JP2005016747A - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP2005016747A
JP2005016747A JP2003178601A JP2003178601A JP2005016747A JP 2005016747 A JP2005016747 A JP 2005016747A JP 2003178601 A JP2003178601 A JP 2003178601A JP 2003178601 A JP2003178601 A JP 2003178601A JP 2005016747 A JP2005016747 A JP 2005016747A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
temperature
gas
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003178601A
Other languages
English (en)
Inventor
Kinbai Sai
琴培 崔
Masayuki Takeuchi
雅之 竹内
Yoshitaka Tomatsu
義貴 戸松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003178601A priority Critical patent/JP2005016747A/ja
Priority to US10/874,113 priority patent/US6880362B2/en
Priority to DE102004030025A priority patent/DE102004030025A1/de
Publication of JP2005016747A publication Critical patent/JP2005016747A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers

Abstract

【課題】エジェクタサイクルの低負荷時に冷媒流量不足による性能低下を防止することのできる冷凍サイクル装置を提供する。
【解決手段】制御装置10は、吐出圧力センサ8で検知した吐出圧力Phが所定圧力P1以下の時に、ガスクーラ2での放熱を抑制する放熱抑制手段B・14〜18が働くように制御している。
このように、吐出圧力Phが下がった時にガスクーラ2での放熱を抑制することで、ガスクーラ2側の高圧が上がりつつ、エバポレータ6側の低圧が下がるという膨張弁サイクルと同様の傾向となり、回収できる減圧損失エネルギーもそこそこ確保できるため駆動流が増加し、吸引流側も十分な流量を流すことが可能になる。すなわちフロストしない状態でエバポレータ6の吹き出し温度を下げることができることとなる。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒の膨張動力を利用して冷媒の昇圧を行うエジェクタを用いた冷凍サイクル(エジェクタサイクル)装置に関するものである。
【0002】
【従来の技術】
従来、図9に示したように、コンプレッサ(冷媒圧縮機)101、冷媒放熱器102、エジェクタ103および気液分離器104を冷媒配管により環状に連結すると共に、気液分離器104で分離された液相冷媒を固定絞り105等の減圧装置、冷媒蒸発器106を設置したバイパス配管を経てエジェクタ103の低圧入口部108に吸引させるようにしたエジェクタサイクルが提案されている(例えば、特許文献1参照)。このエジェクタ103には、ノズル出口部径(開口面積)が冷煤の循環流量に拘わらず常に一定のノズル出口部径となる固定ノズル107が設けられている。
【0003】
ここで、上記のエジェクタサイクルを例えば車両用空調装置の冷凍サイクルとして用いる場合には、夏場のクールダウン等の高負荷から冬場の除湿等の低負荷まで使用環境の負荷変動範囲が非常に大きく、固定ノズル107では負荷変動に充分に対応することができない。そこで、絞り径を負荷変動に応じて、つまりノズル出口部径を冷媒の循環流量に応じて最適に制御する可変絞り機構として、図10に示したように、ニードル弁111によりノズル出口部径(絞り径)を可変できる可変ノズル112を設けたエジェクタ110を備えたエジェクタサイクルも提案されている。ここで、113はエジェクタ110の低圧入口部である(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開平11−37577号公報(第2−4頁、図1)
【0005】
【特許文献2】
特開平5−312421号公報(第2−3頁、図1−図2)
【0006】
【発明が解決しようとする課題】
一般に、外気温度が低く、冷却風速が速いような条件では、冷凍サイクルにおいては高圧側冷媒圧力が低くなり、更に冷媒蒸発器の負荷が高い(吸い込み空気温度が高い、もしくは風量が多い)ような条件が加わると低圧側冷媒圧力が高くなり、結果的に冷凍サイクルとして高低圧の冷媒圧力差が小さくなるような状態となる(例えば、車両用空調装置では低外気温内気循環の状態)。
【0007】
図11は、膨張弁サイクルにおけるコンプレッサ回転数と吹き出し温度との関係を示すグラフである。膨張弁サイクルの場合、このような状態となっても、膨張弁を適当な径に絞れば高圧が上がりつつ低圧が下がる。また、電動コンプレッサの場合ならコンプレッサ回転数を上げるとか、可変容量コンプレッサの場合ならコンプレッサ容量を上げるとかによって、容易に所望の蒸発器吹き出し温度(例えば、除湿暖房時なら3℃程度)をつくることが可能である。
【0008】
図12は、エジェクタサイクルにおけるコンプレッサ回転数と吹き出し温度との関係を示すグラフである。エジェクタサイクルの場合はエジェクタ絞り(ノズル)の減圧時の損失エネルギーを回収して冷媒蒸発器側の冷媒を吸引することで冷媒蒸発器に流れる冷媒流量を確保することで冷房を行っている。従って、上記のように高低圧差が小さくなるような状態では、回収できるエネルギーの絶対量が不足して駆動流側の流量が減少し、結果的に吸引流側(冷媒蒸発器側)の流量が全く不足することになる。すなわち、冷媒蒸発器の吹き出し温度が上昇し、冷房能力が確保できなくなる。
【0009】
その結果、冷媒放熱器側の高圧側が上がらないまま冷媒蒸発器側の低圧が下がり過ぎて冷媒蒸発器がフロストするという問題や、例えば車両用空調装置では、除湿暖房時に吹き出し温度3℃を確保できなくなり、窓曇りを速やかに晴らすことができないという問題等が生じている。本発明は、上記従来技術の問題点に鑑みて成されたものであり、その目的は、エジェクタサイクルの低負荷時に冷媒流量不足による性能低下を防止することのできる冷凍サイクル装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明は上記目的を達成するために、請求項1ないし請求項5に記載の技術的手段を採用する。すなわち、請求項1に記載の発明によれば、制御手段(10)は、吐出圧力検知手段(8)で検知した吐出圧力(Ph)が所定圧力(P1)以下の時に、冷媒放熱器(2)での放熱を抑制する放熱抑制手段(B、14〜18)が働くように制御することを特徴としている。
【0011】
図3は、本発明のエジェクタサイクルにおけるコンプレッサ回転数と吹き出し温度との関係を示すグラフである。グラフに示すように、吐出圧力(Ph)が下がった時に冷媒放熱器(2)での放熱を抑制することで、冷媒放熱器(2)側の高圧が上がりつつ、冷媒蒸発器(6)側の低圧が下がるという膨張弁サイクルと同様の傾向となり、回収できる減圧損失エネルギーもそこそこ確保できるため駆動流が増加し、吸引流側も十分な流量を流すことが可能になる。すなわちフロストしない状態で冷媒蒸発器(6)の吹き出し温度を下げることができることとなる。
【0012】
請求項2に記載の発明によれば、制御手段(10)は、冷媒温度検知手段(9)で検知した冷媒温度(Tgc)が所定温度(T1)以下の時に、冷媒放熱器(2)での放熱を抑制する放熱抑制手段(B、14〜18)が働くように制御することを特徴としている。これは、上記した請求項1に記載の発明では、吐出圧力(Ph)にて通常制御と冷媒放熱器(2)での放熱を抑制する制御との切り換えを判定していたのに対して、本項に記載の発明では冷媒放熱器(2)出口の冷媒温度(Tgc)にて判定するようにしたものである。これによっても、上記した請求項1に記載の発明と同様の作用効果を得ることができる。
【0013】
請求項3に記載の発明によれば、放熱抑制手段として、冷媒放熱器(2)の上流に、冷媒放熱器(2)の全体もしくは一部をバイパスして流れるバイパス流路(B)と、バイパス流路(B)への流通を制御する弁手段(14〜17)とを設けたことを特徴としている。このように、弁手段(14〜17)によってバイパス流路(B)への流通を制御することにより、冷媒放熱器(2)での放熱を抑制することができる。
【0014】
請求項4に記載の発明によれば、弁手段として温度式開閉弁(17)を用いると共に、温度式開閉弁(17)を冷媒放熱器(2)の隣り合うヘッダタンク(21、23)間に設けたバイパス流路(B)を開閉するように組み込み、温度式開閉弁(17)周りを流れる冷媒温度(Tgc)が所定温度(T1)以下の時に、バイパス流路(B)を開くようにしたことを特徴としている。このように構成することにより、制御手段(10)での弁制御が不要となる。
【0015】
請求項5に記載の発明によれば、放熱抑制手段として、冷媒放熱器(2)の通風面の全面もしくは一部を覆う通風制御手段(18)を設けたことを特徴としている。通風制御手段(18)とは例えばシャッタである。このように、吐出圧力(Ph)が所定圧力(P1)以下の時、もしくは冷媒温度(Tgc)が所定温度(T1)以下の時にシャッタを閉じる、もしくは吐出圧力(Ph)や冷媒温度(Tgc)に応じてシャッタ開度を調節して、冷媒放熱器(2)への冷却空気の通風量を調節して(減じて)熱交換量を減らし放熱を抑制するものである。
【0016】
尚、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0017】
【発明の実施の形態】
(第1実施形態)
以下、本発明の実施の形態について図面を用いて説明する。図1は本発明の実施形態に関る冷凍サイクルの概略構成を示した回路図である。尚、本実施形態は、本発明の冷凍サイクルを車両用空調装置に適用したものとして説明する。本実施形態の車両用空調装置の冷凍サイクルは、コンプレッサ(冷媒圧縮機)1、ガスクーラ(冷媒放熱器)2、エジェクタ3および気液分離器4を冷媒配管によって環状に連結したエジェクタサイクルである。そして、このエジェクタサイクルには更に、気液分離器4の液冷媒出口部とエジェクタ3の低圧入口部3aとをバイパス配管によって連結しており、そのバイパス配管の途中には、減圧装置5およびエバポレータ(冷媒蒸発器)6を設置している。
【0018】
ここで、本実施形態の冷凍サイクルは、例えば臨界温度の低い二酸化炭素(CO)を主成分とする冷媒を使用し、冷媒の高圧圧力が冷媒の臨界圧力以上となる超臨界蒸気圧縮式エジェクタサイクルにより構成されている。この超臨界蒸気圧縮式エジェクタサイクルでは、高圧側の冷媒圧力の上昇によりガスクーラ2の入口部の冷媒温度、つまりコンプレッサ1の吐出口部より吐出される冷媒の吐出温度を150℃程度まで高めることができる。尚、ガスクーラ2内に流入する冷媒は、コンプレッサ1で臨界圧力以上に加圧される場合は、ガスクーラ2で放熱しても凝縮液化することはない。
【0019】
コンプレッサ1は、車両のエンジシルームに搭載された図示しないエンジン、または図示しない電動モータ等の駆動源により回転駆動され、内部に吸入した冷媒ガスを圧縮して高温高圧の冷媒ガスをガスクーラ2側に吐出する冷媒圧縮機で、気液分離器4の冷媒ガス出口部より吸入した冷媒ガスを一時的に使用条件において臨界圧力以上まで高温高圧に圧縮して吐出する。また、ガスクーラ2は、車両のエンジンルーム内の走行風を受け易い場所に設置されて、コンプレッサ1の吐出部より吐出された冷媒ガスと、図示しない送風ファン等により送り込まれた車外空気とを熱交換して冷媒ガスを放熱させる冷媒放熱器である。
【0020】
エジェクタ3は、高圧入口部11a・低圧入口部3a・ノズル11・混合部3bおよびディフューザ部3c等によって構成されている。エジェクタ3は、高圧入口部11aより流入した冷媒がノズル11を通過する際に、ノズル11から高速で噴出する冷媒回りの圧力低下を利用して、エジェクタ3の低圧入口部3aから冷媒が吸引される。
【0021】
これにより、低圧入口部3aから吸引された冷媒とノズル11から吹き出された冷媒とが混合部3b内で混合し、ディフューザ部3c内で拡散し昇圧した後に、エジェクタ3の吐出部(出口部)より気液分離器4へ吐出される。尚、本実施形態のエジェクタ3には、負荷変動に応じて絞り径(ノズル出口部径)を変更する可変絞り機構(可変絞り手段)7が一体的に設けられている。尚、可変絞り機構7の具体的な構造については説明を省略する。
【0022】
気液分離器4は、エジェクタ3により減圧された冷媒を気液分離するアキュームレータである。また、減圧装置5は、気液分離器4の液冷媒出口部から流入した液冷媒を減圧して気液二相状態の冷媒にするキャピラリチューブやオリフィス等の固定絞り、または温度式や電気式の可変絞りである。また、エバポレータ6は、減圧装置5で減圧された冷媒を図示しない送風ファンによって送風される車室外空気または車室内空気との熱交換によって蒸発気化させ、エジェクタ3を介してコンプレッサ1に冷媒ガスを供給する冷媒蒸発器である。
【0023】
これら、冷凍サイクルのコンプレッサ1・送風ファン・可変絞り機構7を制御する制御装置(制御手段、以下ECUと呼ぶ。)10は、CPU、ROM、RAM、I/Oポート等の機能を含んで構成され、それ自体は周知の構造を持つマイクロコンピュータを内蔵している。
【0024】
尚、コンプレッサ1の吐出口部より吐出されガスクーラ2に流入する冷媒の吐出圧力Phを検出する吐出圧力センサ(吐出圧力検知手段)8、およびガスクーラ2の出口部より流出する冷媒温度Tgcを検出する冷媒温度センサ(冷媒温度検知手段)9からのセンサ信号は、図示しない入力回路(A/D変換回路)によってA/D変換された後に、マイクロコンピュータに入力されるように構成されている。
【0025】
そして、ECU10は通常運転として、吐出圧力センサ(吐出圧力検知手段)8によって検出された冷媒圧力Phと、冷媒温度センサ(冷媒温度検知手段)9によって検出された冷媒温度Tgcとから、冷凍サイクルの負荷変動または負荷状態を算出し、この算出した負荷変動または負荷状態に応じた駆動信号を可変絞り機構7に印加するように構成されている。
【0026】
本実施形態では、ECU10は、吐出圧力センサ8によって検出された冷媒圧力Ph、あるいは冷媒温度センサ9によって検出された冷媒温度Tgcが大きい値である程、負荷が大きいと判定し、負荷が大きい程、エジェクタ3のノズル13の絞り径(ノズル出口部径、開口面積)が大きくなるように制御する。
【0027】
次に、本実施形態の冷凍サイクルの作用を図1に基づいて簡単に説明する。コンプレッサ1で圧縮されて高温高圧となった冷媒ガスは、ガスクーラ2の入口部からガスクーラ2内に流入する。そして、ガスクーラ2を通過する際に車外空気に熱を奪われて冷却される。
【0028】
そして、ガスクーラ2の出口部より流出した冷媒は、エジェクタ3の高圧入口部11aから可変絞り機構7を通ってノズル11内に流入する。ノズル11内に流入した冷媒は、ノズル11内を通過する際に減圧されてノズル11の噴出部から混合部3b内に吹き出される。そして、混合部3bおよびディフューザ部3cを通過する際に昇圧される。
【0029】
この時、ノズル11から高速で噴出する冷媒回りの圧力低下を利用して、エジェクタ3の低圧入口部3aにエバポレータ6の出口部からガス冷媒が吸引される。これにより、ノズル11から高速で噴出する冷媒と低圧入口部3aから流入した冷媒とが効率良く混合部3b内で混合した後に、ディフューザ部3c内で拡散する。そして、ディフューザ部3cより流出した気液二相状態の冷媒は、気液分離器4内に流入して気液分離する。その後に、気液分離器4内のガス冷媒は、ガス冷媒出口部よりコンプレッサ1の吸入力によってコンプレッサ1に吸入される。
【0030】
また、気液分離器4の底部に溜まっている液冷媒は、エジェクタ3の低圧入口部3aの吸引作用により、気液分離器4の液冷媒出口部より流出して減圧装置5に流入し、その減圧装置5を通過する際に減圧膨張されて気液二相状態の冷媒となってエバポレータ6の入口部からエバポレータ6内に流入する。エバポレータ6内に流入した冷媒は、車両用空調装置の例えば空調ダクト内を流れる空気と熱交換して蒸発気化された後に、エジェクタ3の低圧入口部3aに吸引されて、上述したように、エジェクタ3の混合部3b内でノズル11の噴出部から吹き出した冷媒と混合する。
【0031】
尚、夏場のクールダウン等の高負荷時、つまり冷凍サイクルの負荷が大きい場合には、可変絞り機構7の開度が大きくなり、冷凍サイクルの冷媒循環量が多くなる。また、冬場の除湿等の低負荷時、つまり冷凍サイクルの負荷が小さい場合にはエジェクタ3のノズル13の絞り径(ノズル出口部径、開口面積)が小さくなり、冷凍サイクルの冷媒循環量が少なくなる。
【0032】
次に、本発明の要部構成について説明する。図2は本発明の第1実施形態におけるガスクーラ2部分の構造を示した模式図である。上述したエジェクタサイクルにおいて、コンプレッサ1から吐出される冷媒ガスの入口配管として、通常はガスクーラ2の第1ヘッダタンク21に接続されている。そして、第1ヘッダタンク21→コア部2a→第2ヘッダタンク22→コア部2b→第3ヘッダタンク23→コア部2c→第4ヘッダタンク24→コア部2d→第5ヘッダタンク25と折り返しながら流れ、冷却された冷媒ガスがエジェクタ3へと流入するようになっている。
【0033】
そこで本実施形態は、ガスクーラ2の放熱抑制手段として、ガスクーラ2の上流に、ガスクーラ2の一部をバイパスして流れるバイパス流路Bと、そのバイパス流路Bへの流通を制御する開閉弁(弁手段)14とを設けたものである。そして制御装置10は、吐出圧力センサ8で検知した吐出圧力Phが所定圧力P1以下の時、もしくは冷媒温度センサ9で検知した冷媒温度Tgcが所定温度T1以下の時には開閉弁14を開き、冷媒ガスの一部をバイパス流路Bに流してガスクーラ2の一部をバイパスさせるようになっている。
【0034】
図2の例で開閉弁14を開くと、冷媒ガスの一部は上記した通常の流れとなるが、バイパス流路Bを流れた冷媒ガスの一部は、第1・第2コア部2a・2bをバイパスして第3ヘッダタンク23→コア部2c→第4ヘッダタンク24→コア部2d→第5ヘッダタンク25と折り返して流れ、冷却された冷媒ガスがエジェクタ3へと流入するようになる。
【0035】
次に、本実施形態での特徴を説明する。まず、ガスクーラ2での放熱を抑制する放熱抑制手段として、ガスクーラ2の上流に、ガスクーラ2の一部をバイパスして流れるバイパス流路Bと、このバイパス流路Bへの流通を制御する弁手段14とを設けている。そして制御装置10は、吐出圧力センサ8で検知した吐出圧力Phが所定圧力P1以下の時、もしくは冷媒温度センサ9で検知した冷媒温度Tgcが所定温度T1以下の時に、バイパス流路Bおよび弁手段14が働くように制御している。
【0036】
このように、弁手段14によってバイパス流路Bへの流通を制御することにより、ガスクーラ2での放熱を抑制することができる。図3は、本発明のエジェクタサイクルにおけるコンプレッサ回転数と吹き出し温度との関係を示すグラフであり、グラフに示すように、ガスクーラ2での放熱を抑制することで、ガスクーラ2側の高圧が上がりつつ、エバポレータ6側の低圧が下がるという膨張弁サイクルと同様の傾向となり、回収できる減圧損失エネルギーもそこそこ確保できるため駆動流が増加し、吸引流側も十分な流量を流すことが可能になる。すなわちフロストしない状態でエバポレータ6の吹き出し温度を下げることができる。
【0037】
(第2実施形態)
図4は、本発明の第2実施形態におけるガスクーラ2部分の構造を示した模式図である。上述した第1実施形態とは、通常の流路とバイパス流路Bとの流路切り替えを行なう弁手段として、3方弁もしくは流量分配弁15を配置した点のみ異なる。このような構成として負荷により冷媒を、通常流路のみ、バイパス流路Bのみ、または通常流路とバイパス流路Bとの両方に流量配分を調節しながら流すようにしても良い。
【0038】
(第3実施形態)
図5は、本発明の第3実施形態におけるガスクーラ2部分の構造を示した模式図である。上述した第1・第2実施形態とは、ガスクーラ2に流入する入口配管とガスクーラ2から流出する出口配管とをバイパス流路Bで接続し、通常の流路とバイパス流路Bとの流路切り替えを行なう弁手段として、バイパス流路B中に流量調整弁16を配置した点が異なる。このような構成として負荷により冷媒を、通常流路のみ、または通常流路とバイパス流路Bとの両方に流量配分を調節しながら流すようにしても良い。
【0039】
(第4実施形態)
図6は本発明の第4実施形態におけるガスクーラ2部分の構造を示した模式図であり、図7(b)は図6のサーモバルブ(温度式開閉弁)17部分の詳細を示す断面図であり、(a)は(b)の上面視、(c)は(b)の下面視である。本実施形態では、通常の流路とバイパス流路Bとの流路切り替えを行なう弁手段として、サーモバルブ17を用いると共に、このサーモバルブ17をガスクーラ2の隣り合うヘッダタンク21・23間に設けたバイパス流路Bを開閉するように組み込み、サーモバルブ17周りを流れる冷媒温度Tgcが所定温度T1以下の時に、バイパス流路Bを開くようにしている。
【0040】
より具体的にサーモバルブ17部は、ガスクーラ2のヘッダタンク間の仕切り部に設けられており、仕切り部に設けられた出口ポート23aがバイパス流路Bとなっている。そして、もう一方の仕切り部には入口ポート21aが設けられると共に、作動棒17bの先端を固定してサーモバルブ17の本体部(サーモエレメント部)17aが保持されている。本体部17aのバイパス流路B側には、ばね17dを介してバイパス流路Bを開閉する弁17cが設けられている。
【0041】
尚、ばね17dは寸法の誤差を吸収すると共に、閉じた時に弁17cを保護するものであり、本体部17aの外周を押さえるばね17eは、弁17cの戻し性を上げるための弁戻り用ばねである。本体部17aの中にはサーモワックスや不活性ガス等の感温部材が充填されており、本体部17aの周りを流れる冷媒温度Tgcにより感温部材が膨張・収縮して作動棒17bを出し入れし、その反力によって本体部17aが移動して弁17cでバイパス流路Bが開閉される。
【0042】
具体的な作動として、入口ポート21aから流入する冷媒の冷媒温度Tgcが高い場合には、作動棒17bが伸びて弁17cでバイパス流路Bが閉じられ、流入した冷媒は熱交換チューブCへ分配されて流れて行くこととなる。これに対し、入口ポート21aから流入する冷媒の冷媒温度Tgcが低い場合には、作動棒17bが縮んでバイパス流路Bが開けられ、流入した冷媒の一部は熱交換チューブCをバイパスして隣り合ったヘッダタンクへ流れて行くこととなる。このように構成とすることにより、制御装置10での弁制御が不要となる。
【0043】
(第5実施形態)
図8は、本発明の第5実施形態におけるガスクーラ2部分の構造を示した模式図である。配置例として、ガスクーラ2の風流れ後方にエンジン冷却水を冷却するラジエータRと、そのまた後方に電動ファンFとが配置されている。そして、本実施形態ではガスクーラ2での放熱を抑制する放熱抑制手段として、ガスクーラ2の通風面の全面もしくは一部を覆うシャッタ(通風制御手段)18を設けたものである。
【0044】
図8(a)はガスクーラ2の全面にシャッタ18を設けた例であり、図8(b)はガスクーラ2の一部(図では略下半分)にシャッタを設けた例である。このように、吐出圧力Phが所定圧力P1以下の時、もしくは冷媒温度Tgcが所定温度T1以下の時にシャッタを閉じる、もしくは吐出圧力Phや冷媒温度Tgcに応じてシャッタ開度を調節して、ガスクーラ2への冷却空気の通風量を調節して(減じて)熱交換量を減らし放熱を抑制しても良い。
【0045】
(その他の実施形態)
本発明は、二酸化炭素等を冷媒とした超臨界サイクルのみならず、フロン、その他の冷媒を用いた冷凍サイクル(エジェクタサイクル)にも適用できる。また、使用用途も、車両用の冷房装置の冷凍サイクル(エジェクタサイクル)のみならず、冷蔵・冷凍または加熱装置等、その他のあらゆる分野に用いられる冷凍サイクル(エジェクタサイクル)に適用できる。尚、上述の実施形態で所定圧力P1または所定温度T1だけの判定ではハンチングが生じる場合、第2所定圧力P2または第2所定温度T2を定めて通常流路に復帰するようヒステリシスを持たせても良い。
【図面の簡単な説明】
【図1】本発明の実施形態に関る冷凍サイクルの概略構成を示した回路図である。
【図2】本発明の第1実施形態におけるガスクーラ2部分の構造を示した模式図である。
【図3】本発明のエジェクタサイクルにおけるコンプレッサ回転数と吹き出し温度との関係を示すグラフである。
【図4】本発明の第2実施形態におけるガスクーラ2部分の構造を示した模式図である。
【図5】本発明の第3実施形態におけるガスクーラ2部分の構造を示した模式図である。
【図6】本発明の第4実施形態におけるガスクーラ2部分の構造を示した模式図である。
【図7】図6のサーモバルブ17部分の詳細を示す断面図である。
【図8】本発明の第5実施形態におけるガスクーラ2部分の構造を示した模式図である。
【図9】従来の冷凍サイクルの概略構成を示した模式図である。
【図10】従来の可変絞りエジェクタ110の構造例を示した断面図である。
【図11】膨張弁サイクルにおけるコンプレッサ回転数と吹き出し温度との関係を示すグラフである。
【図12】エジェクタサイクルにおけるコンプレッサ回転数と吹き出し温度との関係を示すグラフである。
【符号の説明】
1 コンプレッサ(冷媒圧縮機)
2 ガスクーラ(冷媒放熱器)
3 エジェクタ
3a 低圧入口部
4 気液分離器
6 エバポレータ(冷媒蒸発器)
7 可変絞り機構(可変絞り手段)
8 吐出圧力センサ(吐出圧力検知手段)
9 冷媒温度センサ(冷媒温度検知手段)
10 制御装置(制御手段)
11 ノズル
11a 高圧入口部
14 開閉弁(弁手段、放熱抑制手段)
15 三方弁、流量分配弁(弁手段、放熱抑制手段)
16 流量調整弁(弁手段、放熱抑制手段)
17 温度式開閉弁(弁手段、放熱抑制手段)
18 シャッタ(通風制御手段、放熱抑制手段)
21 第1ヘッダタンク(ヘッダタンク)
23 第3ヘッダタンク(ヘッダタンク)
B バイパス流路(放熱抑制手段)
P1 所定圧力
Ph 吐出圧力
Pe 最適高圧
T1 所定温度
Tgc 冷媒温度

Claims (5)

  1. 冷媒を気液分離する気液分離器(4)と、
    前記気液分離器(4)より吸入した冷媒を圧縮して吐出する冷媒圧縮機(1)と、
    前記冷媒圧縮機(1)より吐出された高温高圧の冷媒を放熱させる冷媒放熱器(2)と、
    前記気液分離器(4)より流入した低温低圧の冷媒を蒸発させる冷媒蒸発器(6)と、
    前記冷媒放熱器(2)よりも冷媒の流れ方向下流側に接続された高圧入口部(11a)、前記冷媒蒸発器(6)よりも冷媒の流れ方向下流側に接続された低圧入口部(3a)、および前記高圧入口部(11a)より流入した冷媒を噴出するノズル(11)を有し、前記ノズル(11)から噴出する冷媒回りの圧力低下を利用して、前記ノズル(11)から噴出する冷媒と前記低圧入口部(3a)から吸引した冷媒とを混合させながら昇圧させて前記気液分離器(4)へ吐出するエジェクタ(3)と、
    前記冷媒圧縮機(1)の吐出冷媒回路に設けられて絞り開度を制御することにより高圧冷媒の圧力を制御する可変絞り手段(7)と、
    前記冷媒圧縮機(1)が吐出する吐出圧力(Ph)を検知する吐出圧力検知手段(8)と、
    前記冷媒放熱器(2)から流出する冷媒温度(Tgc)を検知する冷媒温度検知手段(9)と、
    これらの冷凍サイクル機器の作動を制御する制御手段(10)とを備え、
    前記制御手段(10)は通常制御として、前記冷媒温度検知手段(9)にて前記冷媒温度(Tgc)を検知し、内部に記憶保持した最適高圧制御マップに基づき前記吐出圧力(Ph)が最適高圧(Pe)となるよう前記可変絞り手段(7)を制御する冷凍サイクル装置において、
    前記制御手段(10)は、前記吐出圧力検知手段(8)で検知した前記吐出圧力(Ph)が所定圧力(P1)以下の時に、前記冷媒放熱器(2)での放熱を抑制する放熱抑制手段(B、14〜18)が働くように制御することを特徴とする冷凍サイクル装置。
  2. 冷媒を気液分離する気液分離器(4)と、
    前記気液分離器(4)より吸入した冷媒を圧縮して吐出する冷媒圧縮機(1)と、
    前記冷媒圧縮機(1)より吐出された高温高圧の冷媒を放熱させる冷媒放熱器(2)と、
    前記気液分離器(4)より流入した低温低圧の冷媒を蒸発させる冷媒蒸発器(6)と、
    前記冷媒放熱器(2)よりも冷媒の流れ方向下流側に接続された高圧入口部(11a)、前記冷媒蒸発器(6)よりも冷媒の流れ方向下流側に接続された低圧入口部(3a)、および前記高圧入口部(11a)より流入した冷媒を噴出するノズル(11)を有し、前記ノズル(11)から噴出する冷媒回りの圧力低下を利用して、前記ノズル(11)から噴出する冷媒と前記低圧入口部(3a)から吸引した冷媒とを混合させながら昇圧させて前記気液分離器(4)へ吐出するエジェクタ(3)と、
    前記冷媒圧縮機(1)の吐出冷媒回路に設けられて絞り開度を制御することにより高圧冷媒の圧力を制御する可変絞り手段(7)と、
    前記冷媒圧縮機(1)が吐出する吐出圧力(Ph)を検知する吐出圧力検知手段(8)と、
    前記冷媒放熱器(2)から流出する冷媒温度(Tgc)を検知する冷媒温度検知手段(9)と、
    これらの冷凍サイクル機器の作動を制御する制御手段(10)とを備え、
    前記制御手段(10)は通常制御として、前記冷媒温度検知手段(9)にて前記冷媒温度(Tgc)を検知し、内部に記憶保持した最適高圧制御マップに基づき前記吐出圧力(Ph)が最適高圧(Pe)となるよう前記可変絞り手段(7)を制御する冷凍サイクル装置において、
    前記制御手段(10)は、前記冷媒温度検知手段(9)で検知した前記冷媒温度(Tgc)が所定温度(T1)以下の時に、前記冷媒放熱器(2)での放熱を抑制する放熱抑制手段(B、14〜18)が働くように制御することを特徴とする冷凍サイクル装置。
  3. 前記放熱抑制手段として、前記冷媒放熱器(2)の上流に、前記冷媒放熱器(2)の全体もしくは一部をバイパスして流れるバイパス流路(B)と、前記バイパス流路(B)への流通を制御する弁手段(14〜17)とを設けたことを特徴とする請求項1または請求項2のいずれかに記載の冷凍サイクル装置。
  4. 前記弁手段として温度式開閉弁(17)を用いると共に、前記温度式開閉弁(17)を前記冷媒放熱器(2)の隣り合うヘッダタンク(21、23)間に設けた前記バイパス流路(B)を開閉するように組み込み、前記温度式開閉弁(17)周りを流れる冷媒温度(Tgc)が所定温度(T1)以下の時に、前記バイパス流路(B)を開くようにしたことを特徴とする請求項3に記載の冷凍サイクル装置。
  5. 前記放熱抑制手段として、前記冷媒放熱器(2)の通風面の全面もしくは一部を覆う通風制御手段(18)を設けたことを特徴とする請求項1または請求項2のいずれかに記載の冷凍サイクル装置。
JP2003178601A 2003-06-23 2003-06-23 冷凍サイクル装置 Pending JP2005016747A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003178601A JP2005016747A (ja) 2003-06-23 2003-06-23 冷凍サイクル装置
US10/874,113 US6880362B2 (en) 2003-06-23 2004-06-22 Refrigerating cycle apparatus
DE102004030025A DE102004030025A1 (de) 2003-06-23 2004-06-22 Kühlkreisvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178601A JP2005016747A (ja) 2003-06-23 2003-06-23 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
JP2005016747A true JP2005016747A (ja) 2005-01-20

Family

ID=33516314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178601A Pending JP2005016747A (ja) 2003-06-23 2003-06-23 冷凍サイクル装置

Country Status (3)

Country Link
US (1) US6880362B2 (ja)
JP (1) JP2005016747A (ja)
DE (1) DE102004030025A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057939A (ja) * 2006-09-04 2008-03-13 Fuji Electric Retail Systems Co Ltd 冷媒サイクル装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273977B2 (ja) * 2004-01-21 2009-06-03 株式会社デンソー エジェクタサイクル
SE529598C2 (sv) * 2006-02-01 2007-10-02 Svenning Ericsson Flödeskontroll av köldmedia
CN103003645B (zh) 2010-07-23 2015-09-09 开利公司 高效率喷射器循环
CN102645052B (zh) * 2012-05-09 2014-08-06 天津商业大学 二氧化碳蒸气喷射制冷系统
JP6319043B2 (ja) * 2014-10-24 2018-05-09 株式会社デンソー エジェクタ式冷凍サイクル
JP6319041B2 (ja) 2014-10-24 2018-05-09 株式会社デンソー エジェクタ式冷凍サイクル
EP3032192B1 (en) * 2014-12-09 2020-07-29 Danfoss A/S A method for controlling a valve arrangement in a vapour compression system
CN104807269B (zh) * 2015-05-06 2017-04-12 安徽江淮汽车集团股份有限公司 汽车空调压缩机的控制方法及装置
CA2993328A1 (en) 2015-08-14 2017-02-23 Danfoss A/S A vapour compression system with at least two evaporator groups
WO2017067858A1 (en) 2015-10-20 2017-04-27 Danfoss A/S A method for controlling a vapour compression system with a variable receiver pressure setpoint
WO2017067860A1 (en) * 2015-10-20 2017-04-27 Danfoss A/S A method for controlling a vapour compression system in ejector mode for a prolonged time
BR112018007503B1 (pt) 2015-10-20 2023-03-21 Danfoss A/S Método para controlar um sistema de compressão a vapor em um estado inundado
JP2018178781A (ja) * 2017-04-05 2018-11-15 株式会社デンソー エジェクタ及びこれを用いた燃料電池システム並びに冷凍サイクルシステム
EP3926256A1 (en) * 2018-09-10 2021-12-22 Carrier Corporation Ejector heat pump operation
DK180146B1 (en) 2018-10-15 2020-06-25 Danfoss As Intellectual Property Heat exchanger plate with strenghened diagonal area
DE102021129187A1 (de) 2021-11-10 2023-05-11 Audi Aktiengesellschaft Kältemittelkühler für einen Kältemittelkreis eines Kraftfahrzeugs und Kraftfahrzeug

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312421A (ja) 1992-05-14 1993-11-22 Nippondenso Co Ltd 冷凍装置
US5343711A (en) * 1993-01-04 1994-09-06 Virginia Tech Intellectual Properties, Inc. Method of reducing flow metastability in an ejector nozzle
JP3603552B2 (ja) 1997-07-22 2004-12-22 株式会社デンソー ノズル装置
EP1553364A3 (en) * 2000-06-01 2006-03-22 Denso Corporation Ejector cycle system
JP4463466B2 (ja) * 2001-07-06 2010-05-19 株式会社デンソー エジェクタサイクル
JP4075530B2 (ja) * 2002-08-29 2008-04-16 株式会社デンソー 冷凍サイクル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057939A (ja) * 2006-09-04 2008-03-13 Fuji Electric Retail Systems Co Ltd 冷媒サイクル装置

Also Published As

Publication number Publication date
US20040255613A1 (en) 2004-12-23
US6880362B2 (en) 2005-04-19
DE102004030025A1 (de) 2005-01-13

Similar Documents

Publication Publication Date Title
JP4522641B2 (ja) 蒸気圧縮式冷凍機
US10906376B2 (en) Thermal management system for vehicle
JP4075530B2 (ja) 冷凍サイクル
EP1813887B1 (en) Air conditioning device
US20220032732A1 (en) Battery heating device for vehicle
US6755046B2 (en) Vehicle air conditioner with heat pump refrigerant cycle
US7069983B2 (en) Air conditioner
US20170197490A1 (en) Refrigeration cycle device
JP2005016747A (ja) 冷凍サイクル装置
US7461517B2 (en) Refrigerant cycle unit
EP2554413B1 (en) Heat pump air conditioning system for vehicle
KR20130116325A (ko) 히트 펌프 사이클
JP2003097857A (ja) 冷房サイクル
JP4285060B2 (ja) 蒸気圧縮式冷凍機
JP6415943B2 (ja) ヒートポンプ式車両用空調システム
KR100927811B1 (ko) 가열 기능을 가진 에어 컨디셔닝 시스템 및 상기 가열기능을 가진 에어 컨디셔닝 시스템의 작동 방법
JP5321647B2 (ja) 冷凍サイクル装置
US10926606B2 (en) Heat pump system for vehicle
JP5096956B2 (ja) 車両用空気調和システム
JP2007205596A (ja) 空気調和装置
JP4232567B2 (ja) 冷凍サイクル装置
JP2007205595A (ja) 空気調和装置
JP4835296B2 (ja) エジェクタ式冷凍サイクル
JP6780281B2 (ja) 冷凍サイクル装置
JP7079354B1 (ja) 温度制御システム