JP2007091579A - Method of manufacturing optical fiber preform - Google Patents

Method of manufacturing optical fiber preform Download PDF

Info

Publication number
JP2007091579A
JP2007091579A JP2006230692A JP2006230692A JP2007091579A JP 2007091579 A JP2007091579 A JP 2007091579A JP 2006230692 A JP2006230692 A JP 2006230692A JP 2006230692 A JP2006230692 A JP 2006230692A JP 2007091579 A JP2007091579 A JP 2007091579A
Authority
JP
Japan
Prior art keywords
glass
glass tube
optical fiber
particle layer
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006230692A
Other languages
Japanese (ja)
Inventor
Masaji Ikeda
正司 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006230692A priority Critical patent/JP2007091579A/en
Publication of JP2007091579A publication Critical patent/JP2007091579A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01838Reactant delivery systems, e.g. reactant deposition burners for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the deposited glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an optical fiber preform by which uniform characteristics are attained through the longitudinal direction of an optical fiber. <P>SOLUTION: The method of manufacturing the optical fiber preform comprises a first step for preparing a glass tube consisting essentially of quartz to become clad glass, a second step for producing glass fine particles and depositing them inside the glass tube by introducing a raw material gas and gaseous oxygen in the glass tube while heating the glass tube, a third step for introducing the glass tube on which the glass fine particles are deposited into a heating oven and increasing the bulk density of the glass fine particle layer deposited on the glass tube, a fourth step for adding an additive into the glass fine particle layer inside the glass tube after heat-treated, and a fifth step for vitrifying the glass fine particle layer by heating the glass tube after the adding step and collapsing a hallow part to solidify. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光ファイバ母材の製造方法に関し、特に光ファイバのコアに希土類元素やAlなどが添加された光ファイバの製造に使用される光ファイバ母材の製造方法に関する。  The present invention relates to a method for manufacturing an optical fiber preform, and more particularly to a method for manufacturing an optical fiber preform used for manufacturing an optical fiber in which a rare earth element or Al is added to the core of the optical fiber.

コアに希土類元素などが添加された光ファイバの製造に用いる光ファイバ母材の製造方法として、コアとなるべき部分に希土類元素などの添加が容易なMCVD法(内付け法とも呼ばれる)が知られている(例えば、特許文献1、非特許文献1参照。)。  As an optical fiber preform manufacturing method used for manufacturing an optical fiber in which a rare earth element or the like is added to the core, there is known an MCVD method (also called an internal method) in which a rare earth element or the like can be easily added to a portion to be a core. (For example, refer to Patent Document 1 and Non-Patent Document 1).

従来の光ファイバ母材の製造方法は、まず、石英ガラスからなるガラス管を用意し、次に、ガラス管を回転しながらガラス管の端面から中空部へSiClガス、GeClガスおよびOガスを導入する。これらの原料ガスの導入と相前後してバーナーをガラス管に沿ってトラバースさせながらガラス管を加熱する。この加熱に伴って中空部の温度が上昇し、中空部ではSiClおよびGeClが酸化されて微粒子状のスートが生成されてガラス管内表面に堆積され、焼き固められてガラス微粒子層が形成される。引き続き、液浸法によりErをガラス微粒子層に添加して乾燥させ、その後、ガラス管を加熱して多孔質ガラス層を透明化し、透明ガラス層を形成する。引き続き、ガラス管を延伸して中実化して光ファイバ母材を得る。 In a conventional method of manufacturing an optical fiber preform, first, a glass tube made of quartz glass is prepared, and then SiCl 4 gas, GeCl 4 gas, and O 2 are rotated from the end surface of the glass tube to the hollow portion while rotating the glass tube. Introduce gas. The glass tube is heated while traversing the burner along the glass tube in parallel with the introduction of these source gases. With this heating, the temperature of the hollow portion rises, and SiCl 4 and GeCl 4 are oxidized in the hollow portion to generate fine particulate soot, which is deposited on the inner surface of the glass tube and baked to form a glass fine particle layer. The Subsequently, Er is added to the glass fine particle layer by the immersion method and dried, and then the glass tube is heated to make the porous glass layer transparent, thereby forming a transparent glass layer. Subsequently, the glass tube is stretched and solidified to obtain an optical fiber preform.

液浸法によりコアに添加させる添加物は、例えばEr,Ybなどの希土類元素、Co,Alなどの元素がある。
特許第3517848号公報 須藤昭一編「エルビウム添加光ファイバ増幅器」、オプトロニクス社、p.75
Additives added to the core by the immersion method include, for example, rare earth elements such as Er and Yb, and elements such as Co and Al.
Japanese Patent No. 3517848 Ed. Sudo, “Erbium-doped fiber amplifier”, Optronics, p. 75

従来のMCVD法による光ファイバ母材の製造は前記のように行われるが、液浸法によりコア部に添加した添加物は、光ファイバ母材の長手方向に渡って均一に添加することが困難であった。そのため、この光ファイバ母材を線引きして得られた光ファイバは、長手方向に渡って添加物の量にばらつきがあり、光ファイバの光学特性も長手方向の各部位によって異なる。例えば、液浸法によりコアに添加した添加物がErやYbのような光増幅作用のある元素である場合、この光ファイバ母材から作製した光ファイバの光増幅特性に影響を与える。また液浸法によりコアに添加した添加物がAlのようなガラス中の屈折率を変化させる作用のある元素である場合、この光ファイバ母材から作製した光ファイバのカットオフ波長やモードフィールド径などの光ファイバ光学特性に影響を与える。  The production of the optical fiber preform by the conventional MCVD method is performed as described above, but it is difficult to uniformly add the additive added to the core by the immersion method over the longitudinal direction of the optical fiber preform. Met. For this reason, the optical fiber obtained by drawing the optical fiber preform has variations in the amount of the additive in the longitudinal direction, and the optical characteristics of the optical fiber also differ depending on each part in the longitudinal direction. For example, when an additive added to the core by the immersion method is an element having an optical amplification effect such as Er or Yb, the optical amplification characteristic of an optical fiber manufactured from the optical fiber preform is affected. In addition, when the additive added to the core by the immersion method is an element such as Al that has a function of changing the refractive index in the glass, the cutoff wavelength and mode field diameter of the optical fiber made from this optical fiber preform are used. It affects the optical fiber optical characteristics.

またErとAlをコアに添加したEr添加光ファイバは、Alの添加によってEr3+の蛍光断面積を広帯域化・平滑化でき、またEr3+を高濃度に添加したときに生じるクラスター化(clustering)を防ぐ作用があることが知られている。ゆえに液浸法によりコアにAl,Erを添加して作製した光ファイバ母材から作製した光ファイバのEr3+の蛍光断面積の広帯域性・平滑性などに影響を与える。 In addition, Er-added optical fibers in which Er and Al are added to the core can broaden and smooth the Er 3+ fluorescence cross-sectional area by adding Al, and clustering that occurs when Er 3+ is added at a high concentration. It is known to have an action to prevent. Therefore, it affects the broadband property / smoothness of the Er 3+ fluorescence cross section of the optical fiber produced from the optical fiber preform produced by adding Al and Er to the core by the immersion method.

前述したように、従来の光ファイバ母材の製造方法では、コアの長手方向に渡って添加元素を均一に添加することが困難であり、従来法で製造した光ファイバ母材から作製した光ファイバは、長手方向の各部位で添加物の量にばらつきがあるため、前述したような光増幅特性、光ファイバ光学特性、蛍光断面積の広帯域性・平滑性なども光ファイバ長手方向の各部位で異なってしまう。したがって、従来技術では、1つの光ファイバ母材から所望の光ファイバ特性を有する光ファイバを多量に得ることが困難であった。  As described above, in the conventional method for manufacturing an optical fiber preform, it is difficult to uniformly add an additive element along the longitudinal direction of the core, and an optical fiber manufactured from an optical fiber preform manufactured by a conventional method is difficult. Since there are variations in the amount of additive in each part in the longitudinal direction, the optical amplification characteristics, optical fiber optical characteristics, broadness and smoothness of the fluorescence cross section as described above are also found in each part in the longitudinal direction of the optical fiber. It will be different. Therefore, in the prior art, it is difficult to obtain a large amount of optical fibers having desired optical fiber characteristics from one optical fiber preform.

本発明は前記事情に鑑みてなされ、光ファイバの長手方向に渡って均一な特性が得られる光ファイバ母材に製造方法の提供を目的とする。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a manufacturing method for an optical fiber preform that can obtain uniform characteristics in the longitudinal direction of the optical fiber.

前記目的を達成するため、本発明は、クラッドガラスとなる、石英を主成分とするガラス管を用意する第1の工程と、前記ガラス管を加熱しながら、これにガラス原料ガスと酸素ガスを導入して、前記ガラス管内でガラス微粒子を生成し、堆積させる第2の工程と、ガラス微粒子が堆積された前記ガラス管を加熱炉に入れて加熱処理を行い、前記ガラス管内に堆積されたガラス微粒子層のかさ密度を増加させる第3の工程と、前記加熱処理を終えた前記ガラス管内のガラス微粒子層内に添加物を添加する第4の工程と、この添加工程の後に前記ガラス管を加熱して前記ガラス微粒子層を透明化するとともに中空部を潰して中実化する第5の工程とを有することを特徴とする光ファイバ母材の製造方法を提供する。  In order to achieve the above object, the present invention provides a first step of preparing a glass tube mainly composed of quartz, which is a clad glass, and a glass raw material gas and an oxygen gas are added to the glass tube while heating the glass tube. A second step of introducing and generating glass fine particles in the glass tube and depositing the glass tube on which the glass fine particles are deposited in a heating furnace to perform heat treatment, and the glass deposited in the glass tube A third step of increasing the bulk density of the fine particle layer, a fourth step of adding an additive into the glass fine particle layer in the glass tube after the heat treatment, and heating the glass tube after the addition step And a fifth step of making the glass fine particle layer transparent and crushing the hollow portion to make it solid.

本発明の光ファイバ母材の製造方法において、前記第2の工程の加熱手段が酸水素バーナーであり、前記第3の工程の加熱炉が電気炉又は誘導加熱炉であり、前記第5の工程の加熱手段は酸水素バーナーであることが好ましい。  In the optical fiber preform manufacturing method of the present invention, the heating means in the second step is an oxyhydrogen burner, the heating furnace in the third step is an electric furnace or an induction heating furnace, and the fifth step The heating means is preferably an oxyhydrogen burner.

本発明の光ファイバ母材の製造方法において、前記第3の工程後のガラス微粒子層のかさ密度が0.1g/cm〜0.4g/cmの範囲であることが好ましい。 In the method for manufacturing an optical fiber preform of the present invention, it is preferable bulk density of the glass fine particle layer after the third step is in the range of 0.1g / cm 3 ~0.4g / cm 3 .

本発明の光ファイバ母材の製造方法において、前記第3工程で用いる加熱炉は、前記ガラス管のうち少なくともガラス微粒子が堆積された部分を全て同時に加熱できるように、加熱手段が複数設置されているか、又は前記ガラス管のうち少なくともガラス微粒子が堆積された部分を全て同時に加熱するのに十分な長さを有する加熱手段を有している加熱炉であることが好ましい。  In the method of manufacturing an optical fiber preform according to the present invention, the heating furnace used in the third step includes a plurality of heating means so that at least a portion of the glass tube on which the glass fine particles are deposited can be simultaneously heated. Or a heating furnace having heating means having a length sufficient to simultaneously heat at least all of the glass tube where glass fine particles are deposited.

本発明の光ファイバ母材の製造方法において、前記第4の工程で添加する添加物が希土類元素及びAlからなる群から選択される1種又は2種以上であることが好ましい。  In the method for producing an optical fiber preform of the present invention, the additive added in the fourth step is preferably one or more selected from the group consisting of rare earth elements and Al.

本発明によれば、ガラス微粒子のかさ密度をガラス管の長手方向全長に渡って均一にすることが可能であり、その後に行うガラス微粒子層内に添加物を添加する工程で、Er,Al等の添加物を長手方向全長に渡って均一に添加することができる。その結果、本発明の製造方法によって得られた光ファイバ母材は、長手方向に渡って希土類の濃度が均一な希土類添加光ファイバを作製することができる。  According to the present invention, it is possible to make the bulk density of the glass fine particles uniform over the entire length in the longitudinal direction of the glass tube, and in the subsequent step of adding the additive into the glass fine particle layer, Er, Al, etc. The additive can be added uniformly over the entire length in the longitudinal direction. As a result, the optical fiber preform obtained by the manufacturing method of the present invention can produce a rare earth-doped optical fiber having a uniform rare earth concentration in the longitudinal direction.

本発明の光ファイバ母材の製造方法は、クラッドガラスとなる、石英を主成分とするガラス管を用意する第1の工程と、前記ガラス管を加熱しながら、これにガラス原料ガスと酸素ガスを導入して、前記ガラス管内でガラス微粒子を生成し、堆積させる第2の工程と、ガラス微粒子が堆積された前記ガラス管を加熱炉に入れて加熱処理を行い、前記ガラス管内に堆積されたガラス微粒子層のかさ密度を増加させる第3の工程と、前記加熱処理を終えた前記ガラス管内のガラス微粒子層内に添加物を添加する第4の工程と、この添加工程の後に前記ガラス管を加熱して前記ガラス微粒子層を透明化するとともに中空部を潰して中実化する第5の工程とを有することを特徴としている。  The method for producing an optical fiber preform of the present invention includes a first step of preparing a glass tube mainly composed of quartz, which is a clad glass, and a glass raw material gas and an oxygen gas while heating the glass tube. The second step of generating and depositing glass fine particles in the glass tube and the glass tube on which the glass fine particles are deposited are put into a heating furnace and subjected to heat treatment, and deposited in the glass tube. A third step of increasing the bulk density of the glass fine particle layer, a fourth step of adding an additive into the glass fine particle layer in the glass tube after the heat treatment, and the glass tube after the addition step. And a fifth step of making the glass fine particle layer transparent by heating and crushing the hollow portion to make it solid.

従来の光ファイバ母材の製造方法は、ガラス管内にガラス微粒子を生成し、堆積させた後、酸水素バーナーを用いてガラス管を加熱し、ガラス微粒子を焼き固めてガラス微粒子層のかさ密度を増加させる。この時、酸水素バーナーをガラス管の長手方向に沿って移動させながら焼き固めを行う。しかしながら、このような従来方法では、酸水素バーナー自体は局所的な加熱であり、酸水素バーナーの移動によってガラス管を加熱するため、ガラス管全体が均一にならないため、長手方向でのガラス微粒子層のかさ密度が均一にならない。そのため、この後のガラス微粒子層内に添加物を添加する工程において、添加物の添加量が長手方向に不均一になってしまうという問題があった。  In the conventional optical fiber preform manufacturing method, glass particles are generated and deposited in a glass tube, and then the glass tube is heated using an oxyhydrogen burner, and the glass particles are baked and hardened to increase the bulk density of the glass particle layer. increase. At this time, baking is performed while the oxyhydrogen burner is moved along the longitudinal direction of the glass tube. However, in such a conventional method, the oxyhydrogen burner itself is locally heated, and the glass tube is heated by the movement of the oxyhydrogen burner, so the entire glass tube is not uniform. The bulk density is not uniform. Therefore, in the subsequent step of adding the additive into the glass fine particle layer, there is a problem that the amount of the additive added becomes non-uniform in the longitudinal direction.

ガラス微粒子を焼き固めて、ガラス微粒子層のかさ密度を増加させる時の、加熱温度に対するかさ密度の変化を図1に示す。また、一例として、第4の工程でAlを添加して作製した光ファイバ母材のコア部のAl濃度が、かさ密度に対してどのように変化するかを図2に示す。
図2より、かさ密度が大きいほどAl濃度は小さくなることが分かる。また、図1より、加熱温度が大きいほどかさ密度は大きくなることが分かる。ゆえに、第4の工程でガラス微粒子層に添加される添加物の量は、ガラス微粒子層のかさ密度を増加させる時の加熱温度に影響される。
FIG. 1 shows the change in bulk density with respect to the heating temperature when the glass fine particles are baked and solidified to increase the bulk density of the glass fine particle layer. As an example, FIG. 2 shows how the Al concentration of the core portion of the optical fiber preform manufactured by adding Al in the fourth step changes with respect to the bulk density.
FIG. 2 shows that the Al concentration decreases as the bulk density increases. Further, FIG. 1 shows that the bulk density increases as the heating temperature increases. Therefore, the amount of the additive added to the glass fine particle layer in the fourth step is affected by the heating temperature when increasing the bulk density of the glass fine particle layer.

従来の光ファイバ母材の製造方法において、ガラス微粒子を焼き固めてガラス微粒子層のかさ密度を増加させる工程について、図3を用いて説明する。
酸水素バーナー12によって加熱されている部分の温度が目標温度になるようになるように酸素および水素の流量を制御しながら、酸水素バーナー12を左右に往復させながらガラス管10を加熱してガラス微粒子層11のかさ密度を増加させる。このような加熱方法であるため、ガラス管10全体を同時にかつ均一に加熱することはできない。そのため、ガラス管10の長手方向におけるガラス微粒子層11のかさ密度が均一にならない。
A process for increasing the bulk density of the glass fine particle layer by baking the glass fine particles in the conventional method for producing an optical fiber preform will be described with reference to FIG.
While controlling the flow rate of oxygen and hydrogen so that the temperature of the portion heated by the oxyhydrogen burner 12 reaches the target temperature, the glass tube 10 is heated while reciprocating the oxyhydrogen burner 12 to the left and right to thereby glass. The bulk density of the fine particle layer 11 is increased. Since it is such a heating method, the whole glass tube 10 cannot be heated simultaneously and uniformly. Therefore, the bulk density of the glass fine particle layer 11 in the longitudinal direction of the glass tube 10 is not uniform.

一方、本発明の光ファイバ母材の製造方法では、ガラス微粒子が堆積された前記ガラス管を加熱炉に入れて加熱処理を行い、前記ガラス管内に堆積されたガラス微粒子層のかさ密度を増加させる工程を取り入れているため、ガラス管全体を同時にかつ均一に加熱することが可能である。そのため、この後のガラス微粒子層内に添加物を添加する工程において、添加物の添加量が長手方向に均一化することができる。  On the other hand, in the method for producing an optical fiber preform according to the present invention, the glass tube on which the glass fine particles are deposited is put into a heating furnace, and heat treatment is performed to increase the bulk density of the glass fine particle layer deposited in the glass tube. Since the process is incorporated, it is possible to heat the entire glass tube simultaneously and uniformly. Therefore, in the subsequent step of adding the additive into the glass fine particle layer, the amount of additive added can be made uniform in the longitudinal direction.

図4にガラス管10の長手方向におけるガラス微粒子層11のかさ密度を示す。従来の方法でガラス微粒子を焼き固めてガラス微粒子層11のかさ密度を増加させた場合、ガラス管10全体でかさ密度は均一になっていない。一方、本発明の光ファイバ母材の製造方法により光ファイバ母材を作製した場合、ガラス管10全体でかさ密度はほぼ均一になっている。図2に示したように、第4の工程でガラス微粒子層11に添加される添加物の量は、ガラス微粒子層11のかさ密度に影響するので、本発明の光ファイバ母材の製造方法により作製した光ファイバ母材は、長手方向における添加物の添加量を均一化することができる。  FIG. 4 shows the bulk density of the glass fine particle layer 11 in the longitudinal direction of the glass tube 10. When the glass fine particles are baked and hardened by a conventional method to increase the bulk density of the glass fine particle layer 11, the bulk density is not uniform throughout the glass tube 10. On the other hand, when an optical fiber preform is produced by the method for producing an optical fiber preform of the present invention, the bulk density is substantially uniform throughout the glass tube 10. As shown in FIG. 2, since the amount of the additive added to the glass fine particle layer 11 in the fourth step affects the bulk density of the glass fine particle layer 11, the method for producing an optical fiber preform of the present invention is used. The produced optical fiber preform can make the additive amount in the longitudinal direction uniform.

以下、本発明の光ファイバ母材の製造方法の一例を図5、図6を参照して説明する。
本発明の第1の工程では、クラッドガラスとなる、石英を主成分とするガラス管10を用意する。このガラス管10の材質は、製造される光ファイバ母材19のコア部17を構成するガラスよりも低屈折率の石英ガラスが用いられ、例えば、純粋石英ガラスやフッ素を添加した石英ガラスなどが挙げられる。このガラス管10は、中空部を潰して中実化する工程等が容易になるように、製造される光ファイバ母材のクラッド領域18の一部を構成する肉厚とするのが望ましいが、クラッド領域18の全部を構成する肉厚としてもよい。
Hereinafter, an example of the manufacturing method of the optical fiber preform of the present invention will be described with reference to FIGS.
In the first step of the present invention, a glass tube 10 containing quartz as a main component and serving as a clad glass is prepared. The glass tube 10 is made of quartz glass having a refractive index lower than that of the glass constituting the core portion 17 of the optical fiber preform 19 to be manufactured, such as pure quartz glass or quartz glass doped with fluorine. Can be mentioned. The glass tube 10 preferably has a thickness that constitutes a part of the cladding region 18 of the optical fiber preform to be manufactured, so that the process of crushing and solidifying the hollow portion is facilitated. It is good also as the thickness which comprises all the clad area | regions 18. FIG.

次に、前記ガラス管10をMCVD装置(詳細な装置構成は図示していない)にセットし、図5(A)に示すように、ガラス管10の外方に酸水素バーナー12を配置してガラス管10を加熱しながら、ガラス管10内にガラス原料ガス(SiCl,GeCl)と酸素ガス(O)を導入して、ガラス管10内でガラス微粒子を生成し、堆積させる第2工程を行う。なお、図5(A)では、コア部17の屈折率調整用ドーパントとしてGeOを用いているが、本発明は本例示にのみ限定されるものではなく、例えば、クラッド領域18にフッ素を添加した低屈折率石英ガラスを用い、コア部に石英ガラスを用いる場合等では、GeClが無くてもよい。この第2の工程では、ガラス管10の内表面にかさ密度の小さいガラス微粒子層11が形成される。 Next, the glass tube 10 is set in an MCVD apparatus (the detailed apparatus configuration is not shown), and an oxyhydrogen burner 12 is disposed outside the glass tube 10 as shown in FIG. A glass raw material gas (SiCl 4 , GeCl 4 ) and oxygen gas (O 2 ) are introduced into the glass tube 10 while heating the glass tube 10 to generate and deposit glass fine particles in the glass tube 10. Perform the process. In FIG. 5A, GeO 2 is used as the refractive index adjusting dopant of the core portion 17, but the present invention is not limited to this example. For example, fluorine is added to the cladding region 18. In the case where the low refractive index quartz glass is used and quartz glass is used for the core portion, GeCl 4 may be omitted. In the second step, the glass fine particle layer 11 having a small bulk density is formed on the inner surface of the glass tube 10.

次に、図5(B)に示すように、ガラス微粒子層11が形成されたガラス管10を加熱炉13に入れて加熱処理を行い、ガラス微粒子層11のかさ密度を増加させる第3の工程を行う。この第3の工程で用いる加熱炉13は、図5(B)に示すように、ガラス管10のうち少なくともガラス微粒子層11が形成された部分を全て同時に加熱するための十分な長さを有する電気炉又は誘導加熱炉が望ましい。前記第3の工程後のガラス微粒子層11のかさ密度は、0.1g/cm〜0.4g/cmの範囲であることが好ましい。かさ密度が0.1g/cm未満であると、液浸法によって添加物を添加する第4の工程において、ガラス微粒子層11が剥離しやすいため、好ましくない。また、かさ密度が0.4g/cmを超えると、液浸法によって添加する添加物の量が少なくなるため、好ましくない。 Next, as shown in FIG. 5B, a third step of increasing the bulk density of the glass fine particle layer 11 is performed by putting the glass tube 10 on which the glass fine particle layer 11 is formed into a heating furnace 13 and performing a heat treatment. I do. As shown in FIG. 5B, the heating furnace 13 used in the third step has a sufficient length to simultaneously heat all of the glass tube 10 where at least the glass fine particle layer 11 is formed. An electric furnace or induction furnace is desirable. The bulk density of the glass fine particle layer 11 after the third step is preferably in the range of 0.1g / cm 3 ~0.4g / cm 3 . When the bulk density is less than 0.1 g / cm 3 , the glass fine particle layer 11 is easily peeled off in the fourth step of adding the additive by the immersion method, which is not preferable. On the other hand, if the bulk density exceeds 0.4 g / cm 3 , the amount of the additive added by the immersion method decreases, which is not preferable.

図7にガラス微粒子層のかさ密度に対する母材不良率を示す。
母材不良とは、光ファイバ母材の製造方法のうち、第1の工程である「ガラス管10を用意する工程」から第5の工程である「中空部を潰して忠実化を行う工程」の間に、何らかの原因により母材作製を継続することが困難になり、母材を光ファイバ化することができない状態と定義する。母材不良率は、母材不良数/母材作製数とする。
図7中の破線部は不良率5%を示す。図7から、ガラス微粒子層11のかさ密度が0.1g/cm〜0.4g/cmの範囲において、母材作製不良率は5%以下であることが分かる。一方、かさ密度が0.1g/cmよりも小さい場合、かさ密度が小さいほど不良率が大きく増加している。かさ密度が小さいということは、ガラス微粒子同士の結び付きが弱く、第4の工程でガラス微粒子層11に水溶液を液浸させたときに、水溶液中にガラス微粒子層11が溶けやすく、ガラス微粒子層11がガラス管10から剥離してしまい母材不良となってしまう。
また、かさ密度が0.4g/cmよりも大きい場合も、かさ密度の増加に伴って不良率が増加している。この場合、第4の工程でガラス微粒子層11に水溶液を液浸させてもガラス微粒子層11がガラス管10から剥離することはないが、図6(D)および(E)の乾燥工程でガラス微粒子層11がひび割れしてしまうという母材不良が発生しやすくなる。ゆえに、かさ密度が0.4g/cmよりも大きい場合は、液浸法によって添加する添加物の量が減少し、かつ光ファイバ母材作製不良率も増加してしまうという両方の観点から好ましくない。本発明のように、ガラス微粒子層11のかさ密度が0.1g/cm〜0.4g/cmの範囲にあれば、母材不良率を十分に低くすることができる。
FIG. 7 shows the base material defect rate with respect to the bulk density of the glass fine particle layer.
In the manufacturing method of the optical fiber preform, the base material defect is the first step “step of preparing the glass tube 10” to the fifth step “step of crushing the hollow portion and performing fidelity” During this period, it is difficult to continue the production of the base material for some reason, and it is defined as a state in which the base material cannot be made into an optical fiber. The base material defect rate is the number of base material defects / the number of base material manufactured.
A broken line portion in FIG. 7 indicates a defect rate of 5%. 7, in the range bulk density of 0.1g / cm 3 ~0.4g / cm 3 of the glass fine particle layer 11, it can be seen that the parent material produced defective rate of 5% or less. On the other hand, when the bulk density is smaller than 0.1 g / cm 3 , the defect rate increases greatly as the bulk density decreases. The low bulk density means that the glass fine particles are weakly bound, and when the aqueous solution is immersed in the glass fine particle layer 11 in the fourth step, the glass fine particle layer 11 is easily dissolved in the aqueous solution. Peels from the glass tube 10 and becomes a base material defect.
Also, when the bulk density is larger than 0.4 g / cm 3 , the defect rate increases with the increase in bulk density. In this case, the glass fine particle layer 11 is not peeled off from the glass tube 10 even if the glass fine particle layer 11 is immersed in the fourth step, but the glass in the drying step shown in FIGS. 6 (D) and (E). The base material defect that the fine particle layer 11 is cracked easily occurs. Therefore, when the bulk density is larger than 0.4 g / cm 3 , it is preferable from both viewpoints that the amount of the additive to be added by the immersion method is reduced and the optical fiber preform production failure rate is also increased. Absent. As in the present invention, it is possible to bulk density of the glass fine particle layer 11 if the range of 0.1g / cm 3 ~0.4g / cm 3 , is sufficiently low preform defect rate.

この第3の工程において、図5(B)に示すように、ガラス管10を加熱する場合に電気炉又は誘導加熱炉などの加熱炉13を用いると、ガラス管10を酸水素バーナー12で加熱する場合と比べ、ガラス管10内のガラス微粒子層11全体を極めて均一に加熱することが可能となり、ガラス管10の長手方向のみならずガラス管10の内外の温度も均一にすることが可能であり、ガラス管10内に堆積されたガラス微粒子層11のかさ密度をより均一に増加させることができる。  In this third step, as shown in FIG. 5B, when a heating furnace 13 such as an electric furnace or an induction heating furnace is used when heating the glass tube 10, the glass tube 10 is heated with an oxyhydrogen burner 12. Compared with the case where it does, it becomes possible to heat the glass fine particle layer 11 whole in the glass tube 10 very uniformly, and it is possible to make not only the longitudinal direction of the glass tube 10 but also the temperature inside and outside the glass tube 10 uniform. In addition, the bulk density of the glass fine particle layer 11 deposited in the glass tube 10 can be increased more uniformly.

次に、加熱処理を終えたガラス管10内のガラス微粒子層11内に、液浸法によって添加物を添加する第4の工程を行う。
この液浸法による添加物の添加工程は、例えば、図5(C)に示すように、ガラス管10の片側に栓15を装着し、開口部を上向きとし、開口部から添加物溶液14を管内に注入し、所定時間放置することによって行うことができる。
Next, the 4th process of adding an additive by the immersion method in the glass fine particle layer 11 in the glass tube 10 which finished heat processing is performed.
For example, as shown in FIG. 5 (C), the additive addition process by this immersion method is performed by attaching a stopper 15 on one side of the glass tube 10 with the opening facing upward, and adding the additive solution 14 from the opening. It can be performed by pouring into a tube and leaving it for a predetermined time.

第4の工程で添加する添加物としては、希土類元素及びAlからなる群から選択される1種又は2種以上であることが好ましい。添加物溶液14は、これらの希土類元素及びAlを含む化合物(溶質)を溶媒に溶解した溶液を用いることが望ましい。この溶質としては、例えば、希土類元素及びAlの塩化物、硝酸塩、錯体などが用いられる。例えば、ErとAlを添加する場合には、ErCl、AlClなどが好適である。また溶媒としては、水、アルコールなどを用いることができ、特に水が好ましい。 The additive added in the fourth step is preferably one or more selected from the group consisting of rare earth elements and Al. As the additive solution 14, it is desirable to use a solution in which a compound (solute) containing these rare earth elements and Al is dissolved in a solvent. As this solute, for example, rare earth elements and Al chlorides, nitrates, complexes and the like are used. For example, when Er and Al are added, ErCl 3 , AlCl 3 and the like are preferable. Moreover, water, alcohol, etc. can be used as a solvent, and water is especially preferable.

添加物の添加を終えたガラス管10は、図6(D)に示すように、管内に酸素ガスなどを流して水分を取り除き、さらに図6(E)に示すように、管内に塩素ガス、ヘリウムガス、酸素ガスを流しながら、ガラス管10外面を酸水素バーナー12で加熱することで十分に乾燥させる。  After the addition of the additive, the glass tube 10 removes moisture by flowing oxygen gas or the like into the tube as shown in FIG. 6 (D), and further, as shown in FIG. 6 (E), chlorine gas, While flowing helium gas and oxygen gas, the outer surface of the glass tube 10 is heated by the oxyhydrogen burner 12 to be sufficiently dried.

その後、酸水素バーナー12でガラス管10を加熱してガラス微粒子層を透明化するとともに、ガラス管10の中空部を潰して中実化する第5の工程を行う。
この第5の工程は、図6(F)に示す透明ガラス層16の形成と、図6(G)に示す中実化とを別個に行うことが望ましい。図6(F)に示す透明ガラス層16の形成工程では、透明ガラス化に適当な加熱温度でガラス微粒子層11を加熱し、透明ガラス層16に気泡が残留しないように十分な時間をかけて加熱することが望ましい。この時、透明ガラス化を促進するために、管内にヘリウムガスや酸素ガスを流すことが好ましい。透明ガラス層16の形成後、必要に応じて管内を真空排気し、酸水素バーナー12の加熱温度を上げて延伸することで、図6(G)に示すようにガラス管の中空部を潰して中実化する。
Thereafter, the glass tube 10 is heated with the oxyhydrogen burner 12 to make the glass fine particle layer transparent, and a fifth step of crushing and solidifying the hollow portion of the glass tube 10 is performed.
In the fifth step, it is desirable to separately perform the formation of the transparent glass layer 16 shown in FIG. 6 (F) and the solidification shown in FIG. 6 (G). In the step of forming the transparent glass layer 16 shown in FIG. 6F, the glass fine particle layer 11 is heated at a heating temperature suitable for transparent vitrification, and a sufficient time is taken so that no bubbles remain in the transparent glass layer 16. It is desirable to heat. At this time, in order to promote transparent vitrification, it is preferable to flow helium gas or oxygen gas into the tube. After the formation of the transparent glass layer 16, the inside of the tube is evacuated as necessary, and the heating temperature of the oxyhydrogen burner 12 is increased and stretched to crush the hollow portion of the glass tube as shown in FIG. 6 (G). Make it solid.

このように得られた光ファイバ母材19(プリフォーム)は、クラッドとなる石英管を被せて加熱一体化するジャケット工程を行い、光ファイバ製造用の光ファイバ母材とする。なお、クラッドガラス層の合成については、前記ジャケット工程による方法以外にも、外付け法を用いることもできる。
製造された光ファイバ母材19は、希土類元素とAlからなる群から選択される1種又は2種以上の添加元素を含む石英ガラスからなるコア部17と、それを囲む石英ガラスからなるクラッド部18とからなっている。製造された光ファイバ母材は、従来公知の光ファイバ線引き装置(紡糸装置)にセットし、従来の光ファイバの製造と同様にして線引きし、光ファイバを製造するために用いることができる。
The optical fiber preform 19 (preform) obtained in this way is subjected to a jacket process in which a quartz tube serving as a cladding is covered and integrated by heating to obtain an optical fiber preform for manufacturing an optical fiber. In addition, about the synthesis | combination of a clad glass layer, the external method can also be used besides the method by the said jacket process.
The manufactured optical fiber preform 19 includes a core portion 17 made of quartz glass containing one or more additive elements selected from the group consisting of rare earth elements and Al, and a clad portion made of quartz glass surrounding the core portion 17. It consists of 18. The manufactured optical fiber preform can be set in a conventionally known optical fiber drawing device (spinning device), drawn in the same manner as in the production of a conventional optical fiber, and used for producing an optical fiber.

この製造方法によれば、ガラス微粒子のかさ密度をガラス管10の長手方向全長に渡って均一にすることが可能であり、その後に行うガラス微粒子層11内に添加物を添加する工程で、Er,Al等の添加物を長手方向全長に渡って均一に添加することができる。その結果、この製造方法によって得られた光ファイバ母材19は、長手方向に渡って希土類の濃度が均一な希土類添加光ファイバを作製することができる。  According to this manufacturing method, it is possible to make the bulk density of the glass fine particles uniform over the entire length in the longitudinal direction of the glass tube 10, and in the subsequent step of adding the additive into the glass fine particle layer 11, Er , Al and other additives can be added uniformly over the entire length in the longitudinal direction. As a result, the optical fiber preform 19 obtained by this manufacturing method can produce a rare earth-doped optical fiber having a uniform rare earth concentration in the longitudinal direction.

図5及び図6に示す本発明の製造方法によって、Er添加光ファイバ母材を製造した。
まず、外径32mm、肉厚2.5mmのガラス管10の管内にSiCl,GeCl,Oガスを供給し、ガラス管10を酸水素バーナー12で加熱し、管内で酸化反応させて、SiO,GeOから構成されるスート上のガラス微粒子を生成し、ガラス管内表面に堆積させてガラス微粒子層11を形成した(図5(A))。
スート状のガラス微粒子を生成し、ガラス管10内表面に堆積させる時には、ガラス管の長手方向に堆積できるように酸水素バーナー12をガラス管長手方向に沿って移動させながら加熱を行った。この時、酸水素バーナー12の加熱温度は、堆積したスート状のガラス微粒子が焼き固まって透明ガラスとならないように、注意深く温度をコントロールする必要があり、本実施例では透明ガラス体となる温度から200〜400℃程度低い温度で堆積を行った。
酸水素バーナー12の往復運動を1回又は複数回行うことにより、SiO,GeOからなるガラス微粒子層11を形成した。
An Er-doped optical fiber preform was manufactured by the manufacturing method of the present invention shown in FIGS.
First, SiCl 4 , GeCl 4 , O 2 gas is supplied into a glass tube 10 having an outer diameter of 32 mm and a wall thickness of 2.5 mm, and the glass tube 10 is heated with an oxyhydrogen burner 12 to cause an oxidation reaction in the tube, Glass particulates on a soot composed of SiO 2 and GeO 2 were generated and deposited on the inner surface of the glass tube to form a glass particulate layer 11 (FIG. 5A).
When soot-like glass fine particles were generated and deposited on the inner surface of the glass tube 10, heating was performed while moving the oxyhydrogen burner 12 along the glass tube longitudinal direction so that it could be deposited in the longitudinal direction of the glass tube. At this time, it is necessary to carefully control the heating temperature of the oxyhydrogen burner 12 so that the deposited soot-like glass fine particles are not baked and solidified to become a transparent glass. Deposition was performed at a temperature as low as about 200-400 ° C.
By reciprocating the oxyhydrogen burner 12 once or a plurality of times, a glass fine particle layer 11 made of SiO 2 and GeO 2 was formed.

次に、原料ガスの供給及び酸水素バーナー12を止め、ガラス微粒子層11を形成したガラス管10を図5(B)の加熱炉13にセットし、加熱を行い、ガラス微粒子層11のかさ密度を増加させた。この時、ガラス微粒子層11のかさ密度が0.1g/cm〜0.4g/cmの範囲となるように加熱炉13の温度を調整した。本実施例で用いた加熱炉13は、ガラス管10内面のガラス微粒子層11の全てを同時に加熱できる加熱領域を有している。 Next, the supply of the raw material gas and the oxyhydrogen burner 12 are stopped, the glass tube 10 on which the glass fine particle layer 11 is formed is set in the heating furnace 13 of FIG. 5B, heated, and the bulk density of the glass fine particle layer 11 is set. Increased. In this case, the bulk density of the glass fine particle layer 11 was adjusted to a temperature of the heating furnace 13 to be in the range of 0.1g / cm 3 ~0.4g / cm 3 . The heating furnace 13 used in the present embodiment has a heating region in which all of the glass fine particle layer 11 on the inner surface of the glass tube 10 can be heated simultaneously.

加熱炉13による加熱処理を終えた後、加熱炉13からガラス管を取り出し、ガラス管10の片側に栓15をして、もう一方の端面から希土類元素を含んだ水溶液を注ぎ込み、ガラス微粒子層11にこの水溶液を液浸し、水溶液中の希土類元素を添加した(図5(C))。
本実施例において、この希土類元素を含んだ水溶液の溶質はErCl及びAlClであり、溶媒はHOである。溶液中のEr濃度は、例えば0.01〜1質量%である。
光ファイバにおけるErの所望の濃度を得るための溶液濃度は経験的に求められる。
ガラス微粒子層11をこのErを含んだ水溶液で3時間ほど液浸させた後、溶液を抜き取り、乾燥したOガスをガラス管内に送り込んで水分を蒸発させ、乾燥した(図6(D))。
この乾燥工程は6時間ほど行った。
さらに、残留した水分を除去するために、Cl,O,Heをガラス管10内に送り込むと共に、酸水素バーナー12で加熱して十分に水分を除去した(図6(E))。
この時もやはり、ガラス微粒子層11が透明にならないように十分低い加熱温度で作業を行った。
After the heat treatment by the heating furnace 13 is finished, the glass tube is taken out from the heating furnace 13, the stopper 15 is put on one side of the glass tube 10, and an aqueous solution containing a rare earth element is poured from the other end face, and the glass particle layer 11 This aqueous solution was immersed in the solution, and a rare earth element in the aqueous solution was added (FIG. 5C).
In this example, the solute of the aqueous solution containing the rare earth element is ErCl 3 and AlCl 3 , and the solvent is H 2 O. The Er concentration in the solution is, for example, 0.01 to 1% by mass.
The solution concentration to obtain the desired Er concentration in the optical fiber is determined empirically.
After the glass fine particle layer 11 was immersed in this aqueous solution containing Er for about 3 hours, the solution was extracted, dried O 2 gas was fed into the glass tube to evaporate the moisture, and dried (FIG. 6D). .
This drying process was performed for about 6 hours.
Further, in order to remove the remaining moisture, Cl 2 , O 2 , and He were fed into the glass tube 10 and heated with the oxyhydrogen burner 12 to sufficiently remove the moisture (FIG. 6E).
Also at this time, the operation was performed at a sufficiently low heating temperature so that the glass fine particle layer 11 was not transparent.

その後、He,Oをガラス管10内に送り込むと共に、酸水素バーナー12の火力を上げて、ガラス微粒子層11を透明化した(図6(F))。
続いて、酸水素バーナー12の火力をさらに強くして、ガラス管10の中実化を行い、プリフォームロッドを製造した(図6(G))。
Thereafter, He and O 2 were fed into the glass tube 10 and the thermal power of the oxyhydrogen burner 12 was raised to make the glass particulate layer 11 transparent (FIG. 6 (F)).
Subsequently, the heating power of the oxyhydrogen burner 12 was further increased to solidify the glass tube 10 to produce a preform rod (FIG. 6G).

得られたプリフォームロッドの中心には、Al,Ge,Erがドープされたガラス層があり、このプリフォームから得られる光ファイバのコア部17に相当する。
このようにして得られたプリフォームロッドの外側に、クラッドガラス層となる石英管を被し、加熱一体化するジャケット工程を行い、光ファイバ母材19を製造した。
さらに、得られた光ファイバ母材を光ファイバ線引き装置にセットして線引きし、Er添加光ファイバを作製した。
At the center of the obtained preform rod, there is a glass layer doped with Al, Ge, Er, which corresponds to the core portion 17 of the optical fiber obtained from this preform.
An optical fiber preform 19 was manufactured by covering the outer surface of the preform rod obtained in this manner with a quartz tube serving as a clad glass layer and performing a heating and integrating jacket process.
Further, the obtained optical fiber preform was set in an optical fiber drawing device and drawn to produce an Er-doped optical fiber.

前記のように得られたEr添加光ファイバ(以下、本発明品と記す。)は、コア比屈折率差Δが約1.2%、波長980nmでのモードフィールド径が約3.5μm、カットオフ波長が約0.9μmとした。また波長1530nmの吸収量を10dB/mとした。この吸収量はErの含有量に比例する値である。  The Er-doped optical fiber (hereinafter referred to as the present invention) obtained as described above has a core relative refractive index difference Δ of about 1.2%, a mode field diameter at a wavelength of 980 nm of about 3.5 μm, and a cut. The off wavelength was about 0.9 μm. The absorption amount at a wavelength of 1530 nm was 10 dB / m. This absorption amount is a value proportional to the Er content.

一方、比較のために、従来の製造方法でもEr添加光ファイバを作製した。この従来の光ファイバ製造方法は、堆積工程を行った後のガラス微粒子層のかさ密度を増加させる工程を、堆積工程と同じ酸水素バーナーを用いて行っている。従来法によって作製したEr添加光ファイバ(以下、従来品と記す。)は、本発明品と同じく、コア比屈折率差Δが約1.2%、波長980nmでのモードフィールド径が約3.5μm、カットオフ波長が約0.9μmとした。また波長1530nmの吸収量を10dB/mとした。  On the other hand, for comparison, an Er-doped optical fiber was also produced by a conventional manufacturing method. In this conventional optical fiber manufacturing method, the step of increasing the bulk density of the glass fine particle layer after the deposition step is performed using the same oxyhydrogen burner as the deposition step. An Er-doped optical fiber manufactured by a conventional method (hereinafter referred to as a conventional product) has a core relative refractive index difference Δ of about 1.2% and a mode field diameter at a wavelength of 980 nm of about 3. The cutoff wavelength was 5 μm and about 0.9 μm. The absorption amount at a wavelength of 1530 nm was 10 dB / m.

本発明品と従来品の各光ファイバについて、長手方向各部位における波長1530nm吸収量を測定した結果を図8に示す。
図8から、本発明品は、長手方向での波長1530nm吸収量が安定しており、つまりはErが光ファイバの全長に渡ってほぼ均一な濃度でドープされていることがわかる。長手方向での波長1530nm吸収量のバラツキは、標準偏差で約0.3dB/mである。
一方、従来品は、波長1530nm吸収量が光ファイバの長手方向で安定しておらず、特に線引き開始側(0kmに近い側)で波長1530nm吸収量が小さい。長手方向での波長1530nm吸収量のバラツキは、標準偏差で約1.5dB/mである。
FIG. 8 shows the results of measuring the amount of absorption at a wavelength of 1530 nm at each site in the longitudinal direction for the optical fibers of the present invention and the conventional product.
FIG. 8 shows that the product of the present invention has a stable absorption amount at a wavelength of 1530 nm in the longitudinal direction, that is, Er is doped at a substantially uniform concentration over the entire length of the optical fiber. The variation in the absorption amount at a wavelength of 1530 nm in the longitudinal direction is about 0.3 dB / m with a standard deviation.
On the other hand, in the conventional product, the absorption amount at a wavelength of 1530 nm is not stable in the longitudinal direction of the optical fiber, and the absorption amount at a wavelength of 1530 nm is particularly small on the drawing start side (side close to 0 km). The variation in the absorption amount at a wavelength of 1530 nm in the longitudinal direction is about 1.5 dB / m with a standard deviation.

本発明の光ファイバ母材の製造方法において、ガラス微粒子を焼き固めて、ガラス微粒子層のかさ密度を増加させる時の、加熱温度に対するかさ密度の変化を示すグラフである。4 is a graph showing changes in bulk density with respect to heating temperature when glass fine particles are baked and solidified to increase the bulk density of the glass fine particle layer in the method for producing an optical fiber preform of the present invention. 本発明の光ファイバ母材の製造方法において、第4の工程でAlを添加して作製した光ファイバ母材のコア部のAl濃度のかさ密度に対する変化を示すグラフである。In the manufacturing method of the optical fiber preform of this invention, it is a graph which shows the change with respect to the bulk density of Al density | concentration of the core part of the optical fiber preform produced by adding Al at the 4th process. 従来の光ファイバ母材の製造方法の一例を示し、ガラス微粒子層の形成から液浸までの各工程を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the conventional optical fiber preform, and shows each process from formation of a glass fine particle layer to liquid immersion. 本発明の光ファイバ母材の製造方法、および、従来の光ファイバ母材の製造方法において、ガラス管の長手方向におけるガラス微粒子層のかさ密度を示すグラフである。It is a graph which shows the bulk density of the glass fine particle layer in the longitudinal direction of a glass tube in the manufacturing method of the optical fiber preform of the present invention, and the manufacturing method of the conventional optical fiber preform. 本発明の光ファイバ母材の製造方法の一例を示し、ガラス微粒子層の形成から液浸までの各工程を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the optical fiber preform | base_material of this invention, and shows each process from formation of a glass fine particle layer to liquid immersion. 図5の工程以降の各工程を示す断面図である。It is sectional drawing which shows each process after the process of FIG. ガラス微粒子層のかさ密度に対する母材不良率を示すグラフである。It is a graph which shows the base material defect rate with respect to the bulk density of a glass fine particle layer. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example.

符号の説明Explanation of symbols

10…ガラス管、11…ガラス微粒子層、12…酸水素バーナー、13…加熱炉、14…添加物溶液、15…栓、16…透明ガラス層、17…コア部、18…クラッド部、19…光ファイバ母材。
DESCRIPTION OF SYMBOLS 10 ... Glass tube, 11 ... Glass fine particle layer, 12 ... Oxyhydrogen burner, 13 ... Heating furnace, 14 ... Additive solution, 15 ... Plug, 16 ... Transparent glass layer, 17 ... Core part, 18 ... Cladding part, 19 ... Optical fiber preform.

Claims (5)

クラッドガラスとなる、石英を主成分とするガラス管を用意する第1の工程と、前記ガラス管を加熱しながら、これにガラス原料ガスと酸素ガスを導入して、前記ガラス管内でガラス微粒子を生成し、堆積させる第2の工程と、ガラス微粒子が堆積された前記ガラス管を加熱炉に入れて加熱処理を行い、前記ガラス管内に堆積されたガラス微粒子層のかさ密度を増加させる第3の工程と、前記加熱処理を終えた前記ガラス管内のガラス微粒子層内に添加物を添加する第4の工程と、この添加工程の後に前記ガラス管を加熱して前記ガラス微粒子層を透明化するとともに中空部を潰して中実化する第5の工程とを有することを特徴とする光ファイバ母材の製造方法。  A first step of preparing a glass tube mainly composed of quartz, which becomes a clad glass, and while heating the glass tube, a glass raw material gas and an oxygen gas are introduced into the glass tube, and glass fine particles are introduced into the glass tube. A second step of generating and depositing, a third step of increasing the bulk density of the glass particulate layer deposited in the glass tube by performing heat treatment by placing the glass tube on which the glass particulate is deposited in a heating furnace. A step, a fourth step of adding an additive into the glass fine particle layer in the glass tube after the heat treatment, and heating the glass tube after the addition step to make the glass fine particle layer transparent. And a fifth step of crushing the hollow portion and solidifying the hollow portion. 前記第2の工程の加熱手段が酸水素バーナーであり、前記第3の工程の加熱炉が電気炉又は誘導加熱炉であり、前記第5の工程の加熱手段は酸水素バーナーであることを特徴とする請求項1に記載の光ファイバ母材の製造方法。  The heating means in the second step is an oxyhydrogen burner, the heating furnace in the third step is an electric furnace or an induction heating furnace, and the heating means in the fifth step is an oxyhydrogen burner. The method for producing an optical fiber preform according to claim 1. 前記第3の工程後のガラス微粒子層のかさ密度が0.1g/cm〜0.4g/cmの範囲であることを特徴とする請求項1又は2に記載の光ファイバ母材の製造方法。 Manufacturing the optical fiber preform according to claim 1 or 2 bulk density of the glass fine particle layer after the third step is characterized by a range of 0.1g / cm 3 ~0.4g / cm 3 Method. 前記第3工程で用いる加熱炉は、前記ガラス管のうち少なくともガラス微粒子が堆積された部分を全て同時に加熱できるように、加熱手段が複数設置されているか、又は前記ガラス管のうち少なくともガラス微粒子が堆積された部分を全て同時に加熱するのに十分な長さを有する加熱手段を有している加熱炉であることを特徴とする請求項1〜3のいずれかに記載の光ファイバ母材の製造方法。  The heating furnace used in the third step is provided with a plurality of heating means so that at least a portion of the glass tube on which the glass fine particles are deposited can be simultaneously heated, or at least the glass fine particles of the glass tube The optical fiber preform according to any one of claims 1 to 3, which is a heating furnace having heating means having a length sufficient to simultaneously heat all the deposited portions. Method. 前記第4の工程で添加する添加物が希土類元素及びAlからなる群から選択される1種又は2種以上であることを特徴とする請求項1〜4の記載の光ファイバ母材の製造方法。

The optical fiber preform manufacturing method according to claim 1, wherein the additive added in the fourth step is one or more selected from the group consisting of rare earth elements and Al. .

JP2006230692A 2005-08-29 2006-08-28 Method of manufacturing optical fiber preform Pending JP2007091579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230692A JP2007091579A (en) 2005-08-29 2006-08-28 Method of manufacturing optical fiber preform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005247496 2005-08-29
JP2006230692A JP2007091579A (en) 2005-08-29 2006-08-28 Method of manufacturing optical fiber preform

Publications (1)

Publication Number Publication Date
JP2007091579A true JP2007091579A (en) 2007-04-12

Family

ID=37977706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230692A Pending JP2007091579A (en) 2005-08-29 2006-08-28 Method of manufacturing optical fiber preform

Country Status (1)

Country Link
JP (1) JP2007091579A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163328A (en) * 2009-01-16 2010-07-29 Mitsubishi Cable Ind Ltd Method for manufacturing preform for optical fiber added with rare earth element
JP2010163329A (en) * 2009-01-16 2010-07-29 Mitsubishi Cable Ind Ltd Method for manufacturing preform for optical fiber added with rare earth element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252320A (en) * 1990-02-28 1991-11-11 Fujikura Ltd Production of quartz glass
JPH0437611A (en) * 1990-05-30 1992-02-07 Fujikura Ltd Production of glass fine particle agglomerate and rare earth element doped glass using the same
JPH06298542A (en) * 1993-04-13 1994-10-25 Sumitomo Electric Ind Ltd Production of optical fiber preform
JPH07109144A (en) * 1993-10-13 1995-04-25 Shin Etsu Chem Co Ltd Production of rare earth element-doped silica glass fiber preformed material
JPH1059736A (en) * 1996-08-20 1998-03-03 Shin Etsu Chem Co Ltd Optical fiber preform for optical amplification and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252320A (en) * 1990-02-28 1991-11-11 Fujikura Ltd Production of quartz glass
JPH0437611A (en) * 1990-05-30 1992-02-07 Fujikura Ltd Production of glass fine particle agglomerate and rare earth element doped glass using the same
JPH06298542A (en) * 1993-04-13 1994-10-25 Sumitomo Electric Ind Ltd Production of optical fiber preform
JPH07109144A (en) * 1993-10-13 1995-04-25 Shin Etsu Chem Co Ltd Production of rare earth element-doped silica glass fiber preformed material
JPH1059736A (en) * 1996-08-20 1998-03-03 Shin Etsu Chem Co Ltd Optical fiber preform for optical amplification and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163328A (en) * 2009-01-16 2010-07-29 Mitsubishi Cable Ind Ltd Method for manufacturing preform for optical fiber added with rare earth element
JP2010163329A (en) * 2009-01-16 2010-07-29 Mitsubishi Cable Ind Ltd Method for manufacturing preform for optical fiber added with rare earth element

Similar Documents

Publication Publication Date Title
US20100276822A1 (en) Rare earth-doped core optical fiber and manufacturing method thereof
JP2009515217A (en) Microstructured optical fiber and manufacturing method thereof
CN102086089A (en) Method for manufacturing rare-earth-doped fiber precast rod
CA1115508A (en) Carbon coating for a starting member used in producing optical waveguide
JP4011418B2 (en) Optical fiber manufacturing method and apparatus using improved oxygen stoichiometry and deuterium exposure
JPS58145634A (en) Manufacture of doped glassy silica
JPS61219729A (en) Manufacture of optical waveguide tube
JP5995923B2 (en) Optical fiber preform and optical fiber manufacturing method
US7079738B2 (en) Method for manufacturing a glass doped with a rare earth element and fiber for optical amplification using the same
JP2007091579A (en) Method of manufacturing optical fiber preform
JP2009078928A (en) Optical fiber preform, method for producing the same and rare earth-added optical fiber
CN111278780B (en) Method for producing halogen-doped silicon dioxide
EP3473603B1 (en) Method of making halogen doped silica
CN113603352B (en) Axial doping concentration gradient active optical fiber preform and preparation method thereof
JP2010186868A (en) Rare earth element doped-fiber with bf3 added therein, and method of manufacturing same
JP5607325B2 (en) Rare earth element-doped optical fiber preform manufacturing method
JP2017043512A (en) Optical fiber preform manufacturing method, optical fiber manufacturing method, and lens manufacturing method
JPH0742131B2 (en) Method for manufacturing glass base material for optical fiber
JP4459898B2 (en) Optical fiber preform dehydration certification method and optical fiber manufacturing method
US8245542B2 (en) Method for producing a cylinder from synthetic quartz glass
JP2007153697A (en) Method of producing preform for double clad optical fiber and method of producing double clad optical fiber
CN111315696A (en) Halogen-doped silica for optical fiber preform
JPS5849493B2 (en) Method for manufacturing rod-shaped base material for optical transmission fiber
JP2003165736A (en) Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it
JP4434191B2 (en) Manufacturing method of optical fiber preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Effective date: 20091102

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731