JP2005023806A - 内燃機関の点火時期制御装置 - Google Patents
内燃機関の点火時期制御装置 Download PDFInfo
- Publication number
- JP2005023806A JP2005023806A JP2003188222A JP2003188222A JP2005023806A JP 2005023806 A JP2005023806 A JP 2005023806A JP 2003188222 A JP2003188222 A JP 2003188222A JP 2003188222 A JP2003188222 A JP 2003188222A JP 2005023806 A JP2005023806 A JP 2005023806A
- Authority
- JP
- Japan
- Prior art keywords
- mbt
- correction value
- basic
- trace knock
- knock point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Electrical Control Of Ignition Timing (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
【課題】本発明の目的は、吸気弁の開閉タイミングを可変制御し得る内燃機関において、吸気弁の開閉タイミングを可変制御した場合でも最適な点火時期を得ることのできる内燃機関の点火時期制御装置を提供すること。
【解決手段】本発明は、運転状態検出手段11,17,20によって検出された運転状態に対応する基本MBT及び基本トレースノック点を取得する基本値取得手段15と、閉弁時期検出手段21によって検出された閉弁時期に対応するMBT補正値及びトレースノック点補正値を取得する補正値取得手段15と、基本MBT及び基本トレースノック点、並びに、MBT補正値及びトレースノック点補正値に基づいて、現在のMBT及びトレースノック点を算出する現在値算出手段15と、算出されたMBT及びトレースノック点のうち遅角側のものを最適点火時期として採用する点火時期制御手段15とをさらに備えている。
【選択図】 図3
【解決手段】本発明は、運転状態検出手段11,17,20によって検出された運転状態に対応する基本MBT及び基本トレースノック点を取得する基本値取得手段15と、閉弁時期検出手段21によって検出された閉弁時期に対応するMBT補正値及びトレースノック点補正値を取得する補正値取得手段15と、基本MBT及び基本トレースノック点、並びに、MBT補正値及びトレースノック点補正値に基づいて、現在のMBT及びトレースノック点を算出する現在値算出手段15と、算出されたMBT及びトレースノック点のうち遅角側のものを最適点火時期として採用する点火時期制御手段15とをさらに備えている。
【選択図】 図3
Description
【0001】
【発明の属する技術分野】
本発明は、内燃機関の点火時期を制御する内燃機関の点火時期制御装置に関する。
【0002】
【従来の技術】
内燃機関(エンジン)では、燃焼によって得られる出力を最大限効率よく得ようとするため、及び、排気ガス浄化性能や燃費性能を良好とするために点火時期制御が行われる。また、近年になって、吸気バルブの開閉タイミングを可変制御する機構も一般的になってきている。内燃機関が最大トルクを発生する点火時期はMBT(Minimum spark advance for Best Torque)と呼ばれており、内燃機関の種類や回転数にもよるが、MBTはノッキングが発生し始める点火時期(トレースノック点)の近傍にある。
【0003】
トレースノック点よりもMBTが遅角側にあるときは点火時期をMBTとすることが最大トルクを得られるので最適な点火時期といえる。一方、トレースノック点がMBTよりも遅角側にあるときはMBTに達しなくてもトレースノック点より進角させることはエンジン破損に繋がる。このため、トレースノック点が最適な点火時期といえる。点火時期制御に関しては[特許文献1]に記載のものなどが知られている。[特許文献1]に記載のものは、燃焼悪化抑制のために、吸気弁閉弁時期が吸気下死点から離れているときは、吸気弁閉弁時期が吸気下死点から離れていない場合に比べて点火時期を進角させるものである。
【0004】
【特許文献1】
特開2002−257018号公報
【0005】
【発明が解決しようとする課題】
しかし、上述した[特許文献1]に記載のものは、吸気弁閉弁時期の変化に伴うMBT及びトレースノック点の変動を十分に考慮していないため、最適な点火時期を得ることができないものであった。従って、本発明の目的は、吸気弁の開閉タイミングを可変制御し得る内燃機関において、吸気弁の開閉タイミングを可変制御した場合でも最適な点火時期を得ることのできる内燃機関の点火時期制御装置を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に記載の内燃機関の点火時期制御装置は、基本MBT及び基本トレースノック点を運転状態に対応させて記憶すると共に、MBT補正値及びトレースノック点補正値を記憶する記憶手段と、運転状態を検出する運転状態検出手段と、運転状態検出手段によって検出された運転状態に対応する基本MBT及び基本トレースノック点を記憶手段に基づいて取得する基本値取得手段と、吸気弁の閉弁時期を検出する閉弁時期検出手段と、閉弁時期検出手段によって検出された閉弁時期に対応するMBT補正値及びトレースノック点補正値を記憶手段に基づいて取得する補正値取得手段とを備えている。
【0007】
そして、さらに、基本値取得手段によって取得した基本MBT及び基本トレースノック点、並びに、補正値取得手段によって取得したMBT補正値及びトレースノック点補正値に基づいて、現在のMBT及びトレースノック点を算出する現在値算出手段と、現在値算出手段によって算出されたMBT及びトレースノック点のうち、遅角側にある点火時期をそのときの最適点火時期として採用する点火時期制御手段とをさらに備えている。
【0008】
ここで、基本MBT及び基本トレースノック点とは、吸気弁閉弁時期が吸気下死点であるときのMBT及びトレースノック点のことであり、運転状態(エンジン回転数やエンジン負荷)に対応して設定される。また、MBT補正値及びトレースノック点補正値とは、吸気弁閉弁時期が下死点からズレたときのMBT及びトレースノック点の基本MBT及び基本トレースノック点からのズレ量をいう。
【0009】
請求項2に記載の発明は、請求項1に記載の発明において、記憶手段が、(1)吸気弁閉弁時期の進角側から吸気下死点近傍への変化に対応して、MBT補正値及びトレースノック点補正値が一次的に遅角側に変化し、かつ、(2)吸気弁閉弁時期の吸気下死点近傍から遅角側への変化に対応して、MBT補正値及び基本トレースノック点補正値が一次的に進角側に変化するものとして、MBT補正値及びトレースノック点補正値を記憶していることを特徴としている。
【0010】
【発明の実施の形態】
本発明の制御装置の一実施形態について以下に説明する。本実施形態の制御装置を有するエンジン1を図1に示す。
【0011】
本実施形態で説明するエンジン1は、多気筒エンジンであるが、ここではそのうちの一気筒のみが断面図として図1に示されている。エンジン1においては、吸気通路2を通して外気が吸入空気として取り込まれ、この吸入空気がシリンダ3の直前でインジェクタ4から噴射された燃料とを混合されて混合気とされる。混合気は、シリンダ3内に吸入され、ピストン5によって圧縮された後に点火プラグ6で着火されて燃焼する。このとき燃焼によってシリンダ内の圧力は上昇し、これをピストン5及びコネクティングロッドを介して出力として取り出している。
【0012】
シリンダ3の内部と吸気通路2との間は、吸気バルブ7によって開閉される。シリンダ3の内部と排気通路8との間は、排気バルブ9によって開閉される。吸気バルブは、吸気行程のピストン5下降時に開かれ、吸気行程から圧縮工程に移行する時に閉じられる。吸気行程が終了する(圧縮工程に移行する)時におけるピストン5の下死点を吸気下死点(以下、吸気BDC:Bottom DeadCenter)と言う。圧縮工程時にはピストン5はシリンダ3内を上昇し、上述したようにピストン5が圧縮上死点(圧縮TDC:Top Dead Center)近傍となるときに混合気に点火される。点火による混合気燃焼に伴う膨張行程においてピストン5は下降し、再び上昇するときに排気バルブ9が開かれて排気行程に移行する。燃焼後の排気ガスは排気通路8に排気される。
【0013】
吸気通路2上には、上流側からエアクリーナ10、エアフロメータ11、スロットルバルブ12などが配置されている。エアクリーナ10は、吸入空気中のゴミや塵などを取り除くフィルタである。本実施形態のエアフロメータ11は、ホットワイヤ式のものであり、吸入空気量を質量流量として検出するものである。エアフロメータ11にはサーミスタ式の吸気温センサも内蔵されており、エアフロメータ11は吸気温センサとしての機能も持たされている。エアフロメータ11の下流側には、吸入空気量を調節するスロットルバルブ12が配されている。
【0014】
本実施形態のスロットルバルブ12は、いわゆる電子制御式スロットルバルブである。アクセルペダル13の操作量がアクセルポジショニングセンサ14で検出され、この検出結果と他の情報量とに基づいて電子式コントロールユニット(ECU)15がスロットルバルブ12の開度を決定する。スロットルバルブ12は、これに付随して配設されたスロットルモータ16によって開閉される。また、スロットルバルブ12に付随して、その開度を検出するスロットルポジショニングセンサ17も配設されている。なお、ECU15は、CPU,ROM,RAM等からなる。また、スロットルバルブ12の下流側にはサージタンクが配置されており、このサージタンク内には圧力センサ25も取り付けられている。
【0015】
また、上述した点火プラグ6は、イグニッションコイル18及びイグナイタ19を介してECU15に接続されている。また、エンジン1のクランクシャフト近傍には、エンジン回転数やピストン位置を検出するためのクランクポジショニングセンサ20が取り付けられており、吸気側のカムシャフトの近傍には、吸気バルブ7(及び排気バルブ9)の開閉タイミングを検出するカムポジショニングセンサ21が取り付けられている。ECU15は、クランクポジショニングセンサ20やカムポジショニングセンサ21の検出結果などに基づいて点火時期を決定する。点火プラグ6は、ECU15からの点火信号に基づいてイグナイタ19がスイッチの働きをし、イグニッションコイル18が点火用の高電圧を生成し、これによって点火される。
【0016】
ECU15には、イグナイタ19、クランクポジショニングセンサ20やカムポジショニングセンサ21の他、上述したエアフロメータ11、アクセルポジショニングセンサ14、スロットルモータ16、スロットルポジショニングセンサ17等も接続されている。これらのセンサ類やアクチュエータ類は、ECU15に対して検出結果を送出しているか、ECU15からの信号によって制御されている。図示されていないが、ECU15には、排気通路8上に配設された排気浄化触媒22による排気浄化を効果的に行うための空燃比制御に用いる空燃比センサなども接続されており、燃料噴射制御や空燃比制御も司っている。
【0017】
また、ECU15には、エンジン冷却水の温度を検出する水温センサ23やノックセンサ24も接続されている。ECU15は、ノックセンサ24の検出結果に基づくノックコントロール(制御)も司っている。ノックセンサ24は、エンジンブロックに固定されており、エンジン振動を検出するものである。ECU15は、その検出結果から、エンジン1にノッキング時特有の振動が生じているか否かを判定してノッキングの有無を検出している。また、ECU15には、外気温を検出する外気温センサ26も接続されている。
【0018】
さらに、図示されていないが、本実施形態のエンジン1は、連続可変式のバルブタイミング機構を吸気バルブ7側に有している。本実施形態における可変機構は公知のもので、吸気バルブ7側のカムシャフトのスプロケットに内蔵されている。この可変バルブタイミング機構は、オイルポンプで発生させた油圧によってスプロケットとカムシャフトとの間の回転位相を変化させるものである。オイルポンプとスプロケットとの間のバルブがECU15によって制御されており、バルブ制御によって上述した油圧が制御されて吸気バルブ7の開閉タイミングが制御される。
【0019】
以下、本実施形態における点火時期制御について説明するが、まず、基本MBT・基本トレースノック点、及び、MBT補正値・トレースノック点補正値について説明する。これらの値は、何れも点火時期を表しており、クランクアングル(°CA)によって表される。特に、ここでは吸気BDC近傍についての点火時期についての制御であるため、BDCを中心に進角側又は遅角側という表現もすることとする。既に述べたように、MBTは、内燃機関が最大トルクを発生する点火時期であり、予め実験などを通して求められ、ECU15内のROMにマップとして格納されている。また、トレースノック点は、ノッキングが発生し始める限界の点火時期である。
【0020】
そして、基本MBT及び基本トレースノック点とは、各運転状態下において吸気弁閉弁時期が吸気BDCであるときのMBT及びトレースノック点のことである。実際には、上述したように、可変吸気バルブタイミング機構によって吸気バルブ7の開閉タイミングが可変制御されるので基準を設定した方が都合が良く、吸気バルブ7の閉弁時期が吸気BDCであるときのMBT及びトレースノック点を基準、即ち、基本MBT及び基本トレースノック点として設定している。また、本実施形態では、運転状態としてはエンジン回転数及びエンジン負荷が採用されており、基本MBT及び基本トレースノック点は、それぞれエンジン回転数及びエンジン負荷の二次元マップとして規定されており、これらのマップはECU15のROM内に格納されている。
【0021】
また、MBT補正値とは、吸気弁閉弁時期が吸気BDCからズレたときのMBTの基本MBTからのズレ量である。同様に、トレースノック点補正値とは、吸気弁閉弁時期が吸気BDCからズレたときのトレースノック点の基本トレースノック点からのズレ量である。即ち、MBT補正値及びトレースノック点補正値とは、吸気弁閉弁時期の変化(吸気BDCからのズレ量)に対する点火時期補正量である。本実施形態の場合は、図2に示されるように、MBT補正値及びトレースノック点補正値は、吸気弁閉弁時期を表すクランクアングルに対する点火時期変化量としてそれぞれ折れ線で規定される。
【0022】
定義からも明らかなように、これらの折れ線は(吸気バルブ閉時期:BDC,点火時期補正値:0)を通ることとなる。そして、この折れ線から分かるように、(1)吸気弁閉弁時期の進角側から吸気BDC近傍への変化に対応して、MBT補正値及びトレースノック点補正値が一次的に遅角側に変化し、かつ、(2)吸気弁閉弁時期の吸気BDC近傍から遅角側への変化に対応して、MBT補正値及び基本トレースノック点補正値が一次的に進角側に変化している。MBT補正値は、吸気BDC近傍で最も遅角側となる。同様に、基本トレースノック点補正値も、吸気BDC近傍で最も遅角側となる。
【0023】
図3のフローチャートに基づいて点火時期制御について説明する。
【0024】
まず、運転状態として、クランクポジショニングセンサ20によってエンジン回転数(NE)を検出すると共に、エアフロメータ11によって検出される吸入空気量とスロットルポジショニングセンサ17によって検出されるスロットル開度とからエンジン負荷(KL)が検出される(ステップ300)。これらのセンサや、エンジン負荷(KL)を算出するECU15などが運転状態検出手段として機能している。
【0025】
また、クランクポジショニングセンサ20の検出結果とカムポジショニングセンサ21の検出結果などからECU15によって吸気弁閉弁時期(IVC)が計測される(ステップ300)。これらのセンサ及びECU15などが閉弁時期検出手段として機能している。なお、上述したエンジン負荷に代えて負荷率を用いても良い。負荷率とは、1回転あたりの吸入空気量(質量流量)であり、吸入空気量とエンジン回転数とから求められる。なお、負荷率は、バルブタイミングやバルブリフト量を可変制御している場合はこれらも考慮して求められる。
【0026】
次いで、検出したエンジン回転数NEとエンジン負荷KLとから、基本MBT(MBTbs)及び基本トレースノック点(TKbs)が算出される(ステップ310)。上述したように、基本MBT(MBTbs)は、エンジン回転数NEとエンジン負荷KLの二次元マップとしてECU15内のROMに格納されている。基本トレースノック点(TKbs)も、エンジン回転数NEとエンジン負荷KLの二次元マップとしてECU15内のROMに格納されており、これらが検出されたエンジン回転数NE及びエンジン負荷KLに基づいて読み出される。このため、ここではECU15は記憶手段及び基本値取得手段としても機能している。
【0027】
また、検出された吸気弁閉弁時期(IVC)に基づいて、吸気弁閉弁時期(IVC)が吸気BDCからどの程度ずれているかがまず算出され、このズレ量に基づいてMBT補正値(dMBT)及びトレースノック点補正値(dTK)が算出される(ステップ320)。図2に示したように、MBT補正値(dMBT)は、上述した吸気弁閉弁時期の吸気BDCからのズレ量に関するマップとしてECU15内のROMに格納されており、トレースノック点補正値(dTK)も、同様に、吸気弁閉弁時期の吸気BDCからのズレ量に関するマップとしてECU15内のROMに格納されている。このため、ここではECU15は記憶手段及び補正値取得手段としても機能している。
【0028】
ステップ310において算出された基本MBT(MBTbs)とステップ320において算出されたMBT補正値(dMBT)から、現在のMBT(MBTc=MBTbs+dMBT)を算出する(ステップ330)。同様に、ステップ310において算出された基本トレースノック点(TKbs)とステップ320において算出されたトレースノック点補正値(dTK)から、現在のトレースノック点(TKc=TKbs+dTK)を算出する(ステップ330)。この演算はECU15によって行われ、ECU15は現在値算出手段としても機能している。
【0029】
そして、現在のMBT(MBTc)の方が現在のトレースノック点(TKc)より進角側であるか否か、即ち、何れの方が遅角側にあるかを判定する(ステップ340)。ステップ340が肯定される場合、即ち、現在のトレースノック点(TKc)の方が遅角側にある場合は、ノッキングを発生させない限界である、このトレースノック点(TKc)を最適点火時期に採用し(ステップ350)、点火制御が実行される(ステップ370)。一方、ステップ340が否定される場合、即ち、現在のMBT(MBTc)の方が遅角側にある場合は、ノッキングを発生させずに最大トルクを得ることのできるこのMBT(MBTc)を最適点火時期に採用し(ステップ350)、点火制御が実行される(ステップ370)。このときは、ECU15が点火時期制御手段として機能している。
【0030】
このような制御を一定クランク角ごとに実施することで、吸気弁閉弁時期の変化に応じて最適な点火時期を設定することができる。吸気弁のバルブタイミングを可変制御できるエンジンにおいて、MBTやトレースノック点をエンジン回転数NE・エンジン負荷KL(負荷率の場合もある)・吸気弁閉弁時期IVCに基づく3次元マップとするよりも、本実施形態のように運転状態(エンジン回転数NE・エンジン負荷KL)に基づく基本MBT(MBTbs)及び基本トレースノック点(TKbs)と、吸気弁閉弁時期IVCに基づくMBT補正値(dMBT)及びトレースノック点補正値(dTK)とから、その時点でのMBT(MBTc)及びトレースノック点(TKc)を算出することで、演算負荷を軽減しつつ精度の高いMBT(MBTc)及びトレースノック点(TKc)を得ることが可能となる。
【0031】
また、MBTやトレースノック点をエンジン回転数NE・エンジン負荷KL(負荷率の場合もある)・吸気弁閉弁時期IVCに基づく3次元マップとする際には、このマップを作成する工数(適合工数)が膨大となるが、本実施形態のように、基本MBT(MBTbs)及び基本トレースノック点(TKbs)のマップと、図2に示されるようなマップと二分割することで、この適合工数を激減させることが可能となる。特に、図2に示されるマップのように、MBT補正値(dMBT)及びトレースノック点補正値(dTK)をそれぞれ一次的な直線として把握することで、図2のようなマップの適合工数は特に低減させることが可能となる。
【0032】
MBT補正値(dMBT)を例にして説明すれば、図2上の折れ線は吸気BDC近傍で最遅角値をとるが、その遅角側と進角側のそれぞれで二点計測を行えば各直線を規定することができる。このため、図2のようなマップを作成する適合工数を激減させることができる。トレースノック点補正値(dTK)についても、吸気BDC近傍で最遅角値をとるので、その遅角側と進角側のそれぞれで二点計測を行えば各直線を規定することができる。
【0033】
本発明は、上述した実施形態に限定されるものではない。例えば、エンジンによっては吸気弁閉弁時期(IVC)が吸気BDCよりも遅角側に大きく変化しない場合もある。このとき、吸気弁閉弁時期(IVC)の変化にするMBT補正値(dMBT)及び基本トレースノック点(dTK)の変化は図4のようにそれぞれ一本の直線で規定される。このようにすれば、異なる二つの吸気弁閉弁時期(IVC)についてのMBT及びトレースノック点を調査することで、MBT補正値(dMBT)及びトレースノック点補正値(dTK)を決定することができる。
【0034】
【発明の効果】
請求項1に記載の内燃機関の点火時期制御装置によれば、まず、基本値取得手段によって、運転状態検出手段で検出した運転状態に対応する基本MBT及び基本トレースノック点を記憶手段に基づいて取得し、補正値取得手段によって、閉弁時期検出手段で検出した閉弁時期に対応するMBT補正値及びトレースノック点補正値を記憶手段に基づいて取得する。
【0035】
そして、基本値取得手段によって取得した基本MBT及び基本トレースノック点、並びに、補正値取得手段によって取得したMBT補正値及びトレースノック点補正値に基づいて、現在値算出手段によって現在のMBT及びトレースノック点を算出し、算出されたMBT及びトレースノック点のうち遅角側にある点火時期を点火時期制御手段がそのときの最適点火時期として採用する。
【0036】
このため、演算負荷を軽減しつつ精度の高い最適点火時期(MBT及びトレースノック点)を得ることが可能となる。また、基本MBT及び基本トレースノック点のマップと、MBT補正値及びトレースノック点補正値のマップとを分けることで、これらの適合工数を激減させることが可能となる。
【0037】
特に、請求項2に記載の発明によれば、記憶手段が、(1)吸気弁閉弁時期の進角側から吸気下死点近傍への変化に対応して、MBT補正値及びトレースノック点補正値が一次的に遅角側に変化し、かつ、(2)吸気弁閉弁時期の吸気下死点近傍から遅角側への変化に対応して、MBT補正値及び基本トレースノック点補正値が一次的に進角側に変化するものとして、MBT補正値及びトレースノック点補正値を記憶している。このため、MBT補正値及びトレースノック点補正値をそれぞれ一次的な直線として把握することで、MBT補正値及びトレースノック点補正値のマップの適合工数を特に低減させることが可能となる。
【図面の簡単な説明】
【図1】本発明の点火制御装置の一実施形態を有する内燃機関(エンジン)の構成を示す構成図である。
【図2】MBT補正値及びトレースノック点補正値のマップを示す説明図である。
【図3】本発明の点火制御装置の一実施形態による制御のフローチャートである。
【図4】MBT補正値及びトレースノック点補正値の別の例のマップを示す説明図である。
【符号の説明】
1…エンジン、5…ピストン、6…点火プラグ、7…吸気バルブ、9…排気バルブ、11…エアフロメータ、15…ECU、17…スロットルポジショニングセンサ、18…イグニッションコイル、19…イグナイタ、20…クランクポジショニングセンサ、21…カムポジショニングセンサ、24…ノックセンサ。
【発明の属する技術分野】
本発明は、内燃機関の点火時期を制御する内燃機関の点火時期制御装置に関する。
【0002】
【従来の技術】
内燃機関(エンジン)では、燃焼によって得られる出力を最大限効率よく得ようとするため、及び、排気ガス浄化性能や燃費性能を良好とするために点火時期制御が行われる。また、近年になって、吸気バルブの開閉タイミングを可変制御する機構も一般的になってきている。内燃機関が最大トルクを発生する点火時期はMBT(Minimum spark advance for Best Torque)と呼ばれており、内燃機関の種類や回転数にもよるが、MBTはノッキングが発生し始める点火時期(トレースノック点)の近傍にある。
【0003】
トレースノック点よりもMBTが遅角側にあるときは点火時期をMBTとすることが最大トルクを得られるので最適な点火時期といえる。一方、トレースノック点がMBTよりも遅角側にあるときはMBTに達しなくてもトレースノック点より進角させることはエンジン破損に繋がる。このため、トレースノック点が最適な点火時期といえる。点火時期制御に関しては[特許文献1]に記載のものなどが知られている。[特許文献1]に記載のものは、燃焼悪化抑制のために、吸気弁閉弁時期が吸気下死点から離れているときは、吸気弁閉弁時期が吸気下死点から離れていない場合に比べて点火時期を進角させるものである。
【0004】
【特許文献1】
特開2002−257018号公報
【0005】
【発明が解決しようとする課題】
しかし、上述した[特許文献1]に記載のものは、吸気弁閉弁時期の変化に伴うMBT及びトレースノック点の変動を十分に考慮していないため、最適な点火時期を得ることができないものであった。従って、本発明の目的は、吸気弁の開閉タイミングを可変制御し得る内燃機関において、吸気弁の開閉タイミングを可変制御した場合でも最適な点火時期を得ることのできる内燃機関の点火時期制御装置を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に記載の内燃機関の点火時期制御装置は、基本MBT及び基本トレースノック点を運転状態に対応させて記憶すると共に、MBT補正値及びトレースノック点補正値を記憶する記憶手段と、運転状態を検出する運転状態検出手段と、運転状態検出手段によって検出された運転状態に対応する基本MBT及び基本トレースノック点を記憶手段に基づいて取得する基本値取得手段と、吸気弁の閉弁時期を検出する閉弁時期検出手段と、閉弁時期検出手段によって検出された閉弁時期に対応するMBT補正値及びトレースノック点補正値を記憶手段に基づいて取得する補正値取得手段とを備えている。
【0007】
そして、さらに、基本値取得手段によって取得した基本MBT及び基本トレースノック点、並びに、補正値取得手段によって取得したMBT補正値及びトレースノック点補正値に基づいて、現在のMBT及びトレースノック点を算出する現在値算出手段と、現在値算出手段によって算出されたMBT及びトレースノック点のうち、遅角側にある点火時期をそのときの最適点火時期として採用する点火時期制御手段とをさらに備えている。
【0008】
ここで、基本MBT及び基本トレースノック点とは、吸気弁閉弁時期が吸気下死点であるときのMBT及びトレースノック点のことであり、運転状態(エンジン回転数やエンジン負荷)に対応して設定される。また、MBT補正値及びトレースノック点補正値とは、吸気弁閉弁時期が下死点からズレたときのMBT及びトレースノック点の基本MBT及び基本トレースノック点からのズレ量をいう。
【0009】
請求項2に記載の発明は、請求項1に記載の発明において、記憶手段が、(1)吸気弁閉弁時期の進角側から吸気下死点近傍への変化に対応して、MBT補正値及びトレースノック点補正値が一次的に遅角側に変化し、かつ、(2)吸気弁閉弁時期の吸気下死点近傍から遅角側への変化に対応して、MBT補正値及び基本トレースノック点補正値が一次的に進角側に変化するものとして、MBT補正値及びトレースノック点補正値を記憶していることを特徴としている。
【0010】
【発明の実施の形態】
本発明の制御装置の一実施形態について以下に説明する。本実施形態の制御装置を有するエンジン1を図1に示す。
【0011】
本実施形態で説明するエンジン1は、多気筒エンジンであるが、ここではそのうちの一気筒のみが断面図として図1に示されている。エンジン1においては、吸気通路2を通して外気が吸入空気として取り込まれ、この吸入空気がシリンダ3の直前でインジェクタ4から噴射された燃料とを混合されて混合気とされる。混合気は、シリンダ3内に吸入され、ピストン5によって圧縮された後に点火プラグ6で着火されて燃焼する。このとき燃焼によってシリンダ内の圧力は上昇し、これをピストン5及びコネクティングロッドを介して出力として取り出している。
【0012】
シリンダ3の内部と吸気通路2との間は、吸気バルブ7によって開閉される。シリンダ3の内部と排気通路8との間は、排気バルブ9によって開閉される。吸気バルブは、吸気行程のピストン5下降時に開かれ、吸気行程から圧縮工程に移行する時に閉じられる。吸気行程が終了する(圧縮工程に移行する)時におけるピストン5の下死点を吸気下死点(以下、吸気BDC:Bottom DeadCenter)と言う。圧縮工程時にはピストン5はシリンダ3内を上昇し、上述したようにピストン5が圧縮上死点(圧縮TDC:Top Dead Center)近傍となるときに混合気に点火される。点火による混合気燃焼に伴う膨張行程においてピストン5は下降し、再び上昇するときに排気バルブ9が開かれて排気行程に移行する。燃焼後の排気ガスは排気通路8に排気される。
【0013】
吸気通路2上には、上流側からエアクリーナ10、エアフロメータ11、スロットルバルブ12などが配置されている。エアクリーナ10は、吸入空気中のゴミや塵などを取り除くフィルタである。本実施形態のエアフロメータ11は、ホットワイヤ式のものであり、吸入空気量を質量流量として検出するものである。エアフロメータ11にはサーミスタ式の吸気温センサも内蔵されており、エアフロメータ11は吸気温センサとしての機能も持たされている。エアフロメータ11の下流側には、吸入空気量を調節するスロットルバルブ12が配されている。
【0014】
本実施形態のスロットルバルブ12は、いわゆる電子制御式スロットルバルブである。アクセルペダル13の操作量がアクセルポジショニングセンサ14で検出され、この検出結果と他の情報量とに基づいて電子式コントロールユニット(ECU)15がスロットルバルブ12の開度を決定する。スロットルバルブ12は、これに付随して配設されたスロットルモータ16によって開閉される。また、スロットルバルブ12に付随して、その開度を検出するスロットルポジショニングセンサ17も配設されている。なお、ECU15は、CPU,ROM,RAM等からなる。また、スロットルバルブ12の下流側にはサージタンクが配置されており、このサージタンク内には圧力センサ25も取り付けられている。
【0015】
また、上述した点火プラグ6は、イグニッションコイル18及びイグナイタ19を介してECU15に接続されている。また、エンジン1のクランクシャフト近傍には、エンジン回転数やピストン位置を検出するためのクランクポジショニングセンサ20が取り付けられており、吸気側のカムシャフトの近傍には、吸気バルブ7(及び排気バルブ9)の開閉タイミングを検出するカムポジショニングセンサ21が取り付けられている。ECU15は、クランクポジショニングセンサ20やカムポジショニングセンサ21の検出結果などに基づいて点火時期を決定する。点火プラグ6は、ECU15からの点火信号に基づいてイグナイタ19がスイッチの働きをし、イグニッションコイル18が点火用の高電圧を生成し、これによって点火される。
【0016】
ECU15には、イグナイタ19、クランクポジショニングセンサ20やカムポジショニングセンサ21の他、上述したエアフロメータ11、アクセルポジショニングセンサ14、スロットルモータ16、スロットルポジショニングセンサ17等も接続されている。これらのセンサ類やアクチュエータ類は、ECU15に対して検出結果を送出しているか、ECU15からの信号によって制御されている。図示されていないが、ECU15には、排気通路8上に配設された排気浄化触媒22による排気浄化を効果的に行うための空燃比制御に用いる空燃比センサなども接続されており、燃料噴射制御や空燃比制御も司っている。
【0017】
また、ECU15には、エンジン冷却水の温度を検出する水温センサ23やノックセンサ24も接続されている。ECU15は、ノックセンサ24の検出結果に基づくノックコントロール(制御)も司っている。ノックセンサ24は、エンジンブロックに固定されており、エンジン振動を検出するものである。ECU15は、その検出結果から、エンジン1にノッキング時特有の振動が生じているか否かを判定してノッキングの有無を検出している。また、ECU15には、外気温を検出する外気温センサ26も接続されている。
【0018】
さらに、図示されていないが、本実施形態のエンジン1は、連続可変式のバルブタイミング機構を吸気バルブ7側に有している。本実施形態における可変機構は公知のもので、吸気バルブ7側のカムシャフトのスプロケットに内蔵されている。この可変バルブタイミング機構は、オイルポンプで発生させた油圧によってスプロケットとカムシャフトとの間の回転位相を変化させるものである。オイルポンプとスプロケットとの間のバルブがECU15によって制御されており、バルブ制御によって上述した油圧が制御されて吸気バルブ7の開閉タイミングが制御される。
【0019】
以下、本実施形態における点火時期制御について説明するが、まず、基本MBT・基本トレースノック点、及び、MBT補正値・トレースノック点補正値について説明する。これらの値は、何れも点火時期を表しており、クランクアングル(°CA)によって表される。特に、ここでは吸気BDC近傍についての点火時期についての制御であるため、BDCを中心に進角側又は遅角側という表現もすることとする。既に述べたように、MBTは、内燃機関が最大トルクを発生する点火時期であり、予め実験などを通して求められ、ECU15内のROMにマップとして格納されている。また、トレースノック点は、ノッキングが発生し始める限界の点火時期である。
【0020】
そして、基本MBT及び基本トレースノック点とは、各運転状態下において吸気弁閉弁時期が吸気BDCであるときのMBT及びトレースノック点のことである。実際には、上述したように、可変吸気バルブタイミング機構によって吸気バルブ7の開閉タイミングが可変制御されるので基準を設定した方が都合が良く、吸気バルブ7の閉弁時期が吸気BDCであるときのMBT及びトレースノック点を基準、即ち、基本MBT及び基本トレースノック点として設定している。また、本実施形態では、運転状態としてはエンジン回転数及びエンジン負荷が採用されており、基本MBT及び基本トレースノック点は、それぞれエンジン回転数及びエンジン負荷の二次元マップとして規定されており、これらのマップはECU15のROM内に格納されている。
【0021】
また、MBT補正値とは、吸気弁閉弁時期が吸気BDCからズレたときのMBTの基本MBTからのズレ量である。同様に、トレースノック点補正値とは、吸気弁閉弁時期が吸気BDCからズレたときのトレースノック点の基本トレースノック点からのズレ量である。即ち、MBT補正値及びトレースノック点補正値とは、吸気弁閉弁時期の変化(吸気BDCからのズレ量)に対する点火時期補正量である。本実施形態の場合は、図2に示されるように、MBT補正値及びトレースノック点補正値は、吸気弁閉弁時期を表すクランクアングルに対する点火時期変化量としてそれぞれ折れ線で規定される。
【0022】
定義からも明らかなように、これらの折れ線は(吸気バルブ閉時期:BDC,点火時期補正値:0)を通ることとなる。そして、この折れ線から分かるように、(1)吸気弁閉弁時期の進角側から吸気BDC近傍への変化に対応して、MBT補正値及びトレースノック点補正値が一次的に遅角側に変化し、かつ、(2)吸気弁閉弁時期の吸気BDC近傍から遅角側への変化に対応して、MBT補正値及び基本トレースノック点補正値が一次的に進角側に変化している。MBT補正値は、吸気BDC近傍で最も遅角側となる。同様に、基本トレースノック点補正値も、吸気BDC近傍で最も遅角側となる。
【0023】
図3のフローチャートに基づいて点火時期制御について説明する。
【0024】
まず、運転状態として、クランクポジショニングセンサ20によってエンジン回転数(NE)を検出すると共に、エアフロメータ11によって検出される吸入空気量とスロットルポジショニングセンサ17によって検出されるスロットル開度とからエンジン負荷(KL)が検出される(ステップ300)。これらのセンサや、エンジン負荷(KL)を算出するECU15などが運転状態検出手段として機能している。
【0025】
また、クランクポジショニングセンサ20の検出結果とカムポジショニングセンサ21の検出結果などからECU15によって吸気弁閉弁時期(IVC)が計測される(ステップ300)。これらのセンサ及びECU15などが閉弁時期検出手段として機能している。なお、上述したエンジン負荷に代えて負荷率を用いても良い。負荷率とは、1回転あたりの吸入空気量(質量流量)であり、吸入空気量とエンジン回転数とから求められる。なお、負荷率は、バルブタイミングやバルブリフト量を可変制御している場合はこれらも考慮して求められる。
【0026】
次いで、検出したエンジン回転数NEとエンジン負荷KLとから、基本MBT(MBTbs)及び基本トレースノック点(TKbs)が算出される(ステップ310)。上述したように、基本MBT(MBTbs)は、エンジン回転数NEとエンジン負荷KLの二次元マップとしてECU15内のROMに格納されている。基本トレースノック点(TKbs)も、エンジン回転数NEとエンジン負荷KLの二次元マップとしてECU15内のROMに格納されており、これらが検出されたエンジン回転数NE及びエンジン負荷KLに基づいて読み出される。このため、ここではECU15は記憶手段及び基本値取得手段としても機能している。
【0027】
また、検出された吸気弁閉弁時期(IVC)に基づいて、吸気弁閉弁時期(IVC)が吸気BDCからどの程度ずれているかがまず算出され、このズレ量に基づいてMBT補正値(dMBT)及びトレースノック点補正値(dTK)が算出される(ステップ320)。図2に示したように、MBT補正値(dMBT)は、上述した吸気弁閉弁時期の吸気BDCからのズレ量に関するマップとしてECU15内のROMに格納されており、トレースノック点補正値(dTK)も、同様に、吸気弁閉弁時期の吸気BDCからのズレ量に関するマップとしてECU15内のROMに格納されている。このため、ここではECU15は記憶手段及び補正値取得手段としても機能している。
【0028】
ステップ310において算出された基本MBT(MBTbs)とステップ320において算出されたMBT補正値(dMBT)から、現在のMBT(MBTc=MBTbs+dMBT)を算出する(ステップ330)。同様に、ステップ310において算出された基本トレースノック点(TKbs)とステップ320において算出されたトレースノック点補正値(dTK)から、現在のトレースノック点(TKc=TKbs+dTK)を算出する(ステップ330)。この演算はECU15によって行われ、ECU15は現在値算出手段としても機能している。
【0029】
そして、現在のMBT(MBTc)の方が現在のトレースノック点(TKc)より進角側であるか否か、即ち、何れの方が遅角側にあるかを判定する(ステップ340)。ステップ340が肯定される場合、即ち、現在のトレースノック点(TKc)の方が遅角側にある場合は、ノッキングを発生させない限界である、このトレースノック点(TKc)を最適点火時期に採用し(ステップ350)、点火制御が実行される(ステップ370)。一方、ステップ340が否定される場合、即ち、現在のMBT(MBTc)の方が遅角側にある場合は、ノッキングを発生させずに最大トルクを得ることのできるこのMBT(MBTc)を最適点火時期に採用し(ステップ350)、点火制御が実行される(ステップ370)。このときは、ECU15が点火時期制御手段として機能している。
【0030】
このような制御を一定クランク角ごとに実施することで、吸気弁閉弁時期の変化に応じて最適な点火時期を設定することができる。吸気弁のバルブタイミングを可変制御できるエンジンにおいて、MBTやトレースノック点をエンジン回転数NE・エンジン負荷KL(負荷率の場合もある)・吸気弁閉弁時期IVCに基づく3次元マップとするよりも、本実施形態のように運転状態(エンジン回転数NE・エンジン負荷KL)に基づく基本MBT(MBTbs)及び基本トレースノック点(TKbs)と、吸気弁閉弁時期IVCに基づくMBT補正値(dMBT)及びトレースノック点補正値(dTK)とから、その時点でのMBT(MBTc)及びトレースノック点(TKc)を算出することで、演算負荷を軽減しつつ精度の高いMBT(MBTc)及びトレースノック点(TKc)を得ることが可能となる。
【0031】
また、MBTやトレースノック点をエンジン回転数NE・エンジン負荷KL(負荷率の場合もある)・吸気弁閉弁時期IVCに基づく3次元マップとする際には、このマップを作成する工数(適合工数)が膨大となるが、本実施形態のように、基本MBT(MBTbs)及び基本トレースノック点(TKbs)のマップと、図2に示されるようなマップと二分割することで、この適合工数を激減させることが可能となる。特に、図2に示されるマップのように、MBT補正値(dMBT)及びトレースノック点補正値(dTK)をそれぞれ一次的な直線として把握することで、図2のようなマップの適合工数は特に低減させることが可能となる。
【0032】
MBT補正値(dMBT)を例にして説明すれば、図2上の折れ線は吸気BDC近傍で最遅角値をとるが、その遅角側と進角側のそれぞれで二点計測を行えば各直線を規定することができる。このため、図2のようなマップを作成する適合工数を激減させることができる。トレースノック点補正値(dTK)についても、吸気BDC近傍で最遅角値をとるので、その遅角側と進角側のそれぞれで二点計測を行えば各直線を規定することができる。
【0033】
本発明は、上述した実施形態に限定されるものではない。例えば、エンジンによっては吸気弁閉弁時期(IVC)が吸気BDCよりも遅角側に大きく変化しない場合もある。このとき、吸気弁閉弁時期(IVC)の変化にするMBT補正値(dMBT)及び基本トレースノック点(dTK)の変化は図4のようにそれぞれ一本の直線で規定される。このようにすれば、異なる二つの吸気弁閉弁時期(IVC)についてのMBT及びトレースノック点を調査することで、MBT補正値(dMBT)及びトレースノック点補正値(dTK)を決定することができる。
【0034】
【発明の効果】
請求項1に記載の内燃機関の点火時期制御装置によれば、まず、基本値取得手段によって、運転状態検出手段で検出した運転状態に対応する基本MBT及び基本トレースノック点を記憶手段に基づいて取得し、補正値取得手段によって、閉弁時期検出手段で検出した閉弁時期に対応するMBT補正値及びトレースノック点補正値を記憶手段に基づいて取得する。
【0035】
そして、基本値取得手段によって取得した基本MBT及び基本トレースノック点、並びに、補正値取得手段によって取得したMBT補正値及びトレースノック点補正値に基づいて、現在値算出手段によって現在のMBT及びトレースノック点を算出し、算出されたMBT及びトレースノック点のうち遅角側にある点火時期を点火時期制御手段がそのときの最適点火時期として採用する。
【0036】
このため、演算負荷を軽減しつつ精度の高い最適点火時期(MBT及びトレースノック点)を得ることが可能となる。また、基本MBT及び基本トレースノック点のマップと、MBT補正値及びトレースノック点補正値のマップとを分けることで、これらの適合工数を激減させることが可能となる。
【0037】
特に、請求項2に記載の発明によれば、記憶手段が、(1)吸気弁閉弁時期の進角側から吸気下死点近傍への変化に対応して、MBT補正値及びトレースノック点補正値が一次的に遅角側に変化し、かつ、(2)吸気弁閉弁時期の吸気下死点近傍から遅角側への変化に対応して、MBT補正値及び基本トレースノック点補正値が一次的に進角側に変化するものとして、MBT補正値及びトレースノック点補正値を記憶している。このため、MBT補正値及びトレースノック点補正値をそれぞれ一次的な直線として把握することで、MBT補正値及びトレースノック点補正値のマップの適合工数を特に低減させることが可能となる。
【図面の簡単な説明】
【図1】本発明の点火制御装置の一実施形態を有する内燃機関(エンジン)の構成を示す構成図である。
【図2】MBT補正値及びトレースノック点補正値のマップを示す説明図である。
【図3】本発明の点火制御装置の一実施形態による制御のフローチャートである。
【図4】MBT補正値及びトレースノック点補正値の別の例のマップを示す説明図である。
【符号の説明】
1…エンジン、5…ピストン、6…点火プラグ、7…吸気バルブ、9…排気バルブ、11…エアフロメータ、15…ECU、17…スロットルポジショニングセンサ、18…イグニッションコイル、19…イグナイタ、20…クランクポジショニングセンサ、21…カムポジショニングセンサ、24…ノックセンサ。
Claims (2)
- 吸気弁閉弁時期が吸気下死点であるときのMBT及びトレースノック点を基本MBT及び基本トレースノック点として運転状態に対応させて記憶すると共に、吸気弁閉弁時期が下死点からズレたときのMBT及びトレースノック点の基本MBT及び基本トレースノック点からのズレ量をMBT補正値及びトレースノック点補正値として記憶する記憶手段と、
運転状態を検出する運転状態検出手段と、
前記運転状態検出手段によって検出された運転状態に対応する基本MBT及び基本トレースノック点を、前記記憶手段に基づいて取得する基本値取得手段と、
吸気弁の閉弁時期を検出する閉弁時期検出手段と、
前記閉弁時期検出手段によって検出された閉弁時期に対応するMBT補正値及びトレースノック点補正値を、前記記憶手段に基づいて取得する補正値取得手段と、
前記基本値取得手段によって取得した基本MBT及び基本トレースノック点並びに前記補正値取得手段によって取得したMBT補正値及びトレースノック点補正値に基づいて現在のMBT及びトレースノック点を算出する現在値算出手段と、
前記現在値算出手段によって算出されたMBT及びトレースノック点のうち、遅角側にある点火時期をそのときの最適点火時期として採用する点火時期制御手段とを備えたことを特徴とする内燃機関の点火時期制御装置。 - 前記記憶手段が、(1)吸気弁閉弁時期の進角側から吸気下死点近傍への変化に対応して、MBT補正値及びトレースノック点補正値が一次的に遅角側に変化し、かつ、(2)吸気弁閉弁時期の吸気下死点近傍から遅角側への変化に対応して、MBT補正値及び基本トレースノック点補正値が一次的に進角側に変化するものとして、MBT補正値及びトレースノック点補正値を記憶していることを特徴とする請求項1に記載の内燃機関の点火時期制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003188222A JP2005023806A (ja) | 2003-06-30 | 2003-06-30 | 内燃機関の点火時期制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003188222A JP2005023806A (ja) | 2003-06-30 | 2003-06-30 | 内燃機関の点火時期制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005023806A true JP2005023806A (ja) | 2005-01-27 |
Family
ID=34186830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003188222A Pending JP2005023806A (ja) | 2003-06-30 | 2003-06-30 | 内燃機関の点火時期制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005023806A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007138869A (ja) * | 2005-11-21 | 2007-06-07 | Toyota Motor Corp | 内燃機関の点火時期制御装置 |
JP2008274796A (ja) * | 2007-04-26 | 2008-11-13 | Toyota Motor Corp | 可変圧縮比エンジンのトルク推定装置 |
US9026338B2 (en) | 2010-03-23 | 2015-05-05 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
US20190316535A1 (en) * | 2018-04-11 | 2019-10-17 | Toyota Jidosha Kabushiki Kaisha | Engine controller and engine controlling method |
-
2003
- 2003-06-30 JP JP2003188222A patent/JP2005023806A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007138869A (ja) * | 2005-11-21 | 2007-06-07 | Toyota Motor Corp | 内燃機関の点火時期制御装置 |
JP2008274796A (ja) * | 2007-04-26 | 2008-11-13 | Toyota Motor Corp | 可変圧縮比エンジンのトルク推定装置 |
US9026338B2 (en) | 2010-03-23 | 2015-05-05 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
US20190316535A1 (en) * | 2018-04-11 | 2019-10-17 | Toyota Jidosha Kabushiki Kaisha | Engine controller and engine controlling method |
US10920696B2 (en) * | 2018-04-11 | 2021-02-16 | Toyota Jidosha Kabushiki Kaisha | Engine controller and engine controlling method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6174264B2 (ja) | 内燃機関の制御装置及び制御方法 | |
JP5163698B2 (ja) | 内燃機関の点火時期制御装置 | |
JP4882787B2 (ja) | 内燃機関の制御装置 | |
US20120290195A1 (en) | Control system for internal combustion engine | |
JP2009068388A (ja) | 内燃機関の制御装置 | |
JP5758862B2 (ja) | 内燃機関の筒内圧検出装置 | |
JP5944249B2 (ja) | 内燃機関の内部egr量算出装置 | |
JP2010275871A (ja) | エンジンの制御装置 | |
JP2003510502A (ja) | 燃焼ミスファイヤ検出方法およびそのための電子式診断装置 | |
JP5229394B2 (ja) | 内燃機関の制御装置 | |
JPH0996238A (ja) | エンジン燃焼制御装置 | |
JP5514601B2 (ja) | 内燃機関の制御装置 | |
JP4188120B2 (ja) | 内燃機関のトルク変動補正制御装置 | |
JP4033718B2 (ja) | 内燃機関の行程判別方法および行程判別装置 | |
JP2005023806A (ja) | 内燃機関の点火時期制御装置 | |
JP4859525B2 (ja) | 内燃機関の失火判定装置 | |
JP2004346913A (ja) | 内燃機関の吸気湿度算出装置 | |
JP2002195141A (ja) | 内燃機関の点火時期制御装置 | |
JP2007113496A (ja) | 内燃機関の燃焼制御装置 | |
JP2004360495A (ja) | 内燃機関の点火時期制御装置 | |
JP2005048621A (ja) | 内燃機関の圧縮比算出装置、圧縮比算出方法、内燃機関の制御装置およびその制御方法 | |
JP2008180174A (ja) | 内燃機関の制御装置 | |
JP4345723B2 (ja) | 内燃機関の図示平均有効圧の推定方法 | |
JP4404024B2 (ja) | ダイレクトスタートエンジンの制御装置 | |
JP7209753B2 (ja) | 内燃機関の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080304 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080701 |