JP2005017184A - 赤外線測定装置及びそれを備えた空気調和装置 - Google Patents

赤外線測定装置及びそれを備えた空気調和装置 Download PDF

Info

Publication number
JP2005017184A
JP2005017184A JP2003184624A JP2003184624A JP2005017184A JP 2005017184 A JP2005017184 A JP 2005017184A JP 2003184624 A JP2003184624 A JP 2003184624A JP 2003184624 A JP2003184624 A JP 2003184624A JP 2005017184 A JP2005017184 A JP 2005017184A
Authority
JP
Japan
Prior art keywords
small section
temperature
person
infrared
infrared sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003184624A
Other languages
English (en)
Inventor
Kazuhisa Shigemori
和久 重森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003184624A priority Critical patent/JP2005017184A/ja
Publication of JP2005017184A publication Critical patent/JP2005017184A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】対象空間に対して赤外線センサを走査しながら、所定のサンプリング間隔で得られた赤外線センサの出力データから温度分布を測定する赤外線測定装置及びそれを備えた空気調和装置において、温度分布測定の精度の向上と消費メモリー量の低減とを実現する。
【解決手段】赤外線センサの出力データに基づいて、人検出手段(31)が予め設定された水平角(θ)方向の小区間(dθ)における回帰関数を算出し、この回帰関数の温度ピークから人の位置を検出する。また、対象判定手段(32)が上記小区間(dθ)よりも広い水平角(θ)方向の大区間(dθ’)における回帰関数を求め、この回帰関数の温度分布から測定対象を判定する。
【選択図】 図8

Description

【0001】
【発明の属する技術分野】
本発明は、赤外線センサを走査して、温度分布を赤外線から検知する赤外線測定装置及びそれを備えた空気調和装置に関する。
【0002】
【従来の技術】
従来より、赤外線センサ走査による温度分布測定及び人検知において、赤外線センサの空間分解能及び時間分解能から定まる画素の単位で赤外線センサから得られた温度分布情報を保存及び分析し、人に起因する高温スポットを抽出することで、人を識別している。従来の視野角による画素分割では、室内を赤外線センサにより走査する場合、1画面当たり約1000画素の情報を保持する必要がある。一般的なAD変換速度は10μs程度であり、このようなAD変換速度でも十分早くサンプリングすることができる。このとき、例えば図9に示すように、赤外線センサの出力データを1画素分毎に平均して、ランダムノイズの影響を緩和する。
【0003】
しかし、上記従来の方法では、赤外線センサと検知対象である人との距離、赤外線センサの検知領域及び時間分解能の制約等により、例えば、粗い画素の場合、遠方に位置する人の高温スポットが周囲温度と平均化されて、温度コントラストが低くなる。このため、十分な人と背景との温度コントラストが得られず、人と背景との識別誤差が高くなるという問題があった。
【0004】
また、上記従来の方法では、判定精度を上げるために時間的に変化のないスポットを固定熱源とみなすなど時間経過による補助判定を行うので、それまでの測定結果を含めた全画素を保存する必要がある。このため、メモリー消費量が大きく、一般にRAM容量の少ない機器に組込む場合には、コスト上の問題があった。
【0005】
さらに、上記従来の方法では、同一画素間の温度時間変化から温度ピークを判定する場合、温度ピークを一意的に判定することが難しく、断続的走査により走査時間の間隔が空くと判定精度が低下するという問題があった。これを防ぐために赤外線センサによって連続的に走査を行うと、赤外線センサの走査角度を変えるための可動部の信頼性及び寿命の点で問題が生じ易かった。
【0006】
そこで、例えば、1次元アレイ赤外線センサと1次元掃引(回転)による熱画像と、該熱画像への空間フィルタリング適用による人検知アルゴリズムを使用する赤外線測定装置及びそれを備えた空気調和装置が知られている(例えば、特許文献1参照)。
【0007】
【特許文献1】
特開平7−318661号公報
【0008】
【発明が解決しようとする課題】
しかし、上記従来のものでは、空間情報を処理するために2次元に投影された熱画像について処理を行い、XY走査(直交方向走査)やφθ走査(極座標、回転走査)などでは主走査方向に詳細かつ連続的なデータが得られるものの、副走査方向については離散的であったり時間的に不連続である。
【0009】
そこで、人を検知する精度を高めるために赤外線センサの空間分解能を上げると、赤外線センサ及び光学系部品が複雑かつ高価になると共に、画素に応じて必要なメモリー容量も大きくなるという問題がある。
【0010】
本発明は斯かる諸点に鑑みてなされたものであり、その目的とするところは、連続的な詳細分析を主走査方向データについて行い、かつ、実時間処理可能な回帰演算処理を行うことにより、温度分布測定の精度の向上と消費メモリー量の低減とを実現するものである。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、請求項1の発明では、対象空間に対して赤外線センサを走査しながら、所定のサンプリング間隔で得られた赤外線センサの出力データから温度分布を測定する赤外線測定装置を対象とする。
【0012】
そして、上記赤外線センサの出力データに基づいて、予め設定された一走査方向の小区間(dθ)における回帰関数を算出し、この回帰関数の温度ピークから人の位置を検出する人検出手段(31)と、上記赤外線センサの出力データに基づいて、上記小区間(dθ)よりも広い一走査方向の大区間(dθ’)における回帰関数を求め、この回帰関数の温度分布から測定対象を判定する対象判定手段(32)とを有する構成とする。
【0013】
上記の構成によると、赤外線センサが所定のサンプリング間隔で対象空間を走査し、その出力データを出力する。この出力データに基づいて、人検出手段(31)が予め設定された一走査方向(主走査方向)の小区間(dθ)における回帰関数を算出する。人検出手段(31)は、この回帰関数の温度ピークから人の位置を検出する。一方、対象判定手段(32)は、上記赤外線センサの出力データに基づいて、上記小区間(dθ)よりも広い一走査方向(主走査方向)の大区間(dθ’)における回帰関数を求める。対象判定手段(32)は、この回帰関数の温度分布から測定対象を判定する。このようにして、赤外線測定装置は、赤外線センサの出力データから温度分布を測定する。
【0014】
請求項2の発明では、上記小区間(dθ)は、人の検知対象部位に対応する寸法と、上記赤外線センサから人までの距離とから決定される赤外線センサの走査角度の範囲によって設定されるものとする。
【0015】
上記の構成によると、赤外線センサの検知対象である人の検知対象部位(例えば、顔面、頭部又は胴部)の大きさと赤外線センサから人までの距離とから、赤外線センサから見た人の検知対象部位が占める対象空間の領域を見掛け上の走査角度の範囲に置き換えることができる。この走査角度の範囲を人位置検出用の小区間(dθ)とする。
【0016】
請求項3の発明では、上記人検出手段(31)は、小区間(dθ)を赤外線センサの走査角度毎に変更する構成とする。
【0017】
上記の構成によると、人の同じ検知対象部位であっても、赤外線センサの走査角度毎に、その検知対象部位が占める対象空間内の領域に対する見掛け上の走査角度の範囲は異なることから、人検出手段(31)は小区間(dθ)を赤外線センサの走査角度毎に変更する。
【0018】
請求項4の発明では、上記人検出手段(31)は、小区間(dθ)内の温度極大値(ymax)が所定の値以上であることにより、人がこの小区間(dθ)に対応する対象空間に存在すると判定する構成とする。
【0019】
上記の構成によると、通常、人の体温は所定の範囲に限定できることから、小区間(dθ)内の温度ピークにおける温度極大値(ymax)が所定の値以上であれば、人検出手段(31)は、温度極大値(ymax)が存在する小区間(dθ)に対応する対象空間に人が存在すると判定する。
【0020】
請求項5の発明では、上記人検出手段(31)は、小区間(dθ)内の温度極大値(ymax)と、この小区間(dθ)内の温度最小値(ymin)との差が所定の値以上であることにより、人がこの小区間(dθ)に対応する対象空間に存在すると判定する構成とする。
【0021】
上記の構成によると、対象空間の小区間(dθ)における温度最小値(ymin)と温度極大値(ymax)とのコントラストがはっきり現れている場合に、その小区間(dθ)に対応する対象空間に人が存在すると判定する。
【0022】
請求項6の発明では、上記人検出手段(31)は、小区間(dθ)内の温度極大値(ymax)が所定の値以上であり、かつ温度ピーク幅が人の検知対象部位に対応する寸法に相当する所定の範囲内であることにより、人がこの小区間(dθ)に対応する対象空間に存在すると判定する構成とする。
【0023】
上記の構成によると、小区間(dθ)内に検知された温度極大値(ymax)が所定の値以上であると共に、その極大値(ymax)を有する曲線が急峻であってその温度ピーク幅(温度ピークが現れている範囲)が人の検知対象部位の大きさに相当するものであるときに、人検出手段(31)は、その温度極大値(ymax)のある小区間(dθ)に対応する対象空間内に人が存在すると判定する。
【0024】
請求項7の発明では、上記人検出手段(31)及び対象判定手段(32)の判定信号を受けて空調負荷制御を行う制御手段(33)を備えている。
【0025】
上記の構成によると、人検出手段(31)が対象空間における人の位置の判定信号を制御手段(33)に送り、対象判定手段(32)が対象空間における温度分布の判定信号を制御手段(33)に送る。これらの信号を受けて、制御手段(33)は、例えば、冷房運転の場合に、対象空間内の温度分布の高い領域により多くの量の冷気を吹き出し、低温の領域には少ない量の冷気を吹き出すように制御する。
【0026】
請求項8の発明では、上記対象判定手段(32)において、大区間(dθ’)として、対象空間に対して吹出口(14)から吹き出される調和空気が到達する領域に対応する範囲が設定されている。
【0027】
上記の構成によると、対象判定手段(32)は、吹出口(14)から吹き出される調和空気が到達する対象空間の領域全体に対して回帰関数を求める。
【0028】
請求項9の発明では、上記吹出口(14)は複数設けられ、上記対象判定手段(32)は、大区間(dθ’)を対象空間に対して上記各吹出口(14)から吹き出される調和空気が到達する領域に分割し、各大区間(dθ’)に対して回帰演算処理を行うように構成されている。
【0029】
上記の構成によると、空気調和装置は、複数の吹出口(14)から対象空間に対して調和空気を吹き出す。対象判定手段(32)は、上記各吹出口(14)から吹き出される調和空気が到達する領域に分割された各大区間(dθ’)毎に回帰演算処理を行う。
【0030】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の実施形態は、本質的に好ましい例示に過ぎず、本発明、その適用物や用途の範囲を制限することを意図するものでは全くない。
【0031】
図1に本願発明の実施形態に係るセパレート型の空気調和装置の室内機(10)を示す。この室内機(10)は、対象空間としての室内の天井(R)に埋設配置される天井埋込型の室内機(10)である。室内機(10)は、天井(R)の上側に埋設配置される矩形箱状のケーシング(11)と該ケーシング(11)の下端開口側に室内側から装着される矩形平板状の前面パネル(12)とを備えている。
【0032】
前面パネル(12)には、その中央部に矩形開口状の吸込口(13)が設けられると共に、この吸込口(13)を囲むように4つの吹出口(14)が該前面パネル(12)の周縁に設けられる。
【0033】
詳細は図示しないが、上記ケーシング(11)内には、吸込口(13)の上方に遠心式のファンが配置され、ファンの外周側に熱交換器が配置される。
【0034】
さらに、上記前面パネル(12)の室内に露出する表面側の1つの角部には赤外線測定装置のセンサユニット(20)が配置される。このセンサユニット(20)は、室内機(10)を天井(R)側に設置した状態において、室内機(10)の室内パネル(12)の開口から対象空間としての室内における壁面、床面(F)又は人体等の検知対象物からの赤外線を検知し、これを現在の室内温度に関する検知情報として出力する。
【0035】
上記センサユニット(20)に設けられる赤外線センサとして、例えば、サーモパイルを使用する。この赤外線センサは走査機構(図示せず)によって回動されて室内を走査する。図2に示すように、極座標(水平角(θ)、仰角(φ))で走査する場合、一般にサーモパイルの応答速度は数10ms〜数100ms程度の範囲であり、狭視野の赤外光学系の視野角は数度〜10度程度の範囲である。ここで、水平角(θ)方向が主走査方向(一走査方向)であり、仰角(φ)方向が副走査方向である。本実施形態では、例えば、時定数が50msでかつ視野角4度(±2度)のものを用いる。これに合わせて、水平掃引速度は、4度/50ms=80度/秒とすることが望ましい。
【0036】
赤外線センサの水平角(θ)方向のサンプリング間隔は、サンプリング定理より、赤外線センサの空間分解能及び時間分解能の1/2以下の間隔とすることで、連続的とみなすことができる。
【0037】
このとき、通常のAD変換は、上記のような赤外線走査方式のセンシングに対して十分高速であるため、演算負荷がマイコン処理能力を圧迫しない範囲でサンプリング間隔を小さくとることができる。また、本実施形態のような線形回帰の演算負荷は小さいため、10μsのAD変換周期に合わせたサンプリングも可能である。
【0038】
上記走査機構には、ステップモーターを用いる。このステップモーターの駆動パルスに同期してサンプリングしてもよい。例えば、ステップ角度0.176度のモーターでは、赤外線センサの空間分解能及び時間分解能に対して20倍以上のオーバーサンプリングを行うことができる。
【0039】
図3に示すように、上記空気調和装置のコントローラ(30)には、上記センサユニット(20)の赤外線センサの出力データ(y)に基づいて、予め設定された水平角(θ)方向の小区間(dθ)における回帰関数を算出し、この回帰関数の温度ピークから人の位置を検出する人検出手段(31)と、上記赤外線センサの出力データ(y)に基づいて、上記小区(dθ)間よりも広い水平角(θ)方向の大区間(dθ’)における回帰関数を求め、この回帰関数の温度分布から測定対象を判定する対象判定手段(32)とが設けられている。この人検出手段(31)、対象判定手段(32)及びセンサユニット(20)が赤外線測定装置を構成している。
【0040】
また、上記空気調和装置のコントローラ(30)には、人検出手段(31)及び対象判定手段(32)の判定信号を受けて空調負荷制御を行う制御手段(33)が設けられている。
【0041】
−運転動作−
次に、極座標走査において、主走査方向を水平角(θ)としたときの1ライン走査でのコントローラ(30)の動作について説明する。
【0042】
図4に示すように、ステップ(S1)において、仰角(φ)、人検出用小区間(dθ)及び温度分布検出用大区間(dθ’)を設定する。
【0043】
具体的には、1台の天井埋込型空気調和装置の空調範囲は、通常8〜10m四方である。図5に示すように、床面(F)からの天井(R)高さが2.7mである場合を想定すると、室内機(10)の吹出口(14)から吹き出される調和空気が到達する室内の領域から、仰角(φ)の最小値を約20度と設定できると共に、仰角(φ)の最大値を約70度と設定できる。このことから、例えば、仰角(φ)=20 を設定する。
【0044】
図5の例では、既知の天井(R)の高さと仰角(φ)より、検知対象である人の検知対象部位(顔面、頭部又は胴部)の大きさ、すなわち見掛けの水平角(θ)が求められる。人の検知対象部位を球又は円筒形とみなし、その大きさをwとすると、人位置検出のための最適な人検出用小区間(dθ)は、検知対象部位の大きさ(w)、天井(R)からの高さ(h)及び仰角(φ)から下記の数式1で与えられる。
【0045】
【数1】
Figure 2005017184
【0046】
ここで頭部(0.15m〜)、胴部(〜0.5m)等の複数の大きさに対応するためには、最小の検知対象部位である頭部の大きさに合わせて小区間(dθ)を設定し回帰精度の低下を防ぐのが望ましい。このように、小区間(dθ)を赤外線センサの走査角度(φ)毎に変更する。
【0047】
一方、空気調和装置における室内温度分布の測定は、空調負荷の大きな方向を判定することが目的である。このため、細かな変動を無視して大局的な分布を判定できるように、上記小区間(dθ)よりも広い温度分布検出用大区間(dθ’)を設定する。
【0048】
具体的には、本実施形態では、上記大区間(dθ’)として、室内に対して吹出口(14)から吹き出される調和空気が到達する領域に対応する全範囲を設定する。
【0049】
次いで、ステップ(S2)において、上記仰角(φ)=20における水平角(θ)の略全周にわたってセンサユニット(20)によって室内を走査する。その結果を出力データ(y)とする。
【0050】
次に、ステップ(S3)に進んで、水平角(θ)の値をxとした場合に、赤外線センサの出力データ(y)を回帰演算する。
【0051】
【数2】
Figure 2005017184
【0052】
上記正規方程式(数式2)における小区間(dθ)の要素Σxy (n=0〜3)を算出する。等間隔サンプリングの場合は、事前に上記正規方程式の要素Σx (n=0〜6) を算出しておく。区間原点を 0 とおくなどにより、正規方程式要素Σx (n=0〜6) を適宜原点移動して使用する。このように適宜原点移動することで、特に既知の回帰区間の場合は、演算量が少なくなる。したがって、上記正規方程式(数式2)は、処理能力の限られたシステムでの実時間処理に適したものとしてよく用いられる。
【0053】
次いで、ステップ(S4)に進んで、上記正規方程式(数式2)における大区間(dθ’)の要素Σx’y (n=0〜3)を上記ステップ(S3)と同様に算出する。
【0054】
次に、ステップ(S5)に進んで、人検知用小区間(dθ)の処理が終了したかを判定する。終了していれば、ステップ(S6)に進む。終了していないときには、ステップ(S7)に飛ぶ。
【0055】
ステップ(S6)において、小区間(dθ)における温度ピーク位置及び温度ピーク値を導関数の極値を求めて算出する。
【0056】
具体的には、図6に示す小区間ピーク判定のサブルーチンにおけるステップ(S11)に進む。n次多項式回帰では、上記数式2を解くことで温度ピーク位置及び温度ピーク値が得られる。
【0057】
例えば、最小2乗法では、上記ステップ(S3)で求めた要素Σxy (n=0〜3)及び上記正規方程式の要素Σx (n=0〜6) を用いて下記数式3に示す残差平方和(S)を最小にするa〜a を求める。
【0058】
【数3】
Figure 2005017184
【0059】
よって、下記数式(4)の正規方程式を解いて未定係数a〜aを求める。
【0060】
【数4】
Figure 2005017184
【0061】
図7に上記数式4を用いる線形回帰処理で求められた演算結果の一例を示す。得られた人検出用回帰曲線は局所近似のため補外は行わず、小区間(dθ)外のピーク値は棄却する。
【0062】
次に、ステップ(S12)に進んで、上記回帰関数から小区間(dθ)内の温度極大値(ymax)を求める。
【0063】
次いで、ステップ(S13)に進んで、3次関数 y = a + ax + a + a に対して、導関数 y’ = a + 2ax + 3a = 0 が小区間(dθ)内に解を持ち、かつ2次導関数y” = 2a + 6ax が 0 よりも小さければ、上記ステップ(S12)で求めた値をピーク温度の極大値(ymax)として判断し、ステップ(S14)に進む。それ以外の場合には、極大値(ymax)として扱わずステップ(S18)へ飛ぶ。
【0064】
ステップ(S14)では、上記極大値(ymax)が小区間(dθ)用に設定された所定の第1しきい値以下であれば、この区間内のピークをノイズとして無視してステップ(S18)へ飛ぶ。極大値(ymax)が第1しきい値より大きいときには、ステップ(S15)に進む。
【0065】
ステップ(S15)では、小区間(dθ)内の最小値(ymin)(又は隣接区間を含めた最小値)と極大値(ymax)との差をピーク高さ(h)として計算する。
【0066】
次に、ステップ(S16)に進んで、ピーク高さ(h)と小区間(dθ)用に設定された所定の第2しきい値とを比較する。ピーク高さ(h)が第2しきい値以下の場合は、この区間のピークをノイズとして無視し、ステップ(S18)に進む。ピーク高さ(h)が第2しきい値よりも大きいときは、ステップ(S17)に進んで、ピーク高さ(h)を記憶する。なお、これらのステップ(S15,S16)はなくてもよいが、より検出精度を上げるには、一連の処理の中に含ませるのが望ましい。
【0067】
このように区間演算処理が完了すれば、ステップ(S18)に進む。ステップ(S18)では、次の区間処理のためにΣxy を初期化し、ステップ(S7)に戻る。
【0068】
ステップ(S7)では、温度分布検出用大区間(dθ’)が終了したかを判定する。終了していれば、ステップ(S8)に進む。終了していなければ、ステップ(S9)に進む。
【0069】
ステップ(S8)では、図6に示すように、大区間(dθ’)でのピーク判定を上記小区間(dθ)と同様な演算によって行う。以下、上記小区間ピーク判定と異なる点についてのみ説明する。
【0070】
ステップ(S11)では、上記ステップ(S4)で求めた大区間(dθ’)の要素Σx’y (n=0〜3)を用いて上記数式3に示す残差平方和(S)を最小にするa〜a を求める。また、ステップ(S14)及びステップ(S16)では、上記小区間ピーク判定における第1及び第2しきい値と異なる温度分布判定用の第1及び第2しきい値を用いる。そして、ステップ(S18)では、次の区間処理のためにΣx’y を初期化し、ステップ(S9)に戻る。
【0071】
ステップ(S9)では、仰角(φ)=20度における走査が全て終了しているかを判定する。終了している場合には、1ラインでの走査を終了する。終了していない場合には、ステップ(S2)に戻る。
【0072】
1ラインでの走査を終了した場合には、次に異なる仰角(φ)での1ライン走査を行う。このようにして、仰角(φ)=20〜70度の範囲で演算処理を行う。人検知については、各走査ライン毎に人を抽出し、室内に人が存在するか否かを判定する。温度分布については、必要に応じて仰角(φ)の値による重み付けや平均化処理などを行った上で室内における温度差及び温度分布を判定する。
【0073】
上記ステップ(S6,S8)において小区間ピーク判定や大区間ピーク判定で求められる未定係数a〜aは、回帰区間毎に独立して解いてもよいが、前後の区間の曲線接続条件や導関数連続条件を当てはめて、滑らかなSpline曲線群として求めるのが望ましい。その場合、演算量はさらに軽減される。
【0074】
小区間ピーク判定の場合は、小区間(dθ)の両端又は温度ピーク位置から想定対象の見掛けの大きさを考慮した距離だけ離れた点での導関数(温度スロープ)から、背景温度の揺らぎや温度分布によるものか否かを判定する。
【0075】
これら人検出用回帰関数は逐次移動しながら設定される各小区間(dθ)に対して各々独立であってもよく、また、各小区間(dθ)の接合点(節点)での連続条件や導関数及び高次導関数の連続条件を課して接続するもの(スプライン曲線)であってもよい。
【0076】
図8に、人判定用小区間(dθ)を滑らかに接続されたスプライン曲線として求め、温度分布用大区間(dθ’)を該当区間全体に対する回帰曲線(3次曲線など)として求めた場合の実施例を示す。このように、人に起因する急峻な温度ピークを小区間(dθ)による人検出用回帰曲線で求め、室内温度分布の大局的な様子を大区間(dθ’)における温度分布検出用回帰曲線から得る。
【0077】
上記のようにして赤外線測定装置によって得られた温度分布判定によってコントローラ(30)の制御手段(33)が快適な室内の空調を実現するように、空気調和装置の室内機(10)の吹出口(14)からの気流吹出方向及び風量を制御する。
【0078】
−実施形態の効果−
本発明の実施形態に係る赤外線測定装置では、人に起因する急峻なピークを水平角(θ)方向の小区間(dθ)による回帰演算で求め、室内における温度分布の大局的な様子を水平角(θ)方向の大区間(dθ’)による回帰演算から求めている。このため、複数種類の回帰演算によるピーク検出により、高温スポットの検出精度が向上されるので、遠方に位置する人の高温スポットが周囲温度と平均化されて温度コントラストが低くなることはなく、人の判定精度の向上を図ることができる。したがって、判定精度を上げるために時間経過による補助判定を行う必要はなく、データ量の削減によるシステムの簡素化が可能となる。例えば、マイコン内蔵メモリーのみで処理可能となる。さらに、1ライン走査における赤外線センサの出力データでの判定精度を向上することができるので、各走査ライン毎のデータを記憶しておく必要がなくなり、データ量が削減される。また、赤外線センサを連続的に走査する必要がなく、ステップモーター等の可動部の寿命及び信頼性の改善を図ることができ、システム運用上の自由度が増大される。
【0079】
また、上記実施形態に係る赤外線測定装置では、人の検知対象部位に対応する寸法と、赤外線センサから人までの距離とから決定される赤外線センサの走査角度の範囲によって小区間(dθ)を設定している。このため、室内に人の検知対象部位の大きさに相当するような急峻な温度ピークが存在すると、その温度ピークが回帰関数の極大値として現れ易いので、より正確に人を検出することができる。
【0080】
また、上記実施形態に係る赤外線測定装置では、上記小区間(dθ)を仰角(φ)によって変化させている。そうすることで、走査角度に応じて回帰区間が調整されるので、人の検知精度を向上させることができる。
【0081】
また、上記実施形態に係る赤外線測定装置では、小区間(dθ)内の温度極大値(ymax)が所定の値以上であることにより、人が室内の小区間(dθ)に対応する位置に存在すると判定している。このため、人の体温に対応した温度ピークを検出することで、人以外の温度ピークを排除できる。
【0082】
また、上記実施形態に係る赤外線測定装置では、小区間(dθ)内の温度極大値(ymax)と、この小区間(dθ)内の温度最小値(ymin)との差が所定の値以上であることにより、人がこの小区間(dθ)に対応する室内に存在すると判定している。このため、背景温度の揺らぎや温度分布によるピークを排除できるので、さらに人の検知精度を上げることができる。
【0083】
また、上記実施形態に係る赤外線測定装置は、人検出手段(31)及び対象判定手段(32)の判定信号を受けて空調負荷制御を行っている。このため、人検出手段(31)により検知された人の位置を基準として、対象判定手段(32)の判定信号を用い、壁面や床面(F)からの放射熱がその人に不快感を与えないようにきめ細やかな空調負荷制御を行うことができる。
【0084】
また、上記実施形態に係る赤外線測定装置では、大区間(dθ’)を室内に対して吹出口(14)から吹き出される調和空気が到達する領域に対応する範囲に設定している。このため、室内の広い領域を1つの回帰曲線に当てはめるので、細かな温度ピークは除外される。したがって、室内の大局的な温度分布を判定することができる。
【0085】
−実施形態の変形例−
実施形態の変形例では、人の検知対象部位の見掛けの大きさに応じて小区間(dθ)を複数設定してもよい。その場合、正規方程式要素算出工程(S3)、区間終了判定工程(S5)及びピーク判定工程(S6)を複数設け、同時に複数の回帰演算処理を行うとよい。このことで、人の検知対象部位に対応しない不適合対象による温度ピークが室内に存在しても、その温度ピークは、人とは判断されない。したがって、より確実に小区間(dθ)内の人による温度ピークを検出することができる。
【0086】
上記複数種類の小区間(dθ)を設定する場合、複数種類の小区間(dθ)の長さは、最小の小区間(dθ)の整数倍とするとよい。そうすることで、個別の正規方程式要素Σy〜Σxy を作成するために区間測定データ ( xi, yi ) 自体を保持することは不要となる。つまり、Σy〜Σxy のみを必要期間保持し、逐次原点移動と区間合成を行えばよく、演算量及び必要メモリー量を軽減することができる。
【0087】
別の実施形態の変形例では、上記正規方程式を、Gauss消去法やGauss−Seidel反復法などで解いて回帰関数の未定係数a〜a を得てもよい。
【0088】
さらに別の実施形態の変形例では、上記人検出用回帰関数として、2次多項式又は4次以上の多項式を用いてもよい。このとき、2次多項式では、温度ピーク位置及び温度ピーク値を係数より直接算出すればよい。4次以上の多項式回帰では、温度ピーク位置及び温度ピーク値を導関数の極値を求めて算出すればよい。
【0089】
また、別の実施形態の変形例では、室内機(10)が複数の吹出口(14)を持つ場合に、各吹出口(14)に対応する範囲に大区間(dθ’)を複数設定し、空調負荷を大きくするべき方向を判定してもよい。そうすることで、各吹出口(14)に対応する領域毎に空調負荷を判定することができるので、各吹出口(14)毎に適切な空調負荷を与えることも可能となる。
【0090】
また、大区間(dθ’)において複雑な回帰曲線は不適であることから、2次関数で極大値(ymax)及び最小値(ymin)とその方向を判定してもよい。さらに、ピークを与える温度分布検出用回帰曲線としては次のようなもの、またこれらのうちいずれか一方と多項式関数を組み合わせたものを用いてもよい。
【0091】
【数5】
Figure 2005017184
【0092】
【数6】
Figure 2005017184
【0093】
ここで、a:y軸オフセット、a:振幅、a:x軸位置、a:幅である。これらは温度ピーク位置、温度ピーク幅及びピーク高さ(h)に加え、例えば直線回帰と組み合わせた関数形ではベースラインに対するピーク高さ(h)も一意的に求められる。この場合の回帰演算は非線形関数のため、Newton−Raphson法、Marquardt法、Powellのハイブリッド法などの反復収束法で、逐次漸近収束させる方法をとる。
【0094】
上記非線形回帰では収束性が必ずしも保証されないため、収束安定性を高めるために、また演算誤差を最小化するため、正規方程式を経由せずにJacobian又は安定化項を付加したJacobianを直接操作することが一般的である。しかし、この場合は必要なメモリー量が大きくなるため、空気調和装置に組込むような用途においては、正規方程式から解く方法が望ましい場合が多い。
【0095】
【発明の効果】
以上説明したように、請求項1の発明の赤外線測定装置では、赤外線センサの出力データに基づいて、人検出手段(31)が予め設定された一走査方向の小区間(dθ)における回帰関数を算出し、この回帰関数の温度ピークから人の位置を検出している。また、対象判定手段(32)が上記小区間(dθ)よりも広い一走査方向の大区間(dθ’)における回帰関数を求め、この回帰関数の温度分布から測定対象を判定している。つまり、人に起因する急峻なピークを小区間(dθ)による回帰演算で求め、対象空間における温度分布の大局的な様子を大区間(dθ’)による回帰演算から求めている。このため、複数種類の回帰演算によるピーク検出により、高温スポットの検出精度が向上されるので、遠方に位置する人の高温スポットが周囲温度と平均化されて温度コントラストが低くなることはなく、人の判定精度の向上を図ることができる。したがって、判定精度を上げるために時間経過による補助判定を行う必要はなく、データ量の削減によるシステムの簡素化が可能となる。さらに、一走査内での赤外線センサの出力データでの判定精度を向上することができるので、複数走査間のデータ保持が不要となり、データ量が削減される。また、赤外線センサを連続的に走査する必要がなく、ステップモーター等の可動部の寿命及び信頼性の改善を図ることができ、システム運用上の自由度が増大される。
【0096】
請求項2の発明では、人の検知対象部位に対応する寸法と、赤外線センサから人までの距離とから決定される赤外線センサの走査角度の範囲によって小区間(dθ)を設定している。このため、対象空間内に人の検知対象部位の大きさに相当するような急峻な温度ピークが存在すると、その温度ピークが回帰関数の極大値として現れ易いので、より正確に人を検出することができる。
【0097】
請求項3の発明では、小区間(dθ)を赤外線センサの走査角度毎に変更している。このため、走査角度に応じて回帰区間が調整されるので、人の検知精度を向上させることができる。
【0098】
請求項4の発明では、小区間(dθ)内の温度極大値(ymax)が所定の値以上であることにより、人がこの小区間(dθ)に対応する対象空間に存在すると判定している。このため、人の体温に対応した温度ピークを検出することで、人以外の温度ピークを排除できる。
【0099】
請求項5の発明では、小区間(dθ)内の温度極大値(ymax)と、この小区間(dθ)内の温度最小値(ymin)との差が所定の値以上であることにより、人がこの小区間(dθ)に対応する対象空間に存在すると判定している。このため、背景温度の揺らぎや温度分布によるピークを排除できるので、さらに人の検知精度を上げることができる。
【0100】
請求項6の発明では、小区間(dθ)内の温度極大値(ymax)が所定の値以上であり、かつ温度ピーク幅が人の検知対象部位に対応する寸法に相当する所定の範囲内であることにより、人がこの小区間(dθ)に対応する対象空間に存在すると判定している。このため、人の検知対象部位に対応しない不適合対象による温度ピークが対象空間内に存在しても、その温度ピークは、人とは判断されない。したがって、より確実に小区間(dθ)内の人による温度ピークを検出することができる。
【0101】
請求項7の発明の空気調和装置は、人検出手段(31)及び対象判定手段(32)の判定信号を受けて空調負荷制御を行っている。このため、人検出手段(31)により検知された人の位置を基準として、対象判定手段(32)の判定信号を用い、壁面や床面からの放射熱がその人に不快感を与えないようにきめ細やかな空調負荷制御を行うことができる。
【0102】
請求項8の発明の空気調和装置では、大区間(dθ’)を対象空間に対して吹出口(14)から吹き出される調和空気が到達する領域に対応する範囲に設定している。このため、対象空間の広い領域を1つの回帰曲線に当てはめるので、細かな温度ピークは除外される。したがって、対象空間内の大局的な温度分布を判定することができる。
【0103】
請求項9の発明の空気調和装置では、大区間(dθ’)を対象空間に対して上記各吹出口(14)から吹き出される調和空気が到達する領域に分割し、各大区間(dθ’)に対して回帰演算処理を行っている。このため、各吹出口(14)に対応する領域毎に空調負荷を判定することができるので、各吹出口(14)毎に適切な空調負荷を与えることも可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る赤外線測定装置を備えた空気調和装置の室内機を室内側から見た斜視図である。
【図2】極座標を示す説明図である。
【図3】コントローラ内での制御の様子を示す説明図である。
【図4】赤外線測定装置における1ライン走査での回帰演算を示すフローチャート図である。
【図5】赤外線測定装置のセンサユニットから見た走査角度と室内との関係を示す説明図である。
【図6】ピーク判定での回帰演算を示すフローチャート図である。
【図7】人検出手段による回帰演算結果の一例を示すグラフ図である。
【図8】赤外線測定装置による温度測定結果を示すグラフ図である。
【図9】従来の赤外線測定装置による赤外線センサの出力データを1画素分毎に平均した様子を示すグラフ図である。
【符号の説明】
14 吹出口
31 人検出手段
32 対象判定手段
33 補正手段
dθ 小区間
dθ’ 大区間
ymax 極大値
ymin 最小値

Claims (9)

  1. 対象空間に対して赤外線センサを走査しながら、所定のサンプリング間隔で得られた赤外線センサの出力データから温度分布を測定する赤外線測定装置であって、
    上記赤外線センサの出力データに基づいて、予め設定された一走査方向の小区間(dθ)における回帰関数を算出し、該回帰関数の温度ピークから人の位置を検出する人検出手段(31)と、
    上記赤外線センサの出力データに基づいて、上記小区間(dθ)よりも広い一走査方向の大区間(dθ’)における回帰関数を求め、該回帰関数の温度分布から測定対象を判定する対象判定手段(32)とを有することを特徴とする赤外線測定装置。
  2. 請求項1に記載の赤外線測定装置において、
    上記小区間(dθ)は、人の検知対象部位に対応する寸法と、上記赤外線センサから人までの距離とから決定される赤外線センサの走査角度の範囲によって設定されることを特徴とする赤外線測定装置。
  3. 請求項2に記載の赤外線測定装置において、
    上記人検知手段は、小区間(dθ)を赤外線センサの走査角度毎に変更することを特徴とする赤外線測定装置。
  4. 請求項1乃至3のいずれか1つに記載の赤外線測定装置において、
    上記人検出手段(31)は、小区間(dθ)内の温度極大値(ymax)が所定の値以上であることにより、人が該小区間(dθ)に対応する対象空間に存在すると判定することを特徴とする赤外線測定装置。
  5. 請求項1乃至4のいずれか1つに記載の赤外線測定装置において、
    上記人検出手段(31)は、小区間(dθ)内の温度極大値(ymax)と、該小区間(dθ)内の温度最小値(ymin)との差が所定の値以上であることにより、人が該小区間(dθ)に対応する対象空間に存在すると判定することを特徴とする赤外線測定装置。
  6. 請求項1乃至3のいずれか1つに記載の赤外線測定装置において、
    上記人検出手段(31)は、小区間(dθ)内の温度極大値(ymax)が所定の値以上であり、かつ温度ピーク幅が人の検知対象部位に対応する寸法に相当する所定の範囲内であることにより、人が該小区間(dθ)に対応する対象空間に存在すると判定することを特徴とする赤外線測定装置。
  7. 請求項1乃至6のいずれか1つに記載の赤外線測定装置を備え、
    上記人検出手段(31)及び対象判定手段(32)の判定信号を受けて空調負荷制御を行う制御手段(33)を備えていることを特徴とする空気調和装置。
  8. 請求項7に記載の空気調和装置において、
    上記対象判定手段(32)は、大区間(dθ’)として、対象空間に対して吹出口(14)から吹き出される調和空気が到達する領域に対応する範囲が設定されていることを特徴とする空気調和装置。
  9. 請求項8に記載の空気調和装置において、
    上記吹出口(14)は複数設けられ、
    上記対象判定手段(32)は、大区間(dθ’)を対象空間に対して上記各吹出口(14)から吹き出される調和空気が到達する領域に分割し、各大区間(dθ’)に対して回帰演算処理を行うように構成されていることを特徴とする空気調和装置。
JP2003184624A 2003-06-27 2003-06-27 赤外線測定装置及びそれを備えた空気調和装置 Pending JP2005017184A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184624A JP2005017184A (ja) 2003-06-27 2003-06-27 赤外線測定装置及びそれを備えた空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184624A JP2005017184A (ja) 2003-06-27 2003-06-27 赤外線測定装置及びそれを備えた空気調和装置

Publications (1)

Publication Number Publication Date
JP2005017184A true JP2005017184A (ja) 2005-01-20

Family

ID=34184328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184624A Pending JP2005017184A (ja) 2003-06-27 2003-06-27 赤外線測定装置及びそれを備えた空気調和装置

Country Status (1)

Country Link
JP (1) JP2005017184A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232269A (ja) * 2006-02-28 2007-09-13 Fujitsu General Ltd 空気調和装置
WO2011043014A1 (ja) * 2009-10-05 2011-04-14 パナソニック株式会社 空気調和機
JP2016021091A (ja) * 2014-07-11 2016-02-04 オムロン株式会社 部屋情報推定装置、部屋情報推定方法、および空気調和装置
CN105823562A (zh) * 2014-12-31 2016-08-03 广东美的制冷设备有限公司 红外传感器的成像装置、成像方法及空调器
JP6067124B2 (ja) * 2013-08-28 2017-01-25 三菱電機株式会社 熱画像センサ及び空気調和機
JPWO2017017791A1 (ja) * 2015-07-28 2017-08-31 三菱電機株式会社 判定支援装置、判定支援方法及びプログラム
WO2019221244A1 (ja) * 2018-05-16 2019-11-21 パナソニックIpマネジメント株式会社 物体検知システム、センサシステム、空気調和システム、物体検知方法及びプログラム
WO2023032770A1 (ja) * 2021-08-31 2023-03-09 パナソニックIpマネジメント株式会社 人検知システム、及び、人検知方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736854B2 (ja) * 2006-02-28 2011-07-27 株式会社富士通ゼネラル 空気調和装置
JP2007232269A (ja) * 2006-02-28 2007-09-13 Fujitsu General Ltd 空気調和装置
WO2011043014A1 (ja) * 2009-10-05 2011-04-14 パナソニック株式会社 空気調和機
JP2011080623A (ja) * 2009-10-05 2011-04-21 Panasonic Corp 空気調和機
CN102575863A (zh) * 2009-10-05 2012-07-11 松下电器产业株式会社 空气调节机
JP6067124B2 (ja) * 2013-08-28 2017-01-25 三菱電機株式会社 熱画像センサ及び空気調和機
JP2016021091A (ja) * 2014-07-11 2016-02-04 オムロン株式会社 部屋情報推定装置、部屋情報推定方法、および空気調和装置
CN105823562A (zh) * 2014-12-31 2016-08-03 广东美的制冷设备有限公司 红外传感器的成像装置、成像方法及空调器
JPWO2017017791A1 (ja) * 2015-07-28 2017-08-31 三菱電機株式会社 判定支援装置、判定支援方法及びプログラム
WO2019221244A1 (ja) * 2018-05-16 2019-11-21 パナソニックIpマネジメント株式会社 物体検知システム、センサシステム、空気調和システム、物体検知方法及びプログラム
JPWO2019221244A1 (ja) * 2018-05-16 2021-05-27 パナソニックIpマネジメント株式会社 物体検知システム、センサシステム、空気調和システム、物体検知方法及びプログラム
JP7228767B2 (ja) 2018-05-16 2023-02-27 パナソニックIpマネジメント株式会社 センサシステム、空気調和システム、物体検知方法及びプログラム
WO2023032770A1 (ja) * 2021-08-31 2023-03-09 パナソニックIpマネジメント株式会社 人検知システム、及び、人検知方法

Similar Documents

Publication Publication Date Title
EP2163832B1 (en) An air conditioner
JP4859926B2 (ja) 空気調和機
JP6238197B2 (ja) 空気調和機
JP7217058B2 (ja) 1つまたは複数のサーモグラフィカメラおよび1つまたは複数のrgb-dセンサを使用して構築空間内の1人または複数の人間の居住者の存在をリアルタイムで検出し、熱的快適性を推定すること
US10486490B2 (en) Air-conditioning control device
JP2006038843A (ja) 距離画像センサの較正方法
JP2010230392A (ja) 人体温度測定装置およびその測定方法
JP2005017184A (ja) 赤外線測定装置及びそれを備えた空気調和装置
KR20190062307A (ko) 열화상 카메라를 이용한 실내 온열 환경 평가 장치 및 그 방법
JP2002065655A (ja) ディジタル・イメージング・システムにおいて線源−イメージ間距離を決定するための方法及びシステム
JP5289118B2 (ja) 空気調和機
JP2015190666A (ja) 空気調和機の室内機及びこれを用いた空気調和機
JP3952852B2 (ja) 空調システム
JP2707382B2 (ja) 室内情報検出装置
US20150356720A1 (en) Equipment and method for three-dimensional radiance and gas species field estimation
JP5231898B2 (ja) 圧力測定装置、圧力測定方法およびこれを実行するプログラム
JP2715844B2 (ja) 空気調和機の制御装置
Neto et al. On the use of infrared thermography in studies with air curtain devices
JPS63153347A (ja) 空気調和機
JPH07113472B2 (ja) 空気調和機
US20220398764A1 (en) Spatial temperature estimation system, warm/cold sensation estimation system, spatial temperature estimation method, warm/cold sensation estimation method, and program
JP3260569B2 (ja) 空調制御システム
JP5289518B2 (ja) 空気調和機及び輻射温度計算方法
JP7061917B2 (ja) 空気調和装置
JP2017128241A (ja) 空調制御装置