JP2005039883A - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP2005039883A
JP2005039883A JP2003197264A JP2003197264A JP2005039883A JP 2005039883 A JP2005039883 A JP 2005039883A JP 2003197264 A JP2003197264 A JP 2003197264A JP 2003197264 A JP2003197264 A JP 2003197264A JP 2005039883 A JP2005039883 A JP 2005039883A
Authority
JP
Japan
Prior art keywords
magnetic pole
pole teeth
magnetic
flat
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003197264A
Other languages
Japanese (ja)
Inventor
Masashi Fujitake
雅志 藤嶽
Kouchiyuu Kin
金  弘中
Toshihiko Sakai
俊彦 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Ltd
Priority to JP2003197264A priority Critical patent/JP2005039883A/en
Publication of JP2005039883A publication Critical patent/JP2005039883A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology which makes a reduction of a magnetic flux leakage and a thin structure. <P>SOLUTION: A linear motor includes a plurality of flat magnetic pole teeth having opposed flat magnetic pole surfaces linearly arranged through a nonmagnetic region or nonmagnetic member from each other, and a flat exciting coil disposed at plainly deviated position from the flat magnetic pole surfaces of the plurality of the flat magnetic pole teeth. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リニアモータの電機子構成に関する。
【0002】
【従来の技術】
本発明に関連する従来技術としては、例えば特開2002−142437号公報(特許文献1)や、特開2002−027731号公報(特許文献2)や、特開2002−027729号公報(特許文献3)や、特開2002−125360号公報(特許文献4)に記載されたものがある。特開2002−142437号公報には、可動子と固定子との間の磁気吸引力が相殺されるリニアモータの可動子として、該可動子の移動方向に沿い、磁性体で形成した磁気的凸部と非磁性体で形成した磁気的凹部とを交互に備え該凸部と該凹部との間で磁気抵抗差を生じるようにした構成が記載されている。特開2002−027731号公報や特開2002−027729号公報には、リニアモータのコイル側の全長を短くするために、コイルを巻線部に巻回すコアとして、巻線部を永久磁石の上面に形成したコアと、巻線部を永久磁石の下面に形成したコアとを隣り合わせて配設した構成が記載されている。また、特開2002−125360号公報には、電機子の磁極歯間の隙間を通る磁束の漏れを少なくして、電機子と可動子の間に生ずる磁気吸引力を小さくするためのリニアモータとして、G字状の分割コアにおける磁極歯の対向磁極を、隣り合う磁極歯間で互いに異ならせ、該対向磁極面間に可動子を配し、分割コア上の該可動子に平面的に重なった位置に励磁用コイルを配する構成が記載されている。
【0003】
【特許文献1】
特開2002−142437号公報
【特許文献2】
特開2002−027731号公報
【特許文献3】
特開2002−027729号公報
【特許文献4】
特開2002−125360号公報
【0004】
【発明が解決しようとする課題】
上記従来技術のうち、上記特開2002−142437号公報記載の技術は、固定子(電機子)側における磁極歯間の磁束漏れを減らすための技術ではないし、特開2002−027731号公報、特開2002−027729号公報及び特開2002−125360号公報に記載された技術はいずれも、分割コア上において可動子に平面的に重なる位置に励磁用コイルを配する構成であって、薄型のリニアモータは形成しにくい構成である。
本発明の課題点は、上記従来技術の状況に鑑み、電機子側における磁極歯間の磁束漏れを減らし、かつ、薄型のリニアモータを構成可能にすること、である。
本発明の目的は、かかる課題点を解決できる技術の提供にある。
【0005】
【課題を解決するための手段】
上記課題点を解決するために、本発明では、基本的に、リニアモータとして、電機子の、対向する扁平状磁極面を有する複数の扁平状の磁極歯を、相互間に非磁性領域を隔てまたは非磁性部材を介して直線状に配列し、かつ、該複数の磁極歯の、上記扁平状磁極面とは平面的にずれた位置に、扁平状の励磁用コイルを配した構成とする。上記非磁性領域または上記非磁性部材は、上記複数の磁極歯相互間を磁気的に隔てて該相互間の磁束の漏洩を抑え、上記扁平状磁極面間の磁束量を増大させるかまたは減少するのを阻止する。
【0006】
【発明の実施の形態】
以下、本発明の実施例につき、図面を用いて説明する。
図1〜図4は、本発明の第1の実施例の説明図である。図1は、本発明のリニアモータの基本構成を示す図、図2は、図1のリニアモータの分解図、図3は、図1のリニアモータの電機子の磁極歯における磁束の流れを示す図、図4は、本発明の第1の実施例のリニアモータの構成例図である。
【0007】
図1において、4は電機子を構成する偏平状の励磁用コイル、6は、マグネットの磁極を移動方向に交互に極性を変化させて配列した構成の偏平状の可動子、11a、11aは互いに対向する扁平状の磁極歯、11b、11bも互いに対向する扁平状の磁極歯、12a、12aも互いに対向する扁平状の磁極歯、12b、12bも互いに対向する扁平状の磁極歯、53a11、53a21は、互いに対向して配され、磁極歯11aと12aとの間と、磁極歯11aと12aとの間を磁気的に隔てる扁平状の非磁性部材、53a12、53a22は、互いに対向して配され、磁極歯12aと11bとの間と、磁極歯12aと11bとの間を磁気的に隔てる扁平状の非磁性部材、53b11、53b21は、互いに対向して配され、磁極歯11bと12bとの間と、磁極歯11bと12bとの間を磁気的に隔てる扁平状の非磁性部材、51aは磁極歯11a、11aの根元側部分、51bは磁極歯11b、11bの根元側部分、52aは磁極歯12a、12aの根元側部分、52bは磁極歯12b、12bの根元側部分である。
【0008】
扁平状の磁極歯11a、11aとその根元側部分51a、扁平状の磁極歯11b、11bとその根元側部分51b、扁平状の磁極歯12a、12aとその根元側部分52a、及び扁平状の磁極歯12b、12bとその根元側部分52bはそれぞれ、電磁軟鉄等の磁性材で構成され、電機子のコアを形成する。磁極歯11a、11a、磁極歯11b、11b、磁極歯12a、12a、及び、磁極歯12b、12bはそれぞれ、可動子6の移動方向に沿って略一直線状に配列され、対向部に偏平状磁極面が形成され該偏平状磁極面間に可動子6が配される第1の部分▲1▼と、励磁用コイル4が配される第2の部分▲2▼とを備える。該それぞれの磁極歯において、該第1の部分▲1▼と該第2の部分▲2▼とは互いに平面的に重ならないようにずれた位置に形成される。各磁極歯の第2の部分▲2▼には、扁平状の励磁用コイル4の巻線が共通的に鎖交し、各磁極歯を、その配列方向に対し互いに異なる極性の磁極が形成されるように励磁する。
【0009】
非磁性部材53a11、53a21、53a12、53a12、53b11、53b21はそれぞれ、両側の磁極歯間の磁束の漏洩を抑えるために設ける。非磁性部材53a11は主として磁極歯11aと12aとの間の磁束の漏洩を抑え、磁極歯11aと磁極歯11aの第1の部分▲1▼及び磁極歯12aと磁極歯12aの第1の部分▲1▼それぞれに形成される偏平状磁極面間の磁束量を増大させるかまたは減少するのを阻止し、非磁性部材53a21は主として磁極歯11aと12aとの間の磁束の漏洩を抑え、磁極歯11aと磁極歯11aの第1の部分▲1▼及び磁極歯12aと磁極歯12aの第1の部分▲1▼のそれぞれに形成される偏平状磁極面間の磁束量を増大させるかまたは減少するのを阻止する。非磁性部材53a12は主として磁極歯12aと11bとの間の磁束の漏洩を抑え、磁極歯12aと磁極歯12aの第1の部分▲1▼及び磁極歯11bと磁極歯11bの第1の部分▲1▼のそれぞれに形成される偏平状磁極面間の磁束量を増大させるかまたは減少するのを阻止し、非磁性部材53a22は主として磁極歯12aと11bとの間の磁束の漏洩を抑え、磁極歯12aと磁極歯12aの第1の部分▲1▼及び磁極歯11bと磁極歯11bの第1の部分▲1▼のそれぞれに形成される偏平状磁極面間の磁束量を増大させるかまたは減少するのを阻止する。同様に、非磁性部材53b11は主として磁極歯11bと12bとの間の磁束の漏洩を抑え、磁極歯11bと磁極歯11bの第1の部分▲1▼及び磁極歯12bと磁極歯12bの第1の部分▲1▼それぞれの偏平状磁極面間の磁束量を増大させるかまたは減少するのを阻止し、非磁性部材53b21は主として磁極歯11bと12bとの間の磁束の漏洩を抑え、磁極歯11bと磁極歯11bの第1の部分▲1▼及び磁極歯12bと磁極歯12bの第1の部分▲1▼それぞれの偏平状磁極面間の磁束量を増大させるかまたは減少するのを阻止する。なお、これら非磁性部材53a11、53a21、53a12、53a12、53b11、53b21のうちの一部のものまたは全部のものを設けずに、それぞれの磁極歯相互間には非磁性領域としての空隙を設けるようにしてもよい。
【0010】
図2は、図1のリニアモータの分解図である。非磁性部材53a11、53a21、53a12、53a12、53b11、53b21は一体状に構成したものを用いる(本図2では、図1中の非磁性部材53a12、53a12の図示を略してある)。
【0011】
図3は、図1のリニアモータの電機子ユニットの磁極歯における磁束の流れを示す図である。
図3において、61〜64は、励磁用コイル4(図1)に通電される電流の方向を示し、71〜74は、上記通電電流によって磁極歯11a、11aに発生する磁束の流れを示す矢印、75〜78は、上記通電電流によって磁極歯12a、12aに発生する磁束の流れを示す矢印である。上記電流は、61から、62、63、64の方向に流れる。磁極歯11a、11aにおいては、磁極歯11aの第2の部分▲2▼(L部)が励磁用コイル4(図1)の巻線に鎖交して励磁され、矢印71〜74の方向に流れる磁束を発生する。矢印74は、磁極歯11a、11aの第1の部分▲1▼の扁平状磁極面間の磁束の流れの方向を示す。また、磁極歯12a、12aにおいては、磁極歯12aの第2の部分▲2▼(U部)が励磁用コイル4(図1)の巻線に鎖交して励磁され、矢印75〜78の方向の磁束を発生する。矢印78は、磁極歯12a、12aの第1の部分▲1▼の扁平状磁極面間の磁束の流れの方向を示す。矢印74と矢印78で示されるように、磁極歯11a、11aの第1の部分▲1▼の扁平状磁極面間の磁束の流れの方向と、磁極歯12a、12aの第1の部分▲1▼の扁平状磁極面間の磁束の流れの方向とは互いに逆方向となる。この結果、磁極歯11a、11aの第1の部分▲1▼の扁平状磁極面と、磁極歯12a、12aの第1の部分▲1▼の扁平状磁極面には互いに極性の異なる磁極が発生する。
【0012】
上記図3の構成において、磁極歯11a、11aと磁極歯12a、12aとの間には非磁性部材53a11、53a21(図1)が介在するために、それぞれの磁極歯の磁気回路間の磁気抵抗が大きい。このため、それぞれの磁極歯で発生した磁束の相手側磁気回路への漏洩が阻止される。該漏洩が阻止される結果、それぞれの磁極歯の磁気回路中の磁束量が確保され、それぞれの第1の部分▲1▼の扁平状磁極面間の磁束量も、増大されるかまたは減少が阻止されて所定量が確保される。なお、図3中には図示されないが、磁極歯12a、12aと磁極歯11b、11bとの間、磁極歯11b、11bと磁極歯12b、12bとの間においても、上記と同様である。
【0013】
図4は、本発明の第1の実施例のリニアモータの構成例図で、(a)は斜視図、(b)はAA断面図である。本第1の実施例は、上記図1の基本構成の2個のモータユニットを可動子の移動方向に直列的に配した場合の構成例である。
【0014】
図4において、100、101はモータユニット、11’a、11’a、12’a、12’a、11’b、11’b、12’b、12’bはそれぞれ、モータユニット101内の電機子のコアを構成する扁平状の磁極歯、4’はモータユニット101内の扁平状の励磁用コイル、τは、モータユニット100、101それぞれの電機子内で隣り合った磁極歯間のピッチ(以下、電機子磁極歯ピッチという)、τは、可動子6内の隣り合った磁極間のピッチ(以下、可動子磁極ピッチという)、τは、電機子磁極歯ピッチτまたは可動子磁極ピッチτに等しい磁極ピッチである。ここで、各モータユニット100、101内において、電機子磁極歯ピッチτと可動子磁極ピッチτは、同じとしてもよいが、電機子により可動子6に発生する移動推力の脈動を抑えるために互いに異なった値とすることも可能である。モータユニット100と、モータユニット101とは互いに同様の構成で、いずれも、非磁性部材を備えたことを含め、図1に示す基本構成を備える。該モータユニット100、101相互間では、電機子の磁極歯間の間隔を、kを0、1、2、…なる整数、mをモータ相数であって2以上の整数とするとき、k・τ+τ/mとしてある。これにより、モータユニット100とモータユニット101に同相の電流を通電した場合も、可動子6には所定の方向の推力を発生させて移動変位させることが可能となる。基本構成が同じ3個以上のモータユニットを直列的に設ける場合も同様である。可動子6は電機子のコアとの間で、支持手段200a、200b、200cにより、所定方向に移動可能な状態で支持されている。
【0015】
上記第1の実施例によれば、リニアモータとして、非磁性部材により電機子側における磁極歯間の磁束漏れを減らすことでモータ効率を改善でき、かつ、扁平状の励磁用コイルを、扁平状の磁極歯に対し、可動子位置の扁平状磁極面とは平面的にずれた位置に共通的に鎖交させて設ける構成のため、薄型構成にすることができる。
【0016】
図5は、本発明の第2の実施例のリニアモータの構成例図で、(a)は斜視図、(b)はBB断面図である。本第2の実施例は、上記図1の基本構成のモータユニット2個を可動子の移動方向に並列的に配した場合の構成例である。
【0017】
図5において、100、102はモータユニット、11’’a、11’’a、12’’a、12’’a、11’’b、11’’b、12’’b、12’’bはそれぞれ、モータユニット102内の電機子のコアを構成する扁平状の磁極歯、4’’はモータユニット102内の扁平状の励磁用コイル、τは、モータユニット100、101それぞれの電機子内で隣り合った磁極歯間のピッチすなわち電機子磁極歯ピッチ、τは、可動子6内の隣り合った磁極間のピッチすなわち可動子磁極ピッチ、τは、電機子磁極歯ピッチτまたは可動子磁極ピッチτに等しい磁極ピッチである。ここで、各モータユニット100、102内において、電機子磁極歯ピッチτと可動子磁極ピッチτは、同じとしてもよいが、上記第1の実施例と同様、電機子により可動子6に発生する移動推力の脈動を抑えるために互いに異なった値とすることも可能である。さらに、本第2の実施例では、可動子磁極ピッチτを、モータユニット100側の可動子部6aと、モータユニット102側の可動子6bとの間で互いにτ/2だけずらせ、可動子6に発生する移動推力の脈動をさらに小さく抑えられるようにしている。各モータユニット100、102は互いに同様の基本構成で、非磁性部材を備えたことを含め、いずれも、図1に示す構成を備えているものとする。基本構成が同じ3個以上のモータユニットを並列的に設ける場合も同様である。可動子6は電機子のコアとの間で、支持手段200’’a他により、所定方向に移動可能な状態で支持されている。
【0018】
上記第2の実施例によっても、リニアモータとして、非磁性部材により磁極歯間の磁束漏れを減らしてモータ効率を改善でき、かつ、扁平状の励磁用コイルを、扁平状磁極面とは平面的にずれた位置に磁極歯に共通的に設けることにより、薄型構成とすることができる。
【0019】
図6は、本発明のリニアモータに用いる可動子の他の構成例を示す図である。本構成例では、可動子6’として、その移動方向に凸状部16と平坦部13とを交互に設け、該凸状部16と該平坦部13とで電機子コアに対する磁気抵抗上の差が発生するようにする。凸状部16と平坦部13は、例えば、電磁軟鉄等の磁性材で構成してもよいし、平坦部にマグネットを設ける構成としてもよい。
なお、本発明は、リニアモータに限らず、可動子が相対往復移動する振動型リニアアクチュエータなどにも適用可能である。
【0020】
【発明の効果】
本発明によれば、モータ効率の改善が可能となる。また、薄型のリニアモータを形成することができる。
【図面の簡単な説明】
【図1】本発明のリニアモータの基本構成を示す図である。
【図2】図1のリニアモータの分解図である。
【図3】図1のリニアモータの磁極歯における磁束の流れを示す図である。
【図4】本発明の第1の実施例としてのリニアモータの構成を示す図である。
【図5】本発明の第2の実施例としてのリニアモータの構成を示す図である。
【図6】本発明のリニアモータに用いる可動子の他の構成例を示す図である。
【符号の説明】
4、4’、4’’…励磁用コイル、 6、6’…可動子、 11a、11a、11b、11b、12a、12a、12b、12b、11’a、11’a、12’a、12’a、11’b、11’b、12’b、12’b、11’’a、11’’a、12’’a、12’’a、11’’b、11’’b、12’’b、12’’b…磁極歯、 53a11、53a21、53a12、53a22、53b11、53b21…非磁性部材、 51a、51b、52a、52b…根元側部分、 100、101、102…モータユニット、 200a、200b、200c、200’’a…支持手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an armature configuration of a linear motor.
[0002]
[Prior art]
As conventional techniques related to the present invention, for example, Japanese Unexamined Patent Application Publication No. 2002-142437 (Patent Document 1), Japanese Unexamined Patent Application Publication No. 2002-027731 (Patent Document 2), Japanese Unexamined Patent Application Publication No. 2002-027729 (Patent Document 3). And those described in JP-A-2002-125360 (Patent Document 4). Japanese Patent Application Laid-Open No. 2002-142437 discloses a magnetic protrusion formed of a magnetic material along a moving direction of a mover of a linear motor as a mover of a linear motor that cancels out a magnetic attractive force between the mover and the stator. And a magnetic concave portion formed of a nonmagnetic material are alternately provided, and a magnetoresistive difference is generated between the convex portion and the concave portion. In JP-A-2002-027731 and JP-A-2002-027729, in order to shorten the total length of the coil side of the linear motor, the winding part is used as a core around which the coil is wound. And a core in which a winding portion is formed on the lower surface of a permanent magnet are arranged next to each other. Japanese Patent Laid-Open No. 2002-125360 discloses a linear motor for reducing magnetic attraction generated between an armature and a mover by reducing leakage of magnetic flux passing through a gap between armature magnetic pole teeth. The opposing magnetic poles of the magnetic pole teeth in the G-shaped split core are different from each other between adjacent magnetic pole teeth, and a mover is disposed between the opposing magnetic pole faces, and the mover on the split core overlaps with the mover in a plane. A configuration in which an exciting coil is arranged at a position is described.
[0003]
[Patent Document 1]
JP 2002-142437 A [Patent Document 2]
JP 2002-027731 A [Patent Document 3]
JP 2002-027729 A [Patent Document 4]
Japanese Patent Laid-Open No. 2002-125360
[Problems to be solved by the invention]
Among the above-described conventional techniques, the technique described in Japanese Patent Application Laid-Open No. 2002-142437 is not a technique for reducing magnetic flux leakage between magnetic pole teeth on the stator (armature) side. The techniques described in Japanese Unexamined Patent Application Publication No. 2002-027729 and Japanese Patent Application Laid-Open No. 2002-125360 each have a configuration in which an excitation coil is disposed on a split core at a position that overlaps the mover in a planar manner. The motor is difficult to form.
An object of the present invention is to reduce magnetic flux leakage between magnetic pole teeth on the armature side and to make it possible to construct a thin linear motor in view of the state of the prior art.
An object of the present invention is to provide a technique capable of solving such problems.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, basically, as a linear motor, a plurality of flat magnetic pole teeth having opposed flat magnetic pole surfaces of an armature are separated from each other with a nonmagnetic region therebetween. Or it is set as the structure which arranged in a straight line through the nonmagnetic member, and arranged the flat excitation coil in the position which shifted | deviated planarly from the said flat magnetic pole surface of these magnetic pole teeth. The non-magnetic region or the non-magnetic member magnetically separates the plurality of magnetic pole teeth to suppress magnetic flux leakage between the magnetic pole teeth, and increases or decreases the amount of magnetic flux between the flat magnetic pole surfaces. To prevent it.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 to 4 are explanatory views of a first embodiment of the present invention. 1 is a diagram showing a basic configuration of the linear motor of the present invention, FIG. 2 is an exploded view of the linear motor of FIG. 1, and FIG. 3 is a flow of magnetic flux in the magnetic pole teeth of the armature of the linear motor of FIG. 4 and 4 are configuration examples of the linear motor according to the first embodiment of the present invention.
[0007]
In FIG. 1, 4 is a flat exciting coil constituting the armature, 6 is a flat movable element having a configuration in which the magnetic poles of the magnet are alternately changed in the moving direction, and 11a 1 and 11a 2. flat magnetic pole teeth which are opposed to each other, 11b 1, 11b 2 flat magnetic pole teeth also facing each other, 12a 1, 12a 2 flat magnetic pole teeth also facing each other, 12b 1, 12b 2 is also flat facing each other The magnetic pole teeth 53a 11 and 53a 21 are arranged opposite to each other, and are flat non-magnetically separating the magnetic pole teeth 11a 1 and 12a 1 and the magnetic pole teeth 11a 2 and 12a 2 magnetically. The magnetic members 53a 12 and 53a 22 are arranged to face each other, and are flat nonmagnetic members that magnetically separate the magnetic pole teeth 12a 1 and 11b 1 from each other and the magnetic pole teeth 12a 2 and 11b 2 53b 11 53b 21 are arranged to face each other, and are flat nonmagnetic members that magnetically separate the magnetic pole teeth 11b 1 and 12b 1 from each other and the magnetic pole teeth 11b 2 and 12b 2 ; 11a 1 , 11a 2 root side portion, 51b is a magnetic pole tooth 11b 1 , 11b 2 root side portion, 52a is a magnetic pole tooth 12a 1 , 12a 2 root side portion, 52b is a magnetic pole tooth 12b 1 , 12b 2 root side Part.
[0008]
Flat magnetic pole teeth 11a 1 , 11a 2 and their root side portions 51a, flat magnetic pole teeth 11b 1 and 11b 2 and their root side portions 51b, flat magnetic pole teeth 12a 1 and 12a 2 and their root side portions 52a , And the flat magnetic pole teeth 12b 1 , 12b 2 and the base side portion 52b thereof are each made of a magnetic material such as electromagnetic soft iron and form an armature core. The magnetic pole teeth 11a 1 , 11a 2 , the magnetic pole teeth 11b 1 , 11b 2 , the magnetic pole teeth 12a 1 , 12a 2 , and the magnetic pole teeth 12b 1 , 12b 2 are arranged substantially in a straight line along the moving direction of the mover 6. The first portion {circle around (1)} in which the flat magnetic pole surface is formed in the opposed portion, and the movable element 6 is disposed between the flat magnetic pole surfaces, and the second portion {circle around (2)} in which the exciting coil 4 is disposed. With. In each of the magnetic pole teeth, the first portion (1) and the second portion (2) are formed at positions shifted so as not to overlap each other in a plane. In the second portion {circle around (2)} of the magnetic pole teeth, the windings of the flat exciting coil 4 are commonly linked, and magnetic poles having different polarities with respect to the arrangement direction of the magnetic pole teeth are formed. Excited so that.
[0009]
The nonmagnetic members 53a 11 , 53a 21 , 53a 12 , 53a 12 , 53b 11 , 53b 21 are provided to suppress leakage of magnetic flux between the magnetic pole teeth on both sides. The nonmagnetic member 53a 11 mainly suppresses the leakage of magnetic flux between the magnetic pole teeth 11a 1 and 12a 1 , the first portion {circle around (1)} of the magnetic pole teeth 11a 1 and the magnetic pole teeth 11a 2 , and the magnetic pole teeth 12a 1 and the magnetic pole teeth 12a. The nonmagnetic member 53a 21 mainly prevents the magnetic pole teeth 11a 2 and 12a 2 from increasing or decreasing the amount of magnetic flux between the flat magnetic pole surfaces formed in the first part (1) of the two . The magnetic flux leakage between the magnetic pole teeth 11a 1 and the first portions (1) of the magnetic pole teeth 11a 2 and the first portions (1) of the magnetic pole teeth 12a 1 and the magnetic pole teeth 12a 2 are flat. Prevents the amount of magnetic flux between the magnetic pole faces from increasing or decreasing. The non-magnetic member 53a 12 mainly suppresses leakage of magnetic flux between the magnetic pole teeth 12a 1 and 11b 1, and the first portion (1) of the magnetic pole teeth 12a 1 and the magnetic pole teeth 12a 2 and the magnetic pole teeth 11b 1 and the magnetic pole teeth 11b. The nonmagnetic member 53a 22 mainly prevents the magnetic pole teeth 12a 2 and 11b 2 from increasing or decreasing the amount of magnetic flux between the flat magnetic pole surfaces formed in each of the first portions {circle around (1)}. suppressing the leakage of magnetic flux between, are formed in the respective magnetic pole teeth 12a 1 of the first portion of the magnetic pole teeth 12a 2 ▲ 1 ▼ and the first portion of the magnetic pole teeth 11b 1 and the magnetic pole teeth 11b 2 ▲ 1 ▼ It prevents the amount of magnetic flux between the flat magnetic pole faces from being increased or decreased. Similarly, the nonmagnetic member 53b 11 mainly suppresses the leakage of magnetic flux between the magnetic pole teeth 11b 1 and 12b 1, and the first portion {circle around (1)} of the magnetic pole teeth 11b 1 and the magnetic pole teeth 11b 2 and the magnetic pole teeth 12b 1 The first portion {circle around (1)} of the magnetic pole teeth 12b 2 is prevented from increasing or decreasing the amount of magnetic flux between the respective flat magnetic pole surfaces, and the non-magnetic member 53b 21 is mainly composed of the magnetic pole teeth 11b 2 and 12b 2 . suppressing the magnetic flux leakage between, between the first magnetic pole tooth 11b 1 and the magnetic pole teeth 11b 2 1 part ▲ 1 ▼ and magnetic pole teeth 12b 1 and the magnetic pole tooth 12b 2 1 part ▲ 1 ▼ each flat pole face Prevents the amount of magnetic flux from being increased or decreased. It should be noted that some or all of these nonmagnetic members 53a 11 , 53a 21 , 53a 12 , 53a 12 , 53b 11 , 53b 21 are not provided, and a nonmagnetic region is provided between the magnetic pole teeth. You may make it provide the space | gap as.
[0010]
FIG. 2 is an exploded view of the linear motor of FIG. The non-magnetic members 53a 11 , 53a 21 , 53a 12 , 53a 12 , 53b 11 , 53b 21 are integrally formed (in FIG. 2, the non-magnetic members 53a 12 , 53a 12 in FIG. 1 are illustrated. Abbreviated).
[0011]
3 is a diagram showing the flow of magnetic flux in the magnetic pole teeth of the armature unit of the linear motor of FIG.
In FIG. 3, reference numerals 61 to 64 denote directions of currents to be supplied to the exciting coil 4 (FIG. 1), and reference numerals 71 to 74 denote the flow of magnetic flux generated in the magnetic pole teeth 11a 1 and 11a 2 by the supplied current. The arrows 75 to 78 are arrows indicating the flow of magnetic flux generated in the magnetic pole teeth 12a 1 and 12a 2 by the energization current. The current flows from 61 to 62, 63, 64. In the magnetic pole teeth 11a 1 and 11a 2 , the second portion {circle around (2)} (L portion) of the magnetic pole teeth 11a 2 is excited in linkage with the winding of the exciting coil 4 (FIG. 1), and arrows 71 to 74 are excited. Magnetic flux that flows in the direction of An arrow 74 indicates the direction of magnetic flux flow between the flat magnetic pole surfaces of the first portion {circle around (1)} of the magnetic pole teeth 11a 1 and 11a 2 . In the magnetic pole teeth 12a 1 and 12a 2 , the second portion {circle around (2)} (U portion) of the magnetic pole teeth 12a 1 is excited in linkage with the winding of the exciting coil 4 (FIG. 1). Generate magnetic flux in the direction of ~ 78. An arrow 78 indicates the direction of magnetic flux flow between the flat magnetic pole surfaces of the first portion {circle around (1)} of the magnetic pole teeth 12a 1 and 12a 2 . As indicated by arrows 74 and 78, the direction of magnetic flux flow between the flat magnetic pole surfaces of the first portion {circle around (1)} of the magnetic pole teeth 11a 1 , 11a 2 and the first of the magnetic pole teeth 12a 1 , 12a 2 . The direction of the flow of magnetic flux between the flat magnetic pole faces of the portion {circle around (1)} is opposite to each other. As a result, the flat magnetic pole surface of the first portion {circle around (1)} of the magnetic pole teeth 11a 1 and 11a 2 and the flat magnetic pole surface of the first portion {circle around (1)} of the magnetic pole teeth 12a 1 and 12a 2 are mutually polar. Different magnetic poles are generated.
[0012]
In the configuration of FIG. 3, since the nonmagnetic members 53a 11 and 53a 21 (FIG. 1) are interposed between the magnetic pole teeth 11a 1 and 11a 2 and the magnetic pole teeth 12a 1 and 12a 2 , The magnetic resistance between the magnetic circuits is large. For this reason, the leakage of the magnetic flux generated at each magnetic pole tooth to the counterpart magnetic circuit is prevented. As a result of preventing the leakage, the amount of magnetic flux in the magnetic circuit of each magnetic pole tooth is ensured, and the amount of magnetic flux between the flat magnetic pole surfaces of each first portion (1) is increased or decreased. It is blocked and a predetermined amount is secured. Although not shown in FIG. 3, it is also between the magnetic pole teeth 12a 1 and 12a 2 and the magnetic pole teeth 11b 1 and 11b 2 and between the magnetic pole teeth 11b 1 and 11b 2 and the magnetic pole teeth 12b 1 and 12b 2. The same as above.
[0013]
4A and 4B are configuration examples of the linear motor according to the first embodiment of the present invention, in which FIG. 4A is a perspective view and FIG. 4B is an AA cross-sectional view. The first embodiment is a configuration example when the two motor units having the basic configuration shown in FIG. 1 are arranged in series in the moving direction of the mover.
[0014]
In FIG. 4, reference numerals 100 and 101 denote motor units, 11′a 1 , 11′a 2 , 12′a 1 , 12′a 2 , 11′b 1 , 11′b 2 , 12′b 1 , 12′b 2. Are the flat magnetic pole teeth constituting the core of the armature in the motor unit 101, 4 ′ is the flat exciting coil in the motor unit 101, and τ S is in the armature of each of the motor units 100 and 101. Is a pitch between adjacent magnetic pole teeth (hereinafter referred to as an armature magnetic pole tooth pitch), τ m is a pitch between adjacent magnetic poles in the mover 6 (hereinafter referred to as a mover magnetic pole pitch), and τ is an electric machine The magnetic pole pitch is equal to the child magnetic pole tooth pitch τ S or the mover magnetic pole pitch τ m . Here, in each motor unit 100, 101, the armature magnetic pole tooth pitch τ S and the mover magnetic pole pitch τ m may be the same, but to suppress the pulsation of the moving thrust generated in the mover 6 by the armature. It is also possible to set the values different from each other. The motor unit 100 and the motor unit 101 have the same configuration as each other, and both have the basic configuration shown in FIG. 1 including the nonmagnetic member. Between the motor units 100 and 101, when the interval between the magnetic pole teeth of the armature is k, an integer of 0, 1, 2,..., M is the number of motor phases and is an integer of 2 or more, k · τ + τ / m. As a result, even when a current of the same phase is applied to the motor unit 100 and the motor unit 101, the movable element 6 can be moved and displaced by generating a thrust in a predetermined direction. The same applies when three or more motor units having the same basic configuration are provided in series. The mover 6 is supported between the armature core and the armature core by the support means 200a, 200b, and 200c so as to be movable in a predetermined direction.
[0015]
According to the first embodiment, as a linear motor, motor efficiency can be improved by reducing magnetic flux leakage between magnetic pole teeth on the armature side by a non-magnetic member, and a flat exciting coil is formed into a flat shape. With respect to the magnetic pole teeth, a thin configuration can be achieved because the magnetic pole teeth are provided so as to be interlinked in common at positions shifted from the flat magnetic pole surface at the position of the mover.
[0016]
5A and 5B are configuration example diagrams of a linear motor according to a second embodiment of the present invention, in which FIG. 5A is a perspective view and FIG. 5B is a BB cross-sectional view. The second embodiment is a configuration example in which two motor units having the basic configuration shown in FIG. 1 are arranged in parallel in the moving direction of the mover.
[0017]
5, the motor unit 100,102, 11''a 1, 11''a 2, 12''a 1, 12''a 2, 11''b 1, 11''b 2, 12 '' b 1 and 12 ″ b 2 are flat magnetic pole teeth constituting the armature core in the motor unit 102, 4 ″ is a flat exciting coil in the motor unit 102, and τ S is a motor The pitch between adjacent magnetic pole teeth in the armatures of the units 100 and 101, that is, the armature magnetic pole tooth pitch, τ m is the pitch between adjacent magnetic poles in the mover 6, that is, the mover magnetic pole pitch, τ is The magnetic pole pitch is equal to the armature magnetic pole tooth pitch τ S or the mover magnetic pole pitch τ m . Here, in each motor unit 100, 102, the armature magnetic pole tooth pitch τ S and the mover magnetic pole pitch τ m may be the same, but as with the first embodiment, the armature provides the mover 6 with the armature. In order to suppress the pulsation of the generated moving thrust, different values can be used. Furthermore, in the second embodiment, the movable element pole pitch tau m, and the movable element portion 6a of the motor unit 100 side, only the tau / 2 together with the movable element 6b of the motor unit 102 side shifted, the movable element The pulsation of the moving thrust generated at 6 can be further reduced. The motor units 100 and 102 have the same basic configuration as each other, and all include the configuration shown in FIG. 1 including a nonmagnetic member. The same applies when three or more motor units having the same basic configuration are provided in parallel. The mover 6 is supported between the armature core and the armature core so as to be movable in a predetermined direction by the support means 200 ″ a and others.
[0018]
Also according to the second embodiment, as a linear motor, the non-magnetic member can reduce magnetic flux leakage between the magnetic pole teeth to improve the motor efficiency, and the flat exciting coil is planar with the flat magnetic pole surface. A thin configuration can be obtained by providing the magnetic pole teeth in common at the positions displaced from each other.
[0019]
FIG. 6 is a diagram showing another configuration example of the mover used in the linear motor of the present invention. In this configuration example, as the mover 6 ′, convex portions 16 and flat portions 13 are alternately provided in the moving direction, and the difference in magnetic resistance with respect to the armature core between the convex portions 16 and the flat portions 13 is provided. To occur. For example, the convex portion 16 and the flat portion 13 may be made of a magnetic material such as electromagnetic soft iron, or a magnet may be provided on the flat portion.
The present invention is not limited to a linear motor, but can be applied to a vibration type linear actuator in which a mover relatively reciprocates.
[0020]
【The invention's effect】
According to the present invention, motor efficiency can be improved. Moreover, a thin linear motor can be formed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic configuration of a linear motor of the present invention.
FIG. 2 is an exploded view of the linear motor of FIG.
3 is a diagram showing the flow of magnetic flux in the magnetic pole teeth of the linear motor of FIG. 1. FIG.
FIG. 4 is a diagram showing a configuration of a linear motor as a first embodiment of the present invention.
FIG. 5 is a diagram showing a configuration of a linear motor as a second embodiment of the present invention.
FIG. 6 is a diagram showing another configuration example of the mover used in the linear motor of the present invention.
[Explanation of symbols]
4, 4 ′, 4 ″... Exciting coil 6, 6 ′ mover 11 a 1 , 11 a 2 , 11 b 1 , 11 b 2 , 12 a 1 , 12 a 2 , 12 b 1 , 12 b 2 , 11 ′ a 1 , 11′a 2 , 12′a 1 , 12′a 2 , 11′b 1 , 11′b 2 , 12′b 1 , 12′b 2 , 11 ″ a 1 , 11 ″ a 2 , 12 ″ a 1, 12''a 2, 11''b 1 , 11''b 2, 12''b 1, 12''b 2 ... magnetic pole teeth, 53a 11, 53a 21, 53a 12, 53a 22, 53b 11 , 53b 21 ... nonmagnetic member, 51a, 51b, 52a, 52b ... base side part, 100, 101, 102 ... motor unit, 200a, 200b, 200c, 200''a ... support means.

Claims (4)

電機子の磁極歯による磁界で可動子を直線状に移動させるリニアモータであって、
直線状に配列され、それぞれが対向する扁平状磁極面を有し、配列方向の相互間に非磁性領域を隔てて配された複数の磁極歯と、
上記複数の磁極歯に対し巻線が、上記扁平状磁極面とは平面的にずれた位置で共通的に鎖交し、該複数の磁極歯を、その配列方向に対し異なる極性の磁極が形成されるように励磁する扁平状の励磁用コイルと、
上記磁極歯の上記扁平状磁極面間に配され該磁極面間の磁界により移動変位する扁平状の可動子と、を備えた構成を特徴とするリニアモータ。
A linear motor that moves the mover linearly with a magnetic field generated by armature magnetic pole teeth,
A plurality of magnetic pole teeth arranged in a straight line, each having a flat magnetic pole surface facing each other, and arranged with a nonmagnetic region between each other in the arrangement direction;
The windings are linked to the plurality of magnetic pole teeth in common at a position shifted in a plane from the flat magnetic pole surface, and magnetic poles having different polarities with respect to the arrangement direction are formed on the magnetic pole teeth. A flat excitation coil that excites as
A linear motor comprising: a flat movable element arranged between the flat magnetic pole faces of the magnetic pole teeth and moved and displaced by a magnetic field between the magnetic pole faces.
電機子の磁極歯による磁界で可動子を直線状に移動させるリニアモータであって、
直線状に配列され、それぞれが対向する扁平状磁極面を有する複数の磁極歯と、
上記複数の磁極歯に対し巻線が、上記扁平状磁極面とは平面的にずれた位置で共通的に鎖交し、該複数の磁極歯を、その配列方向に対し異なる極性の磁極が形成されるように励磁する扁平状の励磁用コイルと、
上記複数の磁極歯間に配された非磁性部材と、
上記磁極歯の対向する上記扁平状磁極面間に配され該磁極面間の磁界により移動変位する扁平状の可動子と、を備え、上記異なる磁極が形成される磁極歯間の磁束の漏洩を上記非磁性部材により抑えた状態で、上記複数の磁極歯を励磁可能にした構成を特徴とするリニアモータ。
A linear motor that moves the mover linearly with a magnetic field generated by armature magnetic pole teeth,
A plurality of magnetic pole teeth arranged in a straight line and having flat magnetic pole faces facing each other;
The windings are linked to the plurality of magnetic pole teeth in common at a position shifted in a plane from the flat magnetic pole surface, and magnetic poles having different polarities with respect to the arrangement direction are formed on the magnetic pole teeth. A flat excitation coil that excites as
A nonmagnetic member disposed between the plurality of magnetic pole teeth;
A flat movable element disposed between the flat magnetic pole faces opposed to the magnetic pole teeth and moved and displaced by a magnetic field between the magnetic pole faces, and leakage of magnetic flux between the magnetic pole teeth on which the different magnetic poles are formed. A linear motor characterized in that the plurality of magnetic pole teeth can be excited while being suppressed by the non-magnetic member.
上記複数の磁極歯は、τを上記可動子の磁極のピッチ、kを0、1、2、…なる整数、mをモータ相数であって2以上の整数とするとき、その配列ピッチが、k・τ+m/τとされた構成である請求項1または請求項2に記載のリニアモータ。The plurality of magnetic pole teeth, when τ is the pitch of the magnetic pole of the mover, k is an integer of 0, 1, 2,. The linear motor according to claim 1, wherein the linear motor has a configuration of k · τ + m / τ. 上記複数の磁極歯は、τを上記可動子の磁極ピッチ、kを0、1、2、…なる整数、mをモータ相数であって2以上の整数とするとき、同相の磁極歯の配列ピッチがk・τ、異なる相の磁極歯の配列ピッチがk・τ+m/τとされた構成である請求項1または請求項2に記載のリニアモータ。The plurality of magnetic pole teeth are arranged in the same phase when τ is a magnetic pole pitch of the mover, k is an integer of 0, 1, 2,. 3. The linear motor according to claim 1, wherein the pitch is k · τ and the arrangement pitch of magnetic pole teeth of different phases is k · τ + m / τ.
JP2003197264A 2003-07-15 2003-07-15 Linear motor Pending JP2005039883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197264A JP2005039883A (en) 2003-07-15 2003-07-15 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197264A JP2005039883A (en) 2003-07-15 2003-07-15 Linear motor

Publications (1)

Publication Number Publication Date
JP2005039883A true JP2005039883A (en) 2005-02-10

Family

ID=34207473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197264A Pending JP2005039883A (en) 2003-07-15 2003-07-15 Linear motor

Country Status (1)

Country Link
JP (1) JP2005039883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884473B2 (en) 2008-11-18 2014-11-11 Hitachi Metals, Ltd. Mover, armature, and linear motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884473B2 (en) 2008-11-18 2014-11-11 Hitachi Metals, Ltd. Mover, armature, and linear motor

Similar Documents

Publication Publication Date Title
JP3395155B2 (en) Linear motor and manufacturing method thereof
TW201027881A (en) Linear motor
JP2007037273A (en) Vibratory linear actuator
JP2011078202A (en) Axial gap motor
JP4061834B2 (en) Linear motor
JP2002209371A (en) Linear motor
JP2009240046A (en) Electromagnetic actuator
JP5589507B2 (en) Mover and stator of linear drive unit
JP3944766B2 (en) Permanent magnet synchronous linear motor
JP2005039883A (en) Linear motor
JP3906443B2 (en) Linear motor
WO2006123668A1 (en) Pulse motor
JPH02246762A (en) Linear motor
JP2004208427A (en) Linear actuator
JP5421173B2 (en) Linear motor
JP2005295675A (en) Cylinder type linear motor
JP5874246B2 (en) Linear drive mover
JP3793874B2 (en) Permanent magnet type linear motor
JP2021197836A (en) Linear motor
JP2006174700A (en) Linear motor
JP5909973B2 (en) Linear drive
JP5589508B2 (en) MOVE, STATOR, AND LINEAR DRIVE DEVICE FOR LINEAR DRIVE DEVICE
JP2005176506A (en) Linear motor
JP3731011B2 (en) Single pole linear DC motor
JP2005295708A (en) Claw-pole type three-phase linear motor