JP2005036302A5 - Rare earth-containing alloy manufacturing method, rare earth-containing alloy, rare earth-containing alloy powder manufacturing method, rare earth-containing alloy powder, rare earth-containing alloy sintered body manufacturing method, rare earth-containing alloy sintered body, magnetostrictive element, magnetostrictive material, magnetic refrigeration operation Material, magnetostrictive sensor, and magnetostrictive vibrator - Google Patents

Rare earth-containing alloy manufacturing method, rare earth-containing alloy, rare earth-containing alloy powder manufacturing method, rare earth-containing alloy powder, rare earth-containing alloy sintered body manufacturing method, rare earth-containing alloy sintered body, magnetostrictive element, magnetostrictive material, magnetic refrigeration operation Material, magnetostrictive sensor, and magnetostrictive vibrator Download PDF

Info

Publication number
JP2005036302A5
JP2005036302A5 JP2003349682A JP2003349682A JP2005036302A5 JP 2005036302 A5 JP2005036302 A5 JP 2005036302A5 JP 2003349682 A JP2003349682 A JP 2003349682A JP 2003349682 A JP2003349682 A JP 2003349682A JP 2005036302 A5 JP2005036302 A5 JP 2005036302A5
Authority
JP
Japan
Prior art keywords
rare earth
containing alloy
magnetostrictive
producing
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003349682A
Other languages
Japanese (ja)
Other versions
JP2005036302A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2003349682A priority Critical patent/JP2005036302A/en
Priority claimed from JP2003349682A external-priority patent/JP2005036302A/en
Publication of JP2005036302A publication Critical patent/JP2005036302A/en
Publication of JP2005036302A5 publication Critical patent/JP2005036302A5/en
Pending legal-status Critical Current

Links

Description

本発明は、希土類含有合金(以下「RE−含有合金」と呼ぶ)の製造方法、RE−含有合金、RE−含有合金粉末の製造方法、RE−含有合金粉末、RE−含有合金焼結体の製造方法、RE−含有合金焼結体、磁歪素子、磁歪材料、磁気冷凍作業物質、磁歪センサー、及び磁歪振動子に係り、特に、磁歪素子あるいは磁気冷凍作業物質等として好適に用いられるNaZn13型RE−含有合金を製造する技術に関するものである。 The present invention relates to a method for producing a rare earth-containing alloy (hereinafter referred to as “RE-containing alloy”), an RE-containing alloy, a method for producing an RE-containing alloy powder, an RE-containing alloy powder, and an RE-containing alloy sintered body. manufacturing method, RE- containing alloy sintered body, the magnetostrictive element, the magnetostrictive material, a magnetic refrigeration working substance, a magnetostrictive sensor, and relates to a magnetostrictive transducer, particularly, NaZn 13 type which is suitably used as a magnetostrictive element or magnetic refrigeration working substance such as The present invention relates to a technique for producing an RE-containing alloy.

そこで本発明はかかる事情に鑑みてなされたものであり、長時間の熱処理工程を必要とすることなく効率良くNaZn13型RE−含有合金を製造することが可能な技術、および該技術により得られるNaZn13型RE−含有合金、並びに該NaZn13型RE−含有合金を用いて得られる磁歪素子、磁歪材料、磁気冷凍作業物質、磁歪センサー、及び磁歪振動子を提供することを目的とする。 Therefore, the present invention has been made in view of such circumstances, and a technique capable of efficiently producing a NaZn 13 type RE-containing alloy without requiring a long heat treatment step, and obtained by the technique. An object is to provide a NaZn 13 type RE-containing alloy, and a magnetostrictive element , a magnetostrictive material, a magnetic refrigeration material , a magnetostrictive sensor, and a magnetostrictive vibrator obtained by using the NaZn 13 type RE-containing alloy.

本発明者は上記課題を解決するべく検討を行った結果、以下のRE−含有合金の製造方法、RE−含有合金、RE−含有合金粉末の製造方法、RE−含有合金粉末、RE−含有合金焼結体の製造方法、RE−含有合金焼結体、磁歪素子、磁歪材料、磁気冷凍作業物質、磁歪センサー、及び磁歪振動子を発明するに到った。 As a result of studies conducted by the present inventor to solve the above problems, the following RE-containing alloy manufacturing method, RE-containing alloy, RE-containing alloy powder manufacturing method, RE-containing alloy powder, and RE-containing alloy are described below. It came to invent the manufacturing method of a sintered compact, RE-containing alloy sintered compact, a magnetostrictive element, a magnetostrictive material, a magnetic freezing working substance , a magnetostrictive sensor, and a magnetostrictive vibrator .

(10) 一般式R(T1−x13−y(但し、RはLa、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Tm、Yb、Gd及びLuから選択される少なくとも1種、TはFe、Co、Ni、Mn、Pt及びPdから選択される少なくとも1種、AはAl、As、Si、Ga、Ge、Mn、Sn及びSbから選択される少なくとも1種、0.05≦x≦0.2、−1≦y≦1)で表される希土類含有合金において、
NaZn13相の存在比率が90vol%以上であることを特徴とする希土類含有合金。
(11) 項(8)から項(10)までのいずれか1項に記載の希土類含有合金を用いて製造されたことを特徴とする磁歪素子。
(12) 項(8)から項(10)までのいずれか1項に記載の希土類含有合金を用いて製造されたことを特徴とする磁気冷凍作業物質。
本発明の磁歪素子および磁気冷凍作業物質は、いずれも上記の本発明の第2のRE−含有合金(NaZn13型RE−含有合金)を用いて製造されたことを特徴とするものである。
(10) General formula R (T 1-x A x ) 13-y (where R is selected from La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Tm, Yb, Gd and Lu) At least one selected from the group consisting of Fe, Co, Ni, Mn, Pt and Pd, and A selected from at least one selected from Al, As, Si, Ga, Ge, Mn, Sn and Sb. , 0.05 ≦ x ≦ 0.2, −1 ≦ y ≦ 1)
A rare earth-containing alloy characterized in that the abundance ratio of NaZn 13 phase is 90 vol% or more.
(11) A magnetostrictive element manufactured using the rare earth-containing alloy according to any one of items (8) to (10).
(12) A magnetic refrigeration work material produced using the rare earth-containing alloy according to any one of items (8) to (10).
Both the magnetostrictive element and the magnetic refrigeration work material of the present invention are characterized by being manufactured using the above-described second RE-containing alloy (NaZn 13 type RE-containing alloy) of the present invention.

(16) 項(15)に記載の希土類含有合金粉末に水素を吸蔵させてキュリー温度を制御してなることを特徴とする磁気冷凍作業物質。
(17) 項(14)に記載の希土類含有合金粉末の製造方法により得られた希土類含有合金粉末を、成形し、焼結することを特徴とする希土類含有合金焼結体の製造方法。
(18) 前記焼結を1200℃〜1400℃の温度で行うことを特徴とする項(17)に記載の希土類含有合金焼結体の製造方法。
(19) 前記希土類含有合金粉末を焼結後、水素雰囲気中で200℃〜300℃の温度で保持し、焼結体に水素を吸蔵させることを特徴とする項(17)または(18)に記載の希土類含有合金焼結体の製造方法。
(20) 項(15)に記載の希土類含有合金粉末を、成形、焼結してなることを特徴する希土類含有合金焼結体。
(21) 項(20)の希土類含有合金焼結体に水素を吸蔵させてキュリー温度を制御したことを特徴とする磁歪材料。
(22) 項(20)の希土類含有合金焼結体に水素を吸蔵させてキュリー温度を制御したことを特徴とする磁気冷凍作業物質。
(23) 項(8)から項(10)又は項(13)のいずれか1項に記載の希土類含有合金を用いた磁歪センサー。
(24) 項(8)から項(10)又は項(13)のいずれか1項に記載の希土類含有合金を用いた磁歪振動子。
(16) A magnetic refrigeration working material, wherein the rare earth-containing alloy powder according to item (15) is occluded with hydrogen to control the Curie temperature.
(17) A method for producing a rare earth-containing alloy sintered body, wherein the rare earth-containing alloy powder obtained by the method for producing a rare earth-containing alloy powder according to item (14) is molded and sintered.
(18) The method for producing a rare earth-containing alloy sintered body according to item (17), wherein the sintering is performed at a temperature of 1200 ° C to 1400 ° C.
(19) In the item (17) or (18), the rare earth-containing alloy powder is sintered and then held in a hydrogen atmosphere at a temperature of 200 ° C. to 300 ° C., and the sintered body is made to occlude hydrogen. The manufacturing method of the rare earth containing alloy sintered compact of description.
(20) A rare earth-containing alloy sintered body obtained by molding and sintering the rare earth-containing alloy powder according to item (15).
(21) A magnetostrictive material, wherein the rare earth-containing alloy sintered body according to item (20) is occluded with hydrogen to control the Curie temperature.
(22) A magnetic refrigeration working material, characterized in that hydrogen is occluded in the rare earth-containing alloy sintered body according to item (20) to control the Curie temperature.
(23) A magnetostrictive sensor using the rare earth-containing alloy according to any one of items (8) to (10) or (13).
(24) A magnetostrictive vibrator using the rare earth-containing alloy according to any one of items (8) to (10) or (13).

以上詳述したように、本発明によれば、長時間の熱処理工程を必要とすることなく効率良くNaZn13型RE−含有合金を製造することが可能な技術、および該技術により得られるNaZn13型RE−含有合金、並びに該NaZn13型RE−含有合金を用いて得られる磁歪素子、磁歪材料、磁気冷凍作業物質、磁歪センサー、及び磁歪振動子を提供することができる。 As described above in detail, according to the present invention, a technique capable of efficiently producing a NaZn 13 type RE-containing alloy without requiring a long heat treatment step, and NaZn 13 obtained by the technique. A magnetoresistive element , a magnetostrictive material, a magnetic refrigeration material , a magnetostrictive sensor, and a magnetostrictive vibrator obtained using the type RE-containing alloy and the NaZn 13 type RE-containing alloy can be provided.

Claims (24)

一般式R(T1−x13−y(但し、RはLa、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Tm、Yb、Gd及びLuから選択される少なくとも1種、TはFe、Co、Ni、Mn、Pt及びPdから選択される少なくとも1種、AはAl、As、Si、Ga、Ge、Mn、Sn及びSbから選択される少なくとも1種、0.05≦x≦0.2、−1≦y≦1)で表される希土類含有合金の製造方法において、
合金原料を1200〜1800℃の温度で溶解する溶解工程と、該工程により得られた溶湯を急冷凝固し、希土類含有合金を生成する凝固工程とを有すると共に、
前記凝固工程における冷却速度を、少なくとも溶湯の温度から900℃までの範囲内では10〜10℃/秒とすることを特徴とする希土類含有合金の製造方法。
Formula R (T 1-x A x ) 13-y ( provided that at least 1 R is the La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Tm, Yb, are selected from Gd and Lu Species, T is at least one selected from Fe, Co, Ni, Mn, Pt and Pd, A is at least one selected from Al, As, Si, Ga, Ge, Mn, Sn and Sb; In the method for producing a rare earth-containing alloy represented by 05 ≦ x ≦ 0.2 and −1 ≦ y ≦ 1)
A melting step of melting the alloy raw material at a temperature of 1200 to 1800 ° C., and a solidification step of rapidly solidifying the molten metal obtained by the step to generate a rare earth-containing alloy,
A method for producing a rare earth-containing alloy, wherein the cooling rate in the solidification step is 10 2 to 10 4 ° C / second at least in the range from the temperature of the molten metal to 900 ° C.
前記溶解工程において、合金原料を0.1〜0.2MPaの圧力の不活性ガス雰囲気中で溶解することを特徴とする請求項1に記載の希土類含有合金の製造方法。   2. The method for producing a rare earth-containing alloy according to claim 1, wherein in the melting step, the alloy raw material is melted in an inert gas atmosphere having a pressure of 0.1 to 0.2 MPa. 前記凝固工程において、ストリップキャスト法、新遠心鋳造法、遠心鋳造法のうちいずれかの方法により、溶湯を急冷凝固することを特徴とする請求項1又は請求項2に記載の希土類含有合金の製造方法。   The rare earth-containing alloy according to claim 1 or 2, wherein in the solidification step, the molten metal is rapidly solidified by any one of a strip casting method, a new centrifugal casting method, and a centrifugal casting method. Method. 前記凝固工程において、ストリップキャスト法により溶湯を急冷凝固すると共に、該工程後に得られる薄片の厚さを0.1〜2.0mmとすることを特徴とする請求項3に記載の希土類含有合金の製造方法。   4. The rare earth-containing alloy according to claim 3, wherein in the solidification step, the molten metal is rapidly solidified by a strip casting method, and the thickness of the flakes obtained after the step is 0.1 to 2.0 mm. Production method. 前記凝固工程により得られた希土類含有合金を、900〜1200℃の温度で熱処理し、NaZn13相を生成させる熱処理工程をさらに有することを特徴とする請求項1から請求項4までのいずれか1項に記載の希土類含有合金の製造方法。 5. The method according to claim 1, further comprising a heat treatment step of heat-treating the rare earth-containing alloy obtained by the solidification step at a temperature of 900 to 1200 ° C. to generate a NaZn 13 phase. A method for producing the rare earth-containing alloy according to item. 前記熱処理工程において、熱処理時間を1分〜200時間とすることを特徴とする請求項5に記載の希土類含有合金の製造方法。   6. The method for producing a rare earth-containing alloy according to claim 5, wherein the heat treatment time is 1 minute to 200 hours. 前記熱処理工程において、熱処理温度を1080℃〜1200℃とし、熱処理時間を3〜42時間とする請求項6に記載の希土類含有合金の製造方法。   7. The method for producing a rare earth-containing alloy according to claim 6, wherein in the heat treatment step, a heat treatment temperature is 1080 ° C. to 1200 ° C. and a heat treatment time is 3 to 42 hours. 請求項1から請求項4までのいずれか1項に記載の希土類含有合金の製造方法により製造されたことを特徴とする希土類含有合金。   A rare earth-containing alloy produced by the method for producing a rare earth-containing alloy according to any one of claims 1 to 4. 一般式R(T1−x13−y(但し、RはLa、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Tm、Yb、Gd及びLuから選択される少なくとも1種、TはFe、Co、Ni、Mn、Pt及びPdから選択される少なくとも1種、AはAl、As、Si、Ga、Ge、Mn、Sn及びSbから選択される少なくとも1種、0.05≦x≦0.2、−1≦y≦1)で表される希土類含有合金において、
希土類金属Rの含有量が相対的に多いR−rich相と、希土類金属Rの含有量が相対的に少ないR−poor相とが、0.01〜100μmの間隔で分散していることを特徴とする希土類含有合金。
Formula R (T 1-x A x ) 13-y ( provided that at least 1 R is the La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Tm, Yb, are selected from Gd and Lu Species, T is at least one selected from Fe, Co, Ni, Mn, Pt and Pd, A is at least one selected from Al, As, Si, Ga, Ge, Mn, Sn and Sb; In the rare earth-containing alloy represented by 05 ≦ x ≦ 0.2 and −1 ≦ y ≦ 1)
The R-rich phase having a relatively high content of rare earth metal R and the R-poor phase having a relatively low content of rare earth metal R are dispersed at an interval of 0.01 to 100 μm. A rare earth-containing alloy.
一般式R(T1−x13−y(但し、RはLa、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Tm、Yb、Gd及びLuから選択される少なくとも1種、TはFe、Co、Ni、Mn、Pt及びPdから選択される少なくとも1種、AはAl、As、Si、Ga、Ge、Mn、Sn及びSbから選択される少なくとも1種、0.05≦x≦0.2、−1≦y≦1)で表される希土類含有合金において、
NaZn13相の存在比率が90vol%以上であることを特徴とする希土類含有合金。
Formula R (T 1-x A x ) 13-y ( provided that at least 1 R is the La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Tm, Yb, are selected from Gd and Lu Species, T is at least one selected from Fe, Co, Ni, Mn, Pt and Pd, A is at least one selected from Al, As, Si, Ga, Ge, Mn, Sn and Sb; In the rare earth-containing alloy represented by 05 ≦ x ≦ 0.2 and −1 ≦ y ≦ 1)
A rare earth-containing alloy characterized in that the abundance ratio of NaZn 13 phase is 90 vol% or more.
請求項8から請求項10までのいずれか1項に記載の希土類含有合金を用いて製造されたことを特徴とする磁歪素子。 A magnetostrictive element manufactured using the rare earth-containing alloy according to any one of claims 8 to 10. 請求項8から請求項10までのいずれか1項に記載の希土類含有合金を用いて製造されたことを特徴とする磁気冷凍作業物質。 A magnetic refrigeration working material manufactured using the rare earth-containing alloy according to any one of claims 8 to 10. (但し、RはLa、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Tm、Yb、Gd及びLuのうちから選択される少なくとも一種の希土類元素、TはFeを必須とし、任意にその一部がCo、Ni、Mn、Pt及びPdのうちから選択される少なくとも一種の元素で置換されている遷移金属元素、AはAl、As、Si、Ga、Ge、Mn、Sn及びSbのうちから選択される少なくとも一種の元素であり、組成比を示すr、t、aは5.0原子%≦r≦6.8原子%、73.8原子%≦t≦88.7原子%、4.6原子%≦a≦19.4原子%である。)なる組成式で示される合金であって、該合金は組織中に85質量%以上のNaZn13型の結晶構造と5質量%以上15質量%以下のα−Feとを含有してなる希土類含有合金。 R r T t A a (where R is La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Tm, Yb, Gd, and Lu, and T is A transition metal element in which Fe is essential and a part thereof is optionally substituted with at least one element selected from Co, Ni, Mn, Pt and Pd, A is Al, As, Si, Ga, Ge , Mn, Sn and Sb are at least one element selected from the group consisting of r, t, and a indicating a composition ratio of 5.0 atomic% ≦ r ≦ 6.8 atomic%, 73.8 atomic% ≦ t ≦ 88.7 atomic%, 4.6 atomic% ≦ a ≦ 19.4 atomic%)), which is an alloy of NaZn 13 type with 85 mass% or more in the structure. Containing 5% by mass to 15% by mass of α-Fe with a crystal structure. The rare earth-containing alloy. 請求項13に記載の希土類合金を機械的手段によって平均粒径0.1μm〜1.0mmの粉末に粉砕することを特徴とする希土類含有合金粉末の製造方法。   A method for producing a rare earth-containing alloy powder, wherein the rare earth alloy according to claim 13 is pulverized into a powder having an average particle size of 0.1 μm to 1.0 mm by mechanical means. 請求項13に記載の希土類含有合金からなり、平均粒径0.1〜1.0mmであることを特徴とする希土類合金粉末。   A rare earth alloy powder comprising the rare earth-containing alloy according to claim 13 and having an average particle size of 0.1 to 1.0 mm. 請求項15に記載の希土類含有合金粉末に水素を吸蔵させてキュリー温度を制御してなることを特徴とする磁気冷凍作業物質。   A magnetic refrigeration working material obtained by storing hydrogen in the rare earth-containing alloy powder according to claim 15 and controlling a Curie temperature. 請求項14に記載の希土類含有合金粉末の製造方法により得られた希土類含有合金粉末を、成形し、焼結することを特徴とする希土類含有合金焼結体の製造方法。   A method for producing a rare earth-containing alloy sintered body, wherein the rare earth-containing alloy powder obtained by the method for producing a rare earth-containing alloy powder according to claim 14 is molded and sintered. 前記焼結を1200℃〜1400℃の温度で行うことを特徴とする請求項17に記載の希土類含有合金焼結体の製造方法。   The method for producing a rare earth-containing alloy sintered body according to claim 17, wherein the sintering is performed at a temperature of 1200 ° C to 1400 ° C. 前記希土類含有合金粉末を焼結後、水素雰囲気中で200℃〜300℃の温度で保持し、焼結体に水素を吸蔵させることを特徴とする請求項17または18に記載の希土類含有合金焼結体の製造方法。   The rare earth-containing alloy powder according to claim 17 or 18, wherein after sintering the rare earth-containing alloy powder, the sintered body is held at a temperature of 200 ° C to 300 ° C, and hydrogen is occluded in the sintered body. A method for producing a knot. 請求項15に記載の希土類含有合金粉末を、成形、焼結してなることを特徴する希土類含有合金焼結体。   A rare earth-containing alloy sintered body obtained by molding and sintering the rare earth-containing alloy powder according to claim 15. 請求項20の希土類含有合金焼結体に水素を吸蔵させてキュリー温度を制御したことを特徴とする磁歪材料。   A magnetostrictive material, wherein the rare earth-containing alloy sintered body according to claim 20 stores hydrogen and controls the Curie temperature. 請求項20の希土類含有合金焼結体に水素を吸蔵させてキュリー温度を制御したことを特徴とする磁気冷凍作業物質。   21. A magnetic refrigeration working material, wherein the rare earth-containing alloy sintered body of claim 20 stores hydrogen and controls the Curie temperature. 請求項8から請求項10又は請求項13のいずれか1項に記載の希土類含有合金を用いた磁歪センサー。A magnetostrictive sensor using the rare earth-containing alloy according to any one of claims 8 to 10 or claim 13. 請求項8から請求項10又は請求項13のいずれか1項に記載の希土類含有合金を用いた磁歪振動子。A magnetostrictive vibrator using the rare earth-containing alloy according to any one of claims 8 to 10 or claim 13.
JP2003349682A 2002-10-25 2003-10-08 Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance Pending JP2005036302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349682A JP2005036302A (en) 2002-10-25 2003-10-08 Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002311213 2002-10-25
JP2003181364 2003-06-25
JP2003349682A JP2005036302A (en) 2002-10-25 2003-10-08 Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance

Publications (2)

Publication Number Publication Date
JP2005036302A JP2005036302A (en) 2005-02-10
JP2005036302A5 true JP2005036302A5 (en) 2006-11-09

Family

ID=34222096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349682A Pending JP2005036302A (en) 2002-10-25 2003-10-08 Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance

Country Status (1)

Country Link
JP (1) JP2005036302A (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4413804B2 (en) 2005-03-24 2010-02-10 株式会社東芝 Magnetic refrigeration material and manufacturing method thereof
US7578892B2 (en) 2005-03-31 2009-08-25 Hitachi Metals, Ltd. Magnetic alloy material and method of making the magnetic alloy material
JP5157076B2 (en) * 2005-04-01 2013-03-06 日立金属株式会社 Method for producing sintered body of magnetic alloy
KR101076937B1 (en) * 2007-02-12 2011-10-26 바쿰슈멜체 게엠베하 운트 코. 카게 Article for magnetic heat exchange and method of manufacturing the same
KR101088535B1 (en) 2007-02-12 2011-12-05 바쿰슈멜체 게엠베하 운트 코. 카게 Article for magnetic heat exchange and method of manufacturing the same
JP2009068077A (en) * 2007-09-13 2009-04-02 Tohoku Univ Alloy material, magnetic material, method for manufacturing magnetic material, and magnetic material manufactured by the method
WO2009090442A1 (en) 2007-12-27 2009-07-23 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
JP2009249729A (en) * 2008-04-10 2009-10-29 Showa Denko Kk R-t-b-base alloy, process for producing r-t-b-base alloy, fine powder for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
US8938872B2 (en) 2008-10-01 2015-01-27 Vacuumschmelze Gmbh & Co. Kg Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
GB2463931B (en) 2008-10-01 2011-01-12 Vacuumschmelze Gmbh & Co Kg Method for producing a magnetic article
DE102008054522B4 (en) * 2008-12-11 2013-11-21 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. A method of coating the surface of a magnetic alloy material and such an alloy material
KR20110040792A (en) * 2009-05-06 2011-04-20 바쿰슈멜체 게엠베하 운트 코. 카게 Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
US9895748B2 (en) 2009-10-14 2018-02-20 Vacuumschmelze & Gmbh & Co. Kg Article for magnetic heat exchange and method of manufacturing the same
GB2482880B (en) 2010-08-18 2014-01-29 Vacuumschmelze Gmbh & Co Kg An article for magnetic heat exchange and a method of fabricating a working component for magnetic heat exchange
JP5565394B2 (en) * 2011-09-14 2014-08-06 株式会社デンソー Magnetic refrigeration material and method for producing magnetic refrigeration material
JP5782981B2 (en) * 2011-10-13 2015-09-24 株式会社デンソー Method for producing hydrogen absorbing magnetic refrigeration material
JP5716629B2 (en) * 2011-10-17 2015-05-13 株式会社デンソー Manufacturing method of microchannel heat exchanger using magnetic refrigeration material and microchannel heat exchanger
FR2988206B1 (en) * 2012-03-16 2014-05-02 Erasteel METHOD OF MANUFACTURING A MAGNETOCALORIC ELEMENT, AND MAGNETOCALORIC MEMBER THUS OBTAINED
CN110942878B (en) * 2019-12-24 2021-03-26 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246342A (en) * 1988-03-29 1989-10-02 Daido Steel Co Ltd Supermagnetostrictive material and its manufacture
JP3411663B2 (en) * 1994-03-18 2003-06-03 住友特殊金属株式会社 Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
JP3466481B2 (en) * 1998-07-31 2003-11-10 和明 深道 Giant magnetostrictive material
JP2002064009A (en) * 2000-08-22 2002-02-28 Sumitomo Special Metals Co Ltd Iron-based rare earth alloy magnet and method of manufacturing the same
JP3967572B2 (en) * 2001-09-21 2007-08-29 株式会社東芝 Magnetic refrigeration material
JP3630164B2 (en) * 2002-08-21 2005-03-16 株式会社Neomax Magnetic alloy material and method for producing the same

Similar Documents

Publication Publication Date Title
JP2005036302A5 (en) Rare earth-containing alloy manufacturing method, rare earth-containing alloy, rare earth-containing alloy powder manufacturing method, rare earth-containing alloy powder, rare earth-containing alloy sintered body manufacturing method, rare earth-containing alloy sintered body, magnetostrictive element, magnetostrictive material, magnetic refrigeration operation Material, magnetostrictive sensor, and magnetostrictive vibrator
JP4481949B2 (en) Magnetic material for magnetic refrigeration
CN103098155B (en) The manufacture method of rare earth element magnet
TWI402359B (en) Fe-si-la alloy having excellent magnetocaloric properties
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
JP2005527989A5 (en)
JPH0582041B2 (en)
JP2004100043A (en) Magnetic alloy material and its production method
JP2005036302A (en) Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance
CN100394521C (en) Forming method in magnetic field, and method for producing rare-earth sintered magnet
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2012216807A (en) Method for manufacturing r-t-b-based permanent magnet
CN102308343A (en) Method for production of Ndfebga magnet and Ndfebga magnet material
JP2000348919A (en) Nanocomposite crystalline sintered magnet and manufacture of the same
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH1171646A (en) Speaker
JPH09316565A (en) Green compact of hard magnetic alloy and its production
JPS63238215A (en) Production of anisotropic magnetic material
JP2005113270A (en) Magnetic alloy material, and method for manufacturing the same
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JP5373834B2 (en) Rare earth magnet and manufacturing method thereof
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance