JP2005030872A - Magnetic body quantity detector - Google Patents

Magnetic body quantity detector Download PDF

Info

Publication number
JP2005030872A
JP2005030872A JP2003195307A JP2003195307A JP2005030872A JP 2005030872 A JP2005030872 A JP 2005030872A JP 2003195307 A JP2003195307 A JP 2003195307A JP 2003195307 A JP2003195307 A JP 2003195307A JP 2005030872 A JP2005030872 A JP 2005030872A
Authority
JP
Japan
Prior art keywords
magnetic
detection element
voltage
detection
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003195307A
Other languages
Japanese (ja)
Inventor
Masao Kohama
政夫 小浜
Masashi Suzuki
將史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003195307A priority Critical patent/JP2005030872A/en
Publication of JP2005030872A publication Critical patent/JP2005030872A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic body quantity detector for accurately detecting a magnetic body quantity included in a magnetic ink on paper sheets. <P>SOLUTION: This magnetic body quantity detector is provided with first and second magnetoresistive elements 4 and 5 disposed so as not to overlap with each other for detecting magneto-resistance of a magnetic body 8 formed on a conveyed medium 7 under detection, and a permanent magnet 6 for giving vertical and horizontal magnetic force to the first and second magnetoresistive elements 4 and 5, respectively. A DC voltage is impressed on the first and second magnetoresistive elements 4 and 5, and a difference between their output signals is used to obtain the body quantity of the magnetic body 8 formed in the medium 7 under detection. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、紙葉類等の印刷に使用するインクに含まれる微量の磁性体量に比例した信号を検出する磁性体量検出装置に関する。
【0002】
【従来の技術】
例えば、紙幣や有価証券類の偽造防止策として、磁気インクによる印刷を施したものや、用紙に細長い帯状の磁性体を漉き込んだものを使用して、流通段階でこれらの磁気インクや帯状の磁性体を検知することにより真偽判定を行うことは広く知られている。
【0003】
そして、その真偽判定装置に用いられる紙葉類の磁性体を検出する磁気ヘッドには、差動巻線型トランス方式や、直流励磁方式や、インピーダンス方式などがある。
【0004】
この内、差動巻線型トランス方式は、S字型のコアの中央部に1字巻線を設け、微小な間隙に設定した2ヵ所の開口部側のそれぞれに2次巻線を巻いて、一方の開口部上に近接して紙葉類を通過させ、2つの2次巻線による誘導電圧の差を検出する方式である(例えば、特許文献1参照。)。
【0005】
また、直流励磁方式は、1次巻線と2次巻線を設けた環状コアの一部に微小な間隙を設けて1次巻線に直流電流を印加し、その間隙上を磁性体が通過する際の環状コア内の磁束変化を2次巻線の誘起電圧から検知する方式である。
【0006】
さらに、インピーダンス方式は、環状コアの一部に微小な間隙を設けて、その間隙上を磁性体が通過する際の環状コア内の磁束の変化をコアに巻いた巻線のインピーダンス変化として交流ブリッジ回路で検出する方式である。また、磁気抵抗素子に永久磁石により磁界のバイアスをかけ、磁性体の接近有無による磁界の変化を抵抗値の変化として検知する方法がある。
【0007】
さらに、磁気抵抗素子方式では、温度ドリフトの影響を減らすため同一平面上に2個の磁気抵抗素子を並べ、2個の素子間の磁界強度差を信号として出力する構造である。
【0008】
【特許文献1】
特公昭62−36540号公報(第5頁、図1)
【0009】
【発明が解決しようとする課題】
従来の磁性体検知方式では、磁性体の量に比例した信号を検出するものとして交流励磁電流方式による差動巻線型トランス方式が主に用いられているが、コアと巻線が複雑で磁気ヘッドの価格が高くなる欠点があった。
【0010】
また、直流電圧を印加して磁性体を検知する磁気抵抗素子を用いた方式は、信号の検出回路が単純であるが、検知対象により生じる検出信号が磁界分布の空間差分によるものである。従って、均一な濃度の磁性体が印刷された紙葉類が磁気検出器上にあると磁界分布に差が無く磁気信号が出力されないなど、正確な磁気信号が得られないため、測定精度が劣る欠点がある。
【0011】
そこでこの発明は、上記欠点を解決するためになされたもので、磁気抵抗素子による検知方式の空間差分法を改良して、単純な直流電圧の印加で磁性体量に比例した信号を検知できる、安価な磁性体量検出装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は上記目的を達成するために、請求項1記載の発明は、概略同一平面上に隣接して互いに重ならないように配置され、搬送される被検出媒体に形成される磁性体の磁性体量を検出する第1の磁気検出素子および第2の磁気検出素子と、前記第1の磁気検出素子に垂直磁力を与え、前記第2の磁気検出素子に水平磁力を与える永久磁石と、前記第1の磁気検出素子および第2の磁気検出素子に直流電圧を印加し、その出力信号の差から前記磁性体の磁性体量を求める信号処理手段とを具備することを特徴とする。
【0013】
【発明の実施の形態】
(第1の実施の形態)
以下、本発明に係る磁性体量検出装置の第1の実施の形態を、図1乃至図5を参照して説明する。
【0014】
図1は、本発明に係る磁性体量検出装置の第1の実施の形態の構成図である。図1(A)は平面図で、図1(B)は磁気インクが印刷された紙葉類が通過するときの図1(A)のA−A側面断面図である。図において、磁性体量検出装置は、検出部1と、この検出部1で検出した磁気信号出力を処理するプリント配線基板50とで構成される。
【0015】
上記検出部1は、非磁性材からなるケース2と、基板3と、第1の磁気検出素子である磁気抵抗素子4及び第2の磁気検出素子である磁気抵抗素子5と、永久磁石6などで構成される。
【0016】
上記基板3は、所定の位置に凹凸の窪みを有し、この窪みに磁気抵抗素子4、5を接着固定して構成され、ケース2に接着固定して配置される。
【0017】
また、上記永久磁石6は、基板3を挟んで磁気抵抗素子4にバイアス磁界を与えるように配置され、磁気抵抗素子5には磁気抵抗素子4とは異なる磁界を与えるように配置する。すなわち、永久磁石6から基板3を介して磁気抵抗素子4と磁気抵抗素子5に与えられるバイアス磁界が不平衡になるように、例えば、磁気抵抗素子4には垂直な磁界が加わり、磁気抵抗素子5には水平な磁界が加わるように、磁気抵抗素子4の下部(対向位置)に少なくとも永久磁石6の一部が配置される。
【0018】
磁性体量検出装置のプリント配線基板50は、基板3と接続されて、磁気抵抗素子4、5を付勢し、この磁気抵抗素子4、5から出力された磁気信号を検出するための信号処理回路を有する。
【0019】
次に、以上のように構成された磁性体量検出装置の動作を説明する。図1(B)に示す被検出媒体7は、磁気インク8が印刷された紙葉類で、検出部1に対して図示矢印A方向に搬送される。本発明では、上述したように磁気抵抗素子4、5にバイアス磁界を不平衡に与えている。
【0020】
図2は、永久磁石6からのバイアス磁界の状態を示す。永久磁石6による磁力線には、磁気抵抗素子4に対して垂直に貫通する磁力線91と、磁気抵抗素子5に対して水平方向に貫通する磁力線92が存在する。
【0021】
磁気抵抗素子4、5は、基板3の取り付け面に対して垂直方向の磁力線91には磁気抵抗値の変化する感度が高く、水平方向の磁力線92には磁気抵抗値の変化する感度が低い。従って、図1(B)に示す検出部1の検出面2a上を紙葉類7が図示矢印A方向に移動して磁性インク8が磁気抵抗素子4、5上に到達すると、磁気抵抗素子5では磁力線92が示すように水平方向にあるため磁気インク8により磁界強度が変化しても磁気抵抗値の変化は小さく、磁気抵抗素子4では磁力線91が磁気抵抗素子4に垂直であるため磁界の変化に対して感度よく磁気抵抗値が大きく変化する。その結果、磁気抵抗素子4のみが磁気インク8による磁界の変化に反応する。
【0022】
次に、検出部1で検出した磁気信号出力を処理するプリント配線基板50の動作を説明する。
【0023】
図3は、磁気抵抗素子4、5の磁気抵抗値の変化を電気信号として検出する検出回路の具体例である。この検出回路は、磁気抵抗素子4、5の抵抗値の変化を検出するブリッジ回路20と、このブリッジ回路20に電源を供給するための直流定電圧電源26と、ブリッジ回路20から出力される電圧変化を増幅するための差動増幅器24と、増幅器25とで構成される。
【0024】
上記ブリッジ回路20は、第1の磁気検出素子である磁気抵抗素子4と固定抵抗器22が直列接続され、その接続点から差動増幅器24の一方に電圧が出力される第1の磁気センサ部と、第2の磁気検出素子である磁気抵抗素子5と固定抵抗器23が直列接続され、その接続点から差動増幅器24の他方に電圧が出力される第2の磁気センサ部と、これら第1の磁気センサ部と第2の磁気センサ部の間にブリッジ回路20のバランスを調整するための可変抵抗器21を配置して構成される。
【0025】
また、上記直流定電圧電源26は、ブリッジ回路20を構成する可変抵抗器21の可変接続端子に直流電圧を供給して付勢するものである。そして、直流定電圧電源26からの直流電圧は、固定抵抗器22と磁気抵抗素子4とに分圧された値と、固定抵抗器23と磁気抵抗素子5とに分圧された値として、差動増幅器24に供給される。この差動増幅器24によって検出した磁気抵抗素子4、5の抵抗値の変化に応じた磁気信号は、増幅回路25を介してさらに増幅されて電気信号として出力される。
【0026】
ここで、ブリッジ回路20の調整方法を説明する。先ず、被検出媒体7の磁気インク8などの磁性体が検出部1の検出面2aにない状態で、差動増幅器24の出力が極力小さくなるように可変抵抗器21の抵抗値を設定する。このとき、磁気抵抗素子4と固定抵抗器22とが直列接続された接続点の電圧と、磁気抵抗素子5と固定抵抗器23とが直列接続された接続点の電圧が同じほぼ同じ値に設定される。
【0027】
次に、被検出媒体7の磁気インク8が検出部1の検出面2a上に到達すると磁気抵抗素子4の磁気抵抗値が大きくなるため、ブリッジ回路20のバランス電圧が変化して差動増幅器24の出力電圧が変化し、増幅器25から電気信号として出力される。
【0028】
(検出回路の他の実施の形態)
図4は、磁気抵抗素子4、5の磁気抵抗値の変化を電気信号として検出する検出回路の他の実施の形態である。この図4の実施の形態の各部について、図3の各部と同一部分は同一符号で示し、その説明を省略する。
【0029】
この検出回路は、図3に示す実施の形態とブリッジ回路の構成が異なる。以下にブリッジ回路30の構成を説明する。
【0030】
ブリッジ回路30は、第1の磁気検出素子である磁気抵抗素子4と第2の磁気検出素子である磁気抵抗素子5を直列に接続し、その接続点から差動増幅器24の一方に電圧が出力される磁気センサ部と、固定抵抗器34と固定抵抗器33とブリッジ回路30のバランスを調整するための可変抵抗器32とを直列に接続し、その固定抵抗器33、34間の接続点から差動増幅器24の他方に電圧が出力される抵抗器部とを並列に接続して構成される。そして、直流定電圧電源26によってこの接続点からブリッジ回路30を付勢する直流電圧が付与される。
【0031】
次に、図4の検出回路の動作を説明する。先ず、被検出媒体7の磁気インク8などの磁性体が検出部1の検出面2aにない状態で、差動増幅器24の出力電圧が極力小さくなるように可変抵抗器32の抵抗値を設定する。このとき、磁気抵抗素子4、5を直列に接続した接続点の電圧と固定抵抗器33、34の接続点の電圧が同じほぼ同じ値に設定される。
【0032】
次に、被検出媒体7の磁気インク8が検出部1の検出面2a上に到達すると、磁気抵抗素子4の磁気抵抗値が大きくなるため、ブリッジ回路30のバランス電圧が変化して差動増幅器24の出力電圧が変化し、増幅器25から電気信号として出力される。
【0033】
次に、温度ドリフトの説明を行う。磁気抵抗素子4、5にかかるバイアス磁界の強度差によって磁気抵抗素子4、5の磁気抵抗値の差が発生する。この磁気抵抗値の差は、前述した可変抵抗器32によって補正されるが、周囲温度に変化があると、磁気抵抗素子4、5の磁気抵抗値も変化し、検出回路の出力変動となって現れる。このように、周囲温度の変化に伴って現れる出力変動を温度ドリフトという。
【0034】
一般に、被検出媒体の磁性体の体積が大きい場合や比透磁率が大きい場合は、検出信号が大きいため温度ドリフトの影響は小さい。
【0035】
一方、本発明の磁性体量検出装置が検出媒体とする被検出媒体7などの紙葉類に印刷された磁気インク8による検出信号は小さい場合が多く、差動増幅器24のゲインを大きくする必要があり、必然的に検出信号に対する温度ドリフトの割合が大きくなる。また、紙葉類の磁性体検知をする場合には紙葉類を所定の速度で搬送しながら行うため、検出信号はパルス状の波形となり、このパルス波形に周波数の低い温度ドリフトが加わることになる。
【0036】
次に、この温度ドリフトの影響を除く検出回路の実施の形態を図5に示す。この検出回路は、ブリッジ回路20又は30で検出した磁気信号の変化分を増幅する差動増幅器40と、この差動増幅器40の磁気出力信号の低域をカットする低域カットフィルタ増幅器41と、この低域カットフィルタ増幅器41の磁気出力信号を整流する整流回路42と、この整流回路42の出力信号を平滑する高域カットフィルタ増幅器43とで構成される。
【0037】
そして、上記低域カットフィルタ増幅器41は、遮断周波数を検出信号に影響が小さい周波数に設定して温度ドリフトによる電圧変動を除去する。
【0038】
また、整流回路42は、低域カットフィルタ増幅器41から出力される正又は負の磁気検出信号を同一極性にする。
【0039】
また、高域カットフィルタ増幅器43は、整流回路42の出力信号を平滑して所定電圧の直流信号にする。
【0040】
検出回路20又は30で検出した磁気信号は、磁気量に比例するから、低周波域を除去して整流した磁気信号波形も磁気量に比例する。このような構成にすることによって、温度ドリフトの影響を軽減した磁性体量検出装置を提供することが可能である。
【0041】
(第2の実施の形態)
図6は、本発明に係る磁性体量検出装置の第2の実施の形態の構成図である。この第2の実施の形態の各部について、図1の各部と同一部分は同一符号で示し、その説明を省略する。
【0042】
図6(A)は磁性体量検出装置の第2の実施の形態の平面図で、図6(B)は図6(A)のA−A側面断面図である。なお、図3乃至図5に示す検出回路は、この実施の形態においても同様に使用することができるが既に説明しているためその説明を省略する。
【0043】
第2の実施の形態の磁性体量検出装置は、図1に示す第1の実施の形態の永久磁石6の搬送方向上流に永久磁石11を更に追加して構成される。なお、永久磁石6、11は、異なる極性同士が隣接して配置されるために吸着した状態にあり、その接合面は磁気抵抗素子5の下部になるように配置される。つまり、永久磁石6は磁気抵抗素子4の全幅と磁気抵抗素子5の一部の幅の下部(対向位置)に基板3を介して配置され、永久磁石11は磁気抵抗素子5の残りの幅の下部(対向位置)に基板3を介して配置される。
【0044】
この結果、磁気抵抗素子5のバイアス磁界は図7の磁力線122のように永久磁石6、11の接合面の狭い範囲で水平方向になる。また、永久磁石6は、磁気抵抗素子4を十分覆う幅を持たせてバイアス磁界が磁力線121のように磁気抵抗素子4を垂直に通るように配置される。このような構成で、被検出媒体7の磁気インク8が検出部10の検出面2a上に到達すると、磁気抵抗素子4の磁気抵抗値が更に大きくなるため、確実にバイアス磁界の方向を分離することができる。
【0045】
この第2の実施の形態の構成によって、磁気抵抗素子4は垂直な磁界が与えられ、磁気抵抗素子5は水平な磁界が安定して与えられる。この結果、図1に示す第1の実施の形態に比べて更に安定した磁性体量検出装置となる。
【0046】
(第2の実施の形態の変形例)
第2の実施の形態では、永久磁石11を永久磁石6の搬送方向上流に配置したが、永久磁石11を永久磁石6の搬送方向下流の対称位置に配置しても、同様の効果がえられ、本発明の機能及び性能は変わらない。
【0047】
また、本発明では、第1の実施の形態及び第2の実施の形態共、磁気検出素子として磁気抵抗素子を用いて説明したが、ホール素子を用いても同様の効果を得ることができるので以下にその構成を説明する。
【0048】
磁気検出素子としてホール素子を使用した場合、検出部の構成は、図1、図2、図6及び図7の磁気抵抗素子4、5に代えてホール素子を配置する。例えば、磁気抵抗素子4に代えてホール素子51を配置し、磁気抵抗素子5に代えてホール素子52を配置すると、ホール素子51は磁力線が垂直に通るため磁力線の変化に感度が高く、ホール素子52は磁力線が水平に通るため磁力線の変化に感度が低い。従って、磁気抵抗素子と同じように磁性体による磁界の変化を検知することが可能となる。
【0049】
次に、図8を参照してホール素子を用いた磁性体量検出回路の構成及び動作を説明する。図8において、直流電源部59は、定電圧電源又は低電流電源で、ホール素子51、52の各一方の電源端子51a、52aに接続される。また、これらホール素子51、52の各他方の電源端子51b、52bは接地される。このようにして、ホール素子51、52は付勢される。
【0050】
差動増幅器53は、ホール素子51の出力端子51c、51dから出力される磁気信号を検出するための差動増幅器である。同様に、差動増幅器54は、ホール素子52の出力端子52c、52dから出力される磁気信号を検出するための差動増幅器である。
【0051】
差動増幅器55は、差動増幅器53、54の出力、すなわちホール素子51、52から出力される信号の差をとって温度によるドリフトを消去する。
【0052】
差動増幅器56は、差動増幅器55の出力信号を増幅する。この際、差動増幅器56の入力に直流電圧が含まれる場合に、この差動増幅器56の出力信号57が動作範囲を超えて振り切れることがある。これを防止するため可変抵抗器58を通して調整した直流電圧を差動増幅器56の一方の端子に加えて差動増幅器56の入力に含まれる直流電圧から差し引き信号のみを取り出す。このようにすればホール素子51、52により磁性体量を検知することができる。また、信号の低周波成分を除くために出力信号57を図5の回路に入力しても良い。
【0053】
【発明の効果】
本発明によれば、磁気抵抗素子により磁性体量に比例した信号を検出することのできる差動型磁気ヘッドを必要としない磁性体量検出装置を提供できる。
【図面の簡単な説明】
【図1】本発明に係る磁性体量検出装置の第1の実施の形態の構成図。
【図2】第1の実施の形態の検出部のバイアス磁界の状態を示す図。
【図3】本発明に係る磁性体量検出装置に適用される検出回路の構成図。
【図4】本発明に係る磁性体量検出装置に適用される他の検出回路の構成図。
【図5】本発明に係る磁性体量検出装置に適用される温度ドリフトの影響を除くための検出回路の構成図。
【図6】本発明に係る磁性体量検出装置の第2の実施の形態の構成図。
【図7】第2の実施の形態の検出部のバイアス磁界の状態を示す図。
【図8】ホール素子を用いた磁性体量検出回路の構成図。
【符号の説明】
1 検出部
2 ケース
3 基板
4、5 磁気抵抗素子
6、11 永久磁石
7 被検出媒体
8 磁気インク
9、91、121、122 磁力線
20、30 ブリッジ回路
20、22、23、33、34 固定抵抗器
21、32 可変抵抗器
24、40 差動増幅器
25 増幅器
26 定電圧電源
41 低域カットフィルタ増幅器
42 整流回路
43 高域カットフィルタ増幅器
50 プリント配線基板
51、52 ホール素子
53、54、55、56 差動増幅器
57 出力信号
58 可変抵抗器
59 直流電源部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic material amount detection apparatus that detects a signal proportional to a small amount of magnetic material contained in ink used for printing paper sheets or the like.
[0002]
[Prior art]
For example, as a measure to prevent counterfeiting of banknotes and securities, using magnetic ink-printed or paper with a strip-shaped magnetic material inserted in paper, these magnetic ink or It is widely known to perform authenticity determination by detecting a magnetic material.
[0003]
Magnetic heads for detecting the magnetic material of paper sheets used in the authenticity determination device include a differential winding type transformer method, a direct current excitation method, and an impedance method.
[0004]
Among these, the differential winding type transformer system has a 1-shaped winding at the center of the S-shaped core, and a secondary winding is wound around each of the two opening portions set in a minute gap, In this method, a paper sheet is passed close to one of the openings, and a difference between induced voltages caused by two secondary windings is detected (see, for example, Patent Document 1).
[0005]
In the DC excitation method, a minute gap is provided in a part of the annular core provided with the primary winding and the secondary winding, a direct current is applied to the primary winding, and the magnetic material passes through the gap. This is a method of detecting a change in magnetic flux in the annular core during the detection from the induced voltage of the secondary winding.
[0006]
Furthermore, the impedance method provides a small gap in a part of the annular core, and changes in the magnetic flux in the annular core when the magnetic material passes through the gap as an impedance change of the winding wound around the core. This is a detection method using a circuit. Further, there is a method in which a magnetic field bias is applied to the magnetoresistive element by a permanent magnet, and a change in the magnetic field due to the presence or absence of the magnetic material is detected as a change in resistance value.
[0007]
Further, the magnetoresistive element system has a structure in which two magnetoresistive elements are arranged on the same plane in order to reduce the influence of temperature drift, and a magnetic field strength difference between the two elements is output as a signal.
[0008]
[Patent Document 1]
Japanese Examined Patent Publication No. 62-36540 (5th page, FIG. 1)
[0009]
[Problems to be solved by the invention]
In the conventional magnetic body detection method, the differential winding type transformer method using the AC excitation current method is mainly used to detect signals proportional to the amount of magnetic material, but the core and winding are complicated and the magnetic head There was a drawback that the price would be higher.
[0010]
In addition, a method using a magnetoresistive element that detects a magnetic substance by applying a DC voltage has a simple signal detection circuit, but a detection signal generated by a detection target is due to a spatial difference in magnetic field distribution. Therefore, if a paper sheet on which a magnetic material having a uniform concentration is printed is on the magnetic detector, the magnetic signal cannot be output because there is no difference in the magnetic field distribution and the magnetic signal is not output. There are drawbacks.
[0011]
Therefore, the present invention has been made to solve the above-described drawbacks, and it can improve the spatial difference method of the detection method using a magnetoresistive element, and can detect a signal proportional to the amount of magnetic material by simply applying a DC voltage. An object of the present invention is to provide an inexpensive magnetic substance amount detection device.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized in that the magnetic material of the magnetic material formed on a detected medium that is arranged substantially adjacent to each other on the same plane so as not to overlap each other is conveyed. A first magnetic detection element and a second magnetic detection element for detecting a quantity; a permanent magnet that applies a vertical magnetic force to the first magnetic detection element; and a horizontal magnetic force to the second magnetic detection element; And a signal processing means for applying a DC voltage to the first magnetic detection element and the second magnetic detection element and determining the amount of the magnetic substance from the difference between the output signals.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Hereinafter, a first embodiment of a magnetic substance amount detection device according to the present invention will be described with reference to FIGS.
[0014]
FIG. 1 is a configuration diagram of a first embodiment of a magnetic substance amount detection device according to the present invention. 1A is a plan view, and FIG. 1B is a cross-sectional side view taken along the line AA of FIG. 1A when a paper sheet on which magnetic ink is printed passes. In the figure, the magnetic substance amount detection device includes a detection unit 1 and a printed wiring board 50 for processing a magnetic signal output detected by the detection unit 1.
[0015]
The detection unit 1 includes a case 2 made of a nonmagnetic material, a substrate 3, a magnetoresistive element 4 that is a first magnetic detection element, a magnetoresistive element 5 that is a second magnetic detection element, a permanent magnet 6, and the like. Consists of.
[0016]
The substrate 3 has a concave / convex recess at a predetermined position, and the magnetoresistive elements 4 and 5 are bonded and fixed to the recess, and the substrate 3 is bonded and fixed to the case 2.
[0017]
The permanent magnet 6 is disposed so as to apply a bias magnetic field to the magnetoresistive element 4 with the substrate 3 interposed therebetween, and is disposed so as to apply a magnetic field different from that of the magnetoresistive element 4 to the magnetoresistive element 5. That is, for example, a perpendicular magnetic field is applied to the magnetoresistive element 4 so that the bias magnetic field applied from the permanent magnet 6 to the magnetoresistive element 4 and the magnetoresistive element 5 through the substrate 3 becomes unbalanced, and the magnetoresistive element 5, at least a part of the permanent magnet 6 is disposed below the magnetoresistive element 4 (opposite position) so that a horizontal magnetic field is applied.
[0018]
The printed wiring board 50 of the magnetic substance amount detection device is connected to the board 3 to energize the magnetoresistive elements 4 and 5 and to perform signal processing for detecting the magnetic signal output from the magnetoresistive elements 4 and 5. It has a circuit.
[0019]
Next, the operation of the magnetic substance amount detection device configured as described above will be described. A detected medium 7 shown in FIG. 1B is a sheet of paper on which magnetic ink 8 is printed, and is conveyed in the direction of arrow A with respect to the detection unit 1. In the present invention, as described above, the bias magnetic field is applied unbalanced to the magnetoresistive elements 4 and 5.
[0020]
FIG. 2 shows the state of the bias magnetic field from the permanent magnet 6. The magnetic lines of force generated by the permanent magnet 6 include magnetic lines of force 91 that penetrate perpendicularly to the magnetoresistive element 4 and magnetic lines of force 92 that penetrate horizontally to the magnetoresistive element 5.
[0021]
The magnetoresistive elements 4 and 5 have a high sensitivity for changing the magnetic resistance value in the magnetic force line 91 in the direction perpendicular to the mounting surface of the substrate 3 and have a low sensitivity for changing the magnetic resistance value in the magnetic force line 92 in the horizontal direction. Accordingly, when the paper sheet 7 moves on the detection surface 2a of the detection unit 1 shown in FIG. 1B in the direction of the arrow A and the magnetic ink 8 reaches the magnetoresistive elements 4 and 5, the magnetoresistive element 5 Then, since the magnetic field lines 92 are in the horizontal direction as shown, even if the magnetic field intensity is changed by the magnetic ink 8, the change in the magnetoresistance value is small. In the magnetoresistive element 4, the magnetic field lines 91 are perpendicular to the magnetoresistive element 4. The magnetoresistance value changes greatly with high sensitivity to the change. As a result, only the magnetoresistive element 4 reacts to a change in the magnetic field caused by the magnetic ink 8.
[0022]
Next, the operation of the printed wiring board 50 that processes the magnetic signal output detected by the detection unit 1 will be described.
[0023]
FIG. 3 is a specific example of a detection circuit that detects changes in the magnetoresistance values of the magnetoresistive elements 4 and 5 as electrical signals. The detection circuit includes a bridge circuit 20 that detects a change in the resistance value of the magnetoresistive elements 4 and 5, a DC constant voltage power supply 26 for supplying power to the bridge circuit 20, and a voltage output from the bridge circuit 20. It comprises a differential amplifier 24 and an amplifier 25 for amplifying the change.
[0024]
The bridge circuit 20 includes a first magnetic sensor unit in which a magnetoresistive element 4 as a first magnetic detection element and a fixed resistor 22 are connected in series, and a voltage is output to one of the differential amplifiers 24 from the connection point. A second magnetic sensor unit in which a magnetoresistive element 5 as a second magnetic detection element and a fixed resistor 23 are connected in series, and a voltage is output from the connection point to the other of the differential amplifier 24; A variable resistor 21 for adjusting the balance of the bridge circuit 20 is arranged between the first magnetic sensor unit and the second magnetic sensor unit.
[0025]
The DC constant voltage power supply 26 supplies a DC voltage to the variable connection terminal of the variable resistor 21 constituting the bridge circuit 20 and energizes it. The direct current voltage from the direct current constant voltage power supply 26 has a difference between the value divided by the fixed resistor 22 and the magnetoresistive element 4 and the value divided by the fixed resistor 23 and the magnetoresistive element 5. This is supplied to the dynamic amplifier 24. The magnetic signal corresponding to the change in the resistance value of the magnetoresistive elements 4 and 5 detected by the differential amplifier 24 is further amplified via the amplifier circuit 25 and output as an electric signal.
[0026]
Here, a method for adjusting the bridge circuit 20 will be described. First, the resistance value of the variable resistor 21 is set so that the output of the differential amplifier 24 becomes as small as possible in a state where the magnetic material such as the magnetic ink 8 of the detected medium 7 is not on the detection surface 2a of the detection unit 1. At this time, the voltage at the connection point where the magnetoresistive element 4 and the fixed resistor 22 are connected in series and the voltage at the connection point where the magnetoresistive element 5 and the fixed resistor 23 are connected in series are set to substantially the same value. Is done.
[0027]
Next, when the magnetic ink 8 of the detected medium 7 reaches the detection surface 2a of the detection unit 1, the magnetoresistive value of the magnetoresistive element 4 increases, so that the balance voltage of the bridge circuit 20 changes and the differential amplifier 24 changes. Output voltage is changed, and is output from the amplifier 25 as an electric signal.
[0028]
(Another embodiment of the detection circuit)
FIG. 4 shows another embodiment of a detection circuit that detects a change in the magnetoresistance value of the magnetoresistive elements 4 and 5 as an electric signal. 4 that are the same as those in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted.
[0029]
This detection circuit is different from the embodiment shown in FIG. 3 in the configuration of the bridge circuit. The configuration of the bridge circuit 30 will be described below.
[0030]
The bridge circuit 30 connects the magnetoresistive element 4 that is the first magnetic detection element and the magnetoresistive element 5 that is the second magnetic detection element in series, and outputs a voltage to one of the differential amplifiers 24 from the connection point. A magnetic sensor unit, a fixed resistor 34, a fixed resistor 33, and a variable resistor 32 for adjusting the balance of the bridge circuit 30 are connected in series, and a connection point between the fixed resistors 33 and 34 is connected. A resistor unit that outputs a voltage is connected in parallel to the other side of the differential amplifier 24. A DC voltage for energizing the bridge circuit 30 is applied from this connection point by the DC constant voltage power supply 26.
[0031]
Next, the operation of the detection circuit of FIG. 4 will be described. First, the resistance value of the variable resistor 32 is set so that the output voltage of the differential amplifier 24 becomes as small as possible without a magnetic material such as the magnetic ink 8 of the detected medium 7 on the detection surface 2a of the detection unit 1. . At this time, the voltage at the connection point where the magnetoresistive elements 4 and 5 are connected in series and the voltage at the connection point of the fixed resistors 33 and 34 are set to substantially the same value.
[0032]
Next, when the magnetic ink 8 of the detected medium 7 reaches the detection surface 2a of the detector 1, the magnetoresistive value of the magnetoresistive element 4 increases, so that the balance voltage of the bridge circuit 30 changes and the differential amplifier is changed. The output voltage 24 changes and is output from the amplifier 25 as an electrical signal.
[0033]
Next, temperature drift will be described. Due to the difference in the intensity of the bias magnetic field applied to the magnetoresistive elements 4 and 5, a difference in magnetoresistive values of the magnetoresistive elements 4 and 5 occurs. This difference in the magnetoresistance value is corrected by the variable resistor 32 described above. However, if the ambient temperature changes, the magnetoresistance values of the magnetoresistive elements 4 and 5 also change, resulting in fluctuations in the output of the detection circuit. appear. In this way, output fluctuations that appear with changes in ambient temperature are called temperature drifts.
[0034]
Generally, when the volume of the magnetic material of the medium to be detected is large or the relative permeability is large, the influence of temperature drift is small because the detection signal is large.
[0035]
On the other hand, the detection signal by the magnetic ink 8 printed on the paper sheet such as the detected medium 7 as the detection medium by the magnetic substance amount detection device of the present invention is often small, and it is necessary to increase the gain of the differential amplifier 24. This inevitably increases the ratio of temperature drift to the detection signal. In addition, when detecting a magnetic material of a paper sheet, since the paper sheet is transported at a predetermined speed, the detection signal has a pulse waveform, and a temperature drift with a low frequency is added to the pulse waveform. Become.
[0036]
Next, FIG. 5 shows an embodiment of the detection circuit excluding the influence of this temperature drift. The detection circuit includes a differential amplifier 40 that amplifies a change in the magnetic signal detected by the bridge circuit 20 or 30, a low-frequency cut filter amplifier 41 that cuts a low frequency of the magnetic output signal of the differential amplifier 40, The rectifier circuit 42 rectifies the magnetic output signal of the low-frequency cut filter amplifier 41, and the high-frequency cut filter amplifier 43 smoothes the output signal of the rectifier circuit 42.
[0037]
The low-frequency cut filter amplifier 41 sets the cut-off frequency to a frequency that has a small influence on the detection signal, and removes voltage fluctuation due to temperature drift.
[0038]
The rectifier circuit 42 sets the positive or negative magnetic detection signal output from the low-frequency cut filter amplifier 41 to the same polarity.
[0039]
Further, the high-frequency cut filter amplifier 43 smoothes the output signal of the rectifier circuit 42 into a DC signal having a predetermined voltage.
[0040]
Since the magnetic signal detected by the detection circuit 20 or 30 is proportional to the amount of magnetism, the magnetic signal waveform rectified by removing the low frequency region is also proportional to the amount of magnetism. By adopting such a configuration, it is possible to provide a magnetic substance amount detection device that reduces the influence of temperature drift.
[0041]
(Second Embodiment)
FIG. 6 is a configuration diagram of the second embodiment of the magnetic substance amount detection device according to the present invention. About each part of this 2nd Embodiment, the same part as each part of FIG. 1 is shown with the same code | symbol, and the description is abbreviate | omitted.
[0042]
FIG. 6A is a plan view of the second embodiment of the magnetic substance amount detection device, and FIG. 6B is a side cross-sectional view taken along the line AA of FIG. Note that the detection circuit shown in FIGS. 3 to 5 can be used in this embodiment as well, but the description thereof is omitted because it has already been described.
[0043]
The magnetic substance amount detection device of the second embodiment is configured by further adding a permanent magnet 11 upstream of the permanent magnet 6 in the transport direction of the first embodiment shown in FIG. The permanent magnets 6 and 11 are in an adsorbed state because different polarities are arranged adjacent to each other, and the joint surfaces thereof are arranged to be below the magnetoresistive element 5. In other words, the permanent magnet 6 is arranged via the substrate 3 below the entire width of the magnetoresistive element 4 and a part of the width of the magnetoresistive element 5 (opposite position), and the permanent magnet 11 has the remaining width of the magnetoresistive element 5. It arrange | positions through the board | substrate 3 in the lower part (opposite position).
[0044]
As a result, the bias magnetic field of the magnetoresistive element 5 becomes horizontal in a narrow range of the joint surfaces of the permanent magnets 6 and 11 as shown by the magnetic force lines 122 in FIG. Further, the permanent magnet 6 has a width that sufficiently covers the magnetoresistive element 4 and is arranged so that the bias magnetic field passes through the magnetoresistive element 4 vertically like the magnetic force lines 121. With such a configuration, when the magnetic ink 8 of the detected medium 7 reaches the detection surface 2a of the detection unit 10, the magnetoresistance value of the magnetoresistive element 4 further increases, so that the direction of the bias magnetic field is reliably separated. be able to.
[0045]
With the configuration of the second embodiment, the magnetoresistive element 4 is given a vertical magnetic field, and the magnetoresistive element 5 is given a horizontal magnetic field stably. As a result, the magnetic quantity detection device is more stable than the first embodiment shown in FIG.
[0046]
(Modification of the second embodiment)
In the second embodiment, the permanent magnet 11 is arranged upstream of the permanent magnet 6 in the conveying direction, but the same effect can be obtained even if the permanent magnet 11 is arranged at a symmetrical position downstream of the permanent magnet 6 in the conveying direction. The function and performance of the present invention remains the same.
[0047]
In the present invention, both the first embodiment and the second embodiment have been described using the magnetoresistive element as the magnetic detection element. However, the same effect can be obtained even if the Hall element is used. The configuration will be described below.
[0048]
When a Hall element is used as the magnetic detection element, the configuration of the detection unit is a Hall element instead of the magnetoresistive elements 4 and 5 in FIGS. 1, 2, 6, and 7. For example, when the Hall element 51 is disposed instead of the magnetoresistive element 4 and the Hall element 52 is disposed instead of the magnetoresistive element 5, the Hall element 51 is highly sensitive to changes in the lines of magnetic force because the lines of magnetic force pass vertically, and the Hall element No. 52 has low sensitivity to changes in magnetic field lines because the magnetic field lines pass horizontally. Accordingly, it is possible to detect a change in the magnetic field due to the magnetic material, as in the case of the magnetoresistive element.
[0049]
Next, the configuration and operation of a magnetic substance amount detection circuit using a Hall element will be described with reference to FIG. In FIG. 8, a DC power source 59 is a constant voltage power source or a low current power source, and is connected to one power source terminal 51a, 52a of each of the Hall elements 51, 52. The other power terminals 51b and 52b of the Hall elements 51 and 52 are grounded. In this way, the Hall elements 51 and 52 are energized.
[0050]
The differential amplifier 53 is a differential amplifier for detecting magnetic signals output from the output terminals 51 c and 51 d of the Hall element 51. Similarly, the differential amplifier 54 is a differential amplifier for detecting a magnetic signal output from the output terminals 52 c and 52 d of the Hall element 52.
[0051]
The differential amplifier 55 eliminates the drift due to temperature by taking the difference between the outputs of the differential amplifiers 53 and 54, that is, the signals output from the Hall elements 51 and 52.
[0052]
The differential amplifier 56 amplifies the output signal of the differential amplifier 55. At this time, when a DC voltage is included in the input of the differential amplifier 56, the output signal 57 of the differential amplifier 56 may be swung out beyond the operating range. In order to prevent this, a DC voltage adjusted through the variable resistor 58 is added to one terminal of the differential amplifier 56, and only a subtraction signal is extracted from the DC voltage included in the input of the differential amplifier 56. In this way, the amount of magnetic material can be detected by the Hall elements 51 and 52. Further, the output signal 57 may be input to the circuit of FIG. 5 in order to remove the low frequency component of the signal.
[0053]
【The invention's effect】
According to the present invention, it is possible to provide a magnetic material amount detection device that does not require a differential magnetic head that can detect a signal proportional to the amount of magnetic material by a magnetoresistive element.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment of a magnetic substance amount detection device according to the present invention.
FIG. 2 is a diagram illustrating a state of a bias magnetic field of a detection unit according to the first embodiment.
FIG. 3 is a configuration diagram of a detection circuit applied to the magnetic substance amount detection device according to the present invention.
FIG. 4 is a configuration diagram of another detection circuit applied to the magnetic substance amount detection device according to the present invention.
FIG. 5 is a configuration diagram of a detection circuit for removing the influence of temperature drift applied to the magnetic substance amount detection device according to the present invention.
FIG. 6 is a configuration diagram of a second embodiment of a magnetic substance amount detection device according to the present invention.
FIG. 7 is a diagram illustrating a state of a bias magnetic field of a detection unit according to the second embodiment.
FIG. 8 is a configuration diagram of a magnetic substance amount detection circuit using a Hall element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Detection part 2 Case 3 Board | substrate 4, 5 Magnetoresistive element 6, 11 Permanent magnet 7 Detected medium 8 Magnetic ink 9, 91, 121, 122 Magnetic field line 20, 30 Bridge circuit 20, 22, 23, 33, 34 Fixed resistor 21, 32 Variable resistors 24, 40 Differential amplifier 25 Amplifier 26 Constant voltage power supply 41 Low-frequency cut filter amplifier 42 Rectifier circuit 43 High-frequency cut filter amplifier 50 Printed circuit board 51, 52 Hall elements 53, 54, 55, 56 Difference Dynamic amplifier 57 Output signal 58 Variable resistor 59 DC power supply

Claims (9)

概略同一平面上に隣接して互いに重ならないように配置され、搬送される被検出媒体に形成される磁性体の磁性体量を検出する第1の磁気検出素子および第2の磁気検出素子と、
前記第1の磁気検出素子に垂直磁力を与え、前記第2の磁気検出素子に水平磁力を与える永久磁石と、
前記第1の磁気検出素子および第2の磁気検出素子に直流電圧を印加し、その出力信号の差から前記磁性体の磁性体量を求める信号処理手段と
を具備することを特徴とする磁性体量検出装置。
A first magnetic detection element and a second magnetic detection element, which are arranged adjacent to each other on substantially the same plane so as not to overlap each other and detect the amount of magnetic substance formed on the conveyed detection medium;
A permanent magnet that applies a vertical magnetic force to the first magnetic detection element and a horizontal magnetic force to the second magnetic detection element;
A magnetic body comprising signal processing means for applying a DC voltage to the first magnetic detection element and the second magnetic detection element, and obtaining a magnetic material amount of the magnetic body from a difference between output signals thereof. Quantity detection device.
前記永久磁石は、少なくとも一部が前記第1の磁気検出素子に対向する位置に配置されていることを特徴とする請求項1記載の磁性体量検出装置。The magnetic material amount detection device according to claim 1, wherein at least a part of the permanent magnet is disposed at a position facing the first magnetic detection element. 概略同一平面上に隣接して互いに重ならないように配置され、搬送される被検出媒体に形成される磁性体の磁性体量を検出する第1の磁気検出素子および第2の磁気検出素子と、
前記第1の磁気検出素子に垂直磁力を与える第1の永久磁石と、
前記第1の永久磁石の極と異なる極同士が対向し、前記第2の磁気検出素子に水平磁力を与える第2の永久磁石と、
前記第1の磁気検出素子および第2の磁気検出素子に直流電圧を印加し、その出力信号の差から前記磁性体の磁性体量を求める信号処理手段と
を具備することを特徴とする磁性体量検出装置。
A first magnetic detection element and a second magnetic detection element, which are arranged adjacent to each other on substantially the same plane so as not to overlap each other and detect the amount of magnetic substance formed on the conveyed detection medium;
A first permanent magnet that applies a perpendicular magnetic force to the first magnetic sensing element;
Poles different from the poles of the first permanent magnet are opposed to each other, and a second permanent magnet that applies a horizontal magnetic force to the second magnetic sensing element;
A magnetic body comprising signal processing means for applying a DC voltage to the first magnetic detection element and the second magnetic detection element, and obtaining a magnetic material amount of the magnetic body from a difference between output signals thereof. Quantity detection device.
前記第1の永久磁石は、少なくとも一部が前記第1の磁気検出素子の全幅に対向し、且つ、前記第2の磁気検出素子の一部の幅に対向する位置に配置され、
前記第2の永久磁石は、少なくとも一部が前記第2の磁気検出素子の残りの一部の幅に対向する位置に配置されていることを特徴とする請求項2記載の磁性体量検出装置。
The first permanent magnet is disposed at a position where at least a part thereof is opposed to the entire width of the first magnetic detection element and is opposed to a partial width of the second magnetic detection element;
3. The magnetic substance amount detection device according to claim 2, wherein at least a part of the second permanent magnet is disposed at a position facing a width of the remaining part of the second magnetic detection element. .
前記信号処理手段は、
前記第1の磁気検出素子及び第1の抵抗器を直列に接続して構成した第1の磁気センサ部と、前記第2の磁気検出素子及び第2の抵抗器を直列に接続して構成した第2の磁気センサ部と、前記第1の磁気センサ部及び前記第2の磁気センサ部の間に可変抵抗器とを配置して構成したブリッジ回路と、
前記可変抵抗器の可変接続端子から電圧を印加し前記ブリッジ回路を付勢する直流電源と、
前記第1の磁気検出素子と前記第1の抵抗器の接続点の電圧と、前記第2の磁気検出素子と前記第2の抵抗器の接続点の電圧との差を増幅する増幅手段と
を有することを特徴とする請求項1又は請求項3記載の磁性体量検出装置。
The signal processing means includes
A first magnetic sensor unit configured by connecting the first magnetic detection element and the first resistor in series, and a configuration configured by connecting the second magnetic detection element and the second resistor in series. A bridge circuit configured by disposing a second magnetic sensor unit and a variable resistor between the first magnetic sensor unit and the second magnetic sensor unit;
A direct current power source for applying a voltage from the variable connection terminal of the variable resistor and energizing the bridge circuit;
Amplifying means for amplifying a difference between a voltage at a connection point between the first magnetic detection element and the first resistor and a voltage at a connection point between the second magnetic detection element and the second resistor; The magnetic substance amount detection device according to claim 1, wherein the magnetic material amount detection device is provided.
前記磁性体が前記第1及び第2の磁気検出素子の検出範囲にないとき前記増幅手段の出力信号が最小になるように前記可変抵抗器の抵抗値を設定したことを特徴とする請求項5記載の磁性体量検出装置。6. The resistance value of the variable resistor is set so that the output signal of the amplification means is minimized when the magnetic body is not within the detection range of the first and second magnetic detection elements. The magnetic substance amount detection apparatus described. 前記信号処理手段は、
前記第1の磁気検出素子と前記第2の磁気検出素子を直列に接続して構成した磁気センサ部と、2個の抵抗器と可変抵抗器を直列に接続して構成した抵抗器部とからなり、前記磁気センサ部及び抵抗器部を並列に接続して構成したブリッジ回路と、
前記磁気センサ部及び抵抗器部を並列に接続した接続点から電圧を印加し前記ブリッジ回路を付勢する直流電源と、
前記第1の磁気検出素子及び前記第2の磁気検出素子の接続点の電圧と、前記2個の抵抗器の接続点の電圧との差を増幅する増幅手段と
を有することを特徴とする請求項1又は請求項3記載の磁性体量検出装置。
The signal processing means includes
A magnetic sensor unit configured by connecting the first magnetic detection element and the second magnetic detection element in series; and a resistor unit configured by connecting two resistors and a variable resistor in series. A bridge circuit configured by connecting the magnetic sensor unit and the resistor unit in parallel;
A DC power source for energizing the bridge circuit by applying a voltage from a connection point connecting the magnetic sensor unit and the resistor unit in parallel;
And amplifying means for amplifying a difference between a voltage at a connection point of the first magnetic detection element and the second magnetic detection element and a voltage at a connection point of the two resistors. The magnetic substance amount detection device according to claim 1 or 3.
前記磁性体が前記第1及び第2の磁気検出素子の検出範囲にないとき前記増幅手段の出力信号が最小になるように前記可変抵抗器の抵抗値を設定したことを特徴とする請求項7記載の磁性体量検出装置。8. The resistance value of the variable resistor is set so that the output signal of the amplification means is minimized when the magnetic body is not within the detection range of the first and second magnetic detection elements. The magnetic substance amount detection apparatus described. 前記増幅手段の出力信号の温度ドリフトを低減する低域カットフィルタ増幅回路と、
前記低域カットフィルタ増幅器の出力信号を整流する整流回路と、
前記整流手段の波形を平滑する高域カットフィルタ回路と
を更に備えたことを特徴とする請求項5又は請求項7記載の磁性体量検出装置。
A low-frequency cut filter amplifier circuit for reducing temperature drift of the output signal of the amplification means;
A rectifying circuit for rectifying the output signal of the low-frequency cut filter amplifier;
The magnetic substance amount detection device according to claim 5 or 7, further comprising a high-frequency cut filter circuit for smoothing a waveform of the rectifying means.
JP2003195307A 2003-07-10 2003-07-10 Magnetic body quantity detector Pending JP2005030872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003195307A JP2005030872A (en) 2003-07-10 2003-07-10 Magnetic body quantity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195307A JP2005030872A (en) 2003-07-10 2003-07-10 Magnetic body quantity detector

Publications (1)

Publication Number Publication Date
JP2005030872A true JP2005030872A (en) 2005-02-03

Family

ID=34206198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195307A Pending JP2005030872A (en) 2003-07-10 2003-07-10 Magnetic body quantity detector

Country Status (1)

Country Link
JP (1) JP2005030872A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317218A (en) * 2005-05-11 2006-11-24 Rocky:Kk Magnetism quantity detecting type magnetic sensor apparatus
JP2011022075A (en) * 2009-07-17 2011-02-03 Tokai Rika Co Ltd Component arrangement structure of magnetic sensor
US8289352B2 (en) 2010-07-15 2012-10-16 HJ Laboratories, LLC Providing erasable printing with nanoparticles
WO2014156793A1 (en) * 2013-03-26 2014-10-02 浜松光電株式会社 Magnetic substance detection device
JP2015212628A (en) * 2014-05-01 2015-11-26 大同特殊鋼株式会社 Method for using magnetic sensor and method for determining bias magnetic field of magnetic sensor
JP2016518599A (en) * 2013-04-16 2016-06-23 ウーシー レアー テクノロジー カンパニー リミテッド Magnetic head for detecting surface magnetic field of magnetic pattern based on magnetoresistive technology
JP2016206070A (en) * 2015-04-24 2016-12-08 日本電産サンキョー株式会社 Magnetic sensor device
JP2017512353A (en) * 2013-12-31 2017-05-18 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Thin magnetoresistive image sensor array
JP2017126265A (en) * 2016-01-15 2017-07-20 株式会社ヴィーネックス Magnetic sensor device
WO2018096862A1 (en) * 2016-11-25 2018-05-31 三菱電機株式会社 Magnetic sensor device
WO2019017219A1 (en) * 2017-07-19 2019-01-24 三菱電機株式会社 Magnetic sensor device
WO2021251129A1 (en) * 2020-06-09 2021-12-16 国立大学法人大阪大学 Magnetic body inspection device and magnetic body inspection method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317218A (en) * 2005-05-11 2006-11-24 Rocky:Kk Magnetism quantity detecting type magnetic sensor apparatus
JP2011022075A (en) * 2009-07-17 2011-02-03 Tokai Rika Co Ltd Component arrangement structure of magnetic sensor
US8289352B2 (en) 2010-07-15 2012-10-16 HJ Laboratories, LLC Providing erasable printing with nanoparticles
WO2014156793A1 (en) * 2013-03-26 2014-10-02 浜松光電株式会社 Magnetic substance detection device
JP2014190734A (en) * 2013-03-26 2014-10-06 Hamamatsu Koden Kk Magnetic material detector
US9880235B2 (en) 2013-03-26 2018-01-30 Hamamatsu Kohden Co., Ltd. Magnetic substance detection device
JP2016518599A (en) * 2013-04-16 2016-06-23 ウーシー レアー テクノロジー カンパニー リミテッド Magnetic head for detecting surface magnetic field of magnetic pattern based on magnetoresistive technology
JP2017512353A (en) * 2013-12-31 2017-05-18 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Thin magnetoresistive image sensor array
JP2015212628A (en) * 2014-05-01 2015-11-26 大同特殊鋼株式会社 Method for using magnetic sensor and method for determining bias magnetic field of magnetic sensor
JP2016206070A (en) * 2015-04-24 2016-12-08 日本電産サンキョー株式会社 Magnetic sensor device
JP2017126265A (en) * 2016-01-15 2017-07-20 株式会社ヴィーネックス Magnetic sensor device
WO2018096862A1 (en) * 2016-11-25 2018-05-31 三菱電機株式会社 Magnetic sensor device
JPWO2018096862A1 (en) * 2016-11-25 2018-11-22 三菱電機株式会社 Magnetic sensor device
CN109983355A (en) * 2016-11-25 2019-07-05 三菱电机株式会社 Magnet sensor arrangement
US10663320B2 (en) 2016-11-25 2020-05-26 Mitsubishi Electric Corporation Magnetic sensor device
WO2019017219A1 (en) * 2017-07-19 2019-01-24 三菱電機株式会社 Magnetic sensor device
JP6494895B1 (en) * 2017-07-19 2019-04-03 三菱電機株式会社 Magnetic sensor device
US10634739B2 (en) 2017-07-19 2020-04-28 Mitsubishi Electric Corporation Magnetic sensor device
WO2021251129A1 (en) * 2020-06-09 2021-12-16 国立大学法人大阪大学 Magnetic body inspection device and magnetic body inspection method

Similar Documents

Publication Publication Date Title
JP5127440B2 (en) Magnetic pattern detector
JP4894040B2 (en) Magnetic sensor
EP0977015A2 (en) Magnetic sensor, signal processing method for magnetic sensors, and detecting apparatus
JP2005030872A (en) Magnetic body quantity detector
JP2006293575A (en) Apparatus and method for identifying paper sheet
JP2004206316A (en) Magnetic detection device
JP3781422B2 (en) Magnetic sensor
CN108271414B (en) Magnetic sensor device
JP4267271B2 (en) Magnetic detection device
JP2002350405A (en) Magnetic detection device of paper leaf or the like
US7227354B2 (en) Magnetic material amount detecting apparatus
JP2007323431A (en) Magnetic detector and discrimination device
JP2002296332A (en) Method and apparatus of processing signal of sensor
JP2008145302A (en) Magnetic sensor
JP2004038611A (en) Device for detecting magnetic materials
JP4507585B2 (en) Drive circuit for paper sheet identification sensor and paper sheet identification device
JP4771738B2 (en) Paper sheet identification device and magnetic sensor for paper sheet identification
JPH1196430A (en) Magnetic detecting device
WO2005071622A1 (en) Paper leaves identifying sensor and paper leaves identifying device
JP4938740B2 (en) Magnetic field detector
JPH0427512B2 (en)
JP2002202353A (en) Magnetic head and magnetic substance detector
JP2009251690A (en) Magnetic sensor device
JP2002230617A (en) Magnetic detector for paper sheets
JP4403969B2 (en) Paper sheet discrimination device and paper sheet discrimination method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606