を1層または複数層堆積させてガラス微粒子層を形成する堆積工程、該ガラス微粒子層に希土類元素を含む溶液中に含浸する液浸工程、該液浸工程後にガラス微粒子層を乾燥する乾燥工程、該乾燥工程後にガラス微粒子層を透明ガラス化する透明化工程および無水石英パイプをコラップスするコラップス工程を有する製造方法であって、
堆積工程時の温度が1000〜1190℃であることを特徴とする、希土類元素ドープファイバの製造方法。
〔2〕前記堆積工程時にさらにBFをドープすることを特徴とする、前記〔1〕記載の製造方法。
〔3〕前記堆積工程時の温度が1200〜1500℃であること、および該堆積工程後に、さらにBFをドープしたガラス微粒子層を形成する堆積工程を1000〜1190℃の温度で行うことを特徴とする、前記〔1〕記載の製造方法。
〔4〕前記〔3〕記載の製造方法により製造される希土類元素ドープファイバ。
〔5〕当該希土類元素ドープファイバが、コア、クラッドで構成されたファイバであって、
前記コアに、希土類元素が連続的にコア全体にドープされ、BFは不連続的にコアにドープされ、クラッドとコアとの界面の近傍のBFドープ濃度がコア中心の濃度に比べ小さいことを特徴とする、前記〔4〕記載の希土類元素ドープファイバ。
Accordingly, as a result of intensive studies to solve the above-mentioned problems, the inventors have made a processing temperature of 1200 to 1500 ° C. when forming a glass fine particle layer by depositing one or more glass fine particles on the inner surface of an anhydrous quartz pipe. In addition, after the deposition, the BF 3 doped layer and the Yb doped layer are separated by performing a deposition process for forming a glass fine particle layer doped with BF 3 at a temperature of 1000 to 1190 ° C. The present inventors have found that a rare earth element-doped fiber having BF 3 added to the core can be produced without causing the above problem.
That is, the present invention is as follows.
[1] A deposition step in which one or more glass fine particles are deposited on the inner surface of the pipe to form a glass fine particle layer, an immersion step in which the glass fine particle layer is impregnated in a solution containing a rare earth element, and glass after the immersion step. A production method comprising a drying step of drying the fine particle layer, a transparentization step of converting the glass fine particle layer into a transparent glass after the drying step, and a collapse step of collapsing the anhydrous quartz pipe,
A method for producing a rare earth element-doped fiber, wherein the temperature during the deposition step is 1000 to 1190 ° C.
[2] The method according to [1], wherein BF 3 is further doped during the deposition step.
[3] The temperature during the deposition step is 1200 to 1500 ° C., and after the deposition step, a deposition step for forming a glass fine particle layer doped with BF 3 is performed at a temperature of 1000 to 1190 ° C. The method according to [1] above.
[4] A rare earth element-doped fiber manufactured by the manufacturing method according to [3].
[5] The rare earth element-doped fiber is a fiber composed of a core and a clad,
The core is continuously doped with rare earth elements, the BF 3 is discontinuously doped into the core, and the BF 3 doping concentration in the vicinity of the interface between the cladding and the core is smaller than the concentration at the core center. The rare earth element-doped fiber according to the above [4], wherein

コアにBFを添加した希土類等ドープファイバおよびその製造方法を提供することができる。 It is possible to provide a rare earth or the like doped fiber having BF 3 added to the core and a method for manufacturing the same.

本発明の一実施態様を工程順に示した説明図。Explanatory drawing which showed one embodiment of this invention in process order. 本発明の一実施態様を工程順に示した説明図。Explanatory drawing which showed one embodiment of this invention in process order. 実施例1の屈折率プロファイルの模式図。3 is a schematic diagram of a refractive index profile of Example 1. FIG. 実施例2の屈折率プロファイルの模式図。FIG. 6 is a schematic diagram of a refractive index profile of Example 2.

本明細書中、クラッドとはコア周囲の石英層を指す。また、連続的なドープとは、希土類元素等の添加すべき物質が局所的にドープされるのではなく、切れ目なく全体的に含まれていて、該添加すべき物質が含まれない層が存在しない状態をいう。一方、これに対して不連続的なドープとは、希土類元素等の添加すべき物質が含まれる層と含まれない層とが存在する場合をいう。   In this specification, the clad refers to a quartz layer around the core. In addition, continuous doping means that a material to be added, such as rare earth elements, is not locally doped, but is entirely contained without any break, and there is a layer that does not contain the material to be added. The state that does not. On the other hand, discontinuous doping refers to a case where there are a layer containing a material to be added such as a rare earth element and a layer not containing it.

以下、図面を参照しつつ本発明を具体的に説明する。図1は本発明の一実施態様を工程順に示した説明図であって、後述する実施例1がこの工程からなる。   Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 1 is an explanatory view showing an embodiment of the present invention in the order of steps, and Example 1 described later includes this step.

無水石英パイプ 1の内面に一端から他端にむけてOを供給し、バーナー 2により1200〜1500℃で無水石英パイプ 1の内壁面の空焼きを行う(図1(a)参照)。Oの流量は0.5〜2.5SLMが望ましい。なお、無水石英パイプ 1とはOH基を含む量が赤外線分光器による測定の限界である1ppm以下の石英パイプを意味する。MCVD法では有機金属原料中に含まれるOH基やコア作製中に混入されるOH基によって伝送損失が増え、レーザ特性を悪化させるためにOH基の混入を防げることが望ましいからである。 O 2 is supplied to the inner surface of the anhydrous quartz pipe 1 from one end to the other end, and the inner wall surface of the anhydrous quartz pipe 1 is baked at 1200 to 1500 ° C. by the burner 2 (see FIG. 1A). The flow rate of O 2 is desirably 0.5 to 2.5 SLM. The anhydrous quartz pipe 1 means a quartz pipe whose amount containing OH groups is 1 ppm or less, which is the limit of measurement by an infrared spectrometer. This is because, in the MCVD method, it is desirable to prevent the OH group from being mixed in order to increase the transmission loss due to the OH group contained in the organometallic raw material or the OH group mixed during the core preparation, and to deteriorate the laser characteristics.

次に、Clを供給し、バーナー 2により1000〜1300℃で無水石英パイプ 1の内壁面の脱水を行う(図1(b)参照)。 Next, Cl 2 is supplied, and the inner wall surface of the anhydrous quartz pipe 1 is dehydrated by the burner 2 at 1000 to 1300 ° C. (see FIG. 1B).

次に、無水石英パイプ 1の内面にSiC1等のガラス原料ガス、HeおよびOのガスを供給し、バーナー 2により1000〜1200℃で加熱することにより、ガラス微粒子層 3を形成する。従来のMCVDの堆積工程では、堆積工程を1100〜1700℃で加熱することが一般的であるが、本発明では、1000〜1200℃と比較的低温で加熱する(図1(c)参照)。これは、後述する液浸工程において、高温で堆積するとガラス微粒子の大きさが細かくなる或いは直接ガラス化されることを理由にガラス微粒子層 3中に染み込む希土類元素のドーピング濃度に影響するため、従来の高温でガラス微粒子層 3を堆積することは望ましくないからであり、1000℃未満ではガラス微粒子と石英パイプ内面との密着性が弱くなるからである。ガラス粒子層 3は使用するパイプ及び作製の目的によって異なり、1層または複数層堆積させてもよいが、屈折プロファイルの観点から4回連続して、0.1mm〜0.5mm膜厚にするのが望ましい。なお、このときの各ガスの流量は使用パイプ及び作製目的によって異なるが、例えば希土類ドープコア母財を作製する場合、SiC1は0.4〜0.6SLM、Heは0.3〜0.6SLM、Oは0.4〜0.6SLMが望ましい。さらに、ガラス微粒子層 3を堆積する際には、ガラスパイプの内圧はパイプ内部のガスの流れに影響されるために無水石英パイプの内圧と大気圧との差圧を−4〜−10Paになるようにガラス内圧を圧力制御器により制御することが望ましい。 Next, glass raw material gas such as SiC1 4 and gas of He and O 2 are supplied to the inner surface of the anhydrous quartz pipe 1 and heated at 1000 to 1200 ° C. by the burner 2 to form the glass fine particle layer 3. In the conventional MCVD deposition process, the deposition process is generally heated at 1100 to 1700 ° C., but in the present invention, it is heated at a relatively low temperature of 1000 to 1200 ° C. (see FIG. 1C). This affects the doping concentration of the rare earth element soaked into the glass fine particle layer 3 because the size of the glass fine particles becomes smaller or directly vitrifies when deposited at a high temperature in the liquid immersion process described later. This is because it is not desirable to deposit the glass fine particle layer 3 at a high temperature of less than 1000 ° C., and the adhesion between the glass fine particles and the inner surface of the quartz pipe becomes weak at a temperature below 1000 ° C. The glass particle layer 3 differs depending on the pipe used and the purpose of production, and may be deposited in one or more layers. From the viewpoint of the refractive profile, the glass particle layer 3 has a thickness of 0.1 mm to 0.5 mm. Is desirable. In the case differs by each gas flow rate using pipes and be fabricated at this time, to produce, for example, rare earth doped core mother goods, SiCl 4 is 0.4~0.6SLM, the He is 0.3~0.6SLM, O 2 is preferably 0.4 to 0.6 SLM. Furthermore, when the glass fine particle layer 3 is deposited, since the internal pressure of the glass pipe is affected by the gas flow inside the pipe, the pressure difference between the internal pressure of the anhydrous quartz pipe and the atmospheric pressure becomes −4 to −10 Pa. Thus, it is desirable to control the glass internal pressure with a pressure controller.

また、上記の堆積工程においてHeおよびOだけではなくBFのガスについても供給してもよい(図1(c)参照)。BFの流量は20〜100SCCMが望ましい。BF添加ガラスは石英より屈折率が低いためにYb添加コアの屈折率を低減することができる。BFの代わりにB、F、SiF4、BCl、BBrなど等を代替することもできるが、結合効率や扱い易さの観点からBFが望ましい。BFによるデルタ(Δ、屈折率の差)の低減効果[(BF添加コアのデルタ−無BFコアのデルタ)/無BFコアのデルタ×100)](%)は、BF流量が9SCCMの場合は−15.7%、25SCCMの場合は−63%、40SCCMの場合は−136%となり、BFの流量を増やすことにより、仕込み効率が高くなる。これは、BFを増やすことによりコア屈折率が下がることに起因する。Yb/Alの仕込み量(Yb=0.075g、Al=0.25g)をドープし、9SCCMBFドープコア母材とBFを添加しないコア母材を比較した場合、BFを添加することにより明らかにコア△は下がり、△の変化は−15.7%となる。 In the above deposition step, not only He and O 2 but also BF 3 gas may be supplied (see FIG. 1C). The flow rate of BF 3 is desirably 20 to 100 SCCM. Since the refractive index of BF 3 -added glass is lower than that of quartz, the refractive index of the Yb-added core can be reduced. B instead of BF 3, F, SiF4, BCl 3, BBr is 3 and the like may also be substituted, in view of coupling efficiency and ease of handling BF 3 is desirable. BF 3 delta (Δ, refractive index difference) reduction effect [(BF 3 added core delta−no BF 3 core delta) / no BF 3 core delta × 100)] (%) is BF 3 flow rate Is 15.7% for 9 SCCM, -63% for 25 SCCM, -136% for 40 SCCM, and increasing the flow rate of BF 3 increases the charging efficiency. This is because the core refractive index is decreased by increasing BF 3 . Charge of Yb / Al (Yb = 0.075g, Al = 0.25g) was doped, when comparing the core preform without adding 9SCCMBF 3 doped core preform and BF 3, clarified by the addition of BF 3 At the same time, the core Δ falls, and the change in Δ becomes −15.7%.

堆積が終了した後、希土類元素含有溶液 4にガラス微粒子層 3を浸漬する(図1(d)参照)。溶液をガラス微粒子層へ浸透させるには、例えば該パイプ内に注ぎ込む方法が挙げられる。また、充分に浸透させるために、速度5〜20回転/分で旋盤チャックを回転させることが望ましい。本発明においてコアに添加する添加物としては、例えばEr(ErCl等)、Nd(NdCl等)、Yb(YbCl等)、Tm(TmCl等)、Pr(PrCl等)、La(LaCl等)、Al(Al(NO)等)、P(P、HPO等)等の希土類元素やその他の元素の化合物またはこれらの水和物等が挙げられる。扱い易さの観点からYbCl、AlClの6水和物が望ましく単一の添加であっても複数を組み合わせて添加してもよい。希土類元素添加のファイバは、溶液濃度によって大きく影響される。YbとAlを共添加する場合、各々の溶液濃度(wt%)は、Ybが0.05〜1.5、Alは0.05〜2程度が望ましい。例えば、エタノールに溶かす場合、30ccのエタノールに対し、YbCl・6HOが0.06〜0.09g、AlCl・6HOは0.2〜0.25gになる。また、Ybのクラスタリングはガラスのフォトダークニングに影響され、ファイバレーザ特性に悪影響を及ぼすためにAlとYbのモル比もYb添加ファイバ特性に重要なパラメータである。つまり、Ybのクラスタリングを抑制するためにはAlとYbのモル比R(=Al/Yb)を3〜15にすることが望ましい。この範囲の比率にすることで、NAが0.05〜0.2の光ファイバ母材を提供することができる。添加物を加える溶媒としては、例えば水、エタノール等のアルコールが塩化物、塩等の化合物を十分に溶解でき、しかも自然乾燥により殆ど揮散するのに加え、Cl等の反応性ガスにより容易かつ十分に除去できるので簡便である。好ましくはエタノールである。液浸工程の条件として、例えば温度20〜60℃、30分〜2時間等の条件が挙げられる。 After the deposition is completed, the glass fine particle layer 3 is immersed in the rare earth element-containing solution 4 (see FIG. 1D). In order to permeate the solution into the glass fine particle layer, for example, a method of pouring into the pipe can be mentioned. Moreover, in order to fully infiltrate, it is desirable to rotate the lathe chuck at a speed of 5 to 20 revolutions / minute. The additive to be added to the core in the present invention, for example, Er (ErCl 3, etc.), Nd (NdCl 3, etc.), Yb (YbCl 3, etc.), Tm (TmCl 3, etc.), Pr (PrCl 3, etc.), La ( LaCl 3 etc.), Al (Al (NO 3 ) etc.), P (P 2 O 5 , H 3 PO 4 etc.) and other rare earth elements and compounds of other elements or hydrates thereof. From the viewpoint of ease of handling, the hexahydrate of YbCl 3 and AlCl 3 is desirable, and a single addition or a combination of two or more may be added. The rare-earth-doped fiber is greatly affected by the solution concentration. When Yb and Al are co-added, the solution concentration (wt%) is preferably about 0.05 to 1.5 for Yb and about 0.05 to 2 for Al. For example, if dissolved in ethanol, to ethanol 30cc, YbCl 3 · 6H 2 O is 0.06~0.09g, AlCl 3 · 6H 2 O becomes 0.2~0.25G. The clustering of Yb is affected by the photodarkening of the glass, and the molar ratio of Al to Yb is also an important parameter for the Yb-doped fiber characteristics because it adversely affects the fiber laser characteristics. That is, in order to suppress Yb clustering, it is desirable to set the molar ratio R (= Al / Yb) of Al to Yb to 3-15. By setting the ratio within this range, an optical fiber preform having an NA of 0.05 to 0.2 can be provided. Examples of the solvent additive is added, for example water, alcohol chlorides such as ethanol, compounds such as salts can be sufficiently dissolved, yet added to volatilize most by natural drying, and easily by the reactive gas such as Cl 2 Since it can be removed sufficiently, it is convenient. Ethanol is preferred. Examples of conditions for the immersion process include conditions such as a temperature of 20 to 60 ° C. and 30 minutes to 2 hours.

次に、Oを供給し、1〜2時間、自然乾燥を行い、その後、バーナーの温度を50〜1400℃に上げ、液透されたガラス微粒子層を加熱乾燥する。 Next, O 2 is supplied, and natural drying is performed for 1 to 2 hours. Thereafter, the temperature of the burner is raised to 50 to 1400 ° C., and the liquid-permeable glass fine particle layer is heated and dried.

残留水分を充分に除去した後、内圧と大気圧との差圧−4Paを維持し、残留する微量の水分や異物を除去すべく、He、OおよびC1のガスを供給し、無水石英パイプ 1の温度を1500〜1600℃まで上げ、希土類元素含有ガラス微粒子層 5を透明化ガラス化し、希土類元素含有ガラス層 6を形成する(図1(e)参照))。なお、このときの各ガスの流量は、Heは0.1〜1.0SLM、Oは0.1〜5SLM、C1は0.12〜0.02SLMが望ましい。 After the residual moisture is sufficiently removed, the pressure difference between the internal pressure and the atmospheric pressure is maintained at −4 Pa, and gas of He, O 2 and C 12 is supplied to remove residual traces of moisture and foreign matter, and anhydrous quartz The temperature of the pipe 1 is raised to 1500 to 1600 ° C., and the rare earth element-containing glass fine particle layer 5 is made into transparent glass to form the rare earth element-containing glass layer 6 (see FIG. 1E)). The flow rate of each gas at this time, He is 0.1~1.0SLM, O 2 is 0.1~5SLM, C1 2 is 0.12~0.02SLM is desirable.

透明化の後に、さらに無水石英パイプを1500〜1800℃で加熱してコラップスする。コラップスとは、透明化されたガラス微粒子層を空間なしの中実化することである。この工程により希土類元素ドープコアが得られ、これをコアとする光ファイバ母材 8が得られる(図1(f)参照)。   After the clarification, the anhydrous quartz pipe is further heated at 1500 to 1800 ° C. to be collapsed. Collaps means making the transparent glass particle layer solid without space. By this step, a rare earth element-doped core is obtained, and an optical fiber preform 8 using this as a core is obtained (see FIG. 1 (f)).

ここで、MCVD法を用いたBFガスの反応はSiC1より低い温度で起こるためにガラス微粒子の堆積条件は異なる。そうすると上記のように低温でBFとSiC1を共に供給し、ガラス微粒子を堆積させると、堆積されたガラス微粒子がガラス表面から落ち、一方、高温でガラス微粒子を堆積させるとススの密度が高くなり、希土類元素含有溶液が奥まで浸透し難くなりコラプスされたコア母材は低屈折率層と高屈折率層に分離されてしまうことがある。そこで必要に応じて図2に示す工程で製造することもできる。 Here, the reaction of BF 3 gas with MCVD method different deposition conditions of the glass particles to take place at a lower temperature than SiCl 4. Then together supply of BF 3 and SiCl 4 at a low temperature as described above, when depositing glass particles, falling from the deposited glass particles are glass surface, whereas a high density of the deposited glass particles soot at high temperature As a result, the rare earth element-containing solution hardly penetrates deeply and the collapsed core base material may be separated into a low refractive index layer and a high refractive index layer. Therefore, it can be produced by the steps shown in FIG. 2 as necessary.

図2は本発明の一実施態様を工程順に示した説明図であって、後述する実施例2がこの工程からなる。   FIG. 2 is an explanatory diagram showing an embodiment of the present invention in the order of steps, and Example 2 described later includes this step.

高温でBFをドープしたYbドープ母材のプリフォームアナライザプロファイル、によると、コア部分はBF添加層とYbドープ層に分離しW型コアとなる。従って、低温で生じるスートの密着性の問題やBF添加層とYbドープ層が分離される問題を解決するために最初はBFを流させずに高温度でガラス微粒子付けを行った後、BFを供給しながらスート堆積を行うことが望ましい。また、スートとガラス界面で密着性を強化させるためにバーナーの送り速度を650mm/minから325mm/minに落とす必要がある。このような観点から以下の工程が有利である。 According to the preform analyzer profile of the Yb-doped base material doped with BF 3 at a high temperature, the core portion is separated into a BF 3 added layer and a Yb-doped layer to form a W-type core. Therefore, in order to solve the problem of soot adhesion that occurs at low temperature and the problem that the BF 3 added layer and the Yb doped layer are separated, first, glass particles are attached at a high temperature without flowing BF 3 . it is desirable to carry out the soot deposition while supplying BF 3. Moreover, in order to reinforce the adhesiveness at the soot-glass interface, it is necessary to reduce the burner feed speed from 650 mm / min to 325 mm / min. From such a viewpoint, the following steps are advantageous.

空焼き工程(図2(a))、脱水工程(図2(b))の詳細は図1(a)および(b)と同様である。   The details of the empty baking process (FIG. 2A) and the dehydration process (FIG. 2B) are the same as those in FIGS. 1A and 1B.

次に、無水石英パイプ 1の内面にSiC1等のガラス原料ガス、HeおよびOのガスを供給し、BFがドープされてない0.005mm〜0.05mm膜厚のガラス微粒子堆積を行うべく、バーナー 2により1200〜1500 ℃で加熱することにより、ガラス微粒子層 3を形成する(図2(c)参照)。なお、このときの各ガスの流量は、SiC1は0.2〜0.4SLM、Heは0.4〜0.6SLM、Oは0.4〜0.6SLMが望ましい。さらに、ガラス微粒子層 3を堆積する際には、ガラスパイプの内圧はパイプ内部のガスの流れに影響されるために石英パイプの内圧と大気圧との差圧を−10〜−4Paになるようにガラス内圧を圧力制御器により制御することが望ましい。 Next, glass raw material gas such as SiC1 4 and gas of He and O 2 are supplied to the inner surface of the anhydrous quartz pipe 1 to deposit 0.005 mm to 0.05 mm glass fine particles not doped with BF 3. Therefore, the glass fine particle layer 3 is formed by heating at 1200-1500 degreeC with the burner 2 (refer FIG.2 (c)). The flow rate of each gas at this time, SiCl 4 is 0.2~0.4SLM, the He is 0.4~0.6SLM, O 2 is 0.4~0.6SLM is desirable. Furthermore, when the glass fine particle layer 3 is deposited, the internal pressure of the glass pipe is affected by the gas flow inside the pipe, so that the differential pressure between the internal pressure of the quartz pipe and the atmospheric pressure is −10 to −4 Pa. It is desirable to control the internal pressure of the glass with a pressure controller.

次に、無水石英パイプ 1の内面にSiC1等のガラス原料ガス、He、OおよびBFのガスを供給し、バーナー 2により1000〜1200℃で加熱することにより、ガラス微粒子層 3をさらに形成する(図2(d)参照)。ガラス粒子層 3は1層または複数層堆積させてもよいが膜質の観点から4回連続して0.1〜0.5mm膜厚の複数層とするのが望ましい。なお、このときの各ガスの流量は、SiC1は0.4〜0.6SLM、Heは0.4〜0.6SLM、Oは0.4〜0.6SLM、BFは20〜100SCCMが望ましい。さらに、ガラス微粒子層 3を堆積する際には、ガラスパイプの内圧はパイプ内部のガスの流れに影響されるために石英パイプの内圧と大気圧との差圧を−10〜−4Paになるようにガラス内圧を圧力制御器により制御することが望ましい。 Next, glass raw material gas such as SiC1 4, gas of He, O 2 and BF 3 is supplied to the inner surface of the anhydrous quartz pipe 1 and heated at 1000 to 1200 ° C. by the burner 2, thereby further forming the glass fine particle layer 3. It forms (refer FIG.2 (d)). The glass particle layer 3 may be deposited in a single layer or in a plurality of layers, but it is desirable to form a plurality of layers having a thickness of 0.1 to 0.5 mm four times continuously from the viewpoint of film quality. The flow rate of each gas at this time, SiCl 4 is 0.4~0.6SLM, the He is 0.4~0.6SLM, O 2 is 0.4~0.6SLM, BF 3 has 20~100SCCM desirable. Furthermore, when the glass fine particle layer 3 is deposited, the internal pressure of the glass pipe is affected by the gas flow inside the pipe, so that the differential pressure between the internal pressure of the quartz pipe and the atmospheric pressure is −10 to −4 Pa. It is desirable to control the internal pressure of the glass with a pressure controller.

以降の液浸工程(図2(e))、乾燥工程、透明化工程(図2(f))およびコラップス工程(図2(g))の詳細は図1の(d)、(e)および(f)と同様である。なお、ガラス内壁面に形成するガラス微粒子の最適膜厚は使用石英パイプの内径やコア構造に影響されるために正確な規定することは難しいが、0.01mm〜1mmが望ましい。   Details of the subsequent immersion process (FIG. 2 (e)), drying process, clearing process (FIG. 2 (f)) and collapse process (FIG. 2 (g)) are shown in FIG. 1 (d), (e) and Same as (f). The optimum film thickness of the glass fine particles formed on the inner wall surface of the glass is influenced by the inner diameter of the quartz pipe used and the core structure, and it is difficult to accurately define it, but is preferably 0.01 mm to 1 mm.

以下、本発明について実施例を挙げてさらに具体的に説明する。本発明はこれらにより何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by these.

外径28 mm、厚さ1.5 mm、長さ400 mmの無水石英パイプを旋盤に取付け、無水石英パイプ内面に一端から他端にむけて1.4SLMでOを供給し、バーナーにより1200〜1400℃で無水石英パイプの内壁面の空焼きを行った後、50SCCMでC1を供給しながらバーナーにより1130℃で無水石英パイプの内壁面の脱水を行った。その後、0.56SLMでSiC1、0.4SLMでHe、0.5SLMでOおよび45SCCMでBFのガスを供給し1180℃で4回連続して0.2mm膜厚のガラス微粒子の堆積を行った。ガラス微粒子を堆積する際には石英パイプの内圧と大気圧との差圧を4Paになるようにガラス内圧を制御した。その後、0.06gのYbC1・6HOおよび0.2gのAlCl・6HOを溶媒として30ccのエタノールに溶かし(Al:Ybモル比=5.7:1)、ガラス微粒子を堆積したガラスパイプ中に流し込み、充分になじむまで速度5回転/分、温度20℃で1時間、旋盤チャックを回転させ液浸した。次に、Oを供給し、1時間、自然乾燥を行った後、バーナーの温度を50〜1400℃に上げ、石英パイプを加熱乾燥した。その後、内圧と大気圧との差圧を−4Paの差圧になるように維持し、0.7SLMでHe、0.3SLMでOおよび20SCCMでC1のガスを供給しながら無水石英パイプの温度を1500〜1750℃まで上げ、透明化およびガラスパイプのコラップスを行い、コアを作製した。プリアナ評価の結果、コア径は約2mmであった。
図3は、実施例1で作製したドープファイバの屈折率プロファイルの模式図であって、ファイバの胴体最外面から、直径に沿って該ファイバの中心軸を通過し、反対側の胴体最外面に至るまでの、屈折率の変化(縦軸)を示している。図4も同様である。
同図に示すとおり、コアとクラッドとの界面領域では、屈折率がコアの中心領域に比べて局所的に低くなっており、石英ガラス屈折率よりも低いことがわかる。これは、コアとクラッドとの界面において、ガラス微粒子層をBFドープしながら堆積したためにガラス微粒子が小さくなり、YbおよびAlがコア界面まで浸透し難くなったためである。
An anhydrous quartz pipe having an outer diameter of 28 mm, a thickness of 1.5 mm, and a length of 400 mm is mounted on a lathe, O 2 is supplied at 1.4 SLM from one end to the other end of the anhydrous quartz pipe, and 1200 by a burner. 1400 after baking of the inner wall surface of the anhydrous silica glass pipe at ° C., and the dehydration was conducted of the inner wall surface of the anhydrous silica glass pipe at 1130 ° C. the burner while supplying C1 2 at 50 SCCM. Thereafter, SiC1 4 at 0.56 SLM, He at 0.4 SLM, O 2 at 0.5 SLM, and BF 3 at 45 SCCM were supplied, and deposition of 0.2 mm-thick glass particles was performed four times at 1180 ° C. went. When depositing the glass fine particles, the glass internal pressure was controlled so that the differential pressure between the internal pressure of the quartz pipe and the atmospheric pressure was 4 Pa. Thereafter, 0.06 g of YbC1 3 · 6H 2 O and 0.2 g of AlCl 3 · 6H 2 O were dissolved in 30 cc of ethanol as a solvent (Al: Yb molar ratio = 5.7: 1) to deposit glass particles. The glass was poured into a glass pipe, and the lathe chuck was rotated for immersion for 1 hour at a speed of 5 revolutions / minute and at a temperature of 20 ° C. until it was fully adapted. Next, after supplying O 2 and performing natural drying for 1 hour, the temperature of the burner was raised to 50 to 1400 ° C., and the quartz pipe was heated and dried. Thereafter, the differential pressure between the internal pressure and the atmospheric pressure is maintained to be a differential pressure of −4 Pa. While supplying He gas at 0.7 SLM, O 2 at 0.3 SLM, and C 12 gas at 20 SCCM, the anhydrous quartz pipe The temperature was raised to 1500-1750 ° C., transparency and glass pipe collapse were performed, and a core was produced. As a result of the preliminary analysis, the core diameter was about 2 mm.
FIG. 3 is a schematic diagram of the refractive index profile of the doped fiber prepared in Example 1, and passes from the outermost surface of the fiber to the outermost surface of the opposite body through the central axis of the fiber along the diameter. The change in refractive index (vertical axis) is shown. The same applies to FIG.
As shown in the figure, in the interface region between the core and the clad, it can be seen that the refractive index is locally lower than the central region of the core and lower than the refractive index of quartz glass. This is because at the interface between the core and the clad, the glass fine particle layer was deposited while being doped with BF 3 , so that the glass fine particles became small and Yb and Al did not easily penetrate into the core interface.

外径28mm、厚さ1.5mm、長さ400mmの無水石英パイプを旋盤に取付け、無水石英パイプ内面に一端から他端にむけて1.4SLMでOを供給し、バーナーにより1200〜1400℃で無水石英パイプの内壁面の空焼きを行った後、50SCCMでC1を供給し1130℃で無水石英パイプの内壁面の脱水を行った。その後、0.3SLMでSiCl、0.4SLMでHeおよび0.5SLMでOのガスを供給し、1240℃でBFがドープされてない0.05mm膜厚のガラス微粒子堆積を行った。ガラス微粒子を堆積する際には無水石英パイプの内圧と大気圧との差圧を−4Paになるようにガラス内圧を制御した。その後、0.56SLMでSiCl、0.4SLMでHe、0.5SLMでOおよび75SCCMでBFのガスを供給し1180℃で石英パイプの温度で4回連続して0.2mm膜厚のガラス微粒子の堆積を行った。ガラス微粒子を堆積する際には無水石英パイプの内圧と大気圧との差圧を−4Paになるようにガラス内圧を制御した。ガラス微粒子を堆積した後、ガラス微粒子の密着性をガムテープで確認したところ、BFドープなしのガラス微粒子層とほぼ同じ密着性を持つことが判った。
以降の液浸工程、乾燥工程、透明化工程およびコラップス工程は実施例1と同様である。プリアナー評価の結果、コア径は約1.9mmであった。
図4は実施例2で作製したドープファイバの屈折率プロファイルの模式図である。模式図によると、コア全体に単一屈折率分布を示しており、YbおよびAlがコア界面まで充分に浸透され、コア全体に均一に拡散されていることがわかる。BFドープによる屈折率の低減効果は△=−60%であった。
実施例2の方法により製造した希土類元素ドープファイバのドープ濃度について、EPMA(Electron Probe Micro−Analyzer)により確認したところ、希土類元素が連続的にコア全体にドープされ、一方、BFは不連続的にコアにドープされており、コア中心のFドープ濃度は0.6mol%であったが、Bは検出されなかった。一方、クラッドとコアとの界面の近傍のBとFは検出されなかった。なお、BFの添加に関わらずEPMAの評価でBが検出されなかったのはBの取り込み効率がFより少ないためである。また、プリアナ評価でも、界面近傍の屈折率は石英ガラス屈折率とほぼ同じであることからコア界面ではBFがドープされていないことがわかる。
また、BF添加のYbドープファイバの有効性を確認するためにレーザ特性評価を行った。コア母材の作製は10SCCMのBF(CYW−150)、25SCCM(CYW−151)のBFを供給した条件でスート堆積を行った。BF流量を増やすことにより、コア屈折率が下がることがわかった。さらに、BF流量を増やしてもBF添加層とYbドープ層は分離せず、単一コア構造を示していることがわかった。レーザ評価は外部共振器の構成により行った。CYW−151のファイバ全長は9m、CYW−152は5.8mであった。ポンプ光吸収に対するファイバレーザのスロープ効率はそれぞれ59%、63%であり、良好な特性を示している。このことからBFを添加しても、特にレーザ特性には影響されないことから本発明の有効性が確認された。
An anhydrous quartz pipe having an outer diameter of 28 mm, a thickness of 1.5 mm, and a length of 400 mm is attached to a lathe, O 2 is supplied at 1.4 SLM from one end to the other end of the anhydrous quartz pipe, and 1200 to 1400 ° C. by a burner. in after baking of the inner wall surface of the anhydrous silica glass pipe, to perform dehydration of the inner wall surface of the anhydrous quartz pipe supplying 1130 ° C. the C1 2 at 50 SCCM. Thereafter, SiCl 4 gas was supplied at 0.3 SLM, He gas was supplied at 0.4 SLM, and O 2 gas was supplied at 0.5 SLM. At 1240 ° C., 0.05 mm-thick glass fine particles not doped with BF 3 were deposited. When depositing fine glass particles, the internal pressure of the glass was controlled so that the differential pressure between the internal pressure of the anhydrous quartz pipe and the atmospheric pressure was −4 Pa. Then, SiCl 4 at 0.56 SLM, He at 0.4 SLM, O 2 at 0.5 SLM, and BF 3 gas at 75 SCCM were supplied, and the thickness of the 0.2 mm film thickness was 4 times continuously at 1180 ° C. at the temperature of the quartz pipe. Glass particulates were deposited. When depositing fine glass particles, the internal pressure of the glass was controlled so that the differential pressure between the internal pressure of the anhydrous quartz pipe and the atmospheric pressure was −4 Pa. After the glass fine particles were deposited, the adhesion of the glass fine particles was confirmed with a gum tape. As a result, it was found that the glass fine particles had almost the same adhesion as the glass fine particle layer without BF 3 doping.
The subsequent liquid immersion process, drying process, clearing process, and collapse process are the same as in Example 1. As a result of the preaner evaluation, the core diameter was about 1.9 mm.
FIG. 4 is a schematic diagram of the refractive index profile of the doped fiber produced in Example 2. According to the schematic diagram, a single refractive index distribution is shown throughout the core, and it can be seen that Yb and Al are sufficiently penetrated to the core interface and are uniformly diffused throughout the core. The effect of reducing the refractive index by BF 3 doping was Δ = −60%.
When the doping concentration of the rare earth element-doped fiber manufactured by the method of Example 2 was confirmed by EPMA (Electron Probe Micro-Analyzer), the rare earth element was continuously doped in the entire core, while BF 3 was discontinuous. The core was doped, and the F-doped concentration at the core center was 0.6 mol%, but B was not detected. On the other hand, B and F in the vicinity of the interface between the clad and the core were not detected. The reason why B was not detected in the EPMA evaluation regardless of the addition of BF 3 is that the B incorporation efficiency is lower than that of F. Also in the preanalysis evaluation, it is understood that BF 3 is not doped at the core interface because the refractive index in the vicinity of the interface is almost the same as the refractive index of quartz glass.
In addition, laser characteristics were evaluated in order to confirm the effectiveness of the BF 3 doped Yb-doped fiber. The core base material was produced by soot deposition under the condition of supplying 10 SCCM BF 3 (CYW-150) and 25 SCCM (CYW-151) BF 3 . It has been found that increasing the BF 3 flow rate decreases the core refractive index. Furthermore, it was found that even if the BF 3 flow rate was increased, the BF 3 added layer and the Yb doped layer were not separated, indicating a single core structure. Laser evaluation was performed according to the configuration of the external resonator. The total fiber length of CYW-151 was 9 m, and CYW-152 was 5.8 m. The slope efficiency of the fiber laser with respect to the pump light absorption is 59% and 63%, respectively, indicating good characteristics. Therefore, even if BF 3 was added, the effectiveness of the present invention was confirmed because it was not particularly affected by the laser characteristics.

本発明にかかる光ファイバはファイバレーザや光増幅器等に使用される。   The optical fiber according to the present invention is used for a fiber laser, an optical amplifier, and the like.

1 無水石英パイプ
2 バーナー
3 ガラス微粒子層
4 希土類元素含有溶液
5 希土類元素含有ガラス微粒子層
6 希土類元素含有ガラス層
7 希土類元素ドープコア
8 光ファイバ母材
DESCRIPTION OF SYMBOLS 1 Anhydrous quartz pipe 2 Burner 3 Glass particulate layer 4 Rare earth element containing solution 5 Rare earth element containing glass particulate layer 6 Rare earth element containing glass layer 7 Rare earth element doped core 8 Optical fiber preform

Claims (5)

パイプ内面にガラス微粒子を1層または複数層堆積させてガラス微粒子層を形成する堆積工程、該ガラス微粒子層に希土類元素を含む溶液中に含浸する液浸工程、該液浸工程後にガラス微粒子層を乾燥する乾燥工程、該乾燥工程後にガラス微粒子層を透明ガラス化する透明化工程および無水石英パイプをコラップスするコラップス工程を有する製造方法であって、
堆積工程時の温度が1000〜1190℃であることを特徴とする、希土類元素ドープファイバの製造方法。
A deposition step in which one or more glass fine particles are deposited on the inner surface of the pipe to form a glass fine particle layer, an immersion step in which the glass fine particle layer is impregnated in a solution containing a rare earth element, and a glass fine particle layer is formed after the immersion step. A drying method for drying, a transparentizing step for transparent vitrification of the glass fine particle layer after the drying step, and a collapsing step for collapsing the anhydrous quartz pipe,
A method for producing a rare earth element-doped fiber, wherein the temperature during the deposition step is 1000 to 1190 ° C.
前記堆積工程時にさらにBFをドープすることを特徴とする、請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein BF 3 is further doped during the deposition step. 前記堆積工程時の温度が1200〜1500℃であること、および該堆積工程後に、さらにBFをドープしたガラス微粒子層を形成する堆積工程を1000〜1190℃の温度で行うことを特徴とする、請求項1記載の製造方法。 The temperature during the deposition step is 1200 to 1500 ° C., and after the deposition step, a deposition step of forming a glass fine particle layer doped with BF 3 is further performed at a temperature of 1000 to 1190 ° C. The manufacturing method according to claim 1. 請求項3記載の製造方法により製造される希土類元素ドープファイバ。   A rare earth element-doped fiber manufactured by the manufacturing method according to claim 3. 当該希土類元素ドープファイバが、コア、クラッドで構成されたファイバであって、
前記コアに、希土類元素が連続的にコア全体にドープされ、BFは不連続的にコアにドープされ、クラッドとコアとの界面の近傍のBFドープ濃度がコア中心の濃度に比べ小さいことを特徴とする、請求項4記載の希土類元素ドープファイバ。
The rare earth element-doped fiber is a fiber composed of a core and a clad,
The core is continuously doped with rare earth elements, the BF 3 is discontinuously doped into the core, and the BF 3 doping concentration in the vicinity of the interface between the cladding and the core is smaller than the concentration at the core center. The rare earth element-doped fiber according to claim 4, wherein:
JP2009030104A 2009-02-12 2009-02-12 Rare earth element-doped fiber doped with BF3 and manufacturing method thereof Expired - Fee Related JP5384133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030104A JP5384133B2 (en) 2009-02-12 2009-02-12 Rare earth element-doped fiber doped with BF3 and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030104A JP5384133B2 (en) 2009-02-12 2009-02-12 Rare earth element-doped fiber doped with BF3 and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010186868A true JP2010186868A (en) 2010-08-26
JP5384133B2 JP5384133B2 (en) 2014-01-08

Family

ID=42767341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030104A Expired - Fee Related JP5384133B2 (en) 2009-02-12 2009-02-12 Rare earth element-doped fiber doped with BF3 and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5384133B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001113A (en) * 2012-06-20 2014-01-09 Fujikura Ltd Method for manufacturing optical fiber preform
JP2014038927A (en) * 2012-08-15 2014-02-27 Nippon Telegr & Teleph Corp <Ntt> Optical element and manufacturing method therefor
US8883576B2 (en) 2011-10-31 2014-11-11 Samsung Electronics Co., Ltd. Methods of fabricating semiconductor devices using mask shrinking

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038744A (en) * 1989-06-06 1991-01-16 Shin Etsu Chem Co Ltd Rare earth element-doped quartz glass fiber preform and preparation thereof
JP2004083399A (en) * 2002-07-02 2004-03-18 Sumitomo Electric Ind Ltd Optical fiber and method of manufacturing preform for optical fiber
JP2005041702A (en) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd Method for producing optical fiber glass preform and optical fiber glass preform produced thereby
JP2005343731A (en) * 2004-06-02 2005-12-15 Sumitomo Electric Ind Ltd Manufacturing method of glass body and optical glass body and optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038744A (en) * 1989-06-06 1991-01-16 Shin Etsu Chem Co Ltd Rare earth element-doped quartz glass fiber preform and preparation thereof
JP2004083399A (en) * 2002-07-02 2004-03-18 Sumitomo Electric Ind Ltd Optical fiber and method of manufacturing preform for optical fiber
JP2005041702A (en) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd Method for producing optical fiber glass preform and optical fiber glass preform produced thereby
JP2005343731A (en) * 2004-06-02 2005-12-15 Sumitomo Electric Ind Ltd Manufacturing method of glass body and optical glass body and optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883576B2 (en) 2011-10-31 2014-11-11 Samsung Electronics Co., Ltd. Methods of fabricating semiconductor devices using mask shrinking
JP2014001113A (en) * 2012-06-20 2014-01-09 Fujikura Ltd Method for manufacturing optical fiber preform
JP2014038927A (en) * 2012-08-15 2014-02-27 Nippon Telegr & Teleph Corp <Ntt> Optical element and manufacturing method therefor

Also Published As

Publication number Publication date
JP5384133B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
TW552437B (en) Method of manufacture of an optical waveguide article including a fluorine-containing zone
CA2910731C (en) A process for fabrication of ytterbium doped optical fiber
EP0443781A1 (en) Method for doping optical fibers
JP2005502071A (en) Optical waveguide article having a fluorine-containing region
US9676658B2 (en) Method of making updoped cladding by using silicon tertrachloride as the dopant
JP5033719B2 (en) Optical fiber preform manufacturing method
JP2017534551A (en) Fabrication method of optical fiber preform having one-step fluorine trench and overcladding
JP5384133B2 (en) Rare earth element-doped fiber doped with BF3 and manufacturing method thereof
JP5657274B2 (en) Rare earth element-doped optical fiber and manufacturing method thereof
US7079738B2 (en) Method for manufacturing a glass doped with a rare earth element and fiber for optical amplification using the same
CN112062460B (en) Low-loss G.652.D optical fiber and manufacturing method thereof
JP2014143287A (en) Rare earth doped optical fiber and method for manufacturing the same
CN102421715A (en) An improved method for fabricating rare earth (re) doped optical fiber using a new codopant
CN113461322B (en) Optical fiber and method for manufacturing optical fiber preform
JP2021500292A (en) Method for producing halogen-doped silica
JP2016147765A (en) Manufacturing method of optical fiber preform
JP2009078928A (en) Optical fiber preform, method for producing the same and rare earth-added optical fiber
JPH0476936B2 (en)
JP2013230961A (en) Optical fiber preform manufacturing method
CN112094049B (en) Method and device for preparing rare earth ion doped optical fiber preform and product
US10947149B2 (en) Halogen-doped silica for optical fiber preforms
JP2007091579A (en) Method of manufacturing optical fiber preform
JP2004083399A (en) Optical fiber and method of manufacturing preform for optical fiber
JP2003277098A (en) Method for manufacturing optical fiber preform
JP2003238189A (en) Method for producing glass pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Ref document number: 5384133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees