JP2005036815A - Silicon carbide low friction sliding material and its manufacturing method - Google Patents

Silicon carbide low friction sliding material and its manufacturing method Download PDF

Info

Publication number
JP2005036815A
JP2005036815A JP2003196881A JP2003196881A JP2005036815A JP 2005036815 A JP2005036815 A JP 2005036815A JP 2003196881 A JP2003196881 A JP 2003196881A JP 2003196881 A JP2003196881 A JP 2003196881A JP 2005036815 A JP2005036815 A JP 2005036815A
Authority
JP
Japan
Prior art keywords
silicon carbide
low friction
sliding material
carbide
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003196881A
Other languages
Japanese (ja)
Other versions
JP4178236B2 (en
Inventor
Yu Shu
游 周
Kiyoshi Hirao
喜代司 平尾
Yukihiko Yamauchi
幸彦 山内
Shuzo Kanzaki
修三 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003196881A priority Critical patent/JP4178236B2/en
Publication of JP2005036815A publication Critical patent/JP2005036815A/en
Application granted granted Critical
Publication of JP4178236B2 publication Critical patent/JP4178236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon carbide low friction sliding material capable of stably maintaining low coefficient of friction of 0.2 or less in a dry environment without causing change with age and having excellent mechanical characteristic. <P>SOLUTION: This material is a silicon carbide-carbon composite material capable of stably maintaining low coefficient of friction without causing change with age by developing silicon carbide particles like a plate. Sintering assist agent of 1.5 to 10.0 wt. % produced by mixing aluminum carbide and boron carbide at the optimum molar ratio of 2 to 1 and graphite of 5 to 20 wt. % are added to the silicon carbide and are sintered in the inactive atmosphere to obtain the silicon carbide low friction sliding material in which silicon carbide particles develop like a plate and which has strength of 500 MPa or more, fracture toughness of 4 MPam<SP>1/2</SP>or more, and coefficient of friction of 0.2 or less and can stably maintain low coefficient of friction without causing change of coefficient of friction with age. Its manufacturing method and a sliding member for a machine using this material are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炭化ケイ素質低摩擦摺動材料に関するものであり、更に詳しくは、機械用摺動部材として用いられる、高い強度、高い靭性、低い固体摩擦係数を合わせ持つ炭化ケイ素−炭素複合材料、その製造方法及び該複合材料を用いた機械用摺動部材に関するものである。本発明は、近年、金属材料では適用が困難な条件下での摺動材料として注目されている構造用セラミックスの分野において、従来、摺動開始後に摩擦係数が経時的に変化し、安定性に欠けるという問題があった炭化ケイ素−炭素複合材料について、それらの問題点を抜本的に改善した、新規な炭化ケイ素質低摩擦摺動材料を提供するものである。本発明は、従来技術では作製することが難しかった、0.2以下の低摩擦係数を安定して発現し、かつ構造材料としての高い強度と靭性を同時に有する炭化ケイ素質低摩擦摺動材料を提供するものとして有用である。
【0002】
【従来の技術】
一般に、構造用セラミックスは、金属と比べて高い硬度、耐熱性、化学的安定性を持つことから、金属材料では適用が困難な条件下での摺動材料として適用することが検討されてきた。構造用セラミックスのなかでも、特に、炭化ケイ素セラミックスは、高い硬度、耐食性、耐熱性をバランスよく兼ね備えており、例えば、液体搬送ポンプ用のメカニカルシ−ル材料、軸受け材料などとして一部実用化されている。しかし、炭化ケイ素セラミックスは、自己潤滑性に乏しく、気体や蒸気のドライ環境下で用いた場合、摩擦係数が増加してしまい、摺動相手材や自身の摩耗、損傷あるいは摺動面に焼き付きを生じる場合がある。また、炭化ケイ素セラミックスは、過負荷での始動、停止時あるいは熱水の流入など一時的にドライ環境となる場合も、同様な損傷を招く恐れがある。
【0003】
このため、例えば、ドライ環境下での潤滑性を向上させるべく炭化ケイ素に自己潤滑性に優れたグラファイトを分散させた複合材料の開発が行われてきた。この場合、それらの複合化技術には、(1)樹脂をセラミックス中に混合し、複合体を仮焼することによりグラファイト化する手法、及び(2)直接グラファイト粉末をセラミックス粉末と混合し、焼結する手法、という大きく分けて二種類の方法がある。
これらの方法のうち、先ず、前者の方法に関しては、例えば、先行技術文献(特許文献1及び2)において、炭化ケイ素原料粉末と焼結助剤に、炭素源としてのフラン樹脂、フェノ−ル樹脂、コ−ルタ−ルピッチなどを添加した混合粉末を、仮焼して樹脂を炭素に転換した後、高温で焼結することにより炭化ケイ素−炭素複合セラミックスとする方法が開示されている。更に、他の先行技術文献(特許文献3)には、炭化ケイ素原料粉末に炭素源としての樹脂と炭化ケイ素の前駆体樹脂とを同時に加え、成形体となし、仮焼、焼結することにより高い破壊靭性と低摩擦係数を実現させた炭化ケイ素質セラミックスの製造方法が開示されている。
【0004】
しかし、これらの方法においては、炭素源に主として有機樹脂を用いているので、仮焼時にタ−ルや有害ガスが発生するため、これらを取り除く専用焼結炉が必要であるという欠点を有する。更に、これらの方法では、加熱処理温度を炭化ケイ素の焼結温度以下に抑える必要があることから、炭素中のグラファイト構造含有率が低くなり、得られた複合体の摩擦係数は、これらの文献に記載されている実施例から見ると、前者の先行技術文献(特許文献1及び2)において0.28〜0.55、後者の先行技術文献(特許文献3)において0.26〜3.0であり、いずれの場合も0.2以下の摩擦係数を実現することは困難であった。
【0005】
一方、後者の方法に関しては、例えば、先行技術文献(特許文献4)において、炭化ケイ素原料粉末に60〜250メッシュのグラファイト粉末を10〜30容量%添加し、焼結する方法が開示されている。しかし、グラファイトの添加量とともに摩擦係数は0.2以下にまで小さくなるものの、多量のグラファイトの添加が必要であり、しかも摩擦係数の低下に伴ない著しい強度低下をもたらすという欠点があった。このような問題に対処するために、例えば、先行技術文献(特許文献5)には、20μm以下の粒径を有するグラファイト粒子をエマルジョン液とし、炭化ケイ素粉末に対し、グラファイト換算で3〜20重量%添加して焼結体を作製する方法が開示されている。この方法で得られた複合体は、0.2以下の摩擦係数と550MPa以上の高強度が実現されているが、経時的な安定性に欠けるという問題があった。これは、炭化ケイ素にグラファイトを単純に添加したのでは、後記する比較例4において示すように、グラファイトが効果的に摺動面に供給されず、摺動時間(又は距離)の増加に伴ない固体潤滑材が一時的に枯渇した状況となり、再び潤滑材が摺動面に供給されるまで一時的に摩擦係数が上昇するためであると考えられる。一般に、グラファイトは、高い固体潤滑性を有することが知られている。しかしながら、単純にグラファイトを炭化ケイ素に分散させたのでは、グラファイトが効果的に摺動面に供給されないので、摩擦係数が低下するのに時間を要し、また、一旦摩擦係数が低くなっても、摺動時間の増加につれ再び摩擦係数が増加する現象が生起し、問題となる。
【0006】
【特許文献1】
特開平6−206771号公報
【特許文献2】
特開平11−171648号公報
【特許文献3】
特開2002−255651号公報
【特許文献4】
特開昭63−260861号公報
【特許文献5】
特開平10−203871号公報
【0007】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、上記従来技術に鑑みて、低摩擦係数、高い強度及び靭性を同時に有する炭化ケイ素−炭素複合材料を開発することを目標として鋭意研究を進めた結果、炭化ケイ素の粒子が等軸状であると炭化ケイ素−炭素複合材料の摩擦係数は安定せず、一方、炭化ケイ素を板状に発達させることにより炭化ケイ素−炭素複合材料は安定して低い摩擦係数を維持できることを見出し、本発明に至った。
即ち、本発明は、0.2以下の低摩擦係数を安定して発現し、かつ構造材料としての高い強度と靭性を同時に有する炭化ケイ素質セラミック摺動材料及びその製造方法を提供することを目的とするものである。更に、本発明は、該炭化ケイ素質セラミック摺動材料を構造要素として含む機械用摺動部材を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)炭化ケイ素粒子を板状に発達させて、低い摩擦係数を経時変化なく安定して維持できるようにした炭化ケイ素−炭素複合材料であって、
(a)グラファイトの含有量が5〜20重量%の範囲にある、
(b)炭化ケイ素粒子が板状の形を有している、
(c)強度が500MPa以上、破壊靭性が4MPam1/2以上である、
(d)摩擦係数が0.2以下であり、摩擦係数の経時変化がなく低摩擦係数を安定して維持するものである、
ことを特徴とする炭化ケイ素質低摩擦摺動材料。
(2)前記(1)に記載の炭化ケイ素質低摩擦摺動材料を製造する方法であって、炭化ケイ素粉末に、炭化アルミニウムと炭化ホウ素とがモル比で2:1を最適とする割合で混合された非酸化物系焼結助剤1.5〜10.0重量%及び固体潤滑材としての粒径20μm以下のグラファイト粒子5〜20重量%を添加した混合粉末を、不活性雰囲気下で焼結することにより、炭化ケイ素粒子を板状に発達させることを特徴とする、炭化ケイ素質低摩擦摺動材料の製造方法。
(3)炭化アルミニウムと炭化ホウ素とのモル比が1:1〜4:1である、前記(2)に記載の炭化ケイ素質低摩擦摺動材料の製造方法。
(4)炭化ケイ素の結晶型が、β型である、前記(2)に記載の炭化ケイ素質低摩擦摺動材料の製造方法。
(5)不活性雰囲気下で1800℃〜2100℃の温度で焼結する、前記(2)に記載の炭化ケイ素質低摩擦摺動材料の製造方法。
(6)前記(1)に記載の炭化ケイ素質低摩擦摺動材料を構成要素として含むことを特徴とする機械用摺動部材。
【0009】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。本発明においては、炭化ケイ素を板状に発達させるために、炭化ケイ素粉末に、炭化アルミニウムと炭化ホウ素とがモル比で2:1を最適とする割合で混合された非酸化物系焼結助剤1.5〜10.0重量%及び固体潤滑材としての粒径20μm以下のグラファイト粒子5〜20重量%を添加する。この組成は、焼結時1800℃付近で液相を生成し、焼結を促進するとともに、いわゆる溶解・再析出により炭化ケイ素粒子を板状に発達させる役割を持つ。このとき、添加した板状グラファイト近傍の炭化ケイ素はグラファイトに沿った形で板状に発達するので、摺動時にグラファイト粒子は容易にヘキ開し、摺動面へ効果的にグラファイトを供給する。同時に、板状の炭化ケイ素粒子は、キ裂偏向や架橋効果によりクラックの進展を阻害するので靭性の向上に寄与する。
本発明において使用される炭化ケイ素粉末は、板状粒子を効果的に発現させるために、平均粒径3ミクロン以下、好ましくは1ミクロン以下の微粉末である。
また、炭化ケイ素の結晶型は、α型、β型どちらでも良いが、好ましくは板状化をより促進するために、β型粉末を用いることが望ましい。
【0010】
本発明においては、上記の炭化ケイ素粉末に、焼結助剤と固体潤滑材としてのグラファイトを添加する。焼結助剤はモル比で2:1を最適とする炭化アルミニウムと炭化ホウ素との混合物を1.5〜10.0重量%添加する。この場合、1.5重量%以下では、焼結温度を高めても緻密な焼結体を製造することができず、一方、10.0重量%以上では、焼結密度が高い焼結体を得ることはできるが、炭化ケイ素結晶粒界を埋める非晶質粒界相が増加するために、製造された焼結体の耐摩耗性が低下する。炭化アルミニウム及び炭化ホウ素からなる非酸化物系焼結助剤は、一般に試薬として販売されている炭化アルミニウム及び炭化ホウ素のそれぞれの高純度、微細粉末を所定量混合することによって調製することができる。
炭化アルミニウムと炭化ホウ素とのモル比は、2:1とすると、緻密化が容易であるとともに、炭化ケイ素粒子の板状化も促進されことから最適であるが、該モル比は、1:1〜4:1の範囲で変動させることができる。炭化アルミニウムの割合がそれよりも多くなると異常粒子成長が生じ、著しい機械特性の低下をもたらす傾向が現れ、また、炭化アルミニウムの割合がそれよりも少なくなると、焼結時に生成する液相の量が少なくなり、充分に緻密な焼結体を得ることが難しくなる傾向が現れる。しかし、両者の比は、2:1から大幅に離れなければ、それ程注意をしなくともよい。
【0011】
プロセス時の安定性を考えると、焼結助剤は、炭化アルミニウムと炭化ホウ素の組み合わせが好ましいが、アルミニウム、ホウ素、炭素の単体を上記の組成となるように調整することも可能である。
また、添加するグラファイトの量は5〜20重量%が好ましく、この範囲より少ないと十分な潤滑効果が得られず、一方、この範囲より多いと緻密化が困難となり焼結体の強度低下をもたらす。更に、グラファイトの粒子径は、20ミクロン以下の微細粒子が好ましく、これ以上の大きさであると焼結体の強度低下をもたらす。
【0012】
本発明では、上記の割合で秤量された炭化ケイ素粉末、非酸化物焼結助剤粉末、グラファイト粉末をポットミルなどを用いて混合する。混合は乾式、湿式何れの方法でも良いが、湿式の場合、原料粉末の酸化を防ぐために、メタノ−ル、エタノ−ル、トルエンなどの非水溶媒中で行うことが好ましい。溶媒を除去し、成形した後、不活性雰囲気中1800℃〜2100℃の温度で焼結を行う。1800℃以下の焼結では十分な緻密化を行うことができず、一方、2100℃以上の高温で焼結を行うと異常粒成長が生じ、焼結体の強度が著しく低下する。なお、十分な緻密化を行うためには、ホットプレスなど外部から負荷をかけながら焼結することが好ましい。
【0013】
本発明は、炭化ケイ素微粉末に、焼結助剤として炭化アルミニウムと炭化ホウ素とがモル比で2:1を最適とする割合で混合された非酸化物系焼結助剤を1.5から10.0重量%添加し、更に、固体潤滑材として粒径20μm以下のグラファイト粒子を5〜20重量%添加した混合粉末を、成形し、不活性雰囲気で焼結し、板状に発達した炭化ケイ素マトリックス粒子中にグラファイトを分散させた構造をとすることで、高い強度、高い破壊靭性、安定した低摩擦係数を同時に合わせ持つ炭化ケイ素質セラミックスを製造することを可能とするものである。本発明により、500MPa以上の高い強度と4.0MPam1/2以上の高い破壊靭性と0.2以下の低い摩擦係数とを持つ炭化ケイ素質セラミックス材料を提供することができる。
【0014】
【実施例】
次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
実施例1
(1)焼結体の製造
平均粒子径0.3μmのβ型炭化ケイ素粉末に、4.2重量%の炭化アルミニウム(Al)粉末、0.8重量%の炭化ホウ素(BC)粉末及び10重量%のグラファイト粉末(平均粒子径5μm)を添加し、炭化ケイ素ポットと炭化ケイ素ボ−ルを用いてメタノ−ルを溶媒として遊星ミル混合を行った。エバポレ−タで溶媒を除去した後、100メッシュのフルイを通過させた。このようにして得られた混合粉末を黒鉛ダイスに投入し、アルゴン雰囲気中、40MPaの加圧下、1950℃で1時間ホットプレス焼結を行った。得られた焼結体は、添付写真(図1)に示すように、板状に発達した炭化ケイ素中にグラファイト粒子が分散した微構造を有していた。
【0015】
(2)試験方法及び結果
得られた焼結体について、JIS−R1601に基づく4点曲げ強度測定、JIS−R1607に基づく破壊靭性測定を行った。その結果、上記焼結体は、520MPの強度と4.3 MPam1/2の破壊靭性を有していた(表1参照)。
摺動試験は、ボ−ルオンディスク法により行った。焼結体から直径30mm、厚さ5mmのディスク試験片を切り出し、表面を鏡面に研摩した。このようにして作製したディスク試験片と市販の高純度炭化ケイ素ボ−ルを用いて摺動特性を評価した。
静止させた炭化ケイ素ボ−ルに対して回転ディスクを押し付け、押付荷重とトルクを連続的にモニタ−することで摩擦係数の経時変化を記録した。摺動試験は、摺動速度0.18m/s、荷重5N、温度25℃、湿度25%の条件で行った。摺動開始直後0.6程度であった摩擦係数は、極めて短時間に0.2以下に低下し、それ以降、安定して低摩擦係数を維持していた(図2参照)。摩擦係数が安定した後の摩擦係数の平均値は0.15であった。
【0016】
実施例2
実施例1と同じ方法で、グラファイト粉末を増量して20重量%添加した焼結体を作製した。得られた焼結体について、JIS−R1601に基づく4点曲げ強度測定、JIS−R1607に基づく破壊靭性測定を行った。その結果、上記焼結体は、510MPの強度と4.1 MPam1/2の破壊靭性を有していた(表1参照)。また、実施例1と同様な方法で摺動試験を行った結果、摺動開始直後0.6程度であった摩擦係数は、極めて短時間に0.2以下に低下し、それ以降、安定して低摩擦係数を維持していた(図3参照)。摩擦係数が安定した後の摩擦係数の平均値は0.14であった。
【0017】
比較例1及び2
実施例1と同じ方法で、グラファイト粉末を添加しない焼結体及び30重量%添加した焼結体を作製した。グラファイトを添加しない焼結体では、560MPの強度と4.1 MPam1/2の破壊靭性を有していたが、固体潤滑材を含まないため摩擦係数は0.3と高めであった。一方、グラファイトを30重量%添加試料では摩擦係数は0.12まで低下したが、多量のグラファイトを含むため、強度は350MPaまで低下した(表1参照)。
【0018】
比較例3及び4
平均粒子径0.3μmのα型炭化ケイ素粉末に、焼結助剤として0.4重量%の炭化ホウ素(BC)と、2重量%のカ−ボンブラックとを添加し、炭化ケイ素ポットと炭化ケイ素ボ−ルを用いてメタノ−ルを溶媒として遊星ミル混合を行った。エバポレ−タで溶媒を除去した後、100メッシュのフルイを通過させた。このようにして得られた混合粉末を黒鉛ダイスに投入し、アルゴン雰囲気中、40MPaの加圧下、2000℃で1時間ホットプレス焼結を行った(比較例3)。更に、同様な方法でグラファイトを10重量%添加した焼結体も作製した(比較例4)。
いずれの焼結体においても、炭化ケイ素粒子は等軸状であり、粒子径は数ミクロン程度であった。表1に示すように、比較例3の焼結体は破壊靭性が低く、また、摩擦係数は0.72と高かった(図4参照)。比較例4の焼結体においても、摩擦係数は0.36とグラファイトを添加したにも拘わらず大きな改善は見られなかった。この焼結体は、一旦低下した摩擦係数がある段階で上昇し、再び下降するという不安定な挙動を示し(図4参照)、このことが低摩擦係数化を阻害していると考えられる。
【0019】
【表1】

Figure 2005036815
【0020】
【発明の効果】
以上詳述したように、本発明は、炭化ケイ素質低摩擦摺動材料及びその製造方法等に係るものであり、本発明により、(1)従来技術では作製することが難しかった、0.2以下の低摩擦係数を安定して発現する炭化ケイ素−炭素複合体を製造し、提供することができる、(2)添加した板状グラファイト近傍の炭化ケイ素粒子を板状に発達させることにより、低い摩擦係数を安定して維持できる炭化ケイ素−炭素複合体を製造することができる、(3)摺動開始直後に摩擦係数が0.2以下に低下し、それ以降において経時変化を伴うことなく安定して低い摩擦係数を維持し、かつ高い強度と高い靭性を有している炭化ケイ素質低摩擦摺動材料が得られる、(4)液体搬送ポンプ用のメカニカルシ−ル材料、軸受け材料、更には固形物を含む液体搬送ポンプやドライ環境下など過酷な環境下での摺動部材として有用な炭化ケイ素質低摩擦摺動材料が得られる、という効果が奏される。
【図面の簡単な説明】
【図1】図1は、実施例1の焼結体の組織写真(矢印部はグラファイト粒子)である。
【図2】図2は、実施例1の焼結体の、摺動時の摩擦係数の経時変化を示す図である。
【図3】図3は、実施例2の焼結体の、摺動時の摩擦係数の経時変化を示す図である。
【図4】図4は、比較例3及び4の焼結体の、摺動時の摩擦係数の経時変化を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon carbide-based low friction sliding material, and more specifically, a silicon carbide-carbon composite material having high strength, high toughness, and a low solid friction coefficient, used as a sliding member for a machine. The present invention relates to a manufacturing method and a machine sliding member using the composite material. In the field of structural ceramics, which has recently been attracting attention as a sliding material under conditions that are difficult to apply with metallic materials, the friction coefficient has changed over time after the start of sliding, and stability has been improved. It is an object of the present invention to provide a novel silicon carbide-based low-friction sliding material that drastically improves those problems with respect to a silicon carbide-carbon composite material that has a problem of lacking. The present invention is a silicon carbide-based low friction sliding material that stably expresses a low friction coefficient of 0.2 or less, and that has high strength and toughness at the same time as a structural material, which is difficult to produce by the prior art. Useful for providing.
[0002]
[Prior art]
In general, structural ceramics have higher hardness, heat resistance, and chemical stability than metals, and therefore have been studied for application as sliding materials under conditions that are difficult to apply with metal materials. Among structural ceramics, in particular, silicon carbide ceramics have a good balance of high hardness, corrosion resistance, and heat resistance. For example, some are practically used as mechanical seal materials and bearing materials for liquid transfer pumps. ing. However, silicon carbide ceramics have poor self-lubricating properties, and when used in a dry environment of gas or steam, the coefficient of friction increases, and the sliding counterpart material, its own wear, damage or sliding surface is seized. May occur. Further, silicon carbide ceramics may cause similar damage even in a dry environment such as when starting or stopping under overload or when hot water flows in.
[0003]
For this reason, for example, in order to improve the lubricity in a dry environment, a composite material in which graphite having excellent self-lubricating properties is dispersed in silicon carbide has been developed. In this case, these composite technologies include (1) a method of mixing resin in ceramics and calcining the composite, and (2) directly mixing graphite powder with ceramic powders and firing. There are two main types of methods:
Among these methods, first, regarding the former method, for example, in the prior art documents (Patent Documents 1 and 2), a silicon carbide raw material powder and a sintering aid, a furan resin as a carbon source, and a phenol resin. A method is disclosed in which a mixed powder to which a coal pitch is added is calcined to convert the resin into carbon and then sintered at a high temperature to obtain a silicon carbide-carbon composite ceramic. Furthermore, in another prior art document (Patent Document 3), by simultaneously adding a resin as a carbon source and a silicon carbide precursor resin to a silicon carbide raw material powder, forming a molded body, calcining, and sintering. A method for producing silicon carbide ceramics realizing high fracture toughness and a low friction coefficient is disclosed.
[0004]
However, in these methods, since organic resin is mainly used as the carbon source, tar and harmful gas are generated during calcination, so that a dedicated sintering furnace for removing them is necessary. Furthermore, in these methods, it is necessary to keep the heat treatment temperature below the sintering temperature of silicon carbide, so the graphite structure content in the carbon is low, and the friction coefficient of the resulting composite is In the former prior art documents (Patent Documents 1 and 2), 0.28 to 0.55, and in the latter prior art document (Patent Document 3), 0.26 to 3.0. In either case, it was difficult to achieve a friction coefficient of 0.2 or less.
[0005]
On the other hand, with respect to the latter method, for example, in the prior art document (Patent Document 4), a method of adding 60 to 250 volume% of graphite powder of 60 to 250 mesh to silicon carbide raw material powder and sintering is disclosed. . However, although the friction coefficient decreases to 0.2 or less with the addition amount of graphite, there is a drawback that a large amount of graphite needs to be added and that the strength is significantly reduced with the reduction of the friction coefficient. In order to deal with such a problem, for example, in the prior art document (Patent Document 5), graphite particles having a particle size of 20 μm or less are used as an emulsion liquid, and 3 to 20 wt. A method of producing a sintered body by adding% is disclosed. The composite obtained by this method has a friction coefficient of 0.2 or less and a high strength of 550 MPa or more, but has a problem of lacking stability over time. This is because when graphite is simply added to silicon carbide, as shown in Comparative Example 4 to be described later, graphite is not effectively supplied to the sliding surface, and the sliding time (or distance) increases. This is probably because the solid lubricant is temporarily depleted and the friction coefficient temporarily increases until the lubricant is supplied to the sliding surface again. In general, graphite is known to have high solid lubricity. However, if graphite is simply dispersed in silicon carbide, graphite is not effectively supplied to the sliding surface, so it takes time to reduce the friction coefficient, and even if the friction coefficient is once lowered. As the sliding time increases, the friction coefficient increases again, which becomes a problem.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 6-206871 [Patent Document 2]
JP 11-171648 A [Patent Document 3]
JP 2002-255651 A [Patent Document 4]
JP 63-260861 A [Patent Document 5]
Japanese Patent Laid-Open No. 10-203871
[Problems to be solved by the invention]
Under such circumstances, the present inventors have conducted earnest research with the goal of developing a silicon carbide-carbon composite material having a low friction coefficient, high strength and toughness at the same time, in view of the above-described prior art. As a result, the friction coefficient of the silicon carbide-carbon composite material is not stable when the silicon carbide particles are equiaxed, while the silicon carbide-carbon composite material is stably low by developing silicon carbide into a plate shape. The inventors have found that the coefficient of friction can be maintained, and have reached the present invention.
That is, the present invention aims to provide a silicon carbide ceramic sliding material that stably expresses a low friction coefficient of 0.2 or less and has high strength and toughness as a structural material at the same time, and a method for producing the same. It is what. Furthermore, an object of the present invention is to provide a sliding member for a machine containing the silicon carbide ceramic sliding material as a structural element.
[0008]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
(1) A silicon carbide-carbon composite material in which silicon carbide particles are developed in a plate shape so that a low friction coefficient can be stably maintained without change over time,
(A) The graphite content is in the range of 5 to 20% by weight,
(B) the silicon carbide particles have a plate-like shape,
(C) The strength is 500 MPa or more and the fracture toughness is 4 MPam 1/2 or more.
(D) The friction coefficient is 0.2 or less, there is no change over time in the friction coefficient, and the low friction coefficient is stably maintained.
A silicon carbide low friction sliding material characterized by the above.
(2) A method for producing the silicon carbide based low friction sliding material according to (1), wherein the silicon carbide powder has an optimum ratio of aluminum carbide and boron carbide in a molar ratio of 2: 1. A mixed powder to which 1.5 to 10.0% by weight of the mixed non-oxide-based sintering aid and 5 to 20% by weight of graphite particles having a particle size of 20 μm or less as a solid lubricant are added under an inert atmosphere. A method for producing a silicon carbide-based low-friction sliding material, characterized in that silicon carbide particles are developed into a plate shape by sintering.
(3) The method for producing a silicon carbide-based low friction sliding material according to (2), wherein the molar ratio of aluminum carbide to boron carbide is 1: 1 to 4: 1.
(4) The method for producing a silicon carbide-based low friction sliding material according to (2), wherein the crystal type of silicon carbide is β-type.
(5) The method for producing a silicon carbide based low friction sliding material according to (2), wherein sintering is performed at a temperature of 1800 ° C. to 2100 ° C. in an inert atmosphere.
(6) A sliding member for a machine comprising the silicon carbide low friction sliding material according to (1) as a constituent element.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail. In the present invention, in order to develop silicon carbide into a plate shape, non-oxide-based sintering aid in which aluminum carbide and boron carbide are mixed with silicon carbide powder in an optimal ratio of 2: 1 in molar ratio. 1.5 to 10.0% by weight of the agent and 5 to 20% by weight of graphite particles having a particle diameter of 20 μm or less as a solid lubricant are added. This composition has a role of generating a liquid phase at around 1800 ° C. during sintering, promoting sintering, and developing silicon carbide particles into a plate shape by so-called dissolution / reprecipitation. At this time, the added silicon carbide in the vicinity of the plate-like graphite develops into a plate shape along the graphite, so that the graphite particles are easily cleaved during sliding and effectively supply the graphite to the sliding surface. At the same time, the plate-like silicon carbide particles contribute to the improvement of toughness because the crack propagation is inhibited by crack deflection and the crosslinking effect.
The silicon carbide powder used in the present invention is a fine powder having an average particle size of 3 microns or less, preferably 1 micron or less in order to effectively express plate-like particles.
The crystal form of silicon carbide may be either α-type or β-type, but preferably β-type powder is used in order to further promote plate formation.
[0010]
In the present invention, a sintering aid and graphite as a solid lubricant are added to the silicon carbide powder. As the sintering aid, 1.5 to 10.0% by weight of a mixture of aluminum carbide and boron carbide that optimizes a molar ratio of 2: 1 is added. In this case, a dense sintered body cannot be produced at 1.5% by weight or less even if the sintering temperature is increased, while a sintered body having a high sintered density is produced at 10.0% by weight or more. Although it can be obtained, the amorphous grain boundary phase filling the silicon carbide crystal grain boundaries is increased, so that the wear resistance of the manufactured sintered body is lowered. The non-oxide-based sintering aid composed of aluminum carbide and boron carbide can be prepared by mixing predetermined amounts of high purity and fine powders of aluminum carbide and boron carbide, which are generally sold as reagents.
A molar ratio of aluminum carbide to boron carbide of 2: 1 is optimal because it is easy to densify and promotes plate formation of silicon carbide particles, but the molar ratio is 1: 1. It can be varied in the range of ˜4: 1. When the proportion of aluminum carbide is higher than that, abnormal particle growth occurs, which tends to cause a significant decrease in mechanical properties, and when the proportion of aluminum carbide is lower than that, the amount of liquid phase produced during sintering is reduced. There is a tendency that it becomes less and it becomes difficult to obtain a sufficiently dense sintered body. However, as long as the ratio of the two is not significantly different from 2: 1, it is not necessary to pay much attention.
[0011]
Considering the stability during the process, the sintering aid is preferably a combination of aluminum carbide and boron carbide, but it is also possible to adjust the simple substance of aluminum, boron and carbon to have the above composition.
Further, the amount of graphite to be added is preferably 5 to 20% by weight, and if it is less than this range, a sufficient lubricating effect cannot be obtained. On the other hand, if it exceeds this range, densification becomes difficult and the strength of the sintered body is reduced. . Further, the particle size of graphite is preferably fine particles of 20 microns or less, and if it is larger than this, the strength of the sintered body is reduced.
[0012]
In the present invention, silicon carbide powder, non-oxide sintering aid powder, and graphite powder weighed in the above proportion are mixed using a pot mill or the like. Mixing may be either dry or wet, but in the case of wet, it is preferably performed in a non-aqueous solvent such as methanol, ethanol, toluene or the like in order to prevent oxidation of the raw material powder. After removing the solvent and molding, sintering is performed at a temperature of 1800 ° C. to 2100 ° C. in an inert atmosphere. When sintering at 1800 ° C. or lower, sufficient densification cannot be performed. On the other hand, when sintering is performed at a high temperature of 2100 ° C. or higher, abnormal grain growth occurs, and the strength of the sintered body significantly decreases. In order to perform sufficient densification, it is preferable to sinter while applying a load from the outside such as hot pressing.
[0013]
According to the present invention, a non-oxide-based sintering aid is prepared from 1.5 to 1.5 in which aluminum carbide and boron carbide are mixed with silicon carbide fine powder at a ratio that optimizes a molar ratio of 2: 1 as a sintering aid. Carbonized powder that has been added to 10.0% by weight, and further mixed with 5 to 20% by weight of graphite particles having a particle diameter of 20 μm or less as a solid lubricant is molded, sintered in an inert atmosphere, and developed into a plate shape. By adopting a structure in which graphite is dispersed in silicon matrix particles, it is possible to produce silicon carbide ceramics that simultaneously combine high strength, high fracture toughness, and a stable low friction coefficient. According to the present invention, a silicon carbide ceramic material having a high strength of 500 MPa or more, a high fracture toughness of 4.0 MPam 1/2 or more, and a low friction coefficient of 0.2 or less can be provided.
[0014]
【Example】
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
Example 1
(1) Production of sintered body β-type silicon carbide powder having an average particle diameter of 0.3 μm, 4.2 wt% aluminum carbide (Al 4 C 3 ) powder, 0.8 wt% boron carbide (B 4 C) ) Powder and 10 wt% graphite powder (average particle size 5 μm) were added, and planetary mill mixing was performed using methanol as a solvent using a silicon carbide pot and a silicon carbide ball. After removing the solvent with an evaporator, it was passed through a 100 mesh sieve. The mixed powder thus obtained was put into a graphite die and subjected to hot press sintering at 1950 ° C. for 1 hour in an argon atmosphere under a pressure of 40 MPa. As shown in the attached photograph (FIG. 1), the obtained sintered body had a microstructure in which graphite particles were dispersed in silicon carbide developed into a plate shape.
[0015]
(2) The test method and the resulting sintered body were subjected to 4-point bending strength measurement based on JIS-R1601 and fracture toughness measurement based on JIS-R1607. As a result, the sintered body had a strength of 520 MP and a fracture toughness of 4.3 MPam 1/2 (see Table 1).
The sliding test was performed by the ball-on-disk method. A disk specimen having a diameter of 30 mm and a thickness of 5 mm was cut out from the sintered body, and the surface was polished to a mirror surface. The sliding characteristics were evaluated using the disk test piece thus produced and a commercially available high-purity silicon carbide ball.
The rotating disk was pressed against the stationary silicon carbide ball, and the change in friction coefficient with time was recorded by continuously monitoring the pressing load and torque. The sliding test was performed under the conditions of a sliding speed of 0.18 m / s, a load of 5 N, a temperature of 25 ° C., and a humidity of 25%. The friction coefficient, which was about 0.6 immediately after the start of sliding, decreased to 0.2 or less in a very short time, and thereafter, the low friction coefficient was stably maintained (see FIG. 2). The average value of the coefficient of friction after the coefficient of friction was stabilized was 0.15.
[0016]
Example 2
In the same manner as in Example 1, a sintered body was prepared by adding 20% by weight of graphite powder. About the obtained sintered compact, the 4-point bending strength measurement based on JIS-R1601 and the fracture toughness measurement based on JIS-R1607 were performed. As a result, the sintered body had a strength of 510 MP and a fracture toughness of 4.1 MPam 1/2 (see Table 1). In addition, as a result of performing a sliding test in the same manner as in Example 1, the friction coefficient, which was about 0.6 immediately after the start of sliding, decreased to 0.2 or less in a very short time, and thereafter stabilized. The low friction coefficient was maintained (see FIG. 3). The average value of the coefficient of friction after the coefficient of friction was stabilized was 0.14.
[0017]
Comparative Examples 1 and 2
In the same manner as in Example 1, a sintered body to which no graphite powder was added and a sintered body to which 30 wt% was added were produced. The sintered body to which no graphite was added had a strength of 560 MP and a fracture toughness of 4.1 MPam 1/2 , but the friction coefficient was as high as 0.3 because it did not contain a solid lubricant. On the other hand, in the sample containing 30% by weight of graphite, the friction coefficient decreased to 0.12, but the strength decreased to 350 MPa because of containing a large amount of graphite (see Table 1).
[0018]
Comparative Examples 3 and 4
A silicon carbide pot in which 0.4 wt% boron carbide (B 4 C) and 2 wt% carbon black are added as a sintering aid to α-type silicon carbide powder having an average particle size of 0.3 μm. Planetary mill mixing was performed using methanol and a silicon carbide ball as a solvent. After removing the solvent with an evaporator, it was passed through a 100 mesh sieve. The mixed powder thus obtained was put into a graphite die and subjected to hot press sintering at 2000 ° C. for 1 hour in an argon atmosphere under a pressure of 40 MPa (Comparative Example 3). Further, a sintered body to which 10% by weight of graphite was added by the same method was also produced (Comparative Example 4).
In any of the sintered bodies, the silicon carbide particles were equiaxed and the particle diameter was about several microns. As shown in Table 1, the sintered body of Comparative Example 3 had a low fracture toughness and a high friction coefficient of 0.72 (see FIG. 4). Even in the sintered body of Comparative Example 4, the friction coefficient was 0.36 and no significant improvement was observed despite the addition of graphite. This sintered body shows an unstable behavior in which the friction coefficient once lowered increases at a certain stage and then decreases again (see FIG. 4), and this is considered to inhibit the reduction of the friction coefficient.
[0019]
[Table 1]
Figure 2005036815
[0020]
【The invention's effect】
As described above in detail, the present invention relates to a silicon carbide-based low friction sliding material and a method for producing the same, and according to the present invention, (1) it was difficult to produce by the prior art, 0.2 A silicon carbide-carbon composite that stably expresses the following low friction coefficient can be produced and provided. (2) By developing the silicon carbide particles in the vicinity of the added plate-like graphite into a plate shape, it is low. A silicon carbide-carbon composite capable of stably maintaining a friction coefficient can be manufactured. (3) Immediately after the start of sliding, the friction coefficient decreases to 0.2 or less, and thereafter, stable without change over time. Thus, a silicon carbide-based low-friction sliding material that maintains a low coefficient of friction and has high strength and high toughness can be obtained. (4) Mechanical seal material for liquid conveyance pump, bearing material, Contains solids Useful silicon carbide low friction sliding material as the sliding member in harsh environments such as liquid conveying pump and a dry environment is obtained, the effect is exhibited that.
[Brief description of the drawings]
FIG. 1 is a structural photograph of a sintered body of Example 1 (indicated by arrows are graphite particles).
FIG. 2 is a graph showing a change with time of a friction coefficient during sliding of the sintered body of Example 1. FIG.
FIG. 3 is a view showing a change with time of a friction coefficient during sliding of the sintered body of Example 2. FIG.
FIG. 4 is a diagram showing the change over time in the friction coefficient during sliding of the sintered bodies of Comparative Examples 3 and 4. FIG.

Claims (6)

炭化ケイ素粒子を板状に発達させて、低い摩擦係数を経時変化なく安定して維持できるようにした炭化ケイ素−炭素複合材料であって、
(1)グラファイトの含有量が5〜20重量%の範囲にある、
(2)炭化ケイ素粒子が板状の形を有している、
(3)強度が500MPa以上、破壊靭性が4MPam1/2以上である、
(4)摩擦係数が0.2以下であり、摩擦係数の経時変化がなく低摩擦係数を安定して維持するものである、
ことを特徴とする炭化ケイ素質低摩擦摺動材料。
A silicon carbide-carbon composite material in which silicon carbide particles are developed in a plate shape so that a low friction coefficient can be stably maintained without change over time,
(1) The graphite content is in the range of 5 to 20% by weight,
(2) The silicon carbide particles have a plate-like shape,
(3) The strength is 500 MPa or more and the fracture toughness is 4 MPam 1/2 or more.
(4) The friction coefficient is 0.2 or less, there is no change over time in the friction coefficient, and the low friction coefficient is stably maintained.
A silicon carbide low friction sliding material characterized by the above.
請求項1に記載の炭化ケイ素質低摩擦摺動材料を製造する方法であって、炭化ケイ素粉末に、炭化アルミニウムと炭化ホウ素とがモル比で2:1を最適とする割合で混合された非酸化物系焼結助剤1.5〜10.0重量%及び固体潤滑材としての粒径20μm以下のグラファイト粒子5〜20重量%を添加した混合粉末を、不活性雰囲気下で焼結することにより、炭化ケイ素粒子を板状に発達させることを特徴とする、炭化ケイ素質低摩擦摺動材料の製造方法。A method for producing a silicon carbide-based low friction sliding material according to claim 1, wherein the silicon carbide powder is mixed with aluminum carbide and boron carbide at a ratio that optimizes a molar ratio of 2: 1. Sintering a mixed powder containing 1.5 to 10.0% by weight of an oxide-based sintering aid and 5 to 20% by weight of graphite particles having a particle size of 20 μm or less as a solid lubricant in an inert atmosphere. A method for producing a silicon carbide-based low-friction sliding material, characterized in that silicon carbide particles are developed into a plate shape. 炭化アルミニウムと炭化ホウ素とのモル比が1:1〜4:1である、請求項2に記載の炭化ケイ素質低摩擦摺動材料の製造方法。The method for producing a silicon carbide based low friction sliding material according to claim 2, wherein the molar ratio of aluminum carbide to boron carbide is 1: 1 to 4: 1. 炭化ケイ素の結晶型が、β型である、請求項2に記載の炭化ケイ素質低摩擦摺動材料の製造方法。The method for producing a silicon carbide low-friction sliding material according to claim 2, wherein the crystal type of silicon carbide is β-type. 不活性雰囲気下で1800℃〜2100℃の温度で焼結する、請求項2に記載の炭化ケイ素質低摩擦摺動材料の製造方法。The method for producing a silicon carbide based low friction sliding material according to claim 2, wherein sintering is performed at a temperature of 1800C to 2100C in an inert atmosphere. 請求項1に記載の炭化ケイ素質低摩擦摺動材料を構成要素として含むことを特徴とする機械用摺動部材。A mechanical sliding member comprising the silicon carbide-based low friction sliding material according to claim 1 as a constituent element.
JP2003196881A 2003-07-15 2003-07-15 Silicon carbide-based low friction sliding material and manufacturing method thereof Expired - Lifetime JP4178236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196881A JP4178236B2 (en) 2003-07-15 2003-07-15 Silicon carbide-based low friction sliding material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196881A JP4178236B2 (en) 2003-07-15 2003-07-15 Silicon carbide-based low friction sliding material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005036815A true JP2005036815A (en) 2005-02-10
JP4178236B2 JP4178236B2 (en) 2008-11-12

Family

ID=34207184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196881A Expired - Lifetime JP4178236B2 (en) 2003-07-15 2003-07-15 Silicon carbide-based low friction sliding material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4178236B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108774065A (en) * 2018-06-19 2018-11-09 中国科学院上海硅酸盐研究所 A kind of SiC/MCMBs composite material and preparation methods and application
CN113526960A (en) * 2021-07-20 2021-10-22 宁波东联密封件有限公司 Silicon carbide ceramic and hot isostatic pressing sintering process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108774065A (en) * 2018-06-19 2018-11-09 中国科学院上海硅酸盐研究所 A kind of SiC/MCMBs composite material and preparation methods and application
CN108774065B (en) * 2018-06-19 2021-03-16 中国科学院上海硅酸盐研究所 SiC/MCMBs composite material and preparation method and application thereof
CN113526960A (en) * 2021-07-20 2021-10-22 宁波东联密封件有限公司 Silicon carbide ceramic and hot isostatic pressing sintering process thereof

Also Published As

Publication number Publication date
JP4178236B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
Chamberlain et al. Low‐temperature densification of zirconium diboride ceramics by reactive hot pressing
KR101160140B1 (en) Manufacturing method of zirconium diboride-silicon carbide composite
US20070270302A1 (en) Pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
JP5692845B2 (en) Highly rigid ceramic material and manufacturing method thereof
Rangaraj et al. Low-temperature processing of ZrB 2-ZrC composites by reactive hot pressing
WO2006038489A1 (en) Conductive silicon nitride material and process for producing the same
Liang et al. Highly dense amorphous Si2BC3N monoliths with excellent mechanical properties prepared by high pressure sintering
Sciti et al. Spark plasma sintering of ultra refractory compounds
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP4178236B2 (en) Silicon carbide-based low friction sliding material and manufacturing method thereof
Paul et al. Effect of addition of silicon on the microstructures and bending strength of continuous porous SiC–Si3N4 composites
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
JP2851717B2 (en) Sliding member
JPH1143372A (en) Silicon nitride-based ceramic and its production
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
JP5170612B2 (en) Conductive silicon nitride sintered body and manufacturing method thereof
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JP4565954B2 (en) Conductive silicon nitride material and manufacturing method thereof
JP2902796B2 (en) Ceramic composite sintered body and sliding member using the same
JP2801785B2 (en) Manufacturing method of ceramic composite sintered body
JP2738596B2 (en) Ceramic composite sintered body and its manufacturing method
JP2652938B2 (en) Titanium carbide-carbon composite ceramic fired body and manufacturing method
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
JP2006193353A (en) Alumina sintered body, cutting insert, and cutting tool
JP2006290709A (en) Silicon nitride material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4178236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term