JP2005017148A - 歯周病診断装置 - Google Patents

歯周病診断装置 Download PDF

Info

Publication number
JP2005017148A
JP2005017148A JP2003183772A JP2003183772A JP2005017148A JP 2005017148 A JP2005017148 A JP 2005017148A JP 2003183772 A JP2003183772 A JP 2003183772A JP 2003183772 A JP2003183772 A JP 2003183772A JP 2005017148 A JP2005017148 A JP 2005017148A
Authority
JP
Japan
Prior art keywords
value
periodontal disease
plaque
subject
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003183772A
Other languages
English (en)
Inventor
Junichi Koizumi
淳一 小泉
Hideyuki Uetake
秀行 植竹
Hiroshi Tanimoto
広志 谷本
Shinpei Fukuda
晋平 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MOTOSAN ENGINEERING CORP
MOTOSAN ENGINEERING KK
Original Assignee
MOTOSAN ENGINEERING CORP
MOTOSAN ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MOTOSAN ENGINEERING CORP, MOTOSAN ENGINEERING KK filed Critical MOTOSAN ENGINEERING CORP
Priority to JP2003183772A priority Critical patent/JP2005017148A/ja
Publication of JP2005017148A publication Critical patent/JP2005017148A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】歯周病の進行度の演算精度を向上させることが可能な歯周病診断装置を提供する。
【解決手段】歯周病診断装置は、呼気測定ユニットと、演算ユニットとを備えている。演算ユニットは、呼気測定ユニットで測定され転送された被検者測定データを格納(S102)する。入力された歯垢情報の割合値(S104)から、歯科医師によるPI値に割合値を関連付けるように定められたメンバシップ関数を用いてファジィ化を行った値を演算してファジィ値を求め、各ファジィ値に重み付けをしてPIファジィ値を演算する(S106)。被検者測定データ、PIファジィ値、被検者属性データを、入力層、中間層及び出力層で構成されるANNの入力層に入力し、出力層から歯周病の進行度の演算結果を出力する(S110)。ファジィ化により適正化された歯垢情報がANNに入力され、出力が歯周病の進行度として演算される。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は歯周病診断装置に係り、特に、ガス感応性の異なる複数の半導体ガスセンサにより被検者の呼気中の成分ガスを測定して歯周病の進行度を演算する歯周病診断装置に関する。
【0002】
【従来の技術】
歯周病は、プロフィロモナス・ジンジバリス菌等の歯周病原菌により引き起こされる口腔内疾患である。歯に付着した歯周病原菌が増殖すると、歯周病原菌やう蝕菌を含む口腔内細菌とそれらの代謝産物とが歯に堆積して歯垢となる。歯垢が増加して歯と歯肉との間にまで堆積するようになると、歯肉に炎症を起こして歯周病の発症に到る。歯周病の進行に伴い堆積した歯垢中の歯周病原菌が増殖すると、歯周病原菌により特有の臭気物質が生成されると共に、歯を支えている歯槽骨までも冒されて歯を失うこともある。このように、歯垢の堆積と歯周病の進行とは密接に関連しているので、歯周病を早期に発見して治癒を図るためには、歯垢情報を的確につかむことが重要となる。
【0003】
歯周病は自覚症状もなく慢性的に進行するが、歯科医師による歯周病の診断では、堆積した歯垢の情報以外に、レントゲン検査や肉眼的な観察による歯肉の腫脹、歯周ポケットの深さ、出血の状態などの臨床所見が総合的に評価されるので、早期でも的確に診断される。一方、呼気中に含まれ歯周病に特有の臭気物質をガスクロマトグラフ等で測定することにより歯周病の診断が行われている。ところが、歯周病の早期には臭気物質の生成量が少ないため、呼気の測定のみでは精度の高い歯周病の診断は望めない。
【0004】
これを解決するために、ガス感応性の異なる複数の半導体ガスセンサにより呼気中の臭気物質を測定した測定値と、歯科医師により診断された歯垢の指標であるプラークインデックスとをニューラルネットワークに入力して歯周病の進行度を演算する歯周病診断装置が開示されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開2002−253584号公報
【0006】
【発明が解決しようとする課題】
しかしながら、プラークインデックスは、歯科医師により特定の歯が診断され段階値(整数値)で判定される歯垢の指標であり、被検者に診断結果を分かりやすく説明するために、特定の歯の診断結果から歯全体についての歯垢情報が一つの数値で表されている。従って、歯垢情報の精度を向上させてニューラルネットワークに入力することが可能となれば、歯周病の進行度についての演算精度の向上が期待できる。
【0007】
本発明は上記事案に鑑み、歯周病の進行度の演算精度を向上させることが可能な歯周病診断装置を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明は、ガス感応性の異なる複数の半導体ガスセンサにより被検者の呼気中の成分ガスを測定して歯周病の進行度を演算する歯周病診断装置において、前記半導体ガスセンサにより測定された前記成分ガスの時系の測定値から前記歯周病の特徴を表す特徴値を演算する特徴値演算手段と、入力された被検者の歯垢に関する歯垢情報から、前記歯周病の指標となるプラークインデックスに前記歯垢情報を関連付けるメンバシップ関数を用いてファジィ化を行った値に重み付けをしてプラークインデックスファジィ値を演算するプラークインデックスファジィ値演算手段と、前記特徴値演算手段により演算された特徴値、前記プラークインデックスファジィ値演算手段により演算されたプラークインデックスファジィ値及び前記被検者の歯周病に関する属性値をニューラルネットワークの入力層に入力して該ニューラルネットワークの出力層からの出力を前記歯周病の進行度として演算する進行度演算手段と、を備えたことを特徴とする。
【0009】
本発明によれば、プラークインデックスファジィ値演算手段により、被検者の歯垢情報から、歯周病の指標となるプラークインデックスに歯垢情報を関連づけるメンバシップ関数を用いてファジィ化を行った値に重み付けをしてプラークインデックスファジィ値が演算されるので、歯周病の進行に関連する歯垢情報の適正化を図ることができ、進行度演算手段により、特徴値演算手段により演算された特徴値、適正化されたプラークインデックスファジィ値及び被検者の歯周病に関する属性値がニューラルネットワークに入力され、出力が歯周病の進行度として演算されるので、入力層に入力されたプラークインデックスファジィ値が適正化されているため、出力層から出力される歯周病の進行度の演算精度を向上させることができる。
【0010】
この場合において、プラークインデックスファジィ値演算手段が、メンバシップ関数を用いてファジィ化を行った複数の値を求め、求めた値に重み付けをするディファジィ化を行った値をプラークインデックスファジィ値として演算するようにしてもよい。また、歯垢情報に、特定の複数の歯の歯垢の付着量により判定された値から、被検者の歯全体の歯垢の付着割合を求めた割合値を用いても、プラークインデックスファジィ値演算手段により歯垢情報の適正化を図ることができる。更に、特徴値を、少なくとも測定値の最大値及び該最大値を与える時間、並びに、測定値を時間で微分したときの最大値及び該最大値を与える時間を含むようにしてもよい。また、属性値を、被検者の年齢、性別及び喫煙の有無に関する情報のうち少なくとも1つを含み、該情報はそれぞれ予め定められた範囲の整数値としてもよい。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明を適用した歯周病診断装置の実施の形態について説明する。
【0012】
(構成)
図1に示すように、歯周病診断装置1は、被検者の呼気を測定するための呼気測定ユニット10と、プラークインデックスファジィ値演算手段及び進行度演算手段としての演算ユニット20とを備えている。
【0013】
図2に示すように、呼気測定ユニット10は、内壁がポリテトラフルオロエチレン(PTFE)加工され被検者の呼気を充填するための呼気充填チェンバ12及びこの呼気充填チェンバ12に連通され4種類の半導体ガスセンサ14を収容したセンサチェンバ13を有している。センサチェンバ13の内壁も呼気充填チェンバ12と同様にPTFE加工が施されている。
【0014】
呼気充填チェンバ12は、電磁バルブV1を介して呼気案内チューブTBの一端に接続されている。呼気案内チューブTBの他端には使い捨て可能で呼気だめと一体となったマウスピースMPが着脱可能に装着されている。センサチェンバ13は、呼気充填チェンバ12の反対側に吸引ポンプPが接続されている。従って、被検者の呼気は、呼気だめと一体となったマウスピースMP、呼気案内チューブTBを介して呼気測定ユニット10内に導入され、電磁バルブV1、呼気充填チェンバ12、センサチェンバ13、吸引ポンプPを経て、呼気測定ユニット10から排出される。
【0015】
半導体ガスセンサ14は、ガス感応性の異なる4種類のセンサで構成されている。本実施形態では、アルファモス(ALPHA M.O.S)社のFox3000シリーズ中、商品名P10/9、P40/1、PA2、T50/3の半導体ガスセンサが用いられている。下表1に示すように、4種類の半導体ガスセンサ14はそれぞれ異なるガスに感応する。例えば、P10/9のセンサは水素化合物、アルデヒドのガスに感応する。
【0016】
【表1】
Figure 2005017148
【0017】
半導体ガスセンサ14は酸化スズの微粒子を焼結した円筒状のn型酸化物半導体(以下、n型半導体という。)を有しており、ガスの検知はこのn型半導体表面への化学吸着現象に依存していることから、n型半導体表面でのガス吸着速度を高めるためにヒータコイルで加熱される。半導体ガスセンサ14が清浄な大気中にあるときは、n型半導体表面への酸素の吸着により微粒子界面のポテンシャル障壁が高くなり電子の移動を妨げるので、n型半導体は高い抵抗値を示す。n型半導体表面へのガス分子の吸着や酸化反応が起こるとポテンシャル障壁が低くなり電子の移動が容易になるので、n型半導体の抵抗値は小さくなる。従って、n型半導体の抵抗値の大きさを連続的に出力電圧として取り出すことによりガス濃度に応じた比抵抗値の時系列データを得ることができる。
【0018】
呼気充填チェンバ12は、電磁バルブV2を介して、外部から取り込んだ空気を清浄化したキャリアガスを生成し生成したキャリアガスにより呼気充填チェンバ12及びセンサチェンバ13内を清浄するためのチェンバ清浄部11に接続されている。チェンバ清浄部11は、キャリアガスの湿度を調整する蒸留水層、二酸化炭素を除去する塩化カルシウム層、水分及び臭い成分を除去する活性炭層を有している。
【0019】
また、呼気測定ユニット10は、呼気測定ユニット10全体を制御する特徴値演算手段としての制御部16、商用電源を呼気測定ユニット10の吸引ポンプP、電磁バルブV1、V2、制御部16を作動可能な直流電圧に変換する電源部15を有している。制御部16は、半導体ガスセンサ14から出力された出力電圧を増幅するオペアンプ(OP)、オペアンプから出力されたアナログ信号をサンプリングレート1Hzでデジタル信号に変換するA/D変換器、並びに、CPU、ROM、RAM及びこれらを接続する内部バスを有している。半導体ガスセンサ14により得られた呼気データはRAMに一時的に格納される。制御部16は、接続ケーブル9を介して演算ユニット20と接続されている。
【0020】
なお、呼気測定ユニット10の上部には、図示しない緑、橙、赤色の3個のLEDで構成される表示部が配設されている。これらのLEDは、後述するように、被検者に呼気の吹き付け開始等を指示するものである。
【0021】
演算ユニット20は、データの入出力ポートとなる入出力インターフェース24、中央演算処理装置として機能するCPU21、演算ユニット20全体の基本制御プログラム及び各種データが記憶されたROM22、CPU21のワークエリアとして働くと共に種々のデータを一時的に記憶するRAM23及びこれらを接続する内部バスで構成されている。入出力インタフェース24は、キーボード及びディスプレイ等を制御する不図示の入出力制御部と接続するための入出力ポート(I/O)に接続されている。
【0022】
演算ユニット20のROM22には、歯周病の進行度を演算するニューラルネットワーク(Artificial Neural Network、以下、ANNと略称する。)が移植されている。ANNは、20個の入力層、20個の中間層及び1個の出力層からなる3層で構成されている。ANNは、入力層として被検者の呼気の情報、歯垢情報及び属性に関する情報を与え、出力層として予め歯科医師から提供された歯周病の進行度に関するカルテデータを与えることにより、入力層から中間層、及び、中間層から出力層の重み係数を繰り返し反復修正して学習されている。
【0023】
(動作)
まず、呼気測定ユニット10の動作について説明する。
【0024】
呼気測定ユニット10に電源が投入されると、制御部16のCPU(以下、単にCPUという。)は、電磁バルブV1を閉じて電磁バルブV2を開き、所定時間(例えば、30秒)吸引ポンプPを作動させることで、チェンバ清浄部11で生成したキャリアガスにより呼気充填チェンバ12及びセンサチェンバ13内の残留ガスを除去(呼気測定ユニット10から排出)すると共に、半導体ガスセンサ14のヒータコイルで加熱して4種類のn型半導体の表面を清浄する。この間、呼気測定ユニット10は呼気測定を行うことができないので、図示しない赤色LEDを点灯させて被検者に呼気の吹き付け準備を促す。所定時間が経過すると、電磁バルブV1を開き電磁バルブV2を閉じる。これにより、呼気測定の準備が完了する。
【0025】
次に、被検者に呼気測定開始を報知するために、赤色LEDを消灯させ図示しない緑色LEDを点灯させる(以下、この時刻を呼気測定開始時という。)。吸引ポンプPの吸引力は、呼気充填チェンバ12及びセンサチェンバ13内を流れる空気の流速が200ml/minに調整されている。被検者は、図示しない緑色LEDの点灯を合図に約2秒間呼気だめと一体となったマウスピースMPを介して呼気を吹き付ける。吹き付けられた呼気は吸引ポンプPの吸引力により呼気案内チューブTBを経て呼気充填チェンバ12に充填され、更に、連通したセンサチェンバ13内に導入される。CPUは、呼気測定開始時から2.5秒後に電磁バルブV1を閉じ電磁バルブV2を開く。これにより、キャリアガスがチェンバ清浄部11から呼気充填チェンバ12に供給される。
【0026】
なお、本実施形態では呼気の標準的な取込時間を2秒に設定しているが、被検者が2秒を正確に計時することは困難であり、また、緑色LEDの点灯から呼気を吹きかけるまでに若干の遅延や呼気案内チューブTBの体積等を考慮して、緑色LEDの点灯後2.5秒と呼気の標準的な取込時間2秒に対して0.5秒の余裕を持たせている。CPUは、吸引ポンプPを呼気測定開始時から120.5秒間後に停止させると共に、図示を省略した橙色LEDを点灯させて被検者に待機を促す。
【0027】
また、CPUは、4種類の半導体ガスセンサ14に、上述した所定時間(清浄に要する時間)に加え呼気測定開始時から120.5秒間作動電源を供給する。呼気測定開始時より所定時間前に作動電源を印加することで、ヒータコイルは所定の温度に到達し半導体ガスセンサ14は安定した状態となる。4種類の半導体ガスセンサ14からの出力電圧はオペアンプで増幅されそれぞれA/D変換器に入力される。CPUは、A/D変換器を呼気測定開始時から120秒間作動させる。呼気測定開始時からこの120秒間が呼気データの測定時間となる。各A/D変換器からの出力された呼気データは制御セクションのRAM(以下、単にRAMという。)に格納される。
【0028】
次に、CPUは、RAMに格納された呼気データが歯周病診断用の呼気データとして適正か否かの判定を行う。半導体ガスセンサPA2から出力される呼気データは、吸引時間を横軸に、比抵抗値を縦軸にそれぞれとり、典型的な場合を相対比較すると、呼気測定時間内に比抵抗値に極大値が存在する。従って、呼気データとして適正か否かを判断するには、比抵抗値がこの特徴を有するかを判定すればよい。本実施形態では、半導体ガスセンサPA2の最大比抵抗値が相対値で2を超えるときに、被検者が呼気測定を正常に行ったと判断し、橙色LEDを消灯させ緑色LEDを点灯させて被検者に呼気測定が正常に行われたことを報知し、半導体ガスセンサPA2の最大比抵抗値が相対値で2以下のときに呼気測定が正常に行えなかった判断し、橙色LEDを消灯させ赤色LEDを点灯させて被検者に呼気測定を再度行う必要があることを報知する。この場合には、上述した呼気測定開始前の清浄処理の動作へ戻る。
【0029】
次いでCPUは、各半導体ガスセンサ14毎の呼気データについて最大比抵抗値を検索して、その最大比抵抗値を与える呼気測定時刻を演算する。呼気データは1Hz毎にサンプリングされるので、呼気データの順番から最大比抵抗値を与える呼気測定時刻を得ることができる。次にCPUは、各半導体ガスセンサ14毎の呼気データについて微分(差分)値を演算し、最大微分値を検索して、最大微分値を与える呼気測定時刻を演算する。CPUは、このようにして得られた各半導体ガスセンサ14の呼気データを被検者測定データとして作成する。すなわち、被検者測定データは、1種類の半導体ガスセンサ14について最大比抵抗値、該呼気測定時刻、最大微分値、該呼気測定時刻の4個のデータが得られるため、4種類の半導体ガスセンサ14について全16個のデータで構成される。このとき、CPUは、被検者測定データの作成の間、緑色LEDの点灯に加え橙色LEDを点灯して、被検者に演算中であることを報知する。CPUは、被検者測定データの作成が終了すると、呼気データは不要となるので、RAMから削除し、橙色LEDのみ点灯させる。
【0030】
続いてCPUは、作成した被検者測定データを演算ユニット20へ転送し、転送が終了すると、橙色LEDを消灯させ(全てのLEDを消灯させ)て、被検者に呼気測定作業の終了を報知する。転送された被検者測定データは、演算ユニット20のRAM23に格納される。
【0031】
次に、フローチャートを参照して、演算ユニット20の動作について説明する。なお、CPU21に電源が投入されると、ROM22に記憶された基本制御プログラム及び各種データをRAM23に展開する等の図示を省略した初期設定処理後、歯周病の進行度を演算するための歯周病進行度演算ルーチンを実行する。
【0032】
図3に示すように、歯周病進行度演算ルーチンでは、ステップ102において、呼気測定ユニット10から被検者測定データを受信したか否かを、RAM23に被検者測定データが格納されているかを判定することにより判断する。否定判断のときは受信するまで待機し、肯定判断のときは次のステップ104に進む。
【0033】
ステップ104では、被検者の年齢(実年齢の数値)、性別(女性1、男性0)、喫煙の有無(喫煙者1、非喫煙者0)及び服薬の有無(服薬有1、服薬無0)で構成される被検者属性データ、並びに、歯科医師の判定による歯垢情報から求めた割合値(0〜100)を入力するようにディスプレイに表示させ、キーボードから入力があるまで待機する。ディスプレイには、被検者の年齢、性別、喫煙の有無、服薬の有無、歯垢情報の割合値を入力させるための入力画面が表示される。操作者はこの入力画面でキーボード操作によりこれらのデータを順次入力し、エンターキーを押下する。CPU21は、エンターキーが押下されると、これらの被検者属性データ及び歯垢情報の割合値のいずれかがヌルか否かを判断し、肯定判断のときには、ヌルデータについての入力を促して入力を待ち、否定判断のときには、入力された被検者属性データ及び歯垢情報の割合値をRAM23に格納する。
【0034】
次のステップ106では、ステップ104で入力された歯垢情報を適正化するためのファジィ化を行う。ところで、歯科医師による歯垢の診断は、下表2に示すように、被検者の歯の6本についてそれぞれ4面、すなわち舌側面、頬側面、遠心面(口唇側の面)及び近心面(口腔奥側の面)における歯垢の付着量を肉眼的に観察して4段階の整数値で判定される。得られた判定値を平均して求めた0〜3の整数値は、被検者の歯垢情報を表すプラークインデックス(PI)値として定義されている。
【0035】
【表2】
Figure 2005017148
【0036】
PI値が低い被検者でも歯周病が進行していることがあるため、歯科医師は、PI値以外の臨床所見も含めて総合的に歯周病の進行度を診断するので、PI値と進行度の診断結果との相関には偏りが存在する。図4に示すように、6本の歯の各面に対する判定値をすべて3としたときの合計(6本×4面×3=72)に対する、各面の判定値を合計した値の割合を百分率で求めた割合値xと、カルテデータの進行度の診断結果とでは偏った分布となる。そこで、割合値xに幅を持たせることと、カルテデータ(各面に対する判定値)の評価を簡素化するため、ステップ106では、まず、割合値xのファジィ化を行う。下式(1)に示すように、ファジィ化には、図4の分布から定めたメンバシップ関数を用いる。
【0037】
【数1】
Figure 2005017148
【0038】
CPU21は、予めROM22に格納されているメンバシップ関数を読み出し、ステップ104で入力された割合値からメンバシップ関数の各値を演算する。図5に示すように、各メンバシップ関数は、PI値に割合値xを関連付けるものであり、4段階の整数値で表されたPI値(表2参照)に対応する割合値xの適正範囲を表している。例えば、PI値1に対応する割合値xの適正範囲はfとfとで区分される範囲にあり、割合値xがこの範囲にあるときにはPI値1の診断が適正とするものである。
【0039】
次に、CPU21は、各PI値に対する割合値xの範囲の適正度合いを表すファジィ値を演算する。ファジィ値の演算には、下式(2)に示すファジィ値演算式が用いられる。CPU21は、予めROM22に格納されているファジィ値演算式を読み出し、式(1)の演算結果(f〜f)から各ファジィ値(F〜F)を演算する。例えば、割合値x=35のときは、f=0.25、f=0.75となり、PI値1に対するファジィ値Fは0.25、PI値2に対するファジィ値Fは0.75となる。すなわち、割合値x=35の被検者では、PI値1又はPI値2のいずれに診断しても適正ではあるが、PI値2と診断する方がPI値1と診断するより適正度合いの高いことを示している。
【0040】
【数2】
Figure 2005017148
【0041】
続いて、CPU21は、各ファジィ値(F〜F)をPI値に関連付けて1つの数値とするため、各ファジィ値に重み付けをするディファジィ化を行った値をPIファジィ値Fとして演算する。ディファジィ化には、下式(3)に示すディファジィ式が用いられる。CPU21は、予めROM22に格納されているディファジィ式を読み出し、式(2)により演算した各ファジィ値からPIファジィ値Fを演算し、RAM23に格納する。
【0042】
【数3】
Figure 2005017148
【0043】
下表3に示すように、歯科医師の診断によるファジィ化していないPI値(非ファジィ値)が4段階の整数値で表されるのに対して、ファジィ化を行った値に重み付け(ディファジィ化)をしたPIファジィ値Fは、0〜3の小数値で表される。従って、歯垢の付着量が4段階の整数値の間であっても、小数値で表されることとなる。
【0044】
【表3】
Figure 2005017148
【0045】
ステップ106に続くステップ108では、ステップ104でRAM23に格納された被検者の実年齢及び喫煙・服薬の情報をそれぞれ年齢分類値及び生活習慣パラメータに変換する。
【0046】
下表4に示すように、被検者の年齢が高くなると歯周病の進行が早まることから、データの評価の簡素化を図るために被検者の年齢が予め7段階に区分され、年齢が高いほど大きな整数値となるように各区分ごとに年齢分類値が定められている。CPU21は、予めROM22に格納されている下表4の数値を参照して、RAM23に格納されている被検者の実年齢がいずれの区分に該当するかを判断して、当該被検者の年齢分類値を確定し、RAM23に格納する。
【0047】
【表4】
Figure 2005017148
【0048】
また、下表5に示すように、喫煙と服薬とでは喫煙の方が歯周病の進行度に対する関連性が高いことから、喫煙者の生活習慣パラメータが大きくなるように整数値の生活習慣パラメータが予め定められている。すなわち、生活習慣パラメータは、喫煙する被検者は2、喫煙をせず服薬する被検者は1、喫煙をせず服薬しない被検者は0に設定されており、被検者の生活習慣パラメータの整数値をRAM23に格納する。
【0049】
【表5】
Figure 2005017148
【0050】
次にステップ110では、ANNにより被検者の歯周病の進行度を演算する。上述したように、ANNは、20個の入力層、入力層と同数の20個の中間層及び1個の出力層を有する3層構造で構成されている。入力層には、年齢分類値、性別値、生活習慣パラメータ、16個の被検者測定データ及びPIファジィ値Fの、合計20個のデータが入力され、出力層からは歯周病の進行度を示す0〜3の診断予測値が出力される。本実施形態のANNは、ANNの学習の終了条件を、平均2乗誤差0.0005又は学習回数200,000回を満たすまでとし、中間層数を変化させて学習を行い適切な中間層数を20個としたものである。従って、ステップ110では、ANNの入力層に上述した16個の被検者測定データと、年齢分類値、性別値、生活習慣パラメータ及びPIファジィ値Fとを入力して、入力層、中間層間のニューロンのパラメータを演算すると共に、中間層、出力層間のニューロンのパラメータを演算して、出力層から診断予測値を出力する。なお、性別値については、男性より女性の方が相対的に歯周病の進行が早い傾向にあることから、男性0、女性1の数値としているため、ステップ104で入力された数値がそのままANNの入力層に入力される。
【0051】
次いで、CPU21は、演算された診断予測値をRAM23に格納すると共に、入出力インタフェース24を介して接続されたディスプレイに演算結果を表示させて、歯周病進行度演算ルーチンを終了する。
【0052】
<試験等>
本実施形態の歯周病診断装置1による歯周病の進行度の演算結果(診断予測値)が、実際に歯科医師が診断した結果(実測値)とどの程度一致しているかの評価を全被検者数が45人のデータを用いて行った。
【0053】
図6に示すように、本実施形態の歯周病診断装置1による、PIファジィ値F、年齢分類値及び生活習慣パラメータをANNの入力層に入力したときの診断予測値と、実測値とのピアソンの相関係数rは、0.90となり、診断予測値は歯科医師による実測値に近いことが判った。このとき、診断予測値を得るまでの所要時間は数秒から数十秒程度であった。また、図7に示すように、生活習慣パラメータをANNの入力層に入力せず、PIファジィ値F及び年齢分類値をANNの入力層に入力したときの診断予測値と実測値との相関係数rは0.89となり、図6の結果より若干低下した。更に、図8に示すように、年齢分類値及び生活習慣パラメータをANNの入力層に入力せず、PIファジィ値FをANNの入力層に入力したときの診断予測値と実測値との相関係数rは0.85となり、図7の結果より低下した。
【0054】
また、比較例1として、上述した歯周病進行度演算ルーチンの内、ステップ106、108のない進行度演算ルーチンを実行する歯周病診断装置により歯周病の進行度の演算を行った。比較例1の歯周病診断装置は、PIファジィ値F、年齢分類値及び生活習慣パラメータの演算を行わず、ステップ104で入力された歯垢情報の割合値x、実年齢の数値及び喫煙・服薬の数値をANNの入力層に入力して出力層から歯周病の進行度の演算結果を出力した。図9に示すように、比較例1の歯周病診断装置の診断予測値と実測値との相関係数rは0.80であった。
【0055】
従って、入力された実年齢の数値、喫煙・服薬の数値及び歯垢情報の割合値xをそのままANNの入力層に入力した比較例1の歯周病診断装置による診断予測値と比較して、歯垢情報の割合値xをファジィ化したPIファジィ値FをANNの入力層に入力することで歯周病の進行度の演算精度が向上することが判明した。
【0056】
また、PIファジィ値Fに加えて年齢分類値をANNの入力層に入力することで、PIファジィ値Fを入力し年齢分類値を入力しないときと比較してより演算精度が向上することが判った。更に、PIファジィ値F及び年齢分類値に加えて生活習慣パラメータをANNの入力層に入力することで、PIファジィ値F及び年齢分類値を入力し生活習慣パラメータを入力しないときと比較して一層演算精度が向上することが判明した。
【0057】
<作用等>
本実施形態の歯周病診断装置1は、ANNの入力層に入力する被検者の歯垢情報を、歯科医師による歯垢の診断結果から求めた割合値xから、式(1)のメンバシップ関数を用いてファジィ化した値を求め、求めた値に重み付けをするディファジィ化を行った値をPIファジィ値Fとして演算する(ステップ106)。歯科医師の診断によるPI値が4段階の整数値であるのに対して、割合値xをファジィ化することにより、PIファジィ値Fを小数まで表すことができ、被検者の歯垢情報の適正化を図ることができる。このため、ANNの入力層には適正化されたPIファジィ値Fが入力され、歯周病の進行度の演算精度を向上させることができる。
【0058】
また、本実施形態の歯周病診断装置1は、被検者の歯垢の付着量の判定値から歯全体の歯垢の付着割合を割合値xとして求め、この割合値xをファジィ化する(ステップ106)。判定値が各歯毎に判定されるのに対して、割合値xは歯全体の歯垢情報を1つの数値で表したので、短時間で入力することができ、歯周病の進行度の演算を迅速に行うことができる。
【0059】
更に、本実施形態の歯周病診断装置1は、被検者の年齢が高いほど大きな整数値となるように区分された年齢分類値をRAM23に格納する(ステップ108)。このため、被検者の年齢に応じて歯周病の進行度を演算することができるので、演算精度を向上させることができる。また、本実施形態の歯周病診断装置1は、喫煙及び服薬の2つの情報を1つの整数値で表した生活習慣パラメータをRAM23に格納する(ステップ108)。このため、喫煙・服薬の習慣に応じて歯周病の進行度を演算することができるので、演算精度を向上させることができると共に、1つの生活習慣パラメータがANNの入力層に入力されるので、進行度の演算を迅速に行うことができる。
【0060】
また、本実施形態の歯周病診断装置1は、半導体ガスセンサ14により測定された被検者の呼気データから歯周病の特徴を表す被検者測定データを演算してANNの入力層に入力する(ステップ110)。これにより、歯周病と関連した呼気の情報を加味したANNの演算結果が得られるので、歯周病の進行度の演算精度を向上させることができる。
【0061】
一般に、歯周病の進行に伴い歯周病原菌が臭気物質を生成するが、歯周病の早期では臭気物質の生成量が少ないため、呼気の測定のみで歯周病の進行度を精度よく診断することは難しい。本実施形態の歯周病診断装置1は、被検者の呼気を測定して演算した被検者測定データ、歯周病の進行と密接に関連する歯垢情報を適正化したPIファジィ値F、年齢分類値及び生活習慣パラメータをANNの入力層に入力する(ステップ110)。これにより、呼気の情報に加えて歯垢情報及び属性に関する情報がANNの入力層に入力され、出力層から歯垢情報及び属性に関する情報を加味したANNの演算結果が得られるので、歯周病の早期においても、進行度の演算精度を向上させることができる。
【0062】
従来の歯周病診断装置では、歯周病の進行度の演算精度を向上させるために、ANNの入力層数を増加させて歯周病の進行度を演算することが行われている。下表6に示すような12種類の半導体ガスセンサ14を有する比較例2の歯周病診断装置により歯周病の進行度の演算を行った。比較例2の歯周病診断装置は、呼気吸引時間2秒、全データ取得時間120秒とした2秒吸引法及び呼気吸引時間240秒、全データ取得時間240秒とした連続吸引法の2種の方法を用い流速200ml/minで呼気を測定し、12種類の各半導体ガスセンサ毎に比抵抗値変化の最大値とそれを与える時間、更に比抵抗値変化の微分値の最大値とそれを与える時間の4個の被検者測定データを演算した。この操作により、1センサ当たり2種の呼気吸引方法により8個の被検者測定データを演算したこととなり、合計96個の被検者測定データを得ることができる。
【0063】
【表6】
Figure 2005017148
【0064】
ANNの入力層数を増加させたときの歯周病の進行度の演算結果を比較するために、計算負荷指数を表すANNの結線数と、ANNを用いて演算した診断予測値が歯科医師による実測値とどの程度一致しているかを表す正答度と、を求めた。結線数は下式(4)により求めた。
【0065】
【数4】
Figure 2005017148
【0066】
また、正答度は次のようにして求めた。まず、被検者のカルテデータから、歯科医師による実測値を正規化した進行度に対する被検者の累積度数分布を作成し、進行度の範囲ごとに累積度数値fを進行度の関数として求めた。図10に示すように、歯科医師による実測値t及びANNによる診断予測値aに対する累積度数値f(t)、f(a)をそれぞれ求め、下式(5)により正答度を算出した。
【0067】
【数5】
Figure 2005017148
【0068】
図11に示すように、12種類の半導体ガスセンサ14による呼気の測定から得られる特定時刻の12個のデータ(比抵抗値)のみをANNの入力層に入力したANN12(以下、ANNに付記する数値は入力層数を示す。)では、歯周病の進行度の演算が不可能であるのに対して、97個(被検者測定データ96個+PA2型センサの時系データをパターン化して分類した値)のデータを入力層に入力したANN97では、正答度が向上すると共に、結線数が増加し計算負荷が増大した。また、97個のデータに、歯科医師の診断結果から歯周ポケットの出血する割合を示すB.O.P(Bleeding on Probing)値、歯周ポケットの深さを示す2種類のPD(Probing Depth)値及びPI値、並びに、被検者の年齢値、性別値及び喫煙・服薬の有無を表すリスク値(喫煙又は服薬の少なくとも一方が有るときは1、いずれも無いときは0)の7個のデータを加えたANN104では、正答度は向上するものの、結線数が更に増加して計算負荷が増大した。
【0069】
これに対して、本実施形態で用いたANN20は、入力層に入力したデータが20個にも拘わらず、ANN104と比較して正答度は変わらずに計算負荷が大きく低減している。また、本実施形態の歯周病診断装置1は、4種類の半導体ガスセンサ14により得られる被検者の呼気の情報をANN20の入力層に入力する(ステップ110)。このため、半導体ガスセンサの数も少なくでき、歯周病診断装置1を小型化し低コストとすることができる。
【0070】
なお、本実施形態では、被検者測定データの演算を呼気測定ユニット10のCPUで行い、PIファジィ値F及びANNの演算を演算ユニット20のCPU21で行う例を示したが、本発明はこれに限定されるものではない。例えば、被検者測定データの演算をCPU21で行うようにしてもよい。
【0071】
また、本実施形態では、歯垢情報の割合値xから式(1)のメンバシップ関数を用いてファジィ化を行った値を求め、求めた値に式(3)のディファジィ式を用いて重み付けをしてPIファジィ値Fを演算する例を示したが、本発明はこれに限定されるものではない。例えば、メンバシップ関数をディファジィ式に代入して予め1つの関数としておくことにより、割合値xからPIファジィ値Fを直接演算するようにしてもよい。このようにすれば、1回の演算でPIファジィ値Fが演算されるので、歯周病の進行度の演算時間を短縮することができる。
【0072】
更に、本実施形態では、割合値xのファジィ化に式(1)で表される7つのメンバシップ関数を例示したが、本発明はこれに限定されるものではなく、PI値に割合値xを関連付けることが可能であればよい。また、ディファジィ化に式(3)を例示したが、重み付けの係数を変更して演算するようにしてもよい。
【0073】
また更に、実年齢を7段階に区分し1〜11の整数値で表される年齢分類値及び喫煙・服薬の情報から0〜2の整数値で表される生活習慣パラメータを例示したが、本発明はこれに限定されるものではなく、例えば、年齢区分、整数値の範囲を変更して用いるようにしてもよい。
【0074】
更にまた、本実施形態では、1種類の半導体ガスセンサ14毎に、歯周病の特徴を表す4個の被検者測定データを演算してANNの入力層に入力する例を示したが、これ以外の歯周病の進行度に関する被検者測定データを演算してANNの入力層に入力するようにしてもよい。このようにすれば、歯周病に関連する呼気の情報が増えるので、歯周病の進行度の演算精度を更に向上させることが期待できる。
【0075】
また、本実施形態では、A/D変換器のサンプリングレートを1Hzとした例を示したが、サンプリングレートを大きくすることで、呼気データの数を増加させるようにしてもよい。また、本実施形態では、呼気測定時間を120秒とした例を示したが、10秒程度としてもANNの出力層から出力される診断予測値の信頼性を十分に確保することができることが確認されている。
【0076】
更に、本実施形態では、半導体ガスセンサ14にアルファモス社製Fox3000シリーズの中から上述した4種類の型を使用したが、本発明は製造社、型番に限定されるものではない。また、4種類の半導体ガスセンサ14を一体型とした半導体ガスセンサを用いてもよい。
【0077】
【発明の効果】
以上説明したように、本発明によれば、プラークインデックスファジィ値演算手段により、被検者の歯垢情報から、歯周病の指標となるプラークインデックスに歯垢情報を関連づけるメンバシップ関数を用いてファジィ化を行った値に重み付けをしてプラークインデックスファジィ値が演算されるので、歯周病の進行に関連する歯垢情報の適正化を図ることができ、進行度演算手段により、特徴値演算手段により演算された特徴値、適正化されたプラークインデックスファジィ値及び被検者の歯周病に関する属性値がニューラルネットワークに入力され、出力が歯周病の進行度として演算されるので、入力層に入力されたプラークインデックスファジィ値が適正化されているため、出力層から出力される歯周病の進行度の演算精度を向上させることができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明を適用した実施形態の歯周病診断装置の概略構成を示すブロック図である。
【図2】歯周病診断装置の呼気測定ユニットの概略構成を示すブロック図である。
【図3】歯周病診断装置の演算ユニットが実行する歯周病進行度演算ルーチンのフローチャートである。
【図4】歯垢情報の割合値と歯科医師による歯周病の進行度の診断結果との関係を示す分布図である。
【図5】歯垢情報の割合値のファジィ化に用いるメンバシップ関数を示すグラフである。
【図6】PIファジィ値、年齢分類値及び生活習慣パラメータをANNの入力層に入力したときの進行度の予測値と歯科医師による進行度の診断結果との関係を示す相関図である。
【図7】PIファジィ値及び年齢分類値をANNの入力層に入力したときの進行度の予測値と歯科医師による進行度の診断結果との関係を示す相関図である。
【図8】PIファジィ値をANNの入力層に入力したときの進行度の予測値と歯科医師による進行度の診断結果との関係を示す相関図である。
【図9】比較例の歯周病診断装置による歯周病の進行度の予測値と歯科医師による進行度の診断結果との関係を示す相関図である。
【図10】正規化した歯周病の進行度に対する被検者の累積度数値を示すグラフである。
【図11】ANNの入力層数を変えたときの正答度と結線数との関係を示すグラフである。
【符号の説明】
1 歯周病診断装置
12 呼気充填チェンバ
14 半導体ガスセンサ
10 呼気測定ユニット(特徴値演算手段)
20 演算ユニット(プラークインデックスファジィ値演算手段、進行度演算手段)

Claims (5)

  1. ガス感応性の異なる複数の半導体ガスセンサにより被検者の呼気中の成分ガスを測定して歯周病の進行度を演算する歯周病診断装置において、
    前記半導体ガスセンサにより測定された前記成分ガスの時系列の測定値から前記歯周病の特徴を表す特徴値を演算する特徴値演算手段と、
    入力された被検者の歯垢に関する歯垢情報から、前記歯周病の指標となるプラークインデックスに前記歯垢情報を関連付けるメンバシップ関数を用いてファジィ化を行った値に重み付けをしてプラークインデックスファジィ値を演算するプラークインデックスファジィ値演算手段と、
    前記特徴値演算手段により演算された特徴値、前記プラークインデックスファジィ値演算手段により演算されたプラークインデックスファジィ値及び前記被検者の歯周病に関する属性値をニューラルネットワークの入力層に入力して該ニューラルネットワークの出力層からの出力を前記歯周病の進行度として演算する進行度演算手段と、
    を備えたことを特徴とする歯周病診断装置。
  2. 前記プラークインデックスファジィ値演算手段は、前記メンバシップ関数を用いてファジィ化を行った複数の値を求め、前記値に重み付けをするディファジィ化を行った値を前記プラークインデックスファジィ値として演算することを特徴とする請求項1に記載の歯周病診断装置。
  3. 前記歯垢情報は、特定の複数の歯の歯垢の付着量により判定された値から、前記被検者の歯全体の歯垢の付着割合を求めた割合値であることを特徴とする請求項1に記載の歯周病診断装置。
  4. 前記特徴値は、少なくとも前記測定値の最大値及び該最大値を与える時間、並びに、前記測定値を時間で微分したときの最大値及び該最大値を与える時間を含むことを特徴とする請求項1に記載の歯周病診断装置。
  5. 前記属性値は、被検者の年齢、性別及び喫煙の有無に関する情報のうち少なくとも1つを含み、該情報はそれぞれ予め定められた範囲の整数値であることを特徴とする請求項1に記載の歯周病診断装置。
JP2003183772A 2003-06-27 2003-06-27 歯周病診断装置 Pending JP2005017148A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183772A JP2005017148A (ja) 2003-06-27 2003-06-27 歯周病診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183772A JP2005017148A (ja) 2003-06-27 2003-06-27 歯周病診断装置

Publications (1)

Publication Number Publication Date
JP2005017148A true JP2005017148A (ja) 2005-01-20

Family

ID=34183727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183772A Pending JP2005017148A (ja) 2003-06-27 2003-06-27 歯周病診断装置

Country Status (1)

Country Link
JP (1) JP2005017148A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257373A (ja) * 2004-03-10 2005-09-22 Yokohama Tlo Co Ltd 呼気採取装置
WO2016108348A1 (ko) * 2014-12-31 2016-07-07 서울대학교산학협력단 치주질환 예측 시스템 및 이를 이용한 치주질환 예측 방법
US9939412B2 (en) 2013-02-06 2018-04-10 Empire Technology Development Llc Devices, systems, and methods for detecting odorants
JP2020098370A (ja) * 2018-12-17 2020-06-25 廣美 畑中 医用画像をaiの判断で症状度合いごと画像に表示する診断方法。
WO2022176617A1 (ja) * 2021-02-19 2022-08-25 パナソニックIpマネジメント株式会社 口腔洗浄器、歯周病判定装置、歯周病判定システム、歯周病判定方法、及び歯周病判定プログラム
WO2023093750A1 (zh) * 2021-11-23 2023-06-01 漳州松霖智能家居有限公司 具有口腔异味检测功能的冲牙器及其工作方法和相关设备

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257373A (ja) * 2004-03-10 2005-09-22 Yokohama Tlo Co Ltd 呼気採取装置
US9939412B2 (en) 2013-02-06 2018-04-10 Empire Technology Development Llc Devices, systems, and methods for detecting odorants
WO2016108348A1 (ko) * 2014-12-31 2016-07-07 서울대학교산학협력단 치주질환 예측 시스템 및 이를 이용한 치주질환 예측 방법
JP2020098370A (ja) * 2018-12-17 2020-06-25 廣美 畑中 医用画像をaiの判断で症状度合いごと画像に表示する診断方法。
WO2020129541A1 (ja) * 2018-12-17 2020-06-25 畑中廣美 医用画像をaiの判断で症状度合いごと画像に表示する診断方法
WO2022176617A1 (ja) * 2021-02-19 2022-08-25 パナソニックIpマネジメント株式会社 口腔洗浄器、歯周病判定装置、歯周病判定システム、歯周病判定方法、及び歯周病判定プログラム
WO2023093750A1 (zh) * 2021-11-23 2023-06-01 漳州松霖智能家居有限公司 具有口腔异味检测功能的冲牙器及其工作方法和相关设备

Similar Documents

Publication Publication Date Title
JP5931748B2 (ja) 一酸化窒素測定方法及び装置
JP5706893B2 (ja) 吐出された一酸化窒素を決定する方法及び装置
CN107209172B (zh) 身体信息检测系统
JP3128134B2 (ja) エンド−タイドル一酸化炭素濃度の生体内測定装置及び方法,並びにそのフィルター
US5361771A (en) Portable pulmonary function testing device and method
WO2005117700A1 (en) Portable alveolar gas meter
CN107874761A (zh) 在补偿呼吸参数频率的情况下收集并分析一定体积的呼出的气体
GB2388665A (en) Electronic spirometer having pressure sensor coupled to inlet tube
CN109859843A (zh) 智能健康一体机
CN107205695A (zh) 用于测量气道阻力和肺顺应性的方法和装置
JP2016145798A (ja) 生体情報測定システム
JP2005017148A (ja) 歯周病診断装置
CN108685575B (zh) 呼吸系统功能测试方法和装置
JP4048262B2 (ja) 口腔予備検診システム、プログラムおよび記録媒体
JP2005292049A (ja) 排泄ガス測定装置及び方法
JP2002253584A (ja) 歯周病診断装置
JP3822076B2 (ja) 血中ケトン体濃度測定装置
JP2004279228A (ja) 呼気中成分ガス濃度測定方法及び装置
KR101168262B1 (ko) 구취측정방법
TWI766640B (zh) 血糖濃度的評估方法及檢測裝置
JP7477606B2 (ja) 携帯用呼気ガス及び揮発性物質分析装置
KR101234725B1 (ko) 구취측정기
CN117770794A (zh) 一种鼻阻力和鼻呼气一氧化氮浓度联合测定装置及方法
JPH08224239A (ja) 口腔内細菌検査方法及び検査装置
IL298915A (en) Device for testing volatile substances in the breath

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Effective date: 20080709

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080729

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090113

Free format text: JAPANESE INTERMEDIATE CODE: A02