JP2005017129A - 波長分散測定装置 - Google Patents

波長分散測定装置 Download PDF

Info

Publication number
JP2005017129A
JP2005017129A JP2003183016A JP2003183016A JP2005017129A JP 2005017129 A JP2005017129 A JP 2005017129A JP 2003183016 A JP2003183016 A JP 2003183016A JP 2003183016 A JP2003183016 A JP 2003183016A JP 2005017129 A JP2005017129 A JP 2005017129A
Authority
JP
Japan
Prior art keywords
optical frequency
optical
frequency
component
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003183016A
Other languages
English (en)
Inventor
Kazuhiro Noguchi
一博 野口
Kunihiko Mori
邦彦 森
Takashi Go
隆司 郷
Tetsuo Takahashi
哲夫 高橋
Masabumi Koga
正文 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003183016A priority Critical patent/JP2005017129A/ja
Publication of JP2005017129A publication Critical patent/JP2005017129A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】被測定伝送媒体における波長確度の極めて高い波長分散測定を行う。
【解決手段】光周波数間隔fが一定でかつ互いの位相が同期した複数の光周波数成分を有する光周波数コムを発生し、さらに光周波数コムの1つの光周波数成分の光周波数が常に一定になるように制御された光周波数コム発生部と、光周波数コムをその光周波数間隔fより小さい周波数fで変調し、その変調光を被測定伝送媒体に入力する光変調手段と、被測定伝送媒体を透過した変調光を光周波数コムの各光周波数成分に分波する光分波器と、分波された光周波数コムの各光周波数成分の光パワーを個別に検出する受光器と、各光周波数成分の光パワーにおける周波数f成分の位相差を相互に比較して検出する位相差検出手段と、周波数f成分の位相差と、分波された各光周波数成分の光周波数との関係から、被測定伝送媒体の波長分散値を算出するデータ加工部とを備える。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、光信号伝送媒体の波長分散を測定する波長分散測定装置に関する。
【0002】
【従来の技術】
従来の波長分散測定法としては、正弦波変調された光信号の伝搬遅延に伴う変調信号の位相変化を測定し、その波長依存性から波長分散を求める位相差測定法が一般的である(非特許文献1,2)。
【0003】
図13は、位相差測定法による従来の波長分散測定装置の第1の構成例を示す。図において、光源51−1〜51−nは、互いに異なる波長λ〜λの連続光を発生し、n×1光スイッチ52によってその1つが選択される。n×1光スイッチ52で選択された光源51−k(波長λ)の連続光は、外部光変調器53に印加されるRF発振器54の正弦波出力(周波数f)により変調され、被測定伝送媒体55に入射される。被測定伝送媒体55を透過した変調光は、受光器56で電気信号に変換され、fの周波数成分を透過するバンドパスフィルタ(BPF)57を介して、周波数fで変調された変調信号として位相差測定手段58に入力される。
【0004】
位相差検出手段58では、この変調信号とRF発振器54の出力信号の位相を比較し、波長λの連続光の変調成分(周波数f)における位相差φを出力する。データ加工部59は、1×n光スイッチ52の切り替えに応じて、光源51−1〜51−nに対応する変調成分の位相差φ〜φの値を取得し、波長λ〜λの領域における波長分散値を計算する構成である。
【0005】
図14は、位相差測定法による従来の波長分散測定装置の第2の構成例を示す。第1の構成例において、送信側と受信側が離れている場合に、位相差測定手段58に入力する基準周波数をRF発振器54から直接送信すると、伝送信号の減衰あるいはスキューによる位相ゆらぎが発生して正確な測定が困難になる。そこで、第2の構成例のように、基準光源61から出力される基準光と、n×1光スイッチ52で選択された光源51−k(波長λ)の連続光を合波器62で合波して外部光変調器53に入力する。そして被測定伝送媒体55を透過させ、分波器63で基準光を分波して受光器64に入力し、バンドパスフィルタ65を介して基準光の変調成分を抽出し、基準周波数として位相差測定手段58に与える。
【0006】
図15は、位相差測定手段58に入力される変調信号波形を示す。各波長λ〜λに対応した群遅延時間t〜tは、基準信号に対する変調光位相差φ〜φから直接求めることができる。一方、波長分散Dは、群遅延時間tを波長で微分することによって得られる量であり、t〜tの値から直接求められない。そこで、群遅延時間tの波長依存性をセルマイヤ多項式
t=αλ+αλ+α+α−2λ−2+α−4λ−4
D=4αλ+2αλ−2α−2λ−3+4α−4λ−5
で近似し、その係数を最小二乗法で求める。さらに、これを波長λで微分することによって波長分散Dを求める。
【0007】
【非特許文献1】
M.Fujise et al.,”Highly−accurate long−span chromatic dispersion measurement system by a new phase−shift technique”, IEEE J.Lightwave Tech.,vol.5,pp.751−758, 1987
【0008】
【非特許文献2】
Y.Horiuchi et al.,”chromatic dispersion measurement in 1.55 μm narrow−band region using a tunable eaternal−cavity laser”, IEEE Photonic Tech.Lett.,vol.1, pp.458−460, 1989
【0009】
【発明が解決しようとする課題】
位相差測定法は、比較的簡易な測定系で群遅延時間tを精度よく測定できる利点を有しており、波長分散測定法として広く用いられている。
【0010】
しかし、位相差測定法は、光源の波長変動が波長分散の測定精度に与える影響が大きいため、各光源の波長変動を抑制し、その波長確度を保つ必要がある。一般に、このような光源の波長の監視・更正には波長計が用いられるが、現状の波長計はその波長確度が十分でない。このため、狭い波長領域において波長分散を高精度に測定しようとする場合、光源の波長変動による測定誤差が顕著となって正確な測定が困難になっている。
【0011】
本発明は、波長確度の極めて高い波長分散測定を行うことができる波長分散測定装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1に記載の被測定伝送媒体の波長分散を測定する波長分散測定装置は、光周波数間隔fが一定でかつ互いの位相が同期した複数の光周波数成分を有する光周波数コムを発生し、さらに光周波数コムの1つの光周波数成分の光周波数が常に一定になるように制御された光周波数コム発生部と、光周波数コムを、その光周波数間隔fより小さい周波数fで変調し、その変調光を被測定伝送媒体に入力する光変調手段と、被測定伝送媒体を透過した変調光を、光周波数コムの各光周波数成分に分波する光分波器と、光分波器で分波された光周波数コムの各光周波数成分の光パワーを個別に検出する受光器と、光周波数コムの各光周波数成分の光パワーにおける周波数f成分の位相差を相互に比較して検出する位相差検出手段と、周波数f成分の位相差と、光分波器で分波された光周波数コムの各光周波数成分の光周波数との関係から、被測定伝送媒体の波長分散値を算出するデータ加工部とを備える。
【0013】
請求項2に記載の被測定伝送媒体の波長分散を測定する波長分散測定装置は、光周波数間隔fが一定でかつ互いの位相が同期した複数の光周波数成分を有する光周波数コムを発生し、さらに光周波数コムの1つの光周波数成分の光周波数が常に一定になるように制御された光周波数コム発生部と、光周波数コムのうち、所定の光周波数間隔mf(mは1以上の整数)を有する光周波数成分のペア(光周波数ペア)を所定の光周波数間隔fで選択し、被測定伝送媒体に入力する光周波数ペア透過フィルタと、被測定伝送媒体を透過した光周波数ペアを光周波数間隔fで分波する光分波器と、光分波器で分波された各光周波数ペアの光パワーを個別に検出する受光器と、各光周波数ペアの光パワーにおける周波数mf成分の位相差を相互に比較して検出する位相差検出手段と、周波数mf成分の位相差と、光分波器で分波された各光周波数ペアの光周波数との関係から、被測定伝送媒体の波長分散値を算出するデータ加工部とを備える。
【0014】
請求項3に記載の光分波器の各チャネルの波長分散を測定する波長分散測定装置は、光周波数間隔fが一定でかつ互いの位相が同期した複数の光周波数成分を有する光周波数コムを発生し、さらに光周波数コムの1つの光周波数成分の光周波数が常に一定になるように制御された光周波数コム発生部と、光周波数コムを、その光周波数間隔fより小さい周波数fで変調し、その変調光を光分波器に入力する光変調手段と、光分波器で分波された光周波数コムの各光周波数成分の光パワーを個別に検出する受光器と、光周波数コムの各光周波数成分の光パワーにおける周波数f成分の位相差を相互に比較して検出する位相差検出手段と、周波数f成分の位相差と、光分波器で分波された光周波数コムの各光周波数成分の光周波数との関係から、光分波器の波長分散値を算出するデータ加工部とを備える。
【0015】
請求項4に記載の光分波器の各チャネルの波長分散を測定する波長分散測定装置は、光周波数間隔fが一定でかつ互いの位相が同期した複数の光周波数成分を有する光周波数コムを発生し、さらに光周波数コムの1つの光周波数成分の光周波数が常に一定になるように制御された光周波数コム発生部と、光周波数コムのうち、所定の光周波数間隔mf(mは1以上の整数)を有する光周波数成分のペア(光周波数ペア)を所定の光周波数間隔fで選択し、光分波器に入力する光周波数ペア透過フィルタと、光分波器で分波された各光周波数ペアの光パワーを個別に検出する受光器と、各光周波数ペアの光パワーにおける周波数mf成分の位相差を相互に比較して検出する位相差検出手段と、周波数mf成分の位相差と、光分波器で分波された各光周波数ペアの光周波数との関係から、被測定伝送媒体の波長分散値を算出するデータ加工部とを備える。
【0016】
また、光周波数コム発生部は、周波数fのクロックに同期した繰り返し周波数fの光パルスを発生するパルス光源と、光周波数間隔fを保ったまま、光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、光周波数コムとして出力する光キャリア倍増手段と、高い波長確度を有する基準光を出力する光周波数標準光源と、光周波数コムと基準光を合波し、光周波数コムの1つの光周波数成分と基準光のビート信号の周波数を検出するビート周波数検出部と、周波数fのクロックをパルス光源に供給し、ビート周波数検出部で検出される周波数が一定になるようにパルス光源の光周波数をフィードバック制御する光周波数制御部とを備える。
【0017】
【発明の実施の形態】
(第1の実施形態)
図1は、本発明の波長分散測定装置の第1の実施形態を示す。図において、光周波数コム発生部11で発生する光周波数間隔fの光周波数コムは、外部光変調器12に印加されるRF発振器13の正弦波出力(周波数f)により変調され、被測定伝送媒体14に入射される。被測定伝送媒体14を透過した変調光は、光分波器15によって光周波数コムの各光周波数成分に分波され、その中のn個(各キャリア波長をλ〜λとする)の光周波数成分が個々に受光器16−1〜16−nで電気信号に変換され、fの周波数成分を透過するバンドパスフィルタ(BPF)17−1〜17−nを介して、それぞれ周波数fで変調された変調信号として位相差測定手段18に入力される。位相差検出手段18では、波長λの変調信号を基準信号とし、この基準信号と波長λ(1<k≦n)の変調信号との位相差φをすべてのkについて検出し、データ加工部19に出力する。
【0018】
図2は、光周波数コム発生部11で発生する光周波数コムの特徴を示す。光周波数コムは、図2(a) に示すように、光周波数軸上において光周波数間隔fで等間隔に配列される光周波数成分である。これらの光周波数成分の位相はすべて同期しており、図2(b) に示すようにそれぞれの光周波数成分の位相がある瞬間にすべて一致する関係にある。各光周波数成分の光周波数間隔がfであるため、時間軸上では1/fの周期で光周波数成分の位相の一致が観測され、かつこの瞬間にすべての光周波数成分が互いに強め合って大きなパワーとなる。したがって、光周波数コム発生部11で発生する光周波数コムを時間軸上で観測すると、図2(c) に示すように、1/fの時間間隔で非常に幅の狭いパルス光となる。
【0019】
ここで、光周波数コムを変調する変調周波数fは、光周波数コムの光周波数間隔fに比べて十分に小さいものとする。このとき、外部光変調器12から出力される変調光の各光周波数成分には、図2(d) に示すような±f離れた位置に側帯波が発生している。
【0020】
被測定伝送媒体14の入射端では、すべての光周波数成分に対して変調信号の位相が揃っている(位相差が0である)ため、位相差検出手段18で検出される位相差φは、そのまま被測定伝送媒体14の伝搬によって生じた群遅延時間差によるものと考えられる。なお、個々の位相差φは、ベクトルボルトメータを用いて測定可能であるので、n−1個のベクトルボルトメータにより各位相差φを同時に測定することができる。
【0021】
データ加工部19では、変調信号の位相差φと変調周波数f、およびあらかじめ設定された波長λの値から、従来の位相差測定法と同様に波長分散値を計算することができる。
【0022】
ところで、光周波数コム発生部11で発生する光周波数コムの各光周波数成分は、後述する光周波数標準光源(図11)を用いることにより、従来の波長計を用いた波長の監視・更正に比べてその波長確度を飛躍的に高めることができる。したがって、本実施形態の構成による波長分散測定では、波長誤差の影響を回避することができる。また、本実施形態の構成による波長分散測定では、被測定伝送媒体11の入射端において、すべての光周波数成分に対して変調信号の位相が揃っているので、送信部と受信部が離れている場合でも、参照のための基準信号を別に伝送するための系が不要となる。
【0023】
(第2の実施形態)
図3は、本発明の波長分散測定装置の第2の実施形態を示す。本実施形態の特徴は、第1の実施形態の外部光変調器12およびRF発振器13に代えて、光周波数コム発生部11で発生させた光周波数間隔fの光周波数コムを入力し、光周波数間隔mfの光周波数成分のペア(m=1の場合は隣接する光周波数ペア)を光周波数間隔fで透過して被測定伝送媒体14に入力する光周波数ペア透過フィルタ21を備えるところにある。本実施形態における光周波数コムと光周波数ペアの関係を図4に示す。
【0024】
この光周波数間隔fの光周波数ペアは被測定伝送媒体14を透過し、光分波器15によって個々の光周波数ペアに分波され、その中のn個(それぞれの光周波数ペアの中心波長をλ〜λとする)の光周波数ペアが個々に受光器16−1〜16−nで電気信号に変換され、mfの周波数成分を透過するバンドパスフィルタ17−1〜17−nを介して位相差測定手段18に入力される。
【0025】
ここで、受光器16−kに入力する光周波数ペアの光周波数をF,F+fとし(m=1)、その振幅がA,Aであるとすれば、この光周波数ペアの時間領域での振幅波形aは、
【数1】
Figure 2005017129
と表される。
【0026】
このとき、振幅の包絡線の波形bは、
【数2】
Figure 2005017129
となる。したがって、その受光パワーPは、Pを比例係数として、
P(t) =P{A +A +2Acos(2πft) }
で表すことができる。したがって、この光周波数ペアは、光周波数F+f/2 の単一波長光を周波数fで変調した光信号と見なすことができる。
【0027】
ところで、光周波数コム発生部11から発生する各光周波数成分はすべての位相が同期しているので、すべでの光周波数ペアは、周波数mfの変調成分の位相がすべて揃った(位相差0)状態で被測定伝送媒体14に入射されることになる。
【0028】
位相差測定手段18では、波長λの変調信号を基準信号とし、この基準信号と波長λ(1<k≦n)の変調信号との位相差φをすべてのkについて検出し、データ加工部19に出力する。このとき、被測定伝送媒体14の入射端では、周波数mfの変調成分の位相が揃っているので、位相差検出手段18で検出される位相差φは、そのまま被測定伝送媒体14の伝搬によって生じた群遅延時間差によるものと考えられる。データ加工部19では、変調信号の位相差φと変調周波数f、およびあらかじめ設定された波長λの値から、従来の位相差測定法と同様に波長分散値を計算することができる。
【0029】
図5は、光周波数ペア透過フィルタ21の構成例を示す。ここでは、光周波数間隔fで等間隔な光周波数ペアを作成するために、フリースペクトルレンジ(FSR)がfで、隣接出力チャネル間の光周波数間隔がfである導波路回折格子(AWG)を用いる。光周波数ペアを生成するために、2×1光結合器を用いてAWGの隣接する出力導波路の出力を合波する構成とする。
【0030】
なお、本構成例は光周波数ペア透過フィルタ21の一例であり、その他の構成例としては、例えば透過波長帯域幅の異なるインターリーバを直列に配置することによっても同様の光周波数ペアの生成が可能である。
【0031】
本実施形態の構成による波長分散測定では、第1の実施形態と同様に波長誤差の影響のない波長分散測定が可能となる。また、光周波数コムの光周波数ペアのビートを変調信号として用いる構成により、外部光変調器およびRF発振器のような光変調手段が不要となる。
【0032】
(第3の実施形態)
図6は、本発明の波長分散測定装置の第3の実施形態を示す。第1の実施形態および第2の実施形態は、被測定伝送媒体14の波長分散を測定するためのものであるが、本実施形態は、光信号を狭帯域で等しい光周波数間隔をもった複数のチャネルに分波する光分波器(例えばAWG)における各チャネルの波長分散を測定するものである。
【0033】
すなわち、第1の実施形態の被測定伝送媒体14を除いて光分波器15を測定対象にした構成であり、光周波数コム発生部11が光周波数軸上において光周波数間隔fで等間隔に配列される光周波数コムを発生し、かつ各光周波数成分の位相がすべて同期している点で第1および第2の実施形態と同様である。ただし、本実施形態の光周波数コム発生部11は光周波数制御装置31の制御により、各光周波数成分の光周波数間隔を保ったまま、その光周波数の絶対値をシフトさせる機能をもっている。
【0034】
光周波数コム発生部11で発生する光周波数コムは、外部光変調器12に印加されるRF発振器13の正弦波出力(周波数f)により変調され、測定対象の光分波器15に入力される。このとき、光周波数コムを変調する変調周波数fは、光周波数コムの光周波数間隔fに比べて十分に小さいものとすると、外部光変調器12から出力される変調光の各光周波数成分には±f離れた位置に側帯波が発生している。
【0035】
光分波器15に入射した変調光は、その光分波機能により各光周波数成分に分波され、その中のn個(各キャリア波長をλ〜λとする)の光周波数成分が個々に受光器16−1〜16−nで電気信号に変換され、fの周波数成分を透過するバンドパスフィルタ17−1〜17−nを介して、それぞれ周波数fで変調された変調信号として位相差測定手段18に入力される。位相差検出手段18では、RF発振器13から供給される変調信号を基準信号とし、この基準信号と波長λ(1≦k≦n)の変調信号との位相差φをすべてのkについて検出し、データ加工部19に出力する。
【0036】
このとき、光分波器15の入射端では、すべての光周波数成分に対して変調信号の位相が揃っている(位相差が0である)ため、位相差検出手段18で検出される位相差φは、そのまま光分波器15の伝搬によって生じた群遅延時間差によるものと考えられる。なお、個々の位相差φは、ベクトルボルトメータを用いて測定可能であるので、n個のベクトルボルトメータにより各位相差φを同時に測定することができる。
【0037】
図7は、第3の実施形態における光周波数コム発生部11の周波数シフトの手順を示す。ここでは、外部光変調器12の出力光スペクトル(実線)と、光分波器15の各チャネルの透過スペクトル(破線)の関係を模式的に示す。各光周波数成分は、変調によって±f離れた位置に側帯波が発生する。波長分散測定では、まず光周波数制御装置31の制御により図7(a) に示すように、各光周波数成分およびその側帯波を光分波器15の各出力チャネルの透過帯域の一端によせた状態で位相差φを測定し、これをφk1とする。次に、光周波数制御装置31により光周波数コム発生部11を制御して発生する光周波数コムの周波数をΔfシフトし、図7(b) に示すように、各光周波数成分およびその側帯波を光分波器15の各出力チャネルの透過帯域の他端によせた状態で位相差φを測定し、これをφk2とする。
【0038】
このとき、k番目のチャネルにおける図7(a) の状態と図7(b) の状態との群遅延時間差tは、
=(φk2−φk1)/2πf
と表される。また、光周波数のΔfシフトに伴う波長の変化をΔλとすれば、このチャネルの透過中心波長をλとした場合、
Δλ=−λ Δf/c
となる。ただし、cは光速度である。これらの式から、k番目のチャネルの波長分散Dは、
=t/Δλ=−c/2πfΔfλ
により求めることができる。
【0039】
本実施形態では、光周波数コム発生部11で発生する光周波数コムの光周波数間隔fを、測定対象の光分波器15の隣接チャネル間の透過帯域の変化量に一致させることにより、光分波器15のすべてのチャネルにおける波長分散を同時に測定することができる。また、光源として、波長確度が非常に高い光周波数コムを用いているため、AWGのような透過帯域の狭い光分波器に対して、精度の高い波長分散測定を行うことができる。
【0040】
(第4の実施形態)
図8は、本発明の波長分散測定装置の第4の実施形態を示す。本実施形態の特徴は、第3の実施形態の外部光変調器12およびRF発振器13に代えて、光周波数コム発生部11で発生させた光周波数間隔fの光周波数コムを入力し、光周波数間隔mfの光周波数成分のペア(m=1の場合は隣接する光周波数ペア)を光周波数間隔fで透過して光分波器15に入力する光周波数ペア透過フィルタ41を備えるところにある。ただし、本実施形態の光周波数ペア透過フィルタ41は、透過光周波数帯域制御装置42の制御により透過する光周波数ペアの中心光周波数をシフトさせる機能をもっている。
【0041】
光分波器15に入射した光は、その光分波機能により個々の光周波数ペアに分波され、その中のn個(それぞれの光周波数ペアの中心波長をλ〜λとする)の光周波数ペアが個々に受光器16−1〜16−nで電気信号に変換され、mfの周波数成分を透過するバンドパスフィルタ(BPF)17−1〜17−nを介して位相差測定手段18に入力される。この光周波数ペアは、各光周波数ペアの変調成分の位相が同期したものになっている。この場合、位相の基準となるタイミング信号は、光周波数コム発生部11で生成される。
【0042】
位相差検出手段18では、光周波数コム発生部11から供給されるタイミング信号を基準信号とし、この基準信号と波長λ(1≦k≦n)の変調信号との位相差φをすべてのkについて検出し、データ加工部19に出力する。
【0043】
このとき、光分波器15の入射端では、すべての光周波数成分に対して変調信号の位相が揃っている(位相差が0である)ため、位相差検出手段18で検出される位相差φは、そのまま光分波器15の伝搬によって生じた群遅延時間差によるものと考えられる。なお、個々の位相差φは、ベクトルボルトメータを用いて測定可能であるので、n個のベクトルボルトメータにより各位相差φを同時に測定することができる。
【0044】
図9は、第4の実施形態における光周波数ペア透過フィルタ41の周波数シフトの手順を示す。図9(a) に光周波数コム発生部11から出力される光周波数コムの光周波数成分のスペクトルを示し、図9(b),(c) に光周波数ペア透過フィルタ41の出力光スペクトル(実線)と、光分波器15の各チャネルの透過スペクトル(破線)の関係を模式的に示す。光周波数ペアが光周波数間隔fで等間隔に配置された光スペクトルが出力される。
【0045】
波長分散測定では、まず光周波数制御装置42の制御により図9(b) に示すように、各光周波数ペアを光分波器15の各出力チャネルの透過帯域の一端によせた状態で位相差φを測定し、これをφk1とする。次に、光周波数制御装置42により光周波数ペア透過フィルタ41を透過する光周波数ペアの中心光周波数をシフトし、図9(c) に示すように、各光周波数ペアを光分波器15の各出力チャネルの透過帯域の他端によせた状態で位相差φを測定し、これをφk2とする。なお、図9の例では、光周波数ペアの中心光周波数のシフト量Δfは2fである。
【0046】
ここで、各光周波数ペアの変調成分の位相が同期しているので、第3の実施形態と同様にk番目のチャネルの波長分散Dは、
=t/Δλ=−c/2πfΔfλ
により求めることができる。ただし、周波数シフト量Δfは、光周波数ペア透過フィルタ41によって任意に設定可能であり、測定条件に応じたシフト量(図9の例では2f)を代入する。
【0047】
図10は、光周波数ペア透過フィルタ41の構成例を示す。ここでは、光周波数間隔fで等間隔な光周波数ペアを作成するために、フリースペクトルレンジ(FSR)がfで、隣接出力チャネル間の光周波数間隔がfである導波路回折格子(AWG)を用いる。光周波数ペアを生成するために、2×1光結合器を用いてAWGの隣接する出力導波路の出力を合波する構成とし、その中心光周波数をシフトさせるために、1×2光スイッチを用いて入力導波路を切り替える構成とする。
【0048】
なお、本構成例は光周波数ペア透過フィルタ41の一例であり、その他の構成例としては、例えば透過波長帯域幅の異なるインターリーバを直列に配置したフィルタを複数配置し、これらを光スイッチで切り替える構成としても同様の光周波数ペアの生成および中心光周波数のシフトが可能である。
【0049】
本実施形態では、光周波数ペア透過フィルタ41の光周波数ペアの光周波数間隔fを、測定対象の光分波器15の隣接チャネル間の透過帯域の変化量に一致させることにより、光分波器15のすべてのチャネルにおける波長分散を同時に測定することができる。また、光源として、波長確度が非常に高い光周波数コムを用いているため、AWGのような透過帯域の狭い光分波器に対して、精度の高い波長分散測定を行うことができる。さらに、本実施形態では、第2の実施形態と同様に、光周波数コムの光周波数ペアのビートを変調信号として用いる構成により、外部光変調器およびRF発振器のような光変調手段が不要となる。
【0050】
(光周波数コム発生部11の構成例)
図11は、光周波数コム発生部11の構成例を示す。図において、光周波数コム発生部11の主要部は、モードロックパルス光源71、光周波数制御部72および光キャリア倍増手段(例えば光非線形媒質)73である。
【0051】
モードロックパルス光源71は、光周波数制御部72から供給される周波数fのクロックに同期したモードロック光パルスを発生する。このモードロック光パルスの光周波数スペクトルは、図12(a) のように、光周波数軸上に光周波数間隔fで等間隔に並んだ光周波数成分の合成である。このモードロック光パルスを光キャリア倍増手段(例えば光非線形媒質)73に入射すると、図12(b) に示すように、媒質中の光非線形効果によって光周波数間隔fを保ったまま、モードロック光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分が生成される。これらの光周波数成分の位相は、すべて時間領域においてモードロック光パルスに同期している。その結果、上記の各実施形態の光周波数コム発生部11で発生する光周波数コムの条件を満足する出力光が、光キャリア倍増手段(例えば光非線形媒質)73から供給されることになる。
【0052】
このように、光周波数制御部72のクロック、モードロック光パルス、光周波数コムの各周波数成分は、すべて互いに同期している。したがって、光周波数制御部72のクロックを第4の実施形態における位相の基準となるタイミング信号として使用することができる。また、モードロック光パルスまたは光周波数コムの一部を受光器によって電気信号に変換しても、第4の実施形態における位相の基準となるタイミング信号を得ることができる。
【0053】
光キャリア倍増手段73から出力される光周波数コムは、光分岐器74でその一部が分岐され、光周波数標準光源75から出力される基準光と光結合器76で合波され、受光器77に受光される。受光器77から出力される電気信号は、ローパスフィルタ(LPF)78を介して光周波数制御部72にフィードバックされる。ここで、光周波数標準光源75は、アセチレンあるいはシアン等の分子吸収線に対して発振波長をロックした構成の光源であり、概ね10−7程度の波長確度を有し、現状の波長計に比べて非常に高い波長確度を有している。
【0054】
光周波数コムと基準光を合波することにより、その光周波数スペクトルは図12(c) に示すように、等間隔fで配置された光周波数コムの光ピーク間に基準光の光ピークが発生する。このとき、基準光の光ピークとこれに最も近い光周波数コムの光ピークとの光周波数間隔fを常に一定に保つように光周波数制御部72の制御を実行すれば、光周波数コムに含まれるすべての光周波数成分の光周波数は、基準光に対して常に一定の光周波数間隔を保持することになる。これにより、光周波数コムの各光周波数成分は、基準光と同等の波長確度を有することになる。また、光周波数間隔fをΔfだけシフトさせるように制御すれば、光周波数コムの各光周波数成分は基準光と同等の波長確度を保ったまま、光周波数をΔfだけシフトさせることができる。
【0055】
ところで、光周波数コムと基準光を合波すると、その光パワーには、基準光とこれに最も近い光周波数コムの光周波数成分との光周波数間隔fに等しい光周波数の変調成分が発生する。本構成では、この周波数fの変調成分が受光器77およびローパスフィルタ78を介して抽出され、光周波数制御部72にフィードバックされる。したがって、光周波数制御部72では、この変調成分の周波数をモニタすることによりfの値を正確に検知することが可能であり、上記のようなモードロックパルス光源71の制御を実現することができる。
【0056】
【発明の効果】
以上説明したように、本発明の波長分散測定装置は、波長確度が極めて高い波長分散測定が可能となり、透過波長帯域が狭い被測定物(例えば光分波器)に対しても精度の高い波長分散測定を行うことができる。
【図面の簡単な説明】
【図1】本発明の波長分散測定装置の第1の実施形態を示すブロック図。
【図2】光周波数コム発生部11で発生する光周波数コムの特徴を示す図。
【図3】本発明の波長分散測定装置の第2の実施形態を示すブロック図。
【図4】光周波数コムと光周波数ペアの関係を示す図。
【図5】光周波数ペア透過フィルタ21の構成例を示す図。
【図6】本発明の波長分散測定装置の第3の実施形態を示すブロック図。
【図7】第3の実施形態における光周波数コム発生部11の周波数シフトの手順を示す図。
【図8】本発明の波長分散測定装置の第4の実施形態を示すブロック図。
【図9】第4の実施形態における光周波数ペア透過フィルタ41の周波数シフトの手順を示す図。
【図10】光周波数ペア透過フィルタ41の構成例を示す図。
【図11】光周波数コム発生部11の構成例を示すブロック図。
【図12】光周波数コム発生部11の各部の光スペクトルを示す図。
【図13】位相差測定法による従来の波長分散測定装置の第1の構成例を示す図。
【図14】位相差測定法による従来の波長分散測定装置の第2の構成例を示す図。
【図15】位相差測定法による波長分散測定原理を示す図。
【符号の説明】
11 光周波数コム発生部
12 外部光変調器
13 RF発振器
14 被測定伝送媒体
15 光分波器
16 受光器
17 バンドパスフィルタ(BPF)
18 位相差測定手段
19 データ加工部
21,41 光周波数ペア透過フィルタ
31 光周波数測定装置
42 透過光周波数帯域制御装置
71 モードロックパルス光源
72 光周波数制御部
73 光キャリア倍増手段
74 光分岐器
75 光周波数標準光源
76 光結合器
77 受光器
78 ローパスフィルタ(LPF)

Claims (5)

  1. 被測定伝送媒体の波長分散を測定する波長分散測定装置において、
    光周波数間隔fが一定でかつ互いの位相が同期した複数の光周波数成分を有する光周波数コムを発生し、さらに光周波数コムの1つの光周波数成分の光周波数が常に一定になるように制御された光周波数コム発生部と、
    前記光周波数コムを、その光周波数間隔fより小さい周波数fで変調し、その変調光を前記被測定伝送媒体に入力する光変調手段と、
    前記被測定伝送媒体を透過した変調光を、前記光周波数コムの各光周波数成分に分波する光分波器と、
    前記光分波器で分波された前記光周波数コムの各光周波数成分の光パワーを個別に検出する受光器と、
    前記光周波数コムの各光周波数成分の光パワーにおける周波数f成分の位相差を相互に比較して検出する位相差検出手段と、
    前記周波数f成分の位相差と、前記光分波器で分波された光周波数コムの各光周波数成分の光周波数との関係から、前記被測定伝送媒体の波長分散値を算出するデータ加工部と
    を備えたことを特徴とする波長分散測定装置。
  2. 被測定伝送媒体の波長分散を測定する波長分散測定装置において、
    光周波数間隔fが一定でかつ互いの位相が同期した複数の光周波数成分を有する光周波数コムを発生し、さらに光周波数コムの1つの光周波数成分の光周波数が常に一定になるように制御された光周波数コム発生部と、
    前記光周波数コムのうち、所定の光周波数間隔mf(mは1以上の整数)を有する光周波数成分のペア(光周波数ペア)を所定の光周波数間隔fで選択し、前記被測定伝送媒体に入力する光周波数ペア透過フィルタと、
    前記被測定伝送媒体を透過した光周波数ペアを光周波数間隔fで分波する光分波器と、
    前記光分波器で分波された各光周波数ペアの光パワーを個別に検出する受光器と、
    前記各光周波数ペアの光パワーにおける周波数mf成分の位相差を相互に比較して検出する位相差検出手段と、
    前記周波数mf成分の位相差と、前記光分波器で分波された各光周波数ペアの光周波数との関係から、前記被測定伝送媒体の波長分散値を算出するデータ加工部と
    を備えたことを特徴とする波長分散測定装置。
  3. 光信号を狭帯域で等しい光周波数間隔fをもった複数のチャネルに分波する光分波器の各チャネルの波長分散を測定する波長分散測定装置において、
    光周波数間隔fが一定でかつ互いの位相が同期した複数の光周波数成分を有する光周波数コムを発生し、さらに光周波数コムの1つの光周波数成分の光周波数が常に一定になるように制御された光周波数コム発生部と、
    前記光周波数コムを、その光周波数間隔fより小さい周波数fで変調し、その変調光を前記光分波器に入力する光変調手段と、
    前記光分波器で分波された前記光周波数コムの各光周波数成分の光パワーを個別に検出する受光器と、
    前記光周波数コムの各光周波数成分の光パワーにおける周波数f成分の位相差を相互に比較して検出する位相差検出手段と、
    前記周波数f成分の位相差と、前記光分波器で分波された光周波数コムの各光周波数成分の光周波数との関係から、前記光分波器の波長分散値を算出するデータ加工部と
    を備えたことを特徴とする波長分散測定装置。
  4. 光信号を狭帯域で等しい光周波数間隔fをもった複数のチャネルに分波する光分波器の各チャネルの波長分散を測定する波長分散測定装置において、
    光周波数間隔fが一定でかつ互いの位相が同期した複数の光周波数成分を有する光周波数コムを発生し、さらに光周波数コムの1つの光周波数成分の光周波数が常に一定になるように制御された光周波数コム発生部と、
    前記光周波数コムのうち、所定の光周波数間隔mf(mは1以上の整数)を有する光周波数成分のペア(光周波数ペア)を所定の光周波数間隔fで選択し、前記光分波器に入力する光周波数ペア透過フィルタと、
    前記光分波器で分波された各光周波数ペアの光パワーを個別に検出する受光器と、
    前記各光周波数ペアの光パワーにおける周波数mf成分の位相差を相互に比較して検出する位相差検出手段と、
    前記周波数mf成分の位相差と、前記光分波器で分波された各光周波数ペアの光周波数との関係から、前記被測定伝送媒体の波長分散値を算出するデータ加工部と
    を備えたことを特徴とする波長分散測定装置。
  5. 請求項1〜4のいずれかに記載の波長分散測定装置において、
    前記光周波数コム発生部は、
    周波数fのクロックに同期した繰り返し周波数fの光パルスを発生するパルス光源と、
    前記光周波数間隔fを保ったまま、前記光パルスの光周波数成分の分布域の外側の広い光周波数領域に新たな光周波数成分を生成し、前記光周波数コムとして出力する光キャリア倍増手段と、
    高い波長確度を有する基準光を出力する光周波数標準光源と、
    前記光周波数コムと前記基準光を合波し、前記光周波数コムの1つの光周波数成分と前記基準光のビート信号の周波数を検出するビート周波数検出部と、
    周波数fのクロックを前記パルス光源に供給し、前記ビート周波数検出部で検出される周波数が一定になるように前記パルス光源の光周波数をフィードバック制御する光周波数制御部と
    を備えたことを特徴とする波長分散測定装置。
JP2003183016A 2003-06-26 2003-06-26 波長分散測定装置 Pending JP2005017129A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183016A JP2005017129A (ja) 2003-06-26 2003-06-26 波長分散測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183016A JP2005017129A (ja) 2003-06-26 2003-06-26 波長分散測定装置

Publications (1)

Publication Number Publication Date
JP2005017129A true JP2005017129A (ja) 2005-01-20

Family

ID=34183238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183016A Pending JP2005017129A (ja) 2003-06-26 2003-06-26 波長分散測定装置

Country Status (1)

Country Link
JP (1) JP2005017129A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862636B1 (ko) * 2006-05-30 2008-10-09 (주) 인텍플러스 광학식 검사 방법
CN115378499A (zh) * 2022-07-04 2022-11-22 中国电子科技集团公司第三十八研究所 基于微波光子技术的瞬时频率测量装置和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862636B1 (ko) * 2006-05-30 2008-10-09 (주) 인텍플러스 광학식 검사 방법
CN115378499A (zh) * 2022-07-04 2022-11-22 中国电子科技集团公司第三十八研究所 基于微波光子技术的瞬时频率测量装置和方法
CN115378499B (zh) * 2022-07-04 2023-06-30 中国电子科技集团公司第三十八研究所 基于微波光子技术的瞬时频率测量装置和方法

Similar Documents

Publication Publication Date Title
US8135275B2 (en) Measuring chromatic dispersion in an optical wavelength channel of an optical fiber link
US7245833B1 (en) Photonic channelized RF receiver employing dense wavelength division multiplexing
JP3394902B2 (ja) 波長分散測定装置及び偏波分散測定装置
JPWO2003005002A1 (ja) 伝搬測定装置及び伝搬測定方法
JP5291143B2 (ja) 光伝送システム及び光伝送方法
US7079231B2 (en) Optical network analyzer
EP1014033B1 (en) Delay time measurement apparatus for an optical element
EP1669730A2 (en) Heterodyne-based optical spectrum analysis using data clock sampling
US8401808B2 (en) Wavelength-multiplexed optical signal measurement device and the method thereof
JP5334619B2 (ja) 光路長制御装置
US20110064411A1 (en) Method for controlling the center wavelength of at least one narrow band optical channel wdm transmitting device in a wdm network and corresponding wdm transmitting device
JP7235955B2 (ja) 波長モニタ装置および波長モニタ方法
JPH09218130A (ja) 周波数掃引誤差検出方法および回路、光周波数掃引光源、ならびに光周波数領域反射測定回路
JP2014052272A (ja) 電磁波検出システム及び電磁波検出方法
JP2005017129A (ja) 波長分散測定装置
JP2002071512A (ja) 波長分散及び損失波長依存性測定装置
JP2006266796A (ja) 光ヘテロダイン干渉装置
JP2009103573A (ja) 波長モニタ
JP4442946B2 (ja) 光周波数グリッド発生装置
JP5504419B2 (ja) 光分散計測装置
US20240136786A1 (en) Continuous wave optical two-way time transfer
JP4059893B2 (ja) マルチレートクロック信号抽出方法及びマルチレートクロック信号抽出装置
JP4008864B2 (ja) 合分波器の透過特性測定装置
JP3788417B2 (ja) 分散測定方法
JP2005252601A (ja) 自動分散補償装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Effective date: 20080212

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902