JP2004206316A - Magnetic detection device - Google Patents

Magnetic detection device Download PDF

Info

Publication number
JP2004206316A
JP2004206316A JP2002373374A JP2002373374A JP2004206316A JP 2004206316 A JP2004206316 A JP 2004206316A JP 2002373374 A JP2002373374 A JP 2002373374A JP 2002373374 A JP2002373374 A JP 2002373374A JP 2004206316 A JP2004206316 A JP 2004206316A
Authority
JP
Japan
Prior art keywords
magnetic
medium
magnetic field
magnetizing
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002373374A
Other languages
Japanese (ja)
Inventor
Noritomo Hirayama
紀友 平山
Kentetsu Yasujima
賢哲 安嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2002373374A priority Critical patent/JP2004206316A/en
Publication of JP2004206316A publication Critical patent/JP2004206316A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To raise stability and reliability of a magnetic detection device by preventing a detection error, damage of a medium, etc. due to adhesion of iron powder in circumference environment in a conventional magnetic detection device which identifies the medium by detecting magnetic fields H1 and H2 generated by remnant magnetism with which a magnetic ink is charged by impressing a polarization magnetic field produced on a medium in a prestage of a carrier path of the medium which is printed with a magnetic ink and carried to a relative movement direction Y through a magnetic detection element 16 in a poststage on the carrier path. <P>SOLUTION: A permanent magnet which forms a magnetizing magnetic field is changed to an electromagnet 120 for magnetization, and the permanent magnet used for a conventional magnetic detection device is changed into an electromagnet 128 for bias in order to provide a biased magnetic field Hb to a magnetic detection element 16. Only when a medium arrival on a carrier path is detected by a means (not shown in the figure) to detect the arrival of a medium, the electromagnets 120, 128 are energized. Even if the iron powder is adhered to a magnetic pole face of the electromagnet 120 for polarization, it can be removed when the medium 10 is not passing. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、例えば磁気インクで印刷された紙幣や磁気カードなどの、磁性材料を保持する媒体に着磁を行い、その磁性材料が帯びる残留磁気によって発生する残留磁界を検出して媒体の磁気特性や磁気パターンを読取り、媒体を識別する磁気検出装置に関する。
なお、以下各図において同一の符号は同一もしくは相当部分を示す。
【0002】
【従来の技術】
従来のこの種の磁気検出装置に使用される磁気センサとして、例えば図4,5に示す磁気センサが開示されている(特許文献1参照。)。
ここで図4は、後述する着磁体20と磁気検出素子16とを同一のホルダ32に一体に収納した磁気センサ34の構成を示す斜視図、図5は図4の着磁体20の磁極面(ハッチングした四角形で示す)および磁気検出素子16と、磁気インクで印刷された紙幣等の印刷媒体(以下、単に媒体ともいう)10との相対位置関係を示す上面図である。
【0003】
なお、図6は図5の着磁体20の部分を磁気センサ34と媒体10との相対移動方向(双方向矢印で示す)Yから見た側面図で、図4,5の説明を補うために別途追加した図である。
図4〜図6において、着磁体20は、磁気センサ34と媒体10とが相対移動方向Yに相対して移動する際、媒体10上の帯状の着磁部14に着磁磁界を印加することによって、媒体10の表面の着磁部14内に付された磁気インクをその検出に先立って着磁する役割を持つ。
また、磁気検出素子16はこの着磁により着磁部14内の磁気インクが帯びる残留磁気が作る磁界H1,H2を検出する役割を持つ。なおこの際、着磁体20の強い着磁磁界が磁気検出素子16の検出対象の弱磁界に妨害を与えないようにする必要がある。
【0004】
図4の磁気センサ34では、磁気センサ34のホルダ32の下端面となる媒体検知面Sdに垂直に、本例では媒体検知面Sd側をS極とする4角柱状の磁石12が設けられ、コの字形で断面が4角形のパーマロイ、フェライト等の軟磁性材18が磁石12の媒体検知面Sdと反対側の磁極(本例ではN極)に跨がるように組み合わされ、磁石12を内側にして全体として概ねE字形となる着磁体20が構成されている。
そして、この着磁体20のE字形の開放側の3箇所の4角形の端面としての磁極面(つまり、磁石12の1箇所の磁極面(S極)と軟磁性材18の2箇所の磁極面(N極))が媒体検知面Sd上にあって、媒体10の表面に対し平行に接触または近接し、且つ上記3箇所の磁極面が相対移動方向Yに垂直な方向に並ぶように着磁体20が配置されている。
【0005】
この着磁体20の構成により、磁石12からの磁束を前記E字形の開放側端面としての磁極面を相互に結ぶ方向(換言すれば、相対移動方向Yに直交する方向)に集中させることで磁石12から磁気検出素子16へ及ぶ磁界成分を極めて少なくでき、なお且つ、媒体10に対する着磁で媒体10の磁気インク検知面(表面)に沿った磁界成分を強めることで着磁後の着磁部14からの磁界H1,H2を強める効果も得られる。
なお、図6に示すように本例では着磁体20の磁極面(E字形の3箇所の開放側端面)は磁石12がS極、軟磁性材18がN極となり、このN極からS極に向かう磁界を媒体10に及ぼして磁気インクを磁化するので、着磁体20のN極に近い磁気インク側はS極に、また着磁体20のS極に近い磁気インク側はN極にそれぞれ磁化される。これにより、磁化されたのちの磁気インクの残留磁気は図6に示すH1,H2の矢印方向の磁界を作ることになる。
【0006】
また、着磁体20から磁気検出素子16への磁界波及をさらに押さえる必要がある場合は、例えば図4に示すように衝立状のパーマロイ、アモルファス等の磁気シールド部材22を着磁体20と磁気検出素子16の間に配置する。
磁気インピーダンス素子としての磁気検出素子16は、ガラス、セラミック等からなる非磁性基板24上に、アモルファス、パーマロイ等の高透磁率磁性薄膜からなるつづら折りの線状のパターンに形成された2つの磁気検出都16A,18Bを本例では電気的に直列に接続した構成となっている。
ここで、磁気検出部16A,16Bのつづら折りの線状のパターンは、磁石12の媒体検知面Sd側の端面である着磁側磁極面の中心と磁気検出部16A,16Bの接続点としての磁気検出素子16の中点とを結ぶ直線Lに対して線対称となるように、従って磁気検出部16A,16Bの特性をほぼ同一にできるように構成されている。
【0007】
また直線Lの方向は相対移動方向Yに一致するように磁石12と磁気検出素子16が配置され、これにより、着磁部14の磁界に対する磁気検出部16A,16Bの感度をほぼ等しくできるように構成されている。
そして、検出対象部分の必要な検知幅に応じて磁気検出部16A,16Bのつづら折り部の長手方向(つまり相互移動方向Yに直交する方向)の長さが選択され、分解能に応じてつづら折りの回数およびパターンの線の幅や間隔が選択されている。
磁気検出部16A,16Bのつづら折り部は媒体10の検知面Sdとはコンマ数ミリオーダーの間隔で平行になるように保持されている。そして磁気検出部16A,16Bは、磁界検出方向となるつづら折りの各部の上記長手方向が同一方向を向いて、媒体10の表面に平行な面内で上記相対移動方向Yに直交するようにさらに、互いに磁界検出方向に沿って並ぶように構成されている。
【0008】
磁気検出素子16の上方近傍に設置されたバイアスマグネット28はバイアス磁界Hb(図5参照)を発生し、磁気検出素子16を感度の良い動作点にセットする。これにより、着磁部14の磁界に対する磁気検出部16A,16Bの感度をほぼ等しくしている。
即ち、磁気検出素子16が磁界Hbによってバイアスされ、このバイアス磁界Hbに重畳するその他の磁界(以下外部磁界という)が存在しない状態では、磁気検出部16A,16Bのインピーダンスはほぼ等しく、且つ微小な外部磁界に対してはこのインピーダンスがほぼ等しい勾配で直線的に変化するように構成されている。
【0009】
なお、磁気検出部16A,16Bの直列接続の両端および中点のそれぞれに接続された端子30を通して、磁気検出部16A.16Bの検出信号が媒体検知面Sdと反対側に引き出される。
このような構成で、磁気インク検知時には、磁気センサ34が媒体10に対して相対移動方向Yに相対的に移動され、その移動に伴って、前述のように着磁体20により媒体10が着磁され、その着磁した部分の磁気インクの量に応じて発生する外部磁界を磁気検出素子16の磁気検出部16A,16Bによって差動検出する。
【0010】
即ち、このとき磁気インクの残留磁気による外部磁界H1,H2がバイアス磁界Hbに重畳するので、磁気検出部16Aは(Hb−H1)の磁界を受け、磁気検出部16Bは(Hb+H2)の磁界を受ける。
従って、バイアス磁界Hbのみで外部磁界が存在しない状態のインピーダンスを基準にしたとき、磁気検出部16Aのインピーダンスは(−H1)に比例した量の変化(本例では減少)をし、磁気検出部16Bのインピーダンスは(+H2)に比例した量の変化(本例では増加)をする。
従って、磁気検出部16A,16Bの直列接続の一端(例えば磁気検出部16A側)を接地し、他端に所定の電圧を印加すると、この直列接続の中点の電圧は、外部磁界の存在しない場合の電圧(基準電圧という)に対し、外部磁界(H1+H2)に比例した電圧分の変化をする。
【0011】
この原理を用い、現実には例えば、前記直列接続に加える電圧を高周波電圧とし、前記直列接続の中点の電圧の検波出力(Vsとする)の波形中のベースラインを示す電圧(比較電圧Vrefとする)が外部磁界の存在しない場合の前記基準電圧に相当するところから、ピークホールド回路(又はミニマムホールド回路)を介し検波出力Vsから比較電圧Vrefを取り出し、さらに直流差動増幅回路を介し比較電圧Vrefと検波出力Vsとの差電圧を取り出す方法等によって前記外部磁界(H1+H2)に比例した電圧分、つまり媒体10に印刷された磁気インクの量に応じた磁界を検出している。
【0012】
なお、上述した磁気センサ34の構成では外乱磁界はバイアス磁界Hbの変化の形で磁気検出部16A,16Bに共に影響するが、磁気検出部16A,16Bの直列接続の中点から取り出される上記外部磁界(H1+H2)に比例した電圧分はほとんど変わず、微小な外乱磁界の影響はキャンセルされる。
上述した外部磁界(H1+H2)の検出方法は、原理的に磁気検出部16Aと16Bの両端電圧の差を求める、いわゆる差動検出の方法である。このような差動検出を行う方法としては、別に例えば磁気検出部16A,16Bの直列接続の中点を接地して、この直列接続の両端からそれぞれの磁気検出部16A,16Bに等しい高周波電流を流し込み、このとき磁気検出部16A,16Bに発生する電圧をそれぞれ検波したうえ、この検波電圧同士を直流差動増幅する方法も存在する。
【0013】
次に、磁気センサを用いた磁気検出装置として、例えば図7に示す磁気検出装置が公開されている(特許文献2参照。)。
図7において、媒体10は、例えば紙幣あるいは磁気インクで印刷した小切手など、着磁して残留磁界が発生する磁性材料を使用した媒体であって、図外の搬送ローラや搬送ベルトなどの適宜の搬送手段でY方向に搬送される。
媒体10の上面側には媒体10の着磁面に着磁する着磁手段としての永久磁石で構成した磁石41を対向して取付け、この磁石41はその磁極の方向を搬送方向Yに直交する幅方向に設定している。
【0014】
着磁手段の磁石41に対する搬送方向Yの後段には上部に磁気検出手段としての磁気センサ43を配設し、これにスプリング44で付勢したタッチローラ45を対接している。
上述の磁気センサ43は感度に指向性を持つ磁気インピーダンス素子で構成して、その感度の方向を搬送方向Yに直交する幅方向に設定している。
図7に示す磁気検出装置では、媒体10が搬送されて磁石41で着磁され、その着磁された残留磁界を磁気センサ43にて検出する。
【0015】
【特許文献1】
特開2000−105847号公報(第1図,第4図)
【特許文献2】
特開平11−96430号公報(第3図)
【0016】
【発明が解決しようとする課題】
上記した従来例では、着磁磁石が1Kガウス以上の磁力を持っているため、実際の環境では鉄粉を吸いつけて検出誤差が発生したり、付着した鉄粉等により媒体をキズつける等の問題が発生する。
さらに磁石の磁気量は温度による変動が大きく、経年変化もあるため磁気検出装置全体のセンサ出力の信頼性が低いという欠点があった。
そこで本発明は、(1)耐環境性に優れ、(2)外乱要因に対しても安定して正確に磁気インク量を検出できる磁気検出装置を提供することを課題とする。
【0017】
【課題を解決するための手段】
前記の課題を解決するために、請求項1の磁気検出装置は、
磁性材料を保持する紙葉状ないしは薄板状の媒体(印刷媒体10など)を搬送する搬送路上の前段において該媒体に着磁磁界(Hx,−Hx)を印加する着磁手段、この着磁磁界の印加により前記媒体上の磁性材料が帯びる残留磁気によって生ずる磁界(H1,H2)を前記搬送路上の後段において検出する(磁気検出回路108を含む)磁気検出手段を持ち、前記媒体を識別する磁気検出装置において、
前記着磁手段が、前記媒体の到来を検出する手段(進入センサ101,媒体進入検知手段106など)と、この到来検出に基づいて(着磁コイル・バイアスコイル駆動手段107などを介し)付勢され、前記着磁磁界を前記媒体の搬送方向(相対移動方向Y)と直交する方向に発生する着磁用電磁石(120)とを備えたものとする。
【0018】
また請求項2の磁気検出装置は、請求項1に記載の磁気検出装置において、
前記磁気検出手段が、非磁性体からなる基板(非磁性基板24)上に形成された薄膜磁気インピーダンス素子(磁気検出素子16)と、該薄膜磁気インピーダンス素子ヘバイアス磁界(Hb)を印加するバイアス磁界発生手段とを備えたものとする。
また請求項3の磁気検出装置は、請求項2に記載の磁気検出装置において、
前記バイアス磁界発生手段が、前記バイアス磁界を生成するための磁気コア(軟磁性体127)と、通電により該磁気コアを励磁するバイアス用励磁コイル(バイアスコイル126)とを持つバイアス用電磁石(128)を備えたものとする。
【0019】
また請求項4の磁気検出装置は請求項3に記載の磁気検出装置において、
前記バイアス用電磁石が、前記媒体の到来を検出する手段の検出に基づいて(着磁コイル・バイアスコイル駆動手段107などを介し)付勢されるようにする。
また請求項5の磁気検出装置は、請求項3または4に記載の磁気検出装置において、
少なくとも前記着磁手段を構成する着磁用電磁石、並びに前記磁気検出手段を構成する薄膜磁気インピーダンス素子およびバイアス用電磁石が、同−の筐体(ホルダ32)に一体化されているようにする。
【0020】
本発明の作用は、媒体の印刷に用いられた磁気インクを磁化したり、磁気検出素子にバイアス磁界を与えるために従来の磁気検出装置に用いられてきた永久磁石を電磁石に変更し、媒体の進入を検知してこれらの電磁石を付勢するようにして、周囲の環境にある鉄粉等の影響をなくし、検出誤差を少なくし、磁気検出装置の安定性・信頼性を高めようとするものである。
【0021】
【発明の実施の形態】
図1は本発明の一実施例としての磁気検出装置の構成を示し、図2はこの磁気検出装置の磁気センサ103の構成の一実施例を示す。
図1において、挿入口102に挿入された媒体10は、例えば紙幣あるいは磁気インクで印刷した小切手など、着磁して残留磁界が発生する磁性材料を表面あるいは内部に保持する紙葉状ないし薄板状のものであって、搬送ローラや搬送ベルトなどの図外の搬送手段でY方向に搬送される。
媒体10の上面側には媒体10の進入を検知するための進入センサ101が設けられている。この進入センサ101は例えば反射型フォトインタラブタのような非接触で媒体10を検出できる光センサからなる。
【0022】
この進入センサ101は媒体10の搬送方向Yに対して前段側に配置され、搬送方向Yの後段側の上面側に磁気検出手段としての磁気センサ103が配置されている。
また、進入センサ101には媒体進入検知手段106が接続され、磁気センサ103の着磁コイル端子140およびバイアスコイル端子141(図2参照)には着磁コイル・バイアスコイル駆動手段107が、同じく磁気センサ103の磁気検出素子16の端子30(図2参照)には磁気検出回路108がそれぞれ接続されている。
【0023】
図2における磁気センサ103の基本構成は、図4で述べた従来技術の磁気センサ34と基本的には変わらないが、着磁体を着磁用電磁石120に、バイアス磁石をバイアス用電磁石128にそれぞれ変更した点が異なる。
図2の実施例では、着磁用電磁石120は、断面が4角形で全体としてE字形をなす軟磁性体118の3つの4角柱状の脚部のうち中央の脚部に着磁用コイル112を捲装して構成されている。
そして、この3つの4角柱状の脚部の開放側の端面としての磁極面が図4の着磁体20の磁極面(図5の四角のハッチング部)と同様に媒体10の表面に対し平行に接触または近接し、相対移動方向Yに垂直な方向に並ぶように配置されている。
【0024】
バイアス用電磁石128は、4角柱状の軟磁性体127にバイアスコイル126を捲装して構成されている。そして図4のバイアスマグネット28と同様に磁気検出素子16の上方に設置され、図5と同様なバイアス磁界Hbを発生し、磁気検出素子16を感度の良い動作点にセットする。
次に、図1の磁気検出装置の動作について説明する。
挿入口102に挿入された媒体10が図外の搬送手段によって搬送されて、進入センサ101の下側を通過すると、媒体進入検知手段106は進入センサ101の出力信号から媒体10の到来を検知し、この到来を示す信号を着磁コイル・バイアスコイル駆動手段107に伝送する。
【0025】
これにより、着磁コイル・バイアスコイル駆動手段107は、端子140および141を介しそれぞれ磁気センサ103内の着磁コイル112およびバイアスコイル126に通電し、着磁用電磁石120およびバイアス用電磁石128を付勢駆動する。
その後、媒体10は磁気センサ103に到達するが、まず着磁用電磁石120により図2に示す着磁磁界Hx、−Hxの方向に磁化される。さらに媒体10が搬送され、磁気検出素子16に至ると、磁気検出素子16は、媒体10の残留磁気によって作られバイアス磁界Hbに重畳する磁界(前述の外部磁界)H1,H2の影響を受けて、インピーダンスが変化する。
【0026】
ここで、磁気検出回路108は、磁気センサ103の磁気検出素子16の端子30を介して図4の磁気センサ34の場合と同様に磁気検出素子16Aと16Bによって得られる信号電圧から媒体10の残留磁気によって作られる外部磁界H1とH2の和(H1+H2)に比例した値を差動検出する。このようにして、外乱磁界をキャンセルし、媒体10に印刷された磁気インクの量に応じた磁界が正確に検出される。
本実施例によれば、媒体10が搬送されたときのみ着磁用磁界が発生するので、例えば鉄粉などが存在する環境で着磁用電磁石120の磁極面に鉄粉が付着したとしてもこれらの影響を排除することができる。つまり鉄粉などが付着しても媒体10が通過していないときに除去できるので、媒体を傷つけることなく、高い信頼性で安定に媒体上の磁気パターンを検出することができる。
【0027】
図3は着磁用電磁石120の別の実施例を示す。図3においてはE字型の軟磁性体118の3つの脚部を連結する2箇所の部分にそれぞれ着磁用コイル112a,112bを捲装して着磁用電磁石120を構成している。
この図3の構成の場合、媒体10に対する着磁磁界Hx、−Hxの方向の着磁量をそれぞれ、コイル112a,112bヘ印加する電流により制御することが可能であり、例えば器差によるバラツキなどを補正でき、精密に媒体上の磁気パターンを検出することが可能となる。
また、図2において、例えばサーミスタや熱電対などのような周囲の温度を測定する手段を追加し、着磁用電磁石120の着磁コイル112またはバイアス用電磁石128のバイアスコイル126ヘの電流を温度補正して制御することで各電磁石120,128の発生磁界を温度に無関係に安定化することもできる。
【0028】
図2の磁気センサ103の構成においては、着磁用電磁石120が磁気検出素子16およびバイアス用電磁石128と同一のホルダ32内に一体化されているため、磁気検出装置へ取り付けた時の器差の影響を受けにくいという特徴がある。
【0029】
【発明の効果】
この発明によれば、媒体の印刷に用いられた磁気インクを磁化したり、磁気検出素子にバイアス磁界を与えるために従来の磁気検出装置に用いられてきた永久磁石を電磁石に変更し、媒体の進入を検知してこれらの電磁石を付勢する手段を設けるようにしたので、周囲の環境にある鉄粉等の影響をなくし、検出誤差を少なくすることができ、安定性・信頼性ともに優れた磁気検出装置を構成することができる。
さらに、これら電磁石等の経年変化や温度変化に対しても、この変化を補正するように電磁石のコイル電流を制御することができるので、磁気検出装置の安定性を向上することができ、そしてこれらの効果を通じて磁気検出装置の磁気識別能力を向上することができる。
【図面の簡単な説明】
【図1】本発明の一実施例としての磁気検出装置の構成図
【図2】図1の磁気センサの一実施例としての構成図
【図3】図2の着磁用電磁石の別の実施例を示す構成図
【図4】図2に対応する従来の構成図
【図5】図4の着磁体と磁気検出素子との配置関係を示す図
【図6】図4,5における着磁体の着磁磁界の説明図
【図7】従来の磁気検出装置の構成例を示す図
【符号の説明】
10 印刷媒体(媒体)
16 磁気検出素子
16A,16B 磁気検出部
22 磁気シールド部材
24 非磁性基板
30 端子
32 ホルダ
101 進入センサ
102 挿入口
103 磁気センサ
106 媒体進入検知手段
107 着磁コイル・バイアスコイル駆動手段
108 磁気検出回路
112,112a,112b 着磁コイル
118 軟磁性体
120 着磁用電磁石
126 バイアスコイル
127 軟磁性体
128 バイアス用電磁石
140 着磁コイル端子
141 バイアスコイル端子
Y 搬送方向,相対移動方向
Hx,−Hx 着磁磁界
Hb バイアス磁界
H1,H2 媒体の残留磁気の発生磁界(外部磁界,残留磁界)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention magnetizes a medium holding a magnetic material, such as a banknote or a magnetic card printed with magnetic ink, and detects a residual magnetic field generated by the residual magnetism of the magnetic material to detect the magnetic characteristics of the medium. And a magnetic detection device that reads a magnetic pattern and identifies a medium.
In the drawings, the same reference numerals indicate the same or corresponding parts.
[0002]
[Prior art]
For example, a magnetic sensor shown in FIGS. 4 and 5 is disclosed as a magnetic sensor used in this type of conventional magnetic detection device (see Patent Document 1).
Here, FIG. 4 is a perspective view showing a configuration of a magnetic sensor 34 in which a later-described magnetized body 20 and a magnetic detection element 16 are integrally housed in the same holder 32, and FIG. 5 is a magnetic pole surface (FIG. 4) of the magnetized body 20 of FIG. FIG. 2 is a top view showing a relative positional relationship between a hatched square) and a magnetic detection element 16 and a print medium (hereinafter, also simply referred to as a medium) 10 such as a banknote printed with magnetic ink.
[0003]
FIG. 6 is a side view of the portion of the magnetized body 20 of FIG. 5 viewed from the relative movement direction (indicated by a bidirectional arrow) Y between the magnetic sensor 34 and the medium 10. It is the figure added separately.
4 to 6, the magnetized body 20 applies a magnetizing magnetic field to the band-shaped magnetized portion 14 on the medium 10 when the magnetic sensor 34 and the medium 10 move relative to each other in the relative movement direction Y. Accordingly, the magnetic ink has a role of magnetizing the magnetic ink applied in the magnetized portion 14 on the surface of the medium 10 prior to its detection.
The magnetism detecting element 16 has a role of detecting the magnetic fields H1 and H2 generated by the residual magnetism of the magnetic ink in the magnetized portion 14 due to the magnetization. At this time, it is necessary to prevent the strong magnetizing magnetic field of the magnetized body 20 from interfering with the weak magnetic field to be detected by the magnetic detecting element 16.
[0004]
In the magnetic sensor 34 of FIG. 4, the quadrangular prism-shaped magnet 12 having the S pole on the medium detection surface Sd side is provided perpendicular to the medium detection surface Sd which is the lower end surface of the holder 32 of the magnetic sensor 34, A soft magnetic material 18 such as permalloy or ferrite having a U-shape and having a rectangular cross section is combined so as to straddle a magnetic pole (N pole in this example) on the opposite side of the medium detection surface Sd of the magnet 12. A magnetized body 20 having a substantially E-shape as a whole is formed inside.
Then, the magnetic pole faces as three rectangular end faces on the E-shaped open side of the magnetized body 20 (that is, one magnetic pole face (S pole) of the magnet 12 and two magnetic pole faces of the soft magnetic material 18) (N pole)) on the medium detection surface Sd, in contact with or close to the surface of the medium 10 in parallel, and in such a manner that the three magnetic pole surfaces are arranged in a direction perpendicular to the relative movement direction Y. 20 are arranged.
[0005]
With the configuration of the magnetized body 20, the magnetic flux from the magnet 12 is concentrated in a direction connecting the magnetic pole surfaces as the E-shaped open side end surfaces (in other words, a direction orthogonal to the relative movement direction Y). The magnetic field component from the magnetic detection element 12 to the magnetic detection element 16 can be extremely reduced, and the magnetic field component along the magnetic ink detection surface (surface) of the medium 10 is strengthened by the magnetization of the medium 10 so that the magnetized portion after the magnetization is formed. The effect of increasing the magnetic fields H1 and H2 from 14 is also obtained.
As shown in FIG. 6, in this example, the magnet 12 has an S pole, the soft magnetic material 18 has an N pole on the magnetic pole surface (three open end faces of the E-shape) of the magnetized body 20, and the N pole has an S pole. Is applied to the medium 10 to magnetize the magnetic ink. Therefore, the magnetic ink side of the magnetized body 20 near the N pole is magnetized to the S pole, and the magnetic ink side of the magnetized body 20 near the S pole is magnetized to the N pole. Is done. As a result, the residual magnetism of the magnetic ink after being magnetized produces a magnetic field in the directions indicated by arrows H1 and H2 shown in FIG.
[0006]
When it is necessary to further suppress the magnetic field propagation from the magnetized body 20 to the magnetic detection element 16, for example, as shown in FIG. 4, a screen-shaped magnetic shield member 22 made of permalloy or amorphous is used. 16 between.
The magnetic detection element 16 as a magnetic impedance element is composed of two magnetic detection elements formed on a non-magnetic substrate 24 made of glass, ceramic or the like in a zigzag linear pattern made of a magnetic thin film of high permeability such as amorphous or permalloy. In this example, the cities 16A and 18B are electrically connected in series.
Here, the serpentine linear pattern of the magnetic detection units 16A and 16B is a magnetic pattern as a connection point between the center of the magnetized magnetic pole surface, which is the end surface on the medium detection surface Sd side of the magnet 12, and the magnetic detection units 16A and 16B. The magnetic detectors 16A and 16B are configured to be substantially symmetrical with respect to a straight line L connecting the middle point of the detecting element 16 and thus to have substantially the same characteristics.
[0007]
The magnet 12 and the magnetic detection element 16 are arranged so that the direction of the straight line L coincides with the relative movement direction Y, so that the sensitivities of the magnetic detection units 16A and 16B to the magnetic field of the magnetized unit 14 can be made substantially equal. It is configured.
Then, the length in the longitudinal direction (that is, the direction orthogonal to the mutual movement direction Y) of the winding portions of the magnetic detection units 16A and 16B is selected according to the required detection width of the detection target portion, and the number of times of the winding is determined according to the resolution. And the line width and spacing of the pattern are selected.
The serpentine portions of the magnetic detection units 16A and 16B are held so as to be parallel to the detection surface Sd of the medium 10 at intervals of a few millimeters. Then, the magnetic detection units 16A and 16B are further arranged so that the longitudinal direction of each of the zigzag portions that become the magnetic field detection direction is in the same direction and is orthogonal to the relative movement direction Y in a plane parallel to the surface of the medium 10. It is configured so that they are arranged side by side along the magnetic field detection direction.
[0008]
The bias magnet 28 installed near and above the magnetic detection element 16 generates a bias magnetic field Hb (see FIG. 5), and sets the magnetic detection element 16 to a sensitive operating point. Thereby, the sensitivities of the magnetic detection units 16A and 16B to the magnetic field of the magnetized unit 14 are made substantially equal.
That is, in a state where the magnetic detection element 16 is biased by the magnetic field Hb and no other magnetic field (hereinafter referred to as an external magnetic field) superimposed on the bias magnetic field Hb exists, the impedances of the magnetic detection units 16A and 16B are substantially equal and minute. The impedance is configured to linearly change with an almost equal gradient with respect to an external magnetic field.
[0009]
It should be noted that the magnetic detectors 16A, 16B are connected through terminals 30 connected to both ends and the midpoint of the series connection of the magnetic detectors 16A, 16B, respectively. The detection signal of 16B is drawn out on the side opposite to the medium detection surface Sd.
With such a configuration, at the time of magnetic ink detection, the magnetic sensor 34 is relatively moved with respect to the medium 10 in the relative movement direction Y, and the medium 10 is magnetized by the magnetized body 20 as described above. Then, an external magnetic field generated according to the amount of the magnetic ink in the magnetized portion is differentially detected by the magnetic detection units 16A and 16B of the magnetic detection element 16.
[0010]
That is, at this time, since the external magnetic fields H1 and H2 due to the residual magnetism of the magnetic ink are superimposed on the bias magnetic field Hb, the magnetic detection unit 16A receives the magnetic field of (Hb−H1), and the magnetic detection unit 16B generates the magnetic field of (Hb + H2). receive.
Accordingly, when the impedance of the bias magnetic field Hb alone and no external magnetic field is used as a reference, the impedance of the magnetic detection unit 16A changes (decreases in this example) in proportion to (−H1), and The impedance of 16B changes (increases in this example) by an amount proportional to (+ H2).
Therefore, when one end (for example, the magnetic detection unit 16A side) of the series connection of the magnetic detection units 16A and 16B is grounded and a predetermined voltage is applied to the other end, the voltage at the midpoint of the series connection does not have an external magnetic field. The voltage changes in proportion to the external magnetic field (H1 + H2) with respect to the voltage in the case (referred to as a reference voltage).
[0011]
Using this principle, in practice, for example, a voltage applied to the series connection is a high-frequency voltage, and a voltage (comparison voltage Vref) indicating a base line in a waveform of a detection output (Vs) of a voltage at a middle point of the series connection is set. From the detection output Vs via a peak hold circuit (or a minimum hold circuit) from the portion corresponding to the reference voltage in the absence of an external magnetic field, and further compare via a DC differential amplifier circuit. A voltage proportional to the external magnetic field (H1 + H2), that is, a magnetic field corresponding to the amount of magnetic ink printed on the medium 10, is detected by a method of extracting a difference voltage between the voltage Vref and the detection output Vs.
[0012]
In the configuration of the magnetic sensor 34 described above, the disturbance magnetic field affects both the magnetic detection units 16A and 16B in the form of a change in the bias magnetic field Hb, but the external magnetic field extracted from the midpoint of the series connection of the magnetic detection units 16A and 16B. The voltage component proportional to the magnetic field (H1 + H2) hardly changes, and the influence of the minute disturbance magnetic field is canceled.
The above-described method of detecting the external magnetic field (H1 + H2) is a so-called differential detection method in which a difference between voltages across the magnetic detection units 16A and 16B is obtained in principle. As a method of performing such differential detection, for example, a middle point of the series connection of the magnetic detection units 16A and 16B is separately grounded, and a high-frequency current equal to the respective magnetic detection units 16A and 16B is applied from both ends of the series connection. There is also a method in which the voltage generated at the magnetic detection units 16A and 16B at this time is detected, and the detected voltages are DC-differentially amplified.
[0013]
Next, as a magnetic detecting device using a magnetic sensor, for example, a magnetic detecting device shown in FIG. 7 has been disclosed (see Patent Document 2).
In FIG. 7, a medium 10 is a medium using a magnetic material that generates a residual magnetic field when magnetized, such as a banknote or a check printed with magnetic ink. It is transported in the Y direction by the transport means.
On the upper surface side of the medium 10, a magnet 41 constituted by a permanent magnet as a magnetizing means for magnetizing the magnetized surface of the medium 10 is attached to face, and the direction of the magnetic pole of the magnet 41 is orthogonal to the transport direction Y. It is set in the width direction.
[0014]
A magnetic sensor 43 as a magnetic detecting means is disposed at an upper portion of the magnetizing means at a stage subsequent to the conveying direction Y with respect to the magnet 41, and a touch roller 45 urged by a spring 44 is in contact with the magnetic sensor 43.
The above-mentioned magnetic sensor 43 is constituted by a magnetic impedance element having directivity in sensitivity, and the direction of the sensitivity is set in the width direction orthogonal to the transport direction Y.
In the magnetic detection device shown in FIG. 7, the medium 10 is conveyed and magnetized by the magnet 41, and the magnetized residual magnetic field is detected by the magnetic sensor 43.
[0015]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-105847 (FIGS. 1 and 4)
[Patent Document 2]
JP-A-11-96430 (FIG. 3)
[0016]
[Problems to be solved by the invention]
In the above-mentioned conventional example, since the magnetized magnet has a magnetic force of 1K gauss or more, in an actual environment, a detection error occurs due to the suction of iron powder, or the medium may be scratched by the attached iron powder or the like. Problems arise.
Further, the magnetism of the magnet has a large variation due to temperature and changes over time, so that the reliability of the sensor output of the entire magnetism detection device is low.
Therefore, an object of the present invention is to provide a magnetic detection device which (1) has excellent environmental resistance and (2) can stably and accurately detect the amount of magnetic ink even with disturbance factors.
[0017]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the magnetic detection device according to claim 1 is
Magnetizing means for applying a magnetizing magnetic field (Hx, -Hx) to a paper sheet or thin plate-like medium (such as the print medium 10) for conveying the medium at a front stage on a conveying path for conveying the medium, Magnetic detection means (including a magnetic detection circuit 108) for detecting magnetic fields (H1, H2) generated by residual magnetism of the magnetic material on the medium by the application at the subsequent stage on the transport path, and magnetic detection for identifying the medium In the device,
The magnetizing means includes means for detecting the arrival of the medium (the entrance sensor 101, the medium entrance detecting means 106, etc.) and energizing based on the arrival detection (via the magnetizing coil / bias coil driving means 107, etc.). And a magnetizing electromagnet (120) that generates the magnetizing magnetic field in a direction perpendicular to the medium transport direction (relative movement direction Y).
[0018]
The magnetic detecting device according to claim 2 is the magnetic detecting device according to claim 1,
The magnetic detecting means includes a thin-film magnetic impedance element (magnetic detecting element 16) formed on a substrate made of a non-magnetic material (non-magnetic substrate 24), and a bias magnetic field for applying a bias magnetic field (Hb) to the thin-film magnetic impedance element. Generating means.
The magnetic detecting device according to claim 3 is the magnetic detecting device according to claim 2,
The bias magnetic field generating means includes a biasing electromagnet (128) having a magnetic core (soft magnetic body 127) for generating the bias magnetic field and a bias excitation coil (bias coil 126) for exciting the magnetic core by energization. ).
[0019]
According to a fourth aspect of the present invention, there is provided the magnetic detection device according to the third aspect.
The biasing electromagnet is energized based on the detection of the means for detecting the arrival of the medium (via the magnetizing coil / bias coil driving means 107 or the like).
The magnetic detection device according to claim 5 is the magnetic detection device according to claim 3 or 4,
At least the magnetizing electromagnet constituting the magnetizing means and the thin-film magnetic impedance element and the biasing electromagnet constituting the magnetic detecting means are integrated in the same housing (holder 32).
[0020]
The effect of the present invention is to magnetize the magnetic ink used for printing the medium or to change the permanent magnet used in the conventional magnetic detection device to an electromagnet to apply a bias magnetic field to the magnetic detection element, and to change the medium to an electromagnet. Detects intrusion and energizes these electromagnets to eliminate the effects of iron powder in the surrounding environment, reduce detection errors, and improve the stability and reliability of the magnetic detection device. It is.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a configuration of a magnetic detection device as one embodiment of the present invention, and FIG. 2 shows one embodiment of a configuration of a magnetic sensor 103 of the magnetic detection device.
In FIG. 1, a medium 10 inserted into an insertion slot 102 is a paper leaf or a thin plate that holds a magnetic material, such as a banknote or a check printed with magnetic ink, that generates a residual magnetic field upon magnetization on the surface or inside. The sheet is conveyed in the Y direction by conveyance means (not shown) such as a conveyance roller and a conveyance belt.
An entry sensor 101 for detecting the entry of the medium 10 is provided on the upper surface side of the medium 10. The entry sensor 101 is an optical sensor such as a reflection type photointerrupter that can detect the medium 10 in a non-contact manner.
[0022]
The entry sensor 101 is disposed on the front side with respect to the transport direction Y of the medium 10, and the magnetic sensor 103 as a magnetic detection unit is disposed on the upper surface side on the rear side of the transport direction Y.
A medium entry detecting unit 106 is connected to the entry sensor 101, and a magnetizing coil / bias coil driving unit 107 is connected to the magnetizing coil terminal 140 and the bias coil terminal 141 (see FIG. 2) of the magnetic sensor 103. A magnetic detection circuit 108 is connected to each of the terminals 30 (see FIG. 2) of the magnetic detection element 16 of the sensor 103.
[0023]
The basic configuration of the magnetic sensor 103 in FIG. 2 is basically the same as the conventional magnetic sensor 34 described in FIG. 4, but the magnetized body is used as the magnetizing electromagnet 120 and the bias magnet is used as the biasing electromagnet 128. The changed points are different.
In the embodiment shown in FIG. 2, the magnetizing electromagnet 120 has a magnetizing coil 112 attached to the center leg of the three quadrangular prism-shaped legs of the soft magnetic material 118 having a quadrangular cross section and an E-shape as a whole. Is wound.
The magnetic pole surfaces as open end surfaces of the three quadrangular prism-shaped legs are parallel to the surface of the medium 10 in the same manner as the magnetic pole surface of the magnetized body 20 in FIG. 4 (the hatched portion in FIG. 5). They are arranged so as to be in contact with or close to each other and to be arranged in a direction perpendicular to the relative movement direction Y.
[0024]
The bias electromagnet 128 is configured by winding a bias coil 126 around a quadrangular prism-shaped soft magnetic body 127. The bias magnetic field Hb similar to that shown in FIG. 5 is generated above the magnetic detection element 16 like the bias magnet 28 shown in FIG. 4, and the magnetic detection element 16 is set to a sensitive operating point.
Next, the operation of the magnetic detection device of FIG. 1 will be described.
When the medium 10 inserted into the insertion port 102 is conveyed by a conveying unit (not shown) and passes below the entry sensor 101, the medium entry detection unit 106 detects the arrival of the medium 10 from the output signal of the entry sensor 101. The signal indicating this arrival is transmitted to the magnetizing coil / bias coil driving means 107.
[0025]
As a result, the magnetizing coil / bias coil driving means 107 energizes the magnetizing coil 112 and the bias coil 126 in the magnetic sensor 103 via the terminals 140 and 141, respectively, and attaches the magnetizing electromagnet 120 and the bias electromagnet 128. Drive.
Thereafter, the medium 10 reaches the magnetic sensor 103, but is first magnetized by the magnetizing electromagnet 120 in the directions of the magnetizing magnetic fields Hx and -Hx shown in FIG. When the medium 10 is further conveyed and reaches the magnetic detection element 16, the magnetic detection element 16 is affected by magnetic fields (the above-described external magnetic fields) H1 and H2 which are generated by the residual magnetism of the medium 10 and are superimposed on the bias magnetic field Hb. , The impedance changes.
[0026]
Here, the magnetic detection circuit 108 detects the residual voltage of the medium 10 from the signal voltage obtained by the magnetic detection elements 16A and 16B through the terminal 30 of the magnetic detection element 16 of the magnetic sensor 103, as in the case of the magnetic sensor 34 of FIG. A value proportional to the sum (H1 + H2) of the external magnetic fields H1 and H2 generated by magnetism is differentially detected. In this manner, the disturbance magnetic field is canceled, and the magnetic field corresponding to the amount of the magnetic ink printed on the medium 10 is accurately detected.
According to the present embodiment, the magnetizing magnetic field is generated only when the medium 10 is conveyed. Therefore, even if the iron powder adheres to the magnetic pole surface of the magnetizing electromagnet 120 in an environment where iron powder or the like exists, for example, Can be eliminated. That is, even if iron powder or the like adheres, it can be removed when the medium 10 does not pass through, so that the magnetic pattern on the medium can be detected stably with high reliability without damaging the medium.
[0027]
FIG. 3 shows another embodiment of the magnetizing electromagnet 120. In FIG. 3, magnetizing coils 112a and 112b are wound around two portions connecting three legs of an E-shaped soft magnetic body 118, respectively, to form a magnetizing electromagnet 120.
In the case of the configuration of FIG. 3, it is possible to control the amounts of magnetization in the directions of the magnetization magnetic fields Hx and −Hx with respect to the medium 10 by the currents applied to the coils 112a and 112b, respectively. Can be corrected, and the magnetic pattern on the medium can be accurately detected.
In FIG. 2, a means for measuring the ambient temperature, such as a thermistor or a thermocouple, is added, and the current to the magnetizing coil 112 of the magnetizing electromagnet 120 or the bias coil 126 of the biasing electromagnet 128 is changed to the temperature. By performing the correction and control, the magnetic field generated by each of the electromagnets 120 and 128 can be stabilized regardless of the temperature.
[0028]
In the configuration of the magnetic sensor 103 of FIG. 2, the magnetizing electromagnet 120 is integrated in the same holder 32 as the magnetism detecting element 16 and the biasing electromagnet 128. There is a characteristic that is hardly affected by
[0029]
【The invention's effect】
According to the present invention, a permanent magnet used in a conventional magnetic detecting device is magnetized to magnetize magnetic ink used for printing on a medium or to apply a bias magnetic field to a magnetic detecting element to an electromagnet. A means is provided to detect the intrusion and energize these electromagnets, eliminating the effects of iron powder etc. in the surrounding environment, reducing detection errors, and providing excellent stability and reliability. A magnetic detection device can be configured.
Furthermore, the coil current of the electromagnet can be controlled so as to compensate for the aging and temperature change of the electromagnet and the like, so that the stability of the magnetic detection device can be improved, and The effect of (1) can improve the magnetic discrimination ability of the magnetic detection device.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a magnetic detection device as one embodiment of the present invention. FIG. 2 is a configuration diagram of one embodiment of a magnetic sensor of FIG. 1. FIG. 3 is another embodiment of the magnetizing electromagnet of FIG. FIG. 4 is a conventional configuration diagram corresponding to FIG. 2; FIG. 5 is a diagram showing an arrangement relationship between a magnetized body of FIG. 4 and a magnetic sensing element; FIG. FIG. 7 is a diagram showing a configuration example of a conventional magnetism detection device.
10 Print media (medium)
16 Magnetic Detecting Elements 16A, 16B Magnetic Detecting Unit 22 Magnetic Shielding Member 24 Nonmagnetic Substrate 30 Terminal 32 Holder 101 Entry Sensor 102 Insertion Slot 103 Magnetic Sensor 106 Medium Entry Detection Means 107 Magnetizing Coil / Bias Coil Driving Means 108 Magnetic Detection Circuit 112 , 112a, 112b Magnetizing coil 118 Soft magnet 120 Magnetizing magnet 126 Bias coil 127 Soft magnet 128 Magnet for bias 140 Magnetizing coil terminal 141 Bias coil terminal Y Transport direction, relative movement direction Hx, -Hx Magnetizing magnetic field Hb Bias magnetic field H1, H2 Magnetic field generated by remanence of medium (external magnetic field, residual magnetic field)

Claims (5)

磁性材料を保持する紙葉状ないしは薄板状の媒体を搬送する搬送路上の前段において該媒体に着磁磁界を印加する着磁手段、この着磁磁界の印加により前記媒体上の磁性材料が帯びる残留磁気によって生ずる磁界を前記搬送路上の後段において検出する磁気検出手段を持ち、前記媒体を識別する磁気検出装置において、
前記着磁手段が、前記媒体の到来を検出する手段と、この到来検出に基づいて付勢され、前記着磁磁界を前記媒体の搬送方向と直交する方向に発生する着磁用電磁石とを備えたことを特徴とする磁気検出装置。
Magnetizing means for applying a magnetizing magnetic field to the medium at a front stage on a transport path for transporting a sheet-like or sheet-like medium holding a magnetic material, remnant magnetism of the magnetic material on the medium by applying the magnetizing magnetic field Magnetic detection means for detecting the magnetic field generated by the subsequent stage on the transport path, the magnetic detection device for identifying the medium,
The magnetizing means includes means for detecting the arrival of the medium, and a magnetizing electromagnet which is energized based on the arrival detection and generates the magnetizing magnetic field in a direction orthogonal to the transport direction of the medium. A magnetic detection device.
請求項1に記載の磁気検出装置において、
前記磁気検出手段が、非磁性体からなる基板上に形成された薄膜磁気インピーダンス素子と、該薄膜磁気インピーダンス素子ヘバイアス磁界を印加するバイアス磁界発生手段とを備えたことを特徴とする磁気検出装置。
The magnetic detection device according to claim 1,
A magnetic detecting apparatus, wherein the magnetic detecting means includes a thin-film magnetic impedance element formed on a substrate made of a non-magnetic material, and a bias magnetic field generating means for applying a bias magnetic field to the thin-film magnetic impedance element.
請求項2に記載の磁気検出装置において、
前記バイアス磁界発生手段が、前記バイアス磁界を生成するための磁気コアと、通電により該磁気コアを励磁するバイアス用励磁コイルとを持つバイアス用電磁石を備えたことを特徴とする磁気検出装置。
The magnetic detection device according to claim 2,
A magnetic detection device, wherein the bias magnetic field generating means includes a bias electromagnet having a magnetic core for generating the bias magnetic field, and a bias excitation coil for exciting the magnetic core when energized.
請求項3に記載の磁気検出装置において、
前記バイアス用電磁石が、前記媒体の到来を検出する手段の検出に基づいて付勢されるようにしたことを特徴とする磁気検出装置。
The magnetic detection device according to claim 3,
The magnetic detecting device according to claim 1, wherein the biasing electromagnet is energized based on detection of a unit that detects the arrival of the medium.
請求項3または4に記載の磁気検出装置において、
少なくとも前記着磁手段を構成する着磁用電磁石、並びに前記磁気検出手段を構成する薄膜磁気インピーダンス素子およびバイアス用電磁石が、同−の筐体に一体化されていることを特徴とする磁気検出装置。
The magnetic detection device according to claim 3, wherein
At least a magnetizing electromagnet constituting the magnetizing means, and a thin-film magnetic impedance element and a biasing electromagnet constituting the magnetic detecting means are integrated in the same housing. .
JP2002373374A 2002-12-25 2002-12-25 Magnetic detection device Withdrawn JP2004206316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373374A JP2004206316A (en) 2002-12-25 2002-12-25 Magnetic detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373374A JP2004206316A (en) 2002-12-25 2002-12-25 Magnetic detection device

Publications (1)

Publication Number Publication Date
JP2004206316A true JP2004206316A (en) 2004-07-22

Family

ID=32811667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373374A Withdrawn JP2004206316A (en) 2002-12-25 2002-12-25 Magnetic detection device

Country Status (1)

Country Link
JP (1) JP2004206316A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241653A (en) * 2006-03-08 2007-09-20 Nidec Sankyo Corp Magnetic sensor device and discriminator
JP2007241654A (en) * 2006-03-08 2007-09-20 Nidec Sankyo Corp Magnetic sensor device and discriminator
JP2008249371A (en) * 2007-03-29 2008-10-16 Canon Electronics Inc Magnetic material detection sensor and magnetic material detector
CN103116937A (en) * 2013-01-23 2013-05-22 广州纳龙智能科技有限公司 Automatic teller machine and quantization authenticity identification method
CN103116935A (en) * 2013-01-23 2013-05-22 广州纳龙智能科技有限公司 Currency detector and quantitative authenticity identification method
WO2013111467A1 (en) * 2012-01-26 2013-08-01 Tdk株式会社 Magnetic measurement device
CN103814399A (en) * 2011-08-15 2014-05-21 精量电子(德国)公司 Measuring device for measuring magnetic properties of surroundings of measuring device
WO2014114037A1 (en) * 2013-01-23 2014-07-31 广州纳龙智能科技有限公司 Magnetic sensor and method for quantifying and authenticating magnetic hysteresis loop feature of magnetic code
CN106104639A (en) * 2014-04-09 2016-11-09 光荣株式会社 Magnetic substance discriminating gear and magnetic substance method of discrimination
WO2017208752A1 (en) * 2016-06-02 2017-12-07 日本電産サンキョー株式会社 Magnetic sensor device
US10325170B2 (en) 2017-09-07 2019-06-18 Toshiba Tec Kabushiki Kaisha Magnetic ink reader and printer having the same
US10776648B2 (en) 2017-09-07 2020-09-15 Toshiba Tec Kabushiki Kaisha Magnetic ink reader and printer having the same
US11023760B2 (en) 2018-05-22 2021-06-01 Toshiba Tec Kabushiki Kaisha Magnetic ink reading device and printer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105847A (en) * 1998-07-28 2000-04-11 Canon Electronics Inc Magnetic sensor for magnetic ink detection, signal processing method therefor, and magnetic ink detecting device
JP2000252122A (en) * 1999-03-02 2000-09-14 Seiko Epson Corp Magnetic reader, compound processor using the same, and magnetism reading method
JP2002289940A (en) * 2001-03-28 2002-10-04 Uchihashi Estec Co Ltd Magnetic impedance effect sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105847A (en) * 1998-07-28 2000-04-11 Canon Electronics Inc Magnetic sensor for magnetic ink detection, signal processing method therefor, and magnetic ink detecting device
JP2000252122A (en) * 1999-03-02 2000-09-14 Seiko Epson Corp Magnetic reader, compound processor using the same, and magnetism reading method
JP2002289940A (en) * 2001-03-28 2002-10-04 Uchihashi Estec Co Ltd Magnetic impedance effect sensor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241654A (en) * 2006-03-08 2007-09-20 Nidec Sankyo Corp Magnetic sensor device and discriminator
JP2007241653A (en) * 2006-03-08 2007-09-20 Nidec Sankyo Corp Magnetic sensor device and discriminator
JP2008249371A (en) * 2007-03-29 2008-10-16 Canon Electronics Inc Magnetic material detection sensor and magnetic material detector
US10109131B2 (en) 2011-08-15 2018-10-23 TE Connectivity Sensors Germany GmbH Sensor device including magnetoresistive sensor element and pre-magnetization device
CN103814399B (en) * 2011-08-15 2016-12-21 精量电子(德国)公司 For measuring the measurement apparatus of the magnetic characteristic around measurement apparatus
CN103814399A (en) * 2011-08-15 2014-05-21 精量电子(德国)公司 Measuring device for measuring magnetic properties of surroundings of measuring device
US9482725B2 (en) 2011-08-15 2016-11-01 Meas Deutschland Gmbh Sensor device including magnetoresistive sensor element and pre-magnetization device
JP2014524572A (en) * 2011-08-15 2014-09-22 メアス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Measuring device for measuring the magnetic properties of its surroundings
JP5641157B2 (en) * 2012-01-26 2014-12-17 Tdk株式会社 Magnetic measuring device
US9702945B2 (en) 2012-01-26 2017-07-11 Tdk Corporation Magnetic measurement device
WO2013111467A1 (en) * 2012-01-26 2013-08-01 Tdk株式会社 Magnetic measurement device
CN104081217A (en) * 2012-01-26 2014-10-01 Tdk株式会社 Magnetic measurement device
CN103116935B (en) * 2013-01-23 2014-04-09 广州纳龙智能科技有限公司 Currency detector and quantitative authenticity identification method
WO2014114037A1 (en) * 2013-01-23 2014-07-31 广州纳龙智能科技有限公司 Magnetic sensor and method for quantifying and authenticating magnetic hysteresis loop feature of magnetic code
CN103116937B (en) * 2013-01-23 2014-04-09 广州纳龙智能科技有限公司 Automatic teller machine and quantization authenticity identification method
CN103116935A (en) * 2013-01-23 2013-05-22 广州纳龙智能科技有限公司 Currency detector and quantitative authenticity identification method
CN103116937A (en) * 2013-01-23 2013-05-22 广州纳龙智能科技有限公司 Automatic teller machine and quantization authenticity identification method
CN106104639A (en) * 2014-04-09 2016-11-09 光荣株式会社 Magnetic substance discriminating gear and magnetic substance method of discrimination
WO2017208752A1 (en) * 2016-06-02 2017-12-07 日本電産サンキョー株式会社 Magnetic sensor device
JP2017215297A (en) * 2016-06-02 2017-12-07 日本電産サンキョー株式会社 Magnetic sensor device
US10325170B2 (en) 2017-09-07 2019-06-18 Toshiba Tec Kabushiki Kaisha Magnetic ink reader and printer having the same
US10552700B2 (en) 2017-09-07 2020-02-04 Toshiba Tec Kabushiki Kaisha Magnetic ink reader and printer having the same
US10776648B2 (en) 2017-09-07 2020-09-15 Toshiba Tec Kabushiki Kaisha Magnetic ink reader and printer having the same
US11023760B2 (en) 2018-05-22 2021-06-01 Toshiba Tec Kabushiki Kaisha Magnetic ink reading device and printer

Similar Documents

Publication Publication Date Title
JP4024964B2 (en) Magnetic sensor for magnetic ink detection, signal processing method thereof, and magnetic ink detection device
KR101413952B1 (en) Magnetic pattern detecting apparatus
JP4867391B2 (en) Paper sheet identification sensor
JP5719515B2 (en) Magnetic sensor device
JP4894040B2 (en) Magnetic sensor
JP2004206316A (en) Magnetic detection device
JP3206810B2 (en) Magnetic detector
KR20140051385A (en) Measuring device for measuring the magnetic properties of the surroundings of the measuring device
JP2006293575A (en) Apparatus and method for identifying paper sheet
JP3283931B2 (en) Magnetic quality detector
WO2016170885A1 (en) Magnetic sensor device
CN109073715B (en) Magnetic sensor device
JP2005030872A (en) Magnetic body quantity detector
JP4267271B2 (en) Magnetic detection device
JP4404044B2 (en) Paper sheet detection sensor
WO2020149375A1 (en) Magnetic identification sensor
JP4541136B2 (en) Magnetic body detection sensor and magnetic body detection line sensor
JP2005062089A (en) Magnetometric sensor
JP2005129009A (en) Paper sheet discriminating device and method
JP4104923B2 (en) Magnetic body detection device
JP4857940B2 (en) Paper sheet identification device
JP2008145302A (en) Magnetic sensor
JP4993497B2 (en) Form body with magnetic mark
JP2022189283A (en) Magnetic identification sensor and magnetic identification device
JP2002202353A (en) Magnetic head and magnetic substance detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080212