JP2005037003A - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JP2005037003A
JP2005037003A JP2003197573A JP2003197573A JP2005037003A JP 2005037003 A JP2005037003 A JP 2005037003A JP 2003197573 A JP2003197573 A JP 2003197573A JP 2003197573 A JP2003197573 A JP 2003197573A JP 2005037003 A JP2005037003 A JP 2005037003A
Authority
JP
Japan
Prior art keywords
temperature
air
refrigerant
heat exchanger
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003197573A
Other languages
English (en)
Inventor
Noriho Okaza
典穂 岡座
Yoshikazu Kawabe
義和 川邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003197573A priority Critical patent/JP2005037003A/ja
Publication of JP2005037003A publication Critical patent/JP2005037003A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】冷媒の臨界温度より高温の温風を吹き出すことのできる空気調和機を提供することを目的とする。
【解決手段】少なくとも圧縮機、四方弁、熱源側熱交換器、膨張弁、利用側熱交換器を配管接続し冷媒流路を形成した空気調和機において、高温風吹出暖房運転時に前記利用側熱交換器の冷媒圧力を、冷媒の臨界圧力以上とする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機に係わり、特に、暖房時に高温風を吹き出すことのできる空気調和機に関する。
【0002】
【従来の技術】
従来、ヒートポンプルームエアコン等のヒートポンプ式空気調和機では、その冷凍サイクルにインバータと電動膨張弁とを用いることによって、冷凍サイクルの能力を可変させ、エアコンの省エネルギー性と起動時の立ち上がりの運転特性との向上が図られている。さらに、ヒートポンプ式空気調和機の商品性を高めるために暖房時において、高い温度の空気を吹き出す、高温風吹出を行い、暖房感を向上させることが望まれている。
【0003】
例えば、従来の高温風の吹き出しを狙ったヒートポンプ式空気調和機として、室内熱交換器(凝縮器)を空気上流側熱交換器と空気下流側熱交換器とに熱的に分割し、冷媒下流側となる空気上流側熱交換器の冷媒流路の途中に備えた凝縮温度センサと、冷媒上流側となる空気下流側熱交換器の冷媒流路の出口に備えた冷媒出口温度センサの出力に基づき、冷媒上流側となる空気下流側熱交換器の出口の冷媒が常に過熱ガス領域となるように、圧縮機周波数、室内ファン回転数、膨張弁開度などを制御する空気調和機がある。(例えば、特許文献1参照)
【0004】
【特許文献1】
特許第3051420号公報(第7頁、第1図)
【0005】
【発明が解決しようとする課題】
上記従来技術では、空気下流側熱交換器の冷媒温度は、凝縮温度以上の高温となるものの、空気上流側熱交換器の冷媒温度は、凝縮温度以下の温度となるため、吹き出される空気の温度は、冷媒の凝縮温度より数度高い程度である。例えば、冷媒にR410Aを用いた空気調和機では、R410Aの臨界温度は約70℃であり、凝縮温度は臨界温度以下となることから、凝縮温度は臨界温度の約70℃より約10℃低いとしても60℃程度となるため、吹出空気温度は約60〜70℃となる。しかし、約80℃程度の高温の吹出温度が得られる石油・ガス暖房機などと比較して十分な高温風が得られているとはいえなかった。
【0006】
本発明の目的は、冷媒の臨界温度より高温の温風を吹き出すことのできる空気調和機を提供することにある。
【0007】
【課題を解決するための手段】
請求項1記載の本発明は、少なくとも圧縮機、四方弁、熱源側熱交換器、膨張弁、利用側熱交換器を配管接続し冷媒流路を形成した空気調和機において、高温風吹出暖房運転時に前記利用側熱交換器の冷媒圧力を、冷媒の臨界圧力以上とすることを特徴とする空気調和機である。
【0008】
請求項2記載の本発明は、前記圧縮機を駆動するインバータ回路の前記圧縮機への入力電流を検知する電流検出器と、前記電流検出器により検知された電流値に応じて、前記圧縮機の駆動周波数を制御する圧縮機周波数制御器と、前記圧縮機と前記膨張弁の間で、かつ、前記利用側熱交換器を含む側の冷媒流路のいずれかの位置での冷媒圧力を検知する高圧検知器と、前記高圧検知器により検知された高圧に応じて、前記膨張弁の開度を制御する第一膨張弁開度制御器と、前記利用側熱交換器の吹出空気温度を検知する吹出温度検知器と、前記吹出温度検知器により検知された吹出空気温度に応じて、前記利用側熱交換器の送風ファンの風量を制御する利用側ファン風量制御器とを備えたことを特徴とする前記本発明の空気調和機である。
【0009】
請求項3記載の本発明は、前記圧縮機を駆動するインバータ回路の前記圧縮機への入力電流を検知する電流検出器と、前記電流検出器により検知された電流値に応じて、前記圧縮機の駆動周波数を制御する圧縮機周波数制御器と、前記圧縮機の吐出温度を検知する吐出温度検知器と、前記吐出温度検知器により検知された吐出温度に応じて、前記膨張弁の開度を制御する第二膨張弁開度制御器と、前記利用側熱交換器の吹出空気温度を検知する吹出温度検知器と、前記吹出温度検知器により検知された吹出空気温度に応じて、前記利用側熱交換器の送風ファンの風量を制御する利用側ファン風量制御器とを備えたことを特徴とする前記本発明の空気調和機である。
【0010】
請求項4記載の本発明は、高温風吹出暖房運転時に前記四方弁をバイパスする回路を備えたことを特徴とする前記本発明の空気調和機である。
【0011】
請求項5記載の本発明は、高温風吹出暖房運転時の冷媒量を調節する冷媒貯蔵タンクを備えたことを特徴とする前記本発明の空気調和機である。
【0012】
請求項6記載の本発明は、高温風吹出暖房運転時に吹出口の開口面積を低減させることを特徴とする前記本発明の空気調和機である。
【0013】
請求項7記載の本発明は、前記利用側熱交換器と前記熱源側熱交換器が同一の筐体に納められた一体型空気調和機であることを特徴とする前記本発明の空気調和機である。
【0014】
【発明の実施の形態】
本発明による第1の実施の形態は、少なくとも圧縮機、四方弁、熱源側熱交換器、膨張弁、利用側熱交換器を配管接続し冷媒流路を形成した空気調和機において、高温風吹出暖房運転時に利用側熱交換器の冷媒圧力を、冷媒の臨界圧力以上とするものである。本実施の形態によれば、利用側熱交換器の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0015】
本発明による第2の実施の形態は、圧縮機を駆動するインバータ回路の圧縮機への入力電流を検知する電流検出器と、電流検出器により検知された電流値に応じて、圧縮機の駆動周波数を制御する圧縮機周波数制御器と、圧縮機と膨張弁の間で、かつ、利用側熱交換器を含む側の冷媒流路のいずれかの位置での冷媒圧力を検知する高圧検知器と、高圧検知器により検知された高圧に応じて、膨張弁の開度を制御する第一膨張弁開度制御器と、利用側熱交換器の吹出空気温度を検知する吹出温度検知器と、吹出温度検知器により検知された吹出空気温度に応じて、利用側熱交換器の送風ファンの風量を制御する利用側ファン風量制御器とを備えたものである。本実施の形態によれば、圧縮機やインバータ回路の信頼性を損なったり、冷媒流路の設計圧力を越えたりすることなく、利用側熱交換器の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0016】
本発明による第3の実施の形態は、圧縮機を駆動するインバータ回路の圧縮機への入力電流を検知する電流検出器と、電流検出器により検知された電流値に応じて、圧縮機の駆動周波数を制御する圧縮機周波数制御器と、圧縮機の吐出温度を検知する吐出温度検知器と、吐出温度検知器により検知された吐出温度に応じて、膨張弁の開度を制御する第二膨張弁開度制御器と、利用側熱交換器の吹出空気温度を検知する吹出温度検知器と、吹出温度検知器により検知された吹出空気温度に応じて、利用側熱交換器の送風ファンの風量を制御する利用側ファン風量制御器とを備えたものである。本実施の形態によれば、圧縮機やインバータ回路の信頼性を損なったり、冷媒流路の設計圧力を越えたりすることなく、利用側熱交換器の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0017】
本発明による第4の実施の形態は、第1の実施の形態において、高温風吹出暖房運転時に四方弁をバイパスする回路を備えたものである。本実施の形態によれば、高温風吹出暖房運転時に利用側熱交換器に臨界圧力以上の圧力の冷媒を、効率よく導入できるので、利用側熱交換器の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0018】
本発明による第5の実施の形態は、第1の実施の形態において、高温風吹出暖房運転時の冷媒量を調節する冷媒貯蔵タンクを備えたものである。本実施の形態によれば、熱源側熱交換器を急激に着霜させることなく、高温風吹出暖房運転時に利用側熱交換器に臨界圧力以上の圧力の冷媒を導入できるので、利用側熱交換器の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0019】
本発明による第6の実施の形態は、第1の実施の形態において、高温風吹出暖房運転時に吹出口の開口面積を低減させるものである。本実施の形態によれば、冷媒の臨界温度より高温の温風を利用者の付近まで吹き出すことができる。
【0020】
本発明による第7の実施の形態は、第1の実施の形態において、利用側熱交換器と熱源側熱交換器が同一の筐体に納められたものである。本実施の形態によれば、高温風吹出暖房運転時に利用側熱交換器に臨界圧力以上の圧力の冷媒を、安全に導入できるので、利用側熱交換器の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0021】
【実施例】
以下、本発明の一実施例による空気調和機について、図面を参照して説明する。
【0022】
図1は、本実施例による空気調和機の構成図である。図1において、1は圧縮機、2は冷房運転と暖房運転を切り替える四方弁、3は室内機Aと室外機Bとを接続するガス側接続管、4は利用側熱交換器、5は室内機Aと室外機Bとを接続する液側接続管、6は膨張弁、7は熱源側熱交換器であり、これらを配管接続することにより冷媒流路を構成し、冷媒、例えばR410Aが封入されている。また、8は利用側熱交換器4に送風する利用側送風ファン、9は利用側熱交換器4の吹出空気の風向を変更する風向変更装置であり、利用側熱交換器4などとともに、室内機Aに納められている。10は熱源側熱交換器7に送風する熱源側送風ファンであり、圧縮機1、四方弁2、熱源側熱交換器7などとともに、室外機Bに納められている。また、11は圧縮機1を駆動するインバータ回路、12はインバータ回路11の圧縮機1への入力電流を検知する電流検出器、13は電流検出器12により検知された電流値、かつ/または、後述する利用側ファン風量制御器17の信号に応じて、圧縮機1の駆動周波数を制御する圧縮機周波数制御器であり、14は圧縮機1と膨張弁6の間で、かつ、利用側熱交換器4を含む側の冷媒流路のいずれかの位置での冷媒圧力(以下、高圧という)を検知する高圧検知器、15は高圧検知器14により検知された高圧に応じて、膨張弁6の開度を制御する第一膨張弁開度制御器である。また、16は利用側熱交換器4の吹出空気温度を検知する吹出温度検知器、17は吹出温度検知器16により検知された吹出空気温度に応じて、利用側熱交換器4の送風ファンの風量を制御する利用側ファン風量制御器である。
【0023】
本空気調和機の動作について説明する。本空気調和機は冷房運転時と暖房運転時とで、冷媒の流れる方向が変わるが、以下、本発明と関係する暖房運転時について説明する。
【0024】
圧縮機1で圧縮された冷媒は高温高圧状態となり、図1中の実線で示すように切り替えられた四方弁2、ガス側接続管3を経由し、利用側熱交換器4へ導入される。利用側熱交換器4では、冷媒は利用側送風ファン8により吹き出される空気に放熱する。その後、冷媒は液側接続管5を経由し、膨張弁6に導入され膨張弁6で減圧された後、気液二相状態となり熱源側熱交換器7へ導入される。熱源側熱交換器7では、熱源側送風ファン10により吹き出される空気より吸熱してガス状態となり、再び、四方弁2を経由して、圧縮機1に吸入される。このようなサイクルを繰り返すことにより、利用側送風ファン8から吹き出される空気を、利用側熱交換器4での冷媒の放熱により加熱することで暖房を行う。
【0025】
次に、本発明の特徴である高温の温風を吹き出す高温風吹出暖房運転時について説明する。利用者によってリモコン等により冷媒の臨界温度以上に高温の温風の吹き出しが要求されたと判断された場合(高温風吹出暖房運転時)には、高温風を吹き出すのに必要な暖房能力を確保するために、圧縮機周波数制御器13により圧縮機1の周波数を調整する。また、冷媒の臨界温度以上の高温風を吹き出すのに必要な利用側熱交換器4での冷媒温度を臨界温度以上とするために、高圧が冷媒の臨界圧力より高い圧力となるように、第一膨張弁開度制御器15により膨張弁6の開度を調整する。
【0026】
したがって、上記のような空気調和機では、次のような効果が得られる。高温風吹出暖房運転時に利用側熱交換器4の冷媒圧力を、冷媒の臨界圧力以上となるように制御することで、利用側熱交換器4の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度(例えば、R410Aでは約70℃)より高温の温風を吹き出すことができる。
【0027】
さらに具体的な制御方法について、図2を用いて説明する。図2は高温風吹出暖房運転時の制御を示すフローチャートである。まず、圧縮機1の周波数制御(圧縮機制御)について説明する。電流検出器12でインバータ回路11の圧縮機1への入力電流を検知し(ステップ100)、圧縮機周波数制御器13において、検出された電流値Iと予め定められた電流上限値(例えば圧縮機1やインバータ回路11の許容使用範囲上限をもとに設定)との比較を行う(ステップ101)。電流値Iが電流上限値よりも小さい場合には、圧縮機周波数制御器13の信号により圧縮機1の周波数を増加させる(ステップ102)。電流値Iが電流上限値よりも大きい場合には、圧縮機周波数制御器13の信号により圧縮機1の周波数を減少させる(ステップ103)。
【0028】
次に、膨張弁6の開度制御(膨張弁制御)について説明する。高圧検知器14で高圧側の冷媒圧力を検知し(ステップ110)、第一膨張弁開度制御器15において、検出された高圧Phと予め定められた高圧上限値(例えば冷媒流路の設計圧力をもとに設定。ただし、冷媒の臨界圧力より高い圧力とする。)との比較を行う(ステップ111)。高圧Phが高圧上限値よりも低い場合には、第一膨張弁開度制御器15の信号により膨張弁6の開度を閉方向に操作させる(ステップ112)。高圧Phが高圧上限値よりも高い場合には、第一膨張弁開度制御器15の信号により膨張弁6の開度を開方向に操作させる(ステップ113)。
【0029】
さらに、利用側送風ファン8の回転数などを変更する風量制御(風量制御)について説明する。吹出温度検知器16で利用側送風ファン8により吹き出される利用側熱交換器4の風下側の空気温度(吹出温度Ta)を検知し(ステップ120)、利用側ファン風量制御器17において、検出された吹出温度Taと利用者によってリモコン等により設定されたり、冷凍サイクルの負荷に応じて決定されたりした設定吹出温度との比較を行う(ステップ121)。吹出温度Taが設定吹出温度よりも低い場合には、利用側ファン風量制御器17の信号により利用側送風ファン8の回転数を減少させるなどにより風量を減少させる(ステップ122)。吹出温度Taが設定吹出温度よりも高い場合には、さらに、現在の利用側送風ファン8の回転数などから判断した風量が、利用者によってリモコン等により設定されたり、冷凍サイクルの負荷に応じて決定されたりした設定風量と比較を行う(ステップ123)。現在の風量が設定風量より小さい場合には、利用側ファン風量制御器17の信号により利用側送風ファン8の回転数を増加させるなどにより風量を増加させる(ステップ124)。現在の風量が設定風量より大きい場合には、圧縮機周波数制御器13に信号を送り、圧縮機周波数制御器13により圧縮機1の周波数を減少させる(ステップ103)。
【0030】
上記の制御を一定時間間隔で繰り返し行うことにより、以下のような制御が実行される。すなわち、ステップ101で、電流検出器12で検知された電流値が電流上限値より小さいときには、信頼性を損なうことなく圧縮機1の周波数を増加できる状態であることから、ステップ102では圧縮機周波数制御器13よりインバータ回路11に信号を送り圧縮機1の周波数を増加させ、冷媒循環量の上昇により暖房能力を増加させるとともに、高圧を上昇させる。一方、ステップ101で、電流検出器12で検知された電流値が電流上限値より大きいときには、これ以上、圧縮機1の周波数を増加させると、圧縮機1やインバータ回路11の信頼性を損なうおそれがあるので、ステップ103では信頼性を優先にして、圧縮機周波数制御器13よりインバータ回路11に信号を送り圧縮機1の周波数を減少させる。
【0031】
また、ステップ111で、高圧検知器14で検知される高圧が高圧上限値より低いときには、信頼性を損なうことなく高圧を上昇させることができる状態であることから、ステップ112では第一膨張弁開度制御器15により膨張弁6の開度を閉方向に操作し、冷媒の臨界圧力以上の圧力に高圧を上昇させる。一方、ステップ111で、高圧検知器14で検知される高圧が高圧上限値より高いときには、これ以上、高圧を上昇させると、冷媒流路の設計圧力を越え、信頼性を損なうおそれがあるので、ステップ113では信頼性を優先にして、第一膨張弁開度制御器15により膨張弁6の開度を開方向に操作し、高圧を減少させる。
【0032】
さらに、ステップ121で、吹出温度検知器16で検知される吹出温度が設定吹出温度より低いときには、利用者が望む吹出温度より低い状態であることから、ステップ122では利用側ファン風量制御器17により利用側送風ファン8の回転数を減少させるなどし、風量を減少させる。風量を減少させることにより、利用側熱交換器4の温度効率が向上し、吹出温度を上昇させることができる。また、ステップ121で、吹出温度検知器16で検知される吹出温度が設定吹出温度より高く、かつ、ステップ123で、現在の風量が設定風量より小さいときには、吹出温度は利用者が望む吹出温度以上であるものの、風量は利用者が望む風量となっていないので、ステップ124では利用側ファン風量制御器17により利用側送風ファン8の回転数を増加させるなどし、風量を増加させる。さらに、ステップ121で、吹出温度検知器16で検知される吹出温度が設定吹出温度より高く、かつ、ステップ123で、現在の風量が設定風量より大きいときには、吹出温度、風量とも利用者の望む吹出温度、風量以上となっているので、ステップ103に戻り、圧縮機周波数制御器13により圧縮機1の周波数を減少させることで、圧縮機1への入力を低減し、暖房能力を低下させるとともに、冷凍サイクルの成績係数を向上させる。
【0033】
すなわち、冷媒の臨界温度以上の高温風を吹き出すには、通常の暖房運転時以上に大きな暖房能力が必要であるが、圧縮機1やインバータ回路11の信頼性を損なわない範囲内で、圧縮機周波数制御器13により圧縮機1の周波数を増加させることで、必要な暖房能力を確保する。また、冷媒の臨界温度以上の高温風を吹き出すには、利用側熱交換器4での冷媒温度を臨界温度以上とする必要があるが、高圧が冷媒流路の設計圧力を越えない範囲内で、第一膨張弁開度制御器15により膨張弁6の開度を閉方向に操作することで、高圧を冷媒の臨界圧力より高い圧力とする。さらに、上述のように制御された状態で、吹出温度が設定吹出温度より低い場合、信頼性を損なわずに吹出温度を上昇させるには、風量を減少させるしかないので、利用側ファン風量制御器17により風量を減少させ、吹出温度を設定吹出温度に近づける。逆に、吹出温度が設定吹出温度より高い場合、吹出温度を低下させるために、利用側ファン風量制御器17により風量を増加させ、吹出温度を設定吹出温度に近づける。したがって、信頼性を損なうことない範囲内で、利用側熱交換器4の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高い温度、かつ、設定された温度の温風を吹き出すことができる。あるいは、現在の風量が設定風量より大きい場合には、圧縮機周波数制御器13により圧縮機1の周波数を減少させることで暖房能力を減少させ、吹出温度を設定吹出温度に近づける。この場合には、圧縮機1への入力を低減し、高い運転効率での空気調和機の運転を実現しつつ、信頼性を損なうことない範囲内で、利用側熱交換器4の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高い温度、かつ、設定された温度の温風を吹き出すことができる。
【0034】
したがって、上記のような空気調和機では、次のような効果が得られる。高温風吹出暖房運転時に、圧縮機1への入力電流が電流上限値以下となり、利用側熱交換器4の冷媒圧力が、冷媒の臨界圧力以上で、かつ、高圧上限値以下となるように制御した状態で、吹出温度が設定吹出温度以下となる場合には風量を減少させるように制御することで、圧縮機1やインバータ回路11の信頼性を損なったり、冷媒流路の設計圧力を越えたりすることなく、利用側熱交換器4の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0035】
なお、図2に示したフローチャートは一定時間間隔で繰り返し行われるために、圧縮機制御、膨張弁制御、風量制御の順序を入れ替えても、同様の結果が得られることは明らかである。また、図2中のステップ123は省略してもよく、この場合には、圧縮機1への入力を低減し、冷凍サイクルの成績係数を向上させることができなくなるものの、空気調和機の信頼性を損なうことなく、冷媒の臨界温度より高温の温風を吹き出すといった目的は達成できる。
【0036】
次に、別の実施例による空気調和機について、図3、図4を用いて説明する。図3は、別の本実施例による空気調和機の構成図であり、図4は高温風吹出暖房運転時の制御を示すフローチャートである。図3、図4において、図1、2と同じ構成要素、ステップは同じ番号を付し、説明を省略する。図3において、24は圧縮機1の吐出温度を検知する吐出温度検知器、25は吐出温度検知器24により検知された吐出温度に応じて、膨張弁6の開度を操作する第二膨張弁開度制御器である。
【0037】
具体的な制御方法について、図4を用いて説明する。圧縮機1の周波数制御(圧縮機制御)については図2のフローチャートの説明と同一なので説明を省略する。次に、膨張弁6の開度制御(膨張弁制御)について説明する。吐出温度検知器24で圧縮機1の吐出温度を検知し(ステップ210)、第二膨張弁開度制御器25において、検出された吐出温度Tdと予め定められた吐出温度上限値(例えば、圧縮機1の許容使用範囲上限や、冷凍サイクルの負荷に応じて、冷媒の臨界圧力より高い圧力となるような吐出温度を設定。)との比較を行う(ステップ211)。吐出温度Tdが吐出温度上限値よりも低い場合には、第二膨張弁開度制御器25の信号により膨張弁6の開度を閉方向に操作させる(ステップ212)。吐出温度Tdが吐出温度上限値よりも高い場合には、第二膨張弁開度制御器25の信号により膨張弁6の開度を開方向に操作させる(ステップ213)。
【0038】
さらに、利用側送風ファン8の回転数などを変更する風量制御(風量制御)についても、図2のフローチャートの説明と同一なので説明を省略する。
【0039】
上記の操作を一定時間間隔で繰り返し行うことにより、以下のような制御が実行される。ステップ211で、吐出温度検知器24で検知される吐出温度が吐出温度上限値より低いときには、信頼性を損なうことなく吐出温度を上昇させることができる状態であることから、ステップ212では第二膨張弁開度制御器25により膨張弁6の開度を閉方向に操作し、冷媒の臨界圧力以上の圧力に高圧を上昇させる。一方、ステップ211で、吐出温度検知器24で検知される吐出温度が吐出温度上限値より高いときには、これ以上、吐出温度を上昇させると、圧縮機1の信頼性を損なったり、高圧が冷媒流路の設計圧力を越え、信頼性を損なうおそれがあるので、ステップ213では信頼性を優先にして、第二膨張弁開度制御器25により膨張弁6の開度を開方向に操作し、吐出温度および高圧を減少させる。
【0040】
すなわち、冷媒の臨界温度以上の高温風を吹き出すには、通常の暖房運転時以上に大きな暖房能力が必要であるが、圧縮機1やインバータ回路11の信頼性を損なわない範囲内で、圧縮機周波数制御器13により圧縮機1の周波数を増加させることで、必要な暖房能力を確保する。また、冷媒の臨界温度以上の高温風を吹き出すには、利用側熱交換器4での冷媒温度を臨界温度以上とする必要があるが、圧縮機1の信頼性を損なったり、高圧が冷媒流路の設計圧力を越えない範囲内で、第二膨張弁開度制御器25により膨張弁6の開度を閉方向に操作することで、高圧を冷媒の臨界圧力より高い圧力とする。さらに、上述のように制御された状態で、吹出温度が設定吹出温度より低い場合、信頼性を損なわずに吹出温度を上昇させるには、風量を減少させるしかないので、利用側ファン風量制御器17により風量を減少させ、吹出温度を設定吹出温度に近づける。逆に、吹出温度が設定吹出温度より高い場合、吹出温度を低下させるために、利用側ファン風量操作器17により風量を増加させ、吹出温度を設定吹出温度に近づける。したがって、信頼性を損なうことない範囲内で、利用側熱交換器4の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高い温度、かつ、設定された温度の温風を吹き出すことができる。あるいは、現在の風量が設定風量より大きい場合には、圧縮機周波数操作器13により圧縮機1の周波数を減少させることで暖房能力を減少させ、吹出温度を設定吹出温度に近づける。この場合には、圧縮機1への入力を低減し、高い運転効率での空気調和機の運転を実現しつつ、信頼性を損なうことない範囲内で、利用側熱交換器4の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高い温度、かつ、設定された温度の温風を吹き出すことができる。
【0041】
したがって、上記のような空気調和機では、次のような効果が得られる。高温風吹出暖房運転時に、圧縮機1への入力電流が電流上限値以下となり、圧縮機1の吐出温度が、冷媒の臨界圧力以上となる高圧となるような吐出温度以上で、かつ、冷凍サイクルの負荷に応じて設定された吐出温度上限値以下となるように制御した状態で、吹出温度が設定吹出温度以下となる場合には風量を減少させるように制御することで、圧縮機1やインバータ回路11の信頼性を損なったり、冷媒流路の設計圧力を越えたりすることなく、利用側熱交換器4の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0042】
なお、本実施例では、高圧を検出する代わりに吐出温度を検出するものとしているが、これ以外の冷凍サイクルの状態(例えば、利用側熱交換器4、熱源側熱交換器7の冷媒温度や周囲の空気温度)を検出し、その情報を加えて膨張弁6の開度を制御するようにしてもよい。
【0043】
別の実施例による構成について、図5を用いて説明する。図5は、別の実施例による空気調和機の構成図であり、図5において、図1と同じ構成要素は同じ番号を付し、説明を省略する。図5において、30は冷媒貯蔵タンクであり、31は圧縮機1と四方弁2の間と四方弁2とガス側接続管3の間とを配管接続し、四方弁2をバイパスするバイパス回路、32はバイパス回路31に設けられた電磁弁である。
【0044】
高温風吹出暖房運転時には、電磁弁32を開とすることで、圧縮機1で臨界圧力より高い圧力まで圧縮された冷媒は四方弁2に流れず、バイパス回路31を経由し、ガス側接続管3、利用側熱交換器4へ導入される。利用側熱交換器4では、冷媒は利用側送風ファン8により吹き出される空気に放熱する。その後、冷媒は液側接続管5を経由し、膨張弁6に導入され膨張弁6で減圧された後、気液二相状態となり熱源側熱交換器7へ導入される。熱源側熱交換器7では、熱源側送風ファン10により吹き出される空気より吸熱してガス状態となり、再び、四方弁2を経由して、圧縮機1に吸入される。このようなサイクルを繰り返すことにより、利用側送風ファン8から吹き出される空気は、利用側熱交換器4で冷媒の臨界温度以上に加熱された高温風となって吹き出される。
【0045】
四方弁2では、その内に備えられたピストンが、高圧側と低圧側を隔離することで、冷房運転時の流路と暖房または高温風吹出暖房運転時の流路とを切り替えているが、ピストンの高圧側から低圧側への冷媒漏れ量が多くなると、完全に流路が切り替わらなくなり圧力損失を生じるといった課題があった。しかし、本実施例においては、高圧が臨界圧力より高くなる高温風吹出暖房運転時において、四方弁2をバイパスさせることができるために、四方弁2のピストンの高圧側から低圧側への冷媒漏れ量が多くなる臨界圧力より高い高圧としても、四方弁2での圧力損失を生じさせることなく、圧縮機1から吐出した冷媒を利用側熱交換器4に導入することができる。さらに、四方弁2をバイパスさせることで、四方弁2での熱損失を低減できるといった副次的なメリットもある。
【0046】
したがって、上記のような空気調和機では、次のような効果が得られる。四方弁2をバイパスさせることで、高温風吹出暖房運転時に利用側熱交換器4に臨界圧力以上の圧力の冷媒を、効率よく導入できるので、利用側熱交換器4の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0047】
さらに、高圧が臨界圧力より高くなる高温風吹出暖房運転時においては、通常の暖房運転時に比べて、多くの冷媒が利用側熱交換器4に移動し、熱源側熱交換器7の冷媒圧力が急激に低下してしまい、熱源側熱交換器7が急激に着霜し、その結果、熱源側熱交換器7での吸熱量が低下するおそれがあった。しかし、本実施例においては、冷媒量を調節する冷媒貯蔵タンク30が備えられているために、多くの冷媒が利用側熱交換器4に移動する高温風吹出暖房運転時においても、熱源側熱交換器7の冷媒が急激に少なくなり、熱源側熱交換器7を急激に着霜させることなく、圧縮機1から吐出した冷媒を利用側熱交換器4に導入することができる。
【0048】
したがって、上記のような空気調和機では、次のような効果が得られる。冷媒量を調節する冷媒貯蔵タンク30を備えることで、熱源側熱交換器7を急激に着霜させることなく、高温風吹出暖房運転時に利用側熱交換器4に臨界圧力以上の圧力の冷媒を導入できるので、利用側熱交換器4の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0049】
さらに、別の実施例による構成について、図6を用いて説明する。高温風吹出暖房運転時においては、通常、左右、または、上下に吹出空気の風向を変更する風向変更装置9を用い、図6に示すように、吹出口の開口面積を低下させる。
【0050】
先の実施例で述べた制御により、風量を低下させると、室内機Aが室内の上方に設置される壁掛け式空気調和機の場合では、利用者の付近まで高温風を到達させることができないおそれがあった。しかし、本実施例においては、吹出口の開口面積を低下させることにより、吹出空気の風速を上げることで、少ない風量であっても、利用者の付近まで高温風を到達させることができる。。
【0051】
したがって、上記のような空気調和機では、次のような効果が得られる。風向変更装置9を用い、風向変更装置9により高温風吹出暖房運転時に吹出口の開口面積を低減することで、冷媒の臨界温度より高温の温風を利用者の付近まで吹き出すことができる。
【0052】
別の実施例による構成について、図7を用いて説明する。図7は、別の実施例による空気調和機の構成図であり、図7において、図1と同じ構成要素は同じ番号を付し、説明を省略する。図7において、41は利用側熱交換器、42は熱源側熱交換器、43は利用側送風ファン、44は熱源側送風ファンであり、これらの構成要素は圧縮機1、四方弁2、膨張弁6などとともに、同一の筐体Cに納められている。
【0053】
図1に示したような構成では、ガス側配管3は、通常、フレアナットを用いて接続されているが、高温風吹出暖房運転時に冷媒の臨界圧力を越える圧力の冷媒を、ガス側配管を経由し利用側熱交換器41に導入する場合には、フレアナットの使用限度圧を越えるおそれがあった。しかし、本実施例においては、ガス側接続管3が不要となるために、高圧が臨界圧力より高くなる高温風吹出暖房運転時においても、圧縮機1から吐出した冷媒を利用側熱交換器41に安全に導入することができる。
【0054】
したがって、上記のような空気調和機では、次のような効果が得られる。利用側熱交換器41と熱源側熱交換器42を同一の筐体に収納することで、高温風吹出暖房運転時に利用側熱交換器41に臨界圧力以上の圧力の冷媒を、安全に導入できるので、利用側熱交換器41の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0055】
【発明の効果】
本発明によれば、高温風吹出暖房運転時に利用側熱交換器の冷媒圧力を、冷媒の臨界圧力以上となるように制御することで、利用側熱交換器の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0056】
さらに、本発明によれば、高温風吹出暖房運転時に、圧縮機への入力電流が電流上限値以下となり、利用側熱交換器の冷媒圧力が、冷媒の臨界圧力以上で、かつ、高圧上限値以下となるように制御した状態で、吹出温度が設定吹出温度以下となる場合には風量を減少させるように制御することで、圧縮機やインバータ回路の信頼性を損なったり、冷媒流路の設計圧力を越えたりすることなく、利用側熱交換器の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0057】
さらに、本発明によれば、高温風吹出暖房運転時に、圧縮機への入力電流が電流上限値以下となり、圧縮機の吐出温度が、冷媒の臨界圧力以上となる高圧となるような吐出温度以上で、かつ、冷凍サイクルの負荷に応じて設定された吐出温度上限値以下となるように制御した状態で、吹出温度が設定吹出温度以下となる場合には風量を減少させるように制御することで、圧縮機やインバータ回路の信頼性を損なったり、冷媒流路の設計圧力を越えたりすることなく、利用側熱交換器の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0058】
さらに、本発明によれば、四方弁をバイパスさせることで、高温風吹出暖房運転時に利用側熱交換器に臨界圧力以上の圧力の冷媒を、効率よく導入できるので、利用側熱交換器の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0059】
さらに、本発明によれば、冷媒量を調節する冷媒貯蔵タンクを備えることで、熱源側熱交換器を急激に着霜させることなく、高温風吹出暖房運転時に利用側熱交換器に臨界圧力以上の圧力の冷媒を導入できるので、利用側熱交換器の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【0060】
さらに、本発明によれば、高温風吹出暖房運転時に吹出口の開口面積を低減することで、冷媒の臨界温度より高温の温風を利用者の付近まで吹き出すことができる。
【0061】
さらに、本発明によれば、利用側熱交換器と熱源側熱交換器を同一の筐体に収納することで、高温風吹出暖房運転時に利用側熱交換器に臨界圧力以上の圧力の冷媒を、安全に導入できるので、利用側熱交換器の冷媒温度を冷媒の臨界温度以上とし、冷媒の臨界温度より高温の温風を吹き出すことができる。
【図面の簡単な説明】
【図1】本発明の一実施例による空気調和機を示す概略構成図
【図2】同実施例による制御を示すフローチャート
【図3】他の実施例による空気調和機を示す概略構成図
【図4】同実施例による制御を示すフローチャート
【図5】他の実施例による空気調和機を示す概略構成図
【図6】他の実施例による空気調和機の風向変更装置の動作を示す概略図
【図7】他の実施例による空気調和機を示す構成図
【符号の説明】
1 圧縮機
2 四方弁
3 ガス側接続管
4、41 利用側熱交換器
5 液側接続管
6 膨張弁
7、42 熱源側熱交換器
8、43 利用側送風ファン
9 風向変更装置
10、44 熱源側送風ファン
11 インバータ回路
12 電流検出器
13 圧縮機周波数制御器
14 高圧検知器
15 第一膨張弁開度制御器
16 吹出温度検知器
17 利用側ファン風量制御器
24 吐出温度検知器
25 第二膨張弁開度制御器
30 冷媒貯蔵タンク
31 バイパス回路
32 電磁弁
A 室内機
B 室外機
C 筐体

Claims (7)

  1. 少なくとも圧縮機、四方弁、熱源側熱交換器、膨張弁、利用側熱交換器を配管接続し冷媒流路を形成した空気調和機において、高温風吹出暖房運転時に前記利用側熱交換器の冷媒圧力を、冷媒の臨界圧力以上とすることを特徴とする空気調和機。
  2. 前記圧縮機を駆動するインバータ回路の前記圧縮機への入力電流を検知する電流検出器と、前記電流検出器により検知された電流値に応じて、前記圧縮機の駆動周波数を制御する圧縮機周波数制御器と、前記圧縮機と前記膨張弁の間で、かつ、前記利用側熱交換器を含む側の冷媒流路のいずれかの位置での冷媒圧力を検知する高圧検知器と、前記高圧検知器により検知された圧力に応じて、前記膨張弁の開度を制御する第一膨張弁開度制御器と、前記利用側熱交換器から送風される吹出空気温度を検知する吹出温度検知器と、前記吹出温度検知器により検知された吹出空気温度に応じて、前記利用側熱交換器の送風ファンの風量を制御する利用側ファン風量制御器とを備えたことを特徴とする請求項1に記載の空気調和機。
  3. 前記圧縮機を駆動するインバータ回路の前記圧縮機への入力電流を検知する電流検出器と、前記電流検出器により検知された電流値に応じて、前記圧縮機の駆動周波数を制御する圧縮機周波数制御器と、前記圧縮機の吐出温度を検知する吐出温度検知器と、前記吐出温度検知器により検知された吐出温度に応じて、前記膨張弁の開度を制御する第二膨張弁開度制御器と、前記利用側熱交換器から送風される吹出空気温度を検知する吹出温度検知器と、前記吹出温度検知器により検知された吹出空気温度に応じて、前記利用側熱交換器の送風ファンの風量を制御する利用側ファン風量制御器とを備えたことを特徴とする請求項1に記載の空気調和機。
  4. 高温風吹出暖房運転時に前記四方弁をバイパスする回路を備えたことを特徴とする請求項1に記載の空気調和機。
  5. 高温風吹出暖房運転時の冷媒量を調節する冷媒貯蔵タンクを備えたことを特徴とする請求項1に記載の空気調和機。
  6. 高温風吹出暖房運転時に吹出口の開口面積を低減させることを特徴とする請求項1に記載の空気調和機。
  7. 前記利用側熱交換器と前記熱源側熱交換器が同一の筐体に納められた一体型空気調和機であることを特徴とする請求項1に記載の空気調和機。
JP2003197573A 2003-07-16 2003-07-16 空気調和機 Pending JP2005037003A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197573A JP2005037003A (ja) 2003-07-16 2003-07-16 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197573A JP2005037003A (ja) 2003-07-16 2003-07-16 空気調和機

Publications (1)

Publication Number Publication Date
JP2005037003A true JP2005037003A (ja) 2005-02-10

Family

ID=34207660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197573A Pending JP2005037003A (ja) 2003-07-16 2003-07-16 空気調和機

Country Status (1)

Country Link
JP (1) JP2005037003A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157567A (ja) * 2006-12-25 2008-07-10 Hitachi Appliances Inc ヒートポンプ式冷凍装置
CN111578487A (zh) * 2020-05-25 2020-08-25 广东美的制冷设备有限公司 空调室内机的出风方向的控制装置和空调器
CN111845264A (zh) * 2020-07-10 2020-10-30 西安交通大学 基于变参数pi控制器控制的跨临界co2热管理系统及方法
US11441822B2 (en) * 2017-07-31 2022-09-13 Daikin Industries, Ltd. Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157567A (ja) * 2006-12-25 2008-07-10 Hitachi Appliances Inc ヒートポンプ式冷凍装置
US11441822B2 (en) * 2017-07-31 2022-09-13 Daikin Industries, Ltd. Air conditioner
CN111578487A (zh) * 2020-05-25 2020-08-25 广东美的制冷设备有限公司 空调室内机的出风方向的控制装置和空调器
CN111578487B (zh) * 2020-05-25 2022-06-03 广东美的制冷设备有限公司 空调室内机的出风方向的控制装置和空调器
CN111845264A (zh) * 2020-07-10 2020-10-30 西安交通大学 基于变参数pi控制器控制的跨临界co2热管理系统及方法
CN111845264B (zh) * 2020-07-10 2022-02-11 西安交通大学 基于变参数pi控制器控制的跨临界co2热管理系统及方法

Similar Documents

Publication Publication Date Title
JP2019074222A (ja) 冷凍装置
JP3708536B1 (ja) 冷凍サイクル装置およびその制御方法
JP4849095B2 (ja) 空気調和装置
JP2002228281A (ja) 空気調和機
JP2009229012A (ja) 冷凍装置
JP4475655B2 (ja) 空気調和機
JP2007163071A (ja) ヒートポンプ式冷暖房装置
WO2008069265A1 (ja) 空気調和装置
JP4830399B2 (ja) 空気調和装置
US6808119B2 (en) Heat pump air conditioning system comprising additional heater and method for operating the same
JP2006194526A (ja) 空気調和装置
JP5517891B2 (ja) 空気調和装置
KR20070030072A (ko) 냉난방 겸용 에어컨의 제상운전 제어방법
JP2005037003A (ja) 空気調和機
JP4074422B2 (ja) 空調機とその制御方法
JP2005016881A (ja) 空気調和装置
JP7467827B2 (ja) 空気調和機
JP2002005536A (ja) ヒートポンプサイクル
JP4288979B2 (ja) 空気調和装置、及び空気調和装置の運転制御方法
JP2012076589A (ja) 車両用空調装置
JP2008209021A (ja) マルチ型空気調和装置
JP4774858B2 (ja) 空気調和装置
KR100441008B1 (ko) 냉난방 공기조화시스템
JP2007051840A (ja) 空気調和装置
JP7496938B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060529

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Effective date: 20090427

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714