JP2005015293A - Sintered ferrite substrate - Google Patents

Sintered ferrite substrate Download PDF

Info

Publication number
JP2005015293A
JP2005015293A JP2003184550A JP2003184550A JP2005015293A JP 2005015293 A JP2005015293 A JP 2005015293A JP 2003184550 A JP2003184550 A JP 2003184550A JP 2003184550 A JP2003184550 A JP 2003184550A JP 2005015293 A JP2005015293 A JP 2005015293A
Authority
JP
Japan
Prior art keywords
sintered ferrite
sintered
groove
plate
ferrite substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003184550A
Other languages
Japanese (ja)
Other versions
JP4277596B2 (en
Inventor
Masaharu Abe
雅治 阿部
Tetsuya Kimura
哲也 木村
Shinsuke Maruyama
伸介 丸山
Hideo Takamizawa
秀男 高見沢
Yuji Omote
祐治 表
Tomohiro Tsuchide
智博 土手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2003184550A priority Critical patent/JP4277596B2/en
Publication of JP2005015293A publication Critical patent/JP2005015293A/en
Application granted granted Critical
Publication of JP4277596B2 publication Critical patent/JP4277596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered ferrite substrate with high magnetic permeability capable of repeating sticking and peeling along a plane, curved surface or projecting and recessing surface and which is free from powdering. <P>SOLUTION: In the sintered ferrite substrate provided with an adhesive material layer on one side of a sintered ferrite plate, the sintered ferrite plate is constituted so as to be separated using at least one continuous groove as a start point provided on at least one side surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、焼結フェライト基板に関し、詳しくは、電子機器の平面、曲面または凸凹の表面に貼着、剥離の可能な焼結フェライト基板に関する。
【0002】
【従来の技術】
従来、電子機器などには、その電子機器などから放射される電磁波を吸収したり、電子機器などに侵入する電磁波を吸収するため、アモルファス磁性体、フェライト等の磁性体とバインダー樹脂とから成る複合磁性体、焼結フェライトなどの磁性体が装着されている。特に、アンテナコイルを使用して電磁波で通信を行うRFID(Radio Frequency IDentification)タグにおいては、アンテナコイルの近傍、例えば、後側に金属のような導電性部材が存在した場合、反射された電磁波が妨害して、送受信が困難になることがある。そこで、RFIDタグのアンテナコイルと導電性部材の間に高透磁率の磁性体を配置して、電磁波の反射を抑制する方法が注目されている。
【0003】
電子機器に装着される高透磁率の磁性体として、フレーク状に形成されたアモルファス磁性体を絶縁フィルムに均一に分散した磁性保護シートが記載されている(特許文献1参照)。
【0004】
【特許文献1】
特開平8−79127号公報
【0005】
上述のアモルファス磁性体は、高透磁率を有するけれども、板状フェライト焼結体に比較して非常に高価であるため、安価なRFIDタグを提供することが出来ない。他方、焼結フェライトから成る板状磁性焼結体は、高透磁率を有するけれども、機械的な応力や衝撃に弱く、特に、薄くした場合には、僅かな衝撃で破損するという問題がある。更に、板状フェライト焼結体は硬くて脆いために、付着対象物の曲面または凸凹面に沿って板状磁性焼結体を密着または実質的に密着することが難しく、また、貼着、剥離を繰返すことが困難である。
【0006】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みてなされたものであり、その目的は、平面、曲面または凸凹の表面に沿って貼着、剥離を繰返すことが可能で、粉落ちのない高透磁率の焼結フェライト基板を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、一方の表面に粘着材層を有する焼結フェライト板の少なくとも一方の表面に、少なくとも1つの連続する溝を設けた焼結フェライト基板を電子機器の曲面または凸凹の表面に沿って貼付けたり、それを剥したりした場合、意外にも、焼結フェライト板が溝部で折れることによって、粉落ちが殆ど無く、且つ、不定形に破損することなく貼着、剥離を繰返すことが出来ると共に、焼結フェライト板が溝部で折れても焼結フェライト基板の透磁率の低下が少ないことを見出した。
【0008】
本発明は、上記の知見に基づき完成されたものであり、その要旨は、焼結フェライト板の一方の表面に粘着材層を設けて成る焼結フェライト基板であって、焼結フェライト板は、少なくとも一方の表面に設けられた少なくとも1つの連続する溝を起点として分割可能に構成されていることを特徴とする焼結フェライト基板に存する。
【0009】
【発明の実施の形態】
以下、本発明を添付図面に基づいて説明する。図1は、 焼結フェライト板と粘着材層とから成る焼結フェライト基板の平面図で有り、図2〜図4は、溝の形成された状態を示す焼結フェライト基板の縦断面図である。図2〜図3において、焼結フェライト基板(1)は、焼結フェライト板(2)の片面に粘着材層(5)を、粘着材層(5)と反対側の焼結フェライト板(2)の表面に保護層(6)を、および、焼結フェライト板の粘着材層(5)と反対側の表面に溝(3、4)を有しており、図4において、焼結フェライト基板(1)は、焼結フェライト板(2)の片面に粘着材層(5)を、焼結フェライト板の粘着材層(5)側の表面と反対側の表面に溝(4)を有している。
【0010】
焼結フェライトとしては、ソフトフェライトであれば特に制限されるものではなく、公知のソフトフェライトを使用し得る。例えば、Mn−Znフェライト、Ni−Znフェライト、Ni−Zn−Cuフェライト、Mn−Mgフェライト、Liフェライト等が挙げられる。また、使用する電磁波の周波数に応じて組成が変更されたソフトフェライトを使用することも出来る。
【0011】
焼結フェライト板(2)の厚さは、通常0.1mm〜5mm、好ましくは0.1〜3mm、より好ましくは0.1〜1mmである。厚さが0.1mm未満の場合は、溝を設けることが困難で、付着対象物の曲面または凸凹面に貼着、剥離を繰返した場合、溝以外で割れるため、粉落ちが生じると共に、透磁率の低下が大きくなり好ましくない。5mmを超える場合は、焼結フェライト基板の重量が大きくなり好ましくない。
【0012】
粘着材層(5)としては、両面粘着テープが挙げられる。両面粘着テープとしては、特に制限されるものではなく、公知の両面粘着テープを使用し得る。また、粘着材層(5)として、焼結フェライト板(2)の片面に粘着剤層、屈曲性且つ伸縮性のフイルム又はシート、粘着剤層および離型シートを順次積層したものであってもよい。
【0013】
焼結フェライト板(2)の粘着材層(5)を形成した面と反対側の面に形成されている溝の長手方向に直交する断面の形状は、焼結フェライト板(2)が溝部で分割可能であれば、特に限定されるものではない。例えば、焼結フェライト板が溝部で分割可能で、焼結フェライト板に屈曲性を付与し得、且つ、焼結フェライト板が割れた際の透磁率の低下が少ないものであればよく、特に、溝の長手方向に直交する断面がU字状のU字型溝(3)またはV字状のV字型溝(4)が挙げられる。
【0014】
溝(3、4)の開口部の幅は、通常250μm以下、好ましくは1〜150μmである。開口部の幅が250μmを超える場合は、焼結フェライト基板の透磁率の低下が大きくなり好ましくない。また、溝の深さは、焼結フェライト板(2)の厚さの通常1/20〜3/5である。なお、厚さが0.1mm〜0.2mmの薄い焼結フェライト板の場合、溝の深さは、焼結フェライト板の厚さの好ましくは1/20〜1/4、より好ましくは1/20〜1/6である。
【0015】
焼結フェライト板(2)の表面は、溝(3、4)によって任意の大きさの三角形、四辺形、多角形またはそれらの組合せに区分される。例えば、三角形、四辺形、多角形の1辺の長さは、通常1〜12mmであり、被付着物の接着面が曲面の場合は、好ましくは1mm以上でその曲率半径の1/3以下、より好ましくは1mm以上で1/4以下である。三角形、四辺形、多角形の1辺の長さが1〜12mmの場合、本発明の焼結フェライト基板は、溝以外の場所で不定形に割れることなく、平面は勿論、円柱状の側曲面および多少の凹凸のある面に密着または実質的に密着することが出来る。
【0016】
粘着材層と反対側の焼結フェライト板の表面に保護層(6)を形成することによって、焼結フェライト板を溝部で分割した場合の粉落ちに対し、より信頼性および耐久性を高めることが出来る。保護層(6)としては、焼結フェライト板が溝部で山折りした場合、破断することなく伸びる樹脂であれば、特に制限されるものではなく、常温での引張り破壊伸びが、通常350%以上の熱可塑性樹脂またはゴムであって、接着性にすぐれた樹脂を使用出来る。例えば、保護層を構成する樹脂としては、ポリウレタン樹脂、スチレンーブタジエンエラストマー、ブタジエン系エンエラストマー等が挙げられる。保護層(6)の厚さは、通常0.005〜0.2mm、好ましくは0.01〜0.1mmである。保護層の厚さが0.005mm未満の場合は、破断しやすく粉落ちを防ぐことが困難である。0.2mmを超える場合は、粉落ちを防ぐ効果が飽和するため、0.2mmを超えて厚くする必要がない。
【0017】
次に、本発明の焼結フェライト基板の製造方法について説明する。焼結フェライト板は、公知の方法で製造することが出来る。例えば、フェライト粉末とバインダー樹脂を混合した後、粉末圧縮成形法、射出成形法、カレンダー法、押し出し法等によってフェライト板を成形し、必要に応じて脱脂処理した後、焼結処理して製造することが出来る。また、フェライト粉末とバインダー樹脂と溶媒とを混合した後、フイルム叉はシート上にドクターブレード等で塗布してグリーンシートを得、必要に応じて脱脂処理した後、得られたグリーンシートを焼結処理して製造することが出来る。なお、得られたグリーンシートを複数枚積層してもよい。
【0018】
溝は、フェライト板の成形中、成形後または焼結処理後に形成することが出来る。例えば、粉末圧縮成形法または射出成形法で成形する場合は、成形中に形成することが好ましく、カレンダー法または押し出し法で成形する場合は、成形後で焼結前に形成することが好ましく、グリーンシートを経由して焼結フェライト板を製造する場合は、グリーンシートに形成することが好ましい。
【0019】
粉末圧縮成形法としては、公知の方法が使用できる。例えば、フェライト粉末とバインダー樹脂として、エポキシ樹脂などの熱硬化性樹脂とを混合して圧縮成形し、必要に応じて加熱してより硬い成形体を得、次いで焼結処理する。また、バインダー樹脂としてポリビニルアルコール樹脂、エチレンビニルアセテート樹脂などの熱可塑性樹脂を使用して、フェライト粉末との混合物を圧縮成形し、バインダー樹脂を除去(脱脂処理)した後、焼結処理する。
【0020】
射出成形法としては、公知の方法が使用できる。例えば、フェライト粉末とバインダー樹脂としてメタルインジェクションモウルド法で使用されている樹脂、例えば、ポリブチルメタクリレート樹脂、エチレンビニルアセテート樹脂などとを混合して射出成形し、バインダー樹脂を除去(脱脂処理)した後、焼結処理する。カレンダー法としては、公知の方法が使用できる。例えば、フェライト粉末とバインダー樹脂としてポリブチルメタクリレート樹脂、エチレンビニルアセテート樹脂などの熱可塑性樹脂とを混合して、カレンダーロールによってシートを成形し、所定の寸法にカットし、バインダー樹脂を除去(脱脂処理)した後、焼結処理する。また、押し出し法としては、公知の方法が使用できる。例えば、フェライト粉末とバインダー樹脂としてエチレンビニルアセテート樹脂などの熱可塑性樹脂とを混合して、T−ダイ法によってシートを成形し、所定の寸法にカットし、バインダー樹脂を除去(脱脂処理)した後、焼結処理する。
【0021】
また、グリーンシートは、フェライト粉末とバインダー樹脂として、例えば、ブチルフタリルブチルグリコレート、ブチラール樹脂などの熱可塑性樹脂と溶媒として、イソプロピルアルコール、トルエンなどの有機溶媒とを混合し、フイルム叉はシート上に塗布して得られ、このグリーンシートから得られた焼結フェライト板は、通常1〜数百μmの厚みを有する。また、複数枚のグリーンシートを積層した積層体から得られた焼結フェライト板は、数百μm以上の厚みを有する。
【0022】
脱脂処理は、通常150〜500℃の温度で通常20〜180分間行われる。焼結温度は、通常850〜1050℃、好ましくは875〜1025℃である。焼結時間は、通常30〜180分、好ましくは45〜120分である。焼結温度が850℃未満の場合は、粒子の焼結が困難となり、得られた焼結フェライト板の強度が十分とは言えない。また、焼結温度が1050℃を超えると、粒子の成長が進み好ましくない。焼結時間が30分未満の場合は、粒子の焼結が困難となり、得られた焼結フェライト板の強度が十分とは言えない。また、焼結時間が180分で粒子の焼結は十分進行するため、180分を超えて長くする必要がない。
【0023】
次いで、得られた焼結フェライト板の溝が形成されている面またはそれと反対側の面に粘着材層、例えば、両面粘着テープを設ける。そして、粘着材層が形成されている面と反対側の表面には、粉落ち防止のための保護層を設ける。保護層の形成は、保護層を構成する樹脂のフイルムまたはシートを、必要により接着剤を介して焼結フェライト板の表面に接着することにより、または、保護層を構成する樹脂を含有する塗料を焼結フェライト板の表面に塗布することにより行う。
【0024】
本発明の焼結フェライト基板は、被付着物、例えば、電子機器、電子部品などの表面の曲面部または凸凹面部に沿って貼付けた場合、少なくとも1つの連続する溝部を起点として、焼結フェライト基板を屈曲する叉は折れることにより、溝以外の場所で不定形に割れることなく、かつ、粉落ち現象が発生することなく、平面は勿論、円柱状の側曲面および多少の凹凸のある面に密着または実質的に密着することが出来る。本発明の焼結フェライト基板の使用によって、焼結フェライト板が不定形に破損することもなく、かつ、粉落ち現象が発生することなく、少ない磁気特性の低下で、電子機器の曲面または凸凹の表面に沿って貼着、剥離を繰返すことが容易になる。
【0025】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、透磁率は、外径φ14mm、内径φ8mm、厚さ0.4〜20mmの試料について、インピーダンスアナライザーHP4291A(ヒューレットパッカ−ド社製)とそのテストステーションに装着された治具(HP1645A)を使用して、周波数13.56MHzで測定した。そして、透磁率は、複素透磁率の実数部の値である。
【0026】
実施例1
磁性粉末としてNi−Zn−CuフェライトFRX−952(商品名、戸田工業社製)100重量部とブチルフタリルブチルグリコレート2ml、ブチラール樹脂12重量部および溶媒としてトルエン100mlをボールミルで混合・溶解・分散した。油ロータリー真空ポンプで減圧脱泡した後、厚さ100μmのポリエチレンテレフタレート(PET)フイルムに、得られた混合物をドクターブレードで一定の厚さに塗布し、100℃熱風で30分間乾燥して、厚さ100μmのグリーンシートを得た。 得られたグリーンシートを5枚重ね、耐水耐熱の袋に入れて脱気した後、当該袋の開口部をシールして、80℃に加熱しながら20分間静水圧プレスした。
【0027】
刃の断面形状が三角形(V字形)で、且つ、刃の先から200μmの部分の厚さが200μmである先端部を有する刃を使用して、得られた厚さ500μmの積層グリーンシートの表面に幅3mm間隔の格子状で、深さ200μmの溝を形成した。次いで、昇温速度0.5℃/分で室温から500℃まで昇温し、500℃で6時間保持して脱脂した後、900℃に加熱して2時間焼結をした。得られた焼結板の厚さは約0.4mmで、溝は幅2.6mm間隔の格子状のV字形溝で、溝の開口部の幅は約110μmで、溝の深さは約100μmであった。
【0028】
得られた焼結板の溝部が形成されている面にウレタン樹脂サンプレンIB−422(商品名、三洋化成社製)を塗布し、50℃で3分間乾燥した。得られた保護層の厚さは0.015mmであった。次いで、保護層の反対側の焼結板の表面に、市販の両面テープを貼って、焼結フェライト基板を得た。焼結フェライト基板の透磁率μは162であった。
【0029】
ICと通信用ループアンテナとが一体化した識別タグの裏面に得られた焼結フェライト基板を貼付けた。次いで、特許第3262948号に記載のデータキャリア装置において、応答器に代えて得られた識別タグ部材を金属箱の表面に装着したところ、質問器との応答は良好で、焼結フェライト基板は、金属の影響を排除できた。また、焼結フェライト基板は、溝部を起点として折れて、不定形への破損および粉落ち現象が生じることなく、識別タグから容易に引き剥すことが出来た。そして、この焼結フェライト基板は繰り返し使用することが出来た。引き剥された焼結フェライト基板は、溝部で折れた状態であり、その透磁率μは100であった。
【0030】
実施例2
エチレンビニルアセテート樹脂23重量%、ポリメタクリル酸ブチル30重量%、ジオクチルフタレート10重量%、ジブチルフタレート17重量%およびノルマルパラフィンワックス20重量%から成る樹脂成分と磁性粉末としてのNi−Zn−CuフェライトFRX−955(商品名、戸田工業社製)とを混合・分散して、磁性粉末量が68体積%の組成物を得た。
【0031】
得られた組成物を射出成形して、長さ59mm、幅47mm、厚さ0.7mmの板状体を成形した。なお、射出成形金型には、その長手方向に直交する断面が逆U字状である突条が予め格子状に設けられており、成形された射出成形体には断面がU字状のU字型溝が格子状に形成された。次いで、得られた板状体を温度100℃で2時間処理し、次いで、温度120℃で2時間処理し、更に、温度2000℃で2時間処理して樹脂成分を除去した後、5℃/分の速度で900℃まで昇温し、その温度で2時間保持して焼結板を得た。得られた焼結板の厚さは0.6mm、長さは50mmおよび幅は40mmであり、溝は幅2.5mm間隔の格子状のU字形溝で、溝の開口部の幅は約100μmで、溝の深さは約200μmであった。
【0032】
得られた焼結板の溝部が形成されている面にウレタン樹脂サンプレンIB−422(商品名、三洋化成社製)を塗布し、50℃で3分間乾燥した。得られた保護層の厚さは0.015mmであった。次いで、保護層の反対側の焼結板の表面に、両面テープ(ナイスタック、ニチバン社製)を貼って、焼結フェライト基板を得た。得られた焼結基板の透磁率μは98、溝部を起点として折れた状態で透磁率μは71であった。実施例1と同様に識別タグの裏面に装着した結果、質問器との応答は良好であった。また、焼結フェライト基板は、溝部を起点として折れて、不定形への破損および粉落ち現象が生じることなく、識別タグから容易に引き剥すことが出来、繰り返し使用することが出来た。
【0033】
実施例3
磁性粉末としてNi−Zn−CuフェライトFRX−146(商品名、戸田工業社製)を使用した以外は実施例2と同様の方法で組成物を得た。得られた組成物をカレンダーロール加工して、厚さ0.88mmのシートを得、次いで長さ59mm、幅47mmの大きさに打ち抜いて、成形シートを得た。なお、打ち抜きと同時にV字形溝を格子状に形成した。
【0034】
次いで、昇温速度0.5℃/分で室温から500℃まで昇温し、500℃で2時間保持して脱脂した後、900℃でに加熱して焼結をした。得られた焼結板の厚さは0.75mm、長さは50mmおよび幅は40mmであり、溝は幅2.6mm間隔の格子状のV字形溝で、溝の開口部の幅は約190μmで、溝の深さは約170μmであった。
【0035】
得られた焼結板の溝部が形成されている面にウレタン樹脂サンプレンIB−422(商品名、三洋化成社製)を塗布し50℃で3分間乾燥した。得られた保護層の厚さは0.02mmであった。次いで、保護層の反対側の焼結板の表面に、市販の両面テープを貼って、焼結フェライト基板を得た。得られた焼結フェライト基板の透磁率μは178、溝部を起点として折れた状態で透磁率μは112 であった。実施例1と同様に識別タグの裏面に装着した結果、質問噐との応答は良好であった。また、焼結フェライト基板は、溝部を起点として折れて、不定形への破損および粉落ち現象が生じることなく、識別タグから容易に引き剥すことが出来、繰り返し使用することが出来た。
【0036】
実施例4
ポリビニールアルコール(PVA)樹脂を2.5重量%含む水溶液80mlをNi−Zn−CuフェライトFRX−952(商品名、戸田工業社製)1Kgに添加・混合・乾燥して、PVA樹脂が表面に付着した磁性粉末を得た。次いで、得られた組成物を圧縮成形して、ブロック状成形物を生成した後、900℃まで昇温し、その温度で2時間焼結した。得られた焼結ブロックから、厚さ0.8mm、長さ50mm、幅40mmの焼結基板を切り出し、その片面に格子状にV字型溝を幅4mm間隔の格子状に切り込んだ。溝の開口部の幅は200μmで、溝の深さは200μmであった。
【0037】
得られた焼結板の溝部が形成されている面にウレタン樹脂サンプレンIB−422(商品名、三洋化成社製)を塗布し、50℃で3分間乾燥した。得られた保護層の厚さは0.02mmであった。次いで、保護層の反対側の焼結板の表面に市販の両面テープを貼って、焼結フェライト基板を得た。得られた焼結フェライト基板の透磁率μは169、溝部を起点として折れた状態で透磁率μが110であった。実施例1と同様に識別タグの裏面に装着した結果、質問噐との応答は良好であった。また、焼結フェライト基板は、溝部を起点として折れて、不定形への破損および粉落ち現象が生じることなく、識別タグから容易に引き剥すことが出来、繰り返し使用することが出来た。
【0038】
実施例5
ポリビニールアルコール(PVA)樹脂を2.5重量%含む水溶液80mlをNi−Zn−CuフェライトFRX−952(商品名、戸田工業社製)1Kgに添加・混合・乾燥して、PVA樹脂が表面に付着した磁性粉末を得た。次いで、得られた組成物を圧縮成形して、板状成形物を生成した。なお、板状成形物の相対する面を形成する圧縮成形金型部には、その面に直交する断面が逆U字状および逆V字状である突条が予め格子状に設けられており、得られた板状成形体には断面がU字状のU字型溝およびV字状のV字型溝が格子状に形成された。
【0039】
次いで、得られた板状成形体を5℃/分の速度で900℃まで昇温し、その温度で2時間保持して焼結板を得た。得られた焼結板の厚さは2mm、長さは50mmおよび幅は40mmであった。焼結板の両表面の略同じ位置に格子状溝が形成されており、片方の表面の溝は、幅8mm間隔の格子状のV字形溝で、溝の開口部の幅は約0.3mmで、溝の深さは約0.3mmで、他方の表面の溝は、幅8mm間隔の格子状のU字形溝で、溝の開口部の幅は約0.2mmで、溝の深さは約0.4mmであった。
【0040】
次いで、U字形溝が形成されている焼結板の表面に、市販の両面テープを貼って、焼結フェライト基板を得た。得られた焼結基板の透磁率μは175、溝部を起点として折れた状態で透磁率μは135であった。実施例1と同様に識別タグの裏面に装着した結果、質問器との応答は良好であった。また、焼結フェライト基板は、溝部を起点として折れて、不定形への破損が生じることなく、識別タグから容易に引き剥すことが出来、繰り返し使用することが出来た。また、粉落ちが殆どなかった。
【0041】
比較例1
グリーンシートの表面に溝を形成しない以外は実施例1同様にして焼結フェライト基板を得た。更に、実施例1と同様に焼結フェライト基板を識別タグに装着した後、焼結フェライト基板を識別タグから引き剥そうとしても、容易に引き剥すことが出来なかった。無理に引き剥すと、焼結フェライト基板の一部が、不定形に破損し、小片が飛び散ると共に、粉落ち現象が生じた。
【0042】
【発明の効果】
以上説明した本発明によれば、本発明の焼結フェライト基板は、溝を起点に焼結フェライト板が分割可能に構成され、かつ、好適には、粘着材層が形成されている面と反対側の面に粉落ち防止のための保護層が設けられているため、焼結フェライト板の不定形への破損および粉落ち現象が生じることなく、電子機器の曲面または凸凹の面に沿って貼付けたり、剥がしたりを繰返すことが容易である。そして、焼結フェライト基板は、焼結フェライト板が溝の部分で折れても透磁力の低下が少ないため、本発明の工業的な価値は顕著である。
【図面の簡単な説明】
【図1】焼結フェライト基板の平面図
【図2】U字型溝を有する焼結フェライト基板の縦断面図
【図3】V字型溝を有する焼結フェライト基板の縦断面図
【図4】両表面に溝を有する焼結フェライト基板の縦断面図
【符号の説明】
1:焼結フェライト基板
2:焼結フェライト板
3:U字型溝
4:V字型溝
5:粘着材層
6:保護層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintered ferrite substrate, and more particularly to a sintered ferrite substrate that can be attached to and peeled from a flat, curved, or uneven surface of an electronic device.
[0002]
[Prior art]
Conventionally, an electronic device or the like is a composite composed of a magnetic material such as an amorphous magnetic material or ferrite and a binder resin in order to absorb electromagnetic waves radiated from the electronic device or the like and to absorb electromagnetic waves that enter the electronic device. A magnetic body such as a magnetic body or sintered ferrite is mounted. In particular, in an RFID (Radio Frequency IDentification) tag that communicates with an electromagnetic wave using an antenna coil, when a conductive member such as metal is present in the vicinity of the antenna coil, for example, on the rear side, the reflected electromagnetic wave is Interference may make transmission and reception difficult. Therefore, attention has been paid to a method of suppressing reflection of electromagnetic waves by disposing a magnetic material having high permeability between the antenna coil of the RFID tag and the conductive member.
[0003]
As a magnetic material having a high magnetic permeability to be mounted on an electronic device, a magnetic protective sheet in which an amorphous magnetic material formed in a flake shape is uniformly dispersed in an insulating film is described (see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-79127
Although the above-mentioned amorphous magnetic body has a high magnetic permeability, it is very expensive as compared with a plate-like ferrite sintered body, so that an inexpensive RFID tag cannot be provided. On the other hand, a plate-like magnetic sintered body made of sintered ferrite has a high magnetic permeability, but is vulnerable to mechanical stress and impact. In particular, when it is thinned, there is a problem that it is damaged by slight impact. Furthermore, since the plate-like ferrite sintered body is hard and brittle, it is difficult to adhere or substantially adhere the plate-like magnetic sintered body along the curved surface or the uneven surface of the object to be adhered. Is difficult to repeat.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and its purpose is to repeat the pasting and peeling along a plane, curved surface or uneven surface, and to sinter with high magnetic permeability without powder falling. It is to provide a ferrite substrate.
[0007]
[Means for Solving the Problems]
The inventors of the present invention provide a sintered ferrite substrate provided with at least one continuous groove on at least one surface of a sintered ferrite plate having an adhesive layer on one surface along a curved surface or an uneven surface of an electronic device. Surprisingly, when the sintered ferrite plate breaks at the groove, it can be repeatedly stuck and peeled without losing any powder and without being damaged in an irregular shape. In addition, it has been found that even when the sintered ferrite plate is broken at the groove, the permeability of the sintered ferrite substrate is little lowered.
[0008]
The present invention has been completed based on the above findings, the gist of which is a sintered ferrite substrate having an adhesive material layer provided on one surface of a sintered ferrite plate, The sintered ferrite substrate is characterized in that it can be divided starting from at least one continuous groove provided on at least one surface.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the accompanying drawings. FIG. 1 is a plan view of a sintered ferrite substrate composed of a sintered ferrite plate and an adhesive layer, and FIGS. 2 to 4 are longitudinal sectional views of the sintered ferrite substrate showing a state in which grooves are formed. . 2 to 3, the sintered ferrite substrate (1) has an adhesive layer (5) on one side of the sintered ferrite plate (2) and a sintered ferrite plate (2) opposite to the adhesive layer (5). ) And a groove (3, 4) on the surface of the sintered ferrite plate opposite to the adhesive layer (5). In FIG. (1) has an adhesive layer (5) on one side of the sintered ferrite plate (2) and a groove (4) on the opposite side of the surface of the sintered ferrite plate from the adhesive layer (5) side. ing.
[0010]
The sintered ferrite is not particularly limited as long as it is soft ferrite, and known soft ferrite can be used. For example, Mn—Zn ferrite, Ni—Zn ferrite, Ni—Zn—Cu ferrite, Mn—Mg ferrite, Li ferrite and the like can be mentioned. Also, soft ferrite whose composition is changed according to the frequency of the electromagnetic wave to be used can be used.
[0011]
The thickness of the sintered ferrite plate (2) is usually 0.1 mm to 5 mm, preferably 0.1 to 3 mm, more preferably 0.1 to 1 mm. If the thickness is less than 0.1 mm, it is difficult to provide a groove, and repeated sticking and peeling on the curved surface or uneven surface of the object to be adhered will cause cracking in other than the groove, resulting in powder falling and transparent Decrease in magnetic susceptibility is unfavorable. If it exceeds 5 mm, the weight of the sintered ferrite substrate increases, which is not preferable.
[0012]
An example of the adhesive layer (5) is a double-sided adhesive tape. It does not restrict | limit especially as a double-sided adhesive tape, A well-known double-sided adhesive tape can be used. Further, as the adhesive layer (5), an adhesive layer, a flexible and stretchable film or sheet, an adhesive layer and a release sheet may be sequentially laminated on one side of the sintered ferrite plate (2). Good.
[0013]
The shape of the cross section perpendicular to the longitudinal direction of the groove formed on the surface opposite to the surface on which the adhesive layer (5) of the sintered ferrite plate (2) is formed is that the sintered ferrite plate (2) is a groove portion. There is no particular limitation as long as it can be divided. For example, as long as the sintered ferrite plate can be divided at the groove, the sintered ferrite plate can be provided with flexibility, and the permeability of the sintered ferrite plate is small when it is cracked. A U-shaped groove (3) having a U-shaped cross section perpendicular to the longitudinal direction of the groove or a V-shaped groove (4) having a V shape may be mentioned.
[0014]
The width of the opening of the groove (3, 4) is usually 250 μm or less, preferably 1 to 150 μm. When the width of the opening exceeds 250 μm, the decrease in the magnetic permeability of the sintered ferrite substrate becomes large, which is not preferable. The depth of the groove is usually 1/20 to 3/5 of the thickness of the sintered ferrite plate (2). In the case of a thin sintered ferrite plate having a thickness of 0.1 mm to 0.2 mm, the depth of the groove is preferably 1/20 to 1/4 of the thickness of the sintered ferrite plate, more preferably 1 / 20 to 1/6.
[0015]
The surface of the sintered ferrite plate (2) is divided into triangles, quadrilaterals, polygons or combinations thereof of any size by the grooves (3, 4). For example, the length of one side of a triangle, a quadrangle, or a polygon is usually 1 to 12 mm, and when the adhesion surface of the adherend is a curved surface, it is preferably 1 mm or more and 1/3 or less of the radius of curvature thereof, More preferably, it is 1 mm or more and 1/4 or less. When the length of one side of a triangle, a quadrilateral, or a polygon is 1 to 12 mm, the sintered ferrite substrate of the present invention does not crack indefinitely in a place other than a groove, and of course, a cylindrical side curved surface In addition, it can be adhered or substantially adhered to a surface with some unevenness.
[0016]
By forming a protective layer (6) on the surface of the sintered ferrite plate opposite to the adhesive layer, the reliability and durability are further improved against powder falling when the sintered ferrite plate is divided at the groove. I can do it. The protective layer (6) is not particularly limited as long as the sintered ferrite plate is a resin that extends without breaking when the sintered ferrite plate is folded in the groove, and the tensile fracture elongation at room temperature is usually 350% or more. A thermoplastic resin or rubber having excellent adhesion can be used. For example, examples of the resin constituting the protective layer include polyurethane resins, styrene-butadiene elastomers, and butadiene-based elastomers. The thickness of the protective layer (6) is usually 0.005 to 0.2 mm, preferably 0.01 to 0.1 mm. When the thickness of the protective layer is less than 0.005 mm, it is easy to break and it is difficult to prevent powder falling. When the thickness exceeds 0.2 mm, the effect of preventing powder falling is saturated, so that it is not necessary to increase the thickness beyond 0.2 mm.
[0017]
Next, the manufacturing method of the sintered ferrite substrate of the present invention will be described. The sintered ferrite plate can be manufactured by a known method. For example, after ferrite powder and binder resin are mixed, a ferrite plate is formed by a powder compression molding method, injection molding method, calendar method, extrusion method, etc., degreased as necessary, and then sintered and manufactured. I can do it. Also, after mixing ferrite powder, binder resin and solvent, a green sheet is obtained by coating with a doctor blade or the like on a film or sheet, and after degreasing as necessary, the obtained green sheet is sintered. Can be processed and manufactured. A plurality of obtained green sheets may be laminated.
[0018]
The groove can be formed during the molding of the ferrite plate, after the molding or after the sintering process. For example, when molding by powder compression molding method or injection molding method, it is preferable to form during molding, and when molding by calendar method or extrusion method, it is preferable to form after molding and before sintering, When manufacturing a sintered ferrite board via a sheet | seat, forming in a green sheet is preferable.
[0019]
A known method can be used as the powder compression molding method. For example, a ferrite powder and a thermosetting resin such as an epoxy resin as a binder resin are mixed and compression-molded, and heated as necessary to obtain a harder molded body, and then sintered. Further, a thermoplastic resin such as polyvinyl alcohol resin or ethylene vinyl acetate resin is used as the binder resin, and the mixture with the ferrite powder is compression-molded, the binder resin is removed (degreasing treatment), and then the sintering treatment is performed.
[0020]
As the injection molding method, a known method can be used. For example, after ferrite powder and a resin used in the metal injection mold method as a binder resin, for example, polybutyl methacrylate resin, ethylene vinyl acetate resin, etc. are mixed and injection molded, and the binder resin is removed (degreasing treatment) , Sintering process. As the calendar method, a known method can be used. For example, ferrite powder and thermoplastic resin such as polybutyl methacrylate resin and ethylene vinyl acetate resin are mixed as binder resin, a sheet is formed with a calender roll, cut into a predetermined dimension, and binder resin is removed (degreasing treatment) ) And then a sintering process. As the extrusion method, a known method can be used. For example, after ferrite powder and thermoplastic resin such as ethylene vinyl acetate resin are mixed as binder resin, a sheet is formed by T-die method, cut to a predetermined size, and binder resin is removed (degreasing treatment) , Sintering process.
[0021]
The green sheet is a film or sheet obtained by mixing a ferrite powder and a binder resin, for example, a thermoplastic resin such as butylphthalylbutyl glycolate and butyral resin, and an organic solvent such as isopropyl alcohol and toluene as a solvent. A sintered ferrite plate obtained by coating on the green sheet, usually having a thickness of 1 to several hundred μm. Moreover, the sintered ferrite plate obtained from the laminated body which laminated | stacked the several green sheet has thickness of several hundred micrometers or more.
[0022]
The degreasing treatment is usually performed at a temperature of 150 to 500 ° C. for 20 to 180 minutes. The sintering temperature is usually 850 to 1050 ° C, preferably 875 to 1025 ° C. The sintering time is usually 30 to 180 minutes, preferably 45 to 120 minutes. When the sintering temperature is less than 850 ° C., it becomes difficult to sinter the particles, and the strength of the obtained sintered ferrite plate cannot be said to be sufficient. On the other hand, if the sintering temperature exceeds 1050 ° C., the growth of particles proceeds, which is not preferable. When the sintering time is less than 30 minutes, it becomes difficult to sinter the particles, and the obtained sintered ferrite plate cannot be said to have sufficient strength. Further, since the sintering of the particles proceeds sufficiently when the sintering time is 180 minutes, it is not necessary to increase the sintering time beyond 180 minutes.
[0023]
Next, an adhesive material layer, for example, a double-sided adhesive tape, is provided on the surface of the obtained sintered ferrite plate where the grooves are formed or on the opposite surface. And the protective layer for powder fall prevention is provided in the surface on the opposite side to the surface in which the adhesive material layer is formed. The protective layer is formed by adhering a resin film or sheet constituting the protective layer to the surface of the sintered ferrite plate through an adhesive, if necessary, or by applying a paint containing the resin constituting the protective layer. This is done by applying to the surface of the sintered ferrite plate.
[0024]
The sintered ferrite substrate of the present invention is a sintered ferrite substrate starting from at least one continuous groove when pasted along a curved surface portion or an uneven surface portion of an adherend, for example, an electronic device or an electronic component. By bending or bending, it adheres closely to flat surfaces as well as cylindrical side curved surfaces and surfaces with some irregularities, without cracking irregularly in places other than grooves and without causing powder-off phenomenon. Or it can contact | adhere substantially. By using the sintered ferrite substrate of the present invention, the sintered ferrite plate is not damaged indefinitely, and the phenomenon of powder falling does not occur. It becomes easy to repeat sticking and peeling along the surface.
[0025]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded. For the magnetic permeability, an impedance analyzer HP4291A (manufactured by Hewlett-Packard Company) and a jig (HP1645A) mounted on the test station are used for a sample having an outer diameter of 14 mm, an inner diameter of 8 mm, and a thickness of 0.4 to 20 mm. Then, the frequency was measured at 13.56 MHz. The magnetic permeability is a value of the real part of the complex magnetic permeability.
[0026]
Example 1
100 parts by weight of Ni-Zn-Cu ferrite FRX-952 (trade name, manufactured by Toda Kogyo Co., Ltd.) as magnetic powder, 2 ml of butylphthalylbutyl glycolate, 12 parts by weight of butyral resin and 100 ml of toluene as a solvent are mixed and dissolved in a ball mill. Distributed. After defoaming under reduced pressure with an oil rotary vacuum pump, the resulting mixture was applied to a 100 μm thick polyethylene terephthalate (PET) film with a doctor blade to a certain thickness and dried with hot air at 100 ° C. for 30 minutes. A green sheet having a thickness of 100 μm was obtained. 5 sheets of the obtained green sheets were stacked, put in a water and heat resistant bag and degassed, and then the opening of the bag was sealed and hydrostatically pressed for 20 minutes while heating to 80 ° C.
[0027]
The surface of a laminated green sheet having a thickness of 500 μm obtained using a blade having a tip having a triangular cross section (V shape) and a thickness of 200 μm from the tip of the blade having a thickness of 200 μm. A groove having a depth of 200 μm was formed in a lattice pattern with a width of 3 mm. Next, the temperature was raised from room temperature to 500 ° C. at a temperature rising rate of 0.5 ° C./min, held at 500 ° C. for 6 hours for degreasing, then heated to 900 ° C. and sintered for 2 hours. The thickness of the obtained sintered plate is about 0.4 mm, and the grooves are grid-like V-shaped grooves with a width of 2.6 mm. The width of the groove opening is about 110 μm and the depth of the groove is about 100 μm. Met.
[0028]
Urethane resin sample IB-422 (trade name, manufactured by Sanyo Kasei Co., Ltd.) was applied to the surface of the obtained sintered plate where the grooves were formed, and dried at 50 ° C. for 3 minutes. The thickness of the obtained protective layer was 0.015 mm. Next, a commercially available double-sided tape was applied to the surface of the sintered plate opposite to the protective layer to obtain a sintered ferrite substrate. The permeability μ of the sintered ferrite substrate was 162.
[0029]
The sintered ferrite substrate obtained was pasted on the back surface of the identification tag in which the IC and the communication loop antenna were integrated. Next, in the data carrier device described in Japanese Patent No. 3262948, when the identification tag member obtained instead of the responder was mounted on the surface of the metal box, the response with the interrogator was good, and the sintered ferrite substrate was The influence of metal could be eliminated. In addition, the sintered ferrite substrate could be easily peeled off from the identification tag without breakage from the groove and the occurrence of damage to the irregular shape and powder falling phenomenon. This sintered ferrite substrate could be used repeatedly. The peeled sintered ferrite substrate was in a state of being broken at the groove portion, and its magnetic permeability μ was 100.
[0030]
Example 2
Ni-Zn-Cu ferrite FRX as a magnetic powder and a resin component comprising 23% by weight of ethylene vinyl acetate resin, 30% by weight of polybutyl methacrylate, 10% by weight of dioctyl phthalate, 17% by weight of dibutyl phthalate and 20% by weight of normal paraffin wax -955 (trade name, manufactured by Toda Kogyo Co., Ltd.) was mixed and dispersed to obtain a composition having a magnetic powder amount of 68% by volume.
[0031]
The obtained composition was injection-molded to form a plate-like body having a length of 59 mm, a width of 47 mm, and a thickness of 0.7 mm. The injection mold is provided with protrusions having a reverse U-shaped cross section orthogonal to the longitudinal direction in advance in a lattice shape, and the molded injection molded body has a U-shaped cross section. The letter-shaped grooves were formed in a lattice shape. Subsequently, the obtained plate-like body was treated at a temperature of 100 ° C. for 2 hours, then treated at a temperature of 120 ° C. for 2 hours, and further treated at a temperature of 2000 ° C. for 2 hours to remove the resin component, and then 5 ° C. / The temperature was raised to 900 ° C. at a rate of minutes, and the temperature was maintained for 2 hours to obtain a sintered plate. The obtained sintered plate has a thickness of 0.6 mm, a length of 50 mm, and a width of 40 mm, and the grooves are grid-shaped U-shaped grooves with a width of 2.5 mm, and the width of the groove opening is about 100 μm. The depth of the groove was about 200 μm.
[0032]
Urethane resin sample IB-422 (trade name, manufactured by Sanyo Kasei Co., Ltd.) was applied to the surface of the obtained sintered plate where the grooves were formed, and dried at 50 ° C. for 3 minutes. The thickness of the obtained protective layer was 0.015 mm. Next, a double-sided tape (Nystack, manufactured by Nichiban Co., Ltd.) was applied to the surface of the sintered plate opposite to the protective layer to obtain a sintered ferrite substrate. The obtained sintered substrate had a magnetic permeability μ of 98, and the magnetic permeability μ was 71 in a state where the sintered substrate was bent starting from the groove. As a result of mounting on the back side of the identification tag as in Example 1, the response with the interrogator was good. In addition, the sintered ferrite substrate could be easily peeled off from the identification tag without being broken from the groove, causing damage to an indeterminate shape and powder falling off, and could be used repeatedly.
[0033]
Example 3
A composition was obtained in the same manner as in Example 2 except that Ni-Zn-Cu ferrite FRX-146 (trade name, manufactured by Toda Kogyo Co., Ltd.) was used as the magnetic powder. The obtained composition was calender-rolled to obtain a sheet having a thickness of 0.88 mm, and then punched into a size of 59 mm in length and 47 mm in width to obtain a molded sheet. At the same time as punching, V-shaped grooves were formed in a lattice shape.
[0034]
Next, the temperature was raised from room temperature to 500 ° C. at a heating rate of 0.5 ° C./min, degreased by holding at 500 ° C. for 2 hours, and then heated to 900 ° C. for sintering. The obtained sintered plate has a thickness of 0.75 mm, a length of 50 mm, and a width of 40 mm. The grooves are grid-shaped V-shaped grooves with a width of 2.6 mm, and the width of the groove opening is about 190 μm. The groove depth was about 170 μm.
[0035]
Urethane resin sample IB-422 (trade name, manufactured by Sanyo Kasei Co., Ltd.) was applied to the surface of the obtained sintered plate where the grooves were formed, and dried at 50 ° C. for 3 minutes. The thickness of the obtained protective layer was 0.02 mm. Next, a commercially available double-sided tape was applied to the surface of the sintered plate opposite to the protective layer to obtain a sintered ferrite substrate. The magnetic permeability μ of the obtained sintered ferrite substrate was 178, and the magnetic permeability μ was 112 in a state where the sintered ferrite substrate was bent starting from the groove. As a result of mounting on the back surface of the identification tag in the same manner as in Example 1, the response to the question pad was good. In addition, the sintered ferrite substrate could be easily peeled off from the identification tag without being broken from the groove, causing damage to an indeterminate shape and powder falling off, and could be used repeatedly.
[0036]
Example 4
80 ml of an aqueous solution containing 2.5% by weight of polyvinyl alcohol (PVA) resin is added to 1 kg of Ni-Zn-Cu ferrite FRX-952 (trade name, manufactured by Toda Kogyo Co., Ltd.), mixed and dried, so that the PVA resin is on the surface. An attached magnetic powder was obtained. Next, the obtained composition was compression-molded to produce a block-shaped molded article, and then heated to 900 ° C. and sintered at that temperature for 2 hours. From the obtained sintered block, a sintered substrate having a thickness of 0.8 mm, a length of 50 mm, and a width of 40 mm was cut out, and V-shaped grooves were cut into a lattice shape on one side in a lattice shape with a width of 4 mm. The width of the opening of the groove was 200 μm, and the depth of the groove was 200 μm.
[0037]
Urethane resin sample IB-422 (trade name, manufactured by Sanyo Kasei Co., Ltd.) was applied to the surface of the obtained sintered plate where the grooves were formed, and dried at 50 ° C. for 3 minutes. The thickness of the obtained protective layer was 0.02 mm. Subsequently, a commercially available double-sided tape was stuck on the surface of the sintered plate opposite to the protective layer to obtain a sintered ferrite substrate. The obtained sintered ferrite substrate had a magnetic permeability μ of 169 and a magnetic permeability μ of 110 in a state where the sintered ferrite substrate was bent starting from the groove. As a result of mounting on the back surface of the identification tag in the same manner as in Example 1, the response to the question pad was good. In addition, the sintered ferrite substrate could be easily peeled off from the identification tag without being broken from the groove, causing damage to an indeterminate shape and powder falling off, and could be used repeatedly.
[0038]
Example 5
80 ml of an aqueous solution containing 2.5% by weight of polyvinyl alcohol (PVA) resin is added to 1 kg of Ni-Zn-Cu ferrite FRX-952 (trade name, manufactured by Toda Kogyo Co., Ltd.), mixed and dried, so that the PVA resin is on the surface. An attached magnetic powder was obtained. Subsequently, the obtained composition was compression molded to produce a plate-shaped molded product. In addition, the compression mold part which forms the opposing surface of a plate-shaped molding is provided with protrusions having a reverse U-shaped and inverted V-shaped cross section orthogonal to the surface in a lattice shape in advance. In the obtained plate-like molded body, a U-shaped groove having a U-shaped cross section and a V-shaped groove having a V-shaped cross section were formed in a lattice shape.
[0039]
Next, the obtained plate-like molded body was heated to 900 ° C. at a rate of 5 ° C./min and held at that temperature for 2 hours to obtain a sintered plate. The obtained sintered plate had a thickness of 2 mm, a length of 50 mm, and a width of 40 mm. Lattice-like grooves are formed at substantially the same position on both surfaces of the sintered plate, and the grooves on one surface are lattice-shaped V-shaped grooves with a width of 8 mm, and the width of the groove opening is about 0.3 mm. The groove depth is about 0.3 mm, and the groove on the other surface is a grid-like U-shaped groove with a width of 8 mm, the groove opening width is about 0.2 mm, and the groove depth is About 0.4 mm.
[0040]
Next, a commercially available double-sided tape was affixed to the surface of the sintered plate on which the U-shaped groove was formed to obtain a sintered ferrite substrate. The sintered substrate thus obtained had a magnetic permeability μ of 175, and the magnetic permeability μ was 135 in a state where the sintered substrate was bent starting from the groove. As a result of mounting on the back side of the identification tag as in Example 1, the response with the interrogator was good. In addition, the sintered ferrite substrate could be easily peeled off from the identification tag without being broken into an indeterminate shape with the groove as a starting point, and could be used repeatedly. Moreover, there was almost no powder fall-off.
[0041]
Comparative Example 1
A sintered ferrite substrate was obtained in the same manner as in Example 1 except that no groove was formed on the surface of the green sheet. Furthermore, even after trying to peel the sintered ferrite substrate from the identification tag after attaching the sintered ferrite substrate to the identification tag in the same manner as in Example 1, it could not be easily peeled off. When it was forcibly peeled off, a part of the sintered ferrite substrate was damaged in an irregular shape, small pieces were scattered, and a powder falling phenomenon occurred.
[0042]
【The invention's effect】
According to the present invention described above, the sintered ferrite substrate of the present invention is configured so that the sintered ferrite plate can be divided starting from the groove, and preferably opposite to the surface on which the adhesive layer is formed. Since a protective layer is provided on the side surface to prevent powder falling, the sintered ferrite plate is stuck along the curved or uneven surface of an electronic device without causing damage to the irregular shape and powder falling phenomenon. It is easy to repeat or peel off. And since the sintered ferrite board has little fall of magnetic permeability even if a sintered ferrite board bends in the part of a slot, the industrial value of the present invention is remarkable.
[Brief description of the drawings]
FIG. 1 is a plan view of a sintered ferrite substrate. FIG. 2 is a longitudinal sectional view of a sintered ferrite substrate having a U-shaped groove. FIG. 3 is a longitudinal sectional view of a sintered ferrite substrate having a V-shaped groove. ] Vertical cross section of sintered ferrite substrate with grooves on both surfaces [Explanation of symbols]
1: sintered ferrite substrate 2: sintered ferrite plate 3: U-shaped groove 4: V-shaped groove 5: adhesive layer 6: protective layer

Claims (6)

焼結フェライト板の一方の表面に粘着材層を設けて成る焼結フェライト基板であって、焼結フェライト板は、少なくとも一方の表面に設けられた少なくとも1つの連続する溝を起点として分割可能に構成されていることを特徴とする焼結フェライト基板。A sintered ferrite substrate having an adhesive material layer provided on one surface of a sintered ferrite plate, the sintered ferrite plate being separable starting from at least one continuous groove provided on at least one surface A sintered ferrite substrate characterized by comprising. 粘着材層と反対側の焼結フェライト板の表面に保護層が設けられている請求項1記載の焼結フェライト基板。The sintered ferrite substrate according to claim 1, wherein a protective layer is provided on the surface of the sintered ferrite plate opposite to the adhesive material layer. 溝は、一方向に連続する溝およびそれと交差する溝である請求項1または2記載の焼結フェライト基板。The sintered ferrite substrate according to claim 1 or 2, wherein the groove is a groove continuous in one direction and a groove intersecting with the groove. 溝は、U字溝またはV字溝である請求項1〜3のいづれかに記載の焼結フェライト基板。The sintered ferrite substrate according to claim 1, wherein the groove is a U-shaped groove or a V-shaped groove. 溝が、粘着材層と反対側の焼結フェライト板の表面に設けられている請求項1〜4のいづれかに記載の焼結フェライト基板。The sintered ferrite substrate according to any one of claims 1 to 4, wherein the groove is provided on the surface of the sintered ferrite plate opposite to the adhesive layer. 溝が、焼結フェライト板の両表面に設けられている請求項1〜5のいづれかに記載の焼結フェライト基板。The sintered ferrite substrate according to any one of claims 1 to 5, wherein the grooves are provided on both surfaces of the sintered ferrite plate.
JP2003184550A 2003-06-27 2003-06-27 Sintered ferrite substrate Expired - Lifetime JP4277596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184550A JP4277596B2 (en) 2003-06-27 2003-06-27 Sintered ferrite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184550A JP4277596B2 (en) 2003-06-27 2003-06-27 Sintered ferrite substrate

Publications (2)

Publication Number Publication Date
JP2005015293A true JP2005015293A (en) 2005-01-20
JP4277596B2 JP4277596B2 (en) 2009-06-10

Family

ID=34184282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184550A Expired - Lifetime JP4277596B2 (en) 2003-06-27 2003-06-27 Sintered ferrite substrate

Country Status (1)

Country Link
JP (1) JP4277596B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129704A1 (en) * 2005-06-03 2006-12-07 Murata Manufacturing Co., Ltd. Ferrite sheet and process for producing the same
JP2007123373A (en) * 2005-10-26 2007-05-17 Tdk Corp Composite magnetic sheet laminated body for noise suppression and its mounting method
JP2007184494A (en) * 2006-01-10 2007-07-19 Tdk Corp Ferrite part
JP2007273671A (en) * 2006-03-31 2007-10-18 Tdk Corp Ferrite sheet
JP2008112830A (en) * 2006-10-30 2008-05-15 Toshiba Corp Method of manufacturing magnetic sheet
JP2008252089A (en) * 2007-03-07 2008-10-16 Toda Kogyo Corp Molded ferrite sheet, sintered ferrite substrate and antenna module
JP2008296431A (en) * 2007-05-30 2008-12-11 Kitagawa Ind Co Ltd Ceramic sheet
JP2009099895A (en) * 2007-10-19 2009-05-07 Fdk Corp Ferrite sheet for noise countermeasure
JP2009184872A (en) * 2008-02-06 2009-08-20 Panasonic Corp Ferrite sintered product and production method therefor
US7924235B2 (en) 2004-07-28 2011-04-12 Panasonic Corporation Antenna apparatus employing a ceramic member mounted on a flexible sheet
JP2011233740A (en) * 2010-04-28 2011-11-17 Nec Tokin Corp Magnetic sheet
JP5045858B1 (en) * 2012-04-12 2012-10-10 パナソニック株式会社 Non-contact charging module manufacturing method and non-contact charging module
KR101197684B1 (en) * 2009-04-07 2012-11-05 주식회사 아모텍 Magnetic Sheet, RF Identification Antenna Having Radiation Pattern Incorporated into Magnetic Sheet, and Method for Producing the Same
US8323776B2 (en) 2011-04-08 2012-12-04 Maruwa Co., Ltd. Composite ferrite sheet, method of fabricating the composite ferrite sheet, and array of sintered ferrite segments used to form the composite ferrite sheet
JP5136710B1 (en) * 2012-04-26 2013-02-06 パナソニック株式会社 Manufacturing method of magnetic sheet
WO2013035281A1 (en) * 2011-09-09 2013-03-14 パナソニック株式会社 Non-contact charging module, electronic apparatus, and non-contact charging apparatus
CN103200807A (en) * 2012-01-10 2013-07-10 3M创新有限公司 Drilling sintering ferrite sheet, antenna isolation body and antenna module
JP2014019163A (en) * 2012-07-12 2014-02-03 Skc Co Ltd Ceramic laminated sheet having flexibility and method for producing the same
WO2014069440A1 (en) 2012-10-31 2014-05-08 戸田工業株式会社 Ferrite sintered plate and ferrite sintered sheet
WO2014088954A1 (en) * 2012-12-06 2014-06-12 3M Innovative Properties Company Ferrite green sheet, sintered ferrite sheet, ferrite composite sheet comprising the same, and conductive loop antenna module
CN103963389A (en) * 2014-04-30 2014-08-06 广州新莱福磁电有限公司 Flexible diaphragm type ceramic material and preparation method thereof
KR101447533B1 (en) * 2013-02-27 2014-10-06 에스케이씨 주식회사 Flexible ceramic component
CN104107983A (en) * 2013-04-19 2014-10-22 上海景奕电子科技有限公司 Novel laser cutting method for ferrite
CN104107984A (en) * 2013-04-19 2014-10-22 上海景奕电子科技有限公司 Laser die-cutting jig for ferrite materials
KR101484006B1 (en) 2013-01-24 2015-01-20 에스케이씨 주식회사 Ceramic laminate sheet with improved adhesion and preparation method thereof
CN104885166A (en) * 2012-12-06 2015-09-02 3M创新有限公司 Ferrite green sheet, sintered ferrite sheet, ferrite composite sheet comprising the same, and conductive loop antenna module
WO2016092735A1 (en) * 2014-12-11 2016-06-16 戸田工業株式会社 Ceramic composite sheet and method for manufacturing same
KR20160072396A (en) * 2014-12-12 2016-06-23 미래나노텍(주) Ferrite sheet, ferrite complex sheet comprising the same and manufacturing method thereof and patterning mold
US9394204B2 (en) 2007-03-07 2016-07-19 Toda Kogyo Corporation Molded ferrite sheet, sintered ferrite substrate and antenna module
KR20160132462A (en) 2014-05-27 2016-11-18 가부시키가이샤 무라타 세이사쿠쇼 Mother ceramic substrate, ceramic substrate, mother module component, module component, and manufacturing method for mother ceramic substrate
JP2017204553A (en) * 2016-05-11 2017-11-16 Fdk株式会社 Ferrite core and method of manufacturing ferrite core
CN108349814A (en) * 2015-11-11 2018-07-31 阿莫泰克有限公司 The manufacturing method of ferrite sheet and use its ferrite sheet
US10231343B2 (en) 2014-02-28 2019-03-12 Murata Manufacturing Co., Ltd. Methods for producing ceramic substrates and module components
US10587049B2 (en) 2015-12-08 2020-03-10 3M Innovative Properties Company Magnetic isolator, method of making the same, and device containing the same
US10734725B2 (en) 2015-12-08 2020-08-04 3M Innovative Properties Company Magnetic isolator, method of making the same, and device containing the same
JP2020150105A (en) * 2019-03-13 2020-09-17 Tdk株式会社 Ferrite structure and manufacturing method thereof
CN113168947A (en) * 2018-12-20 2021-07-23 3M创新有限公司 Magnetic film
WO2023026890A1 (en) * 2021-08-26 2023-03-02 戸田工業株式会社 Ferrite sheet, and antenna apparatus and non-contact power supply apparatus using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609225B2 (en) * 2010-04-12 2014-10-22 Fdk株式会社 Ferrite substrate
US9640304B2 (en) 2012-07-12 2017-05-02 Skc Co., Ltd. Ceramic laminate sheet with flexibility and preparation method thereof
KR101474479B1 (en) * 2012-11-20 2014-12-23 주식회사 씨에이디 Magnetic field shield
JP2014225552A (en) * 2013-05-16 2014-12-04 Fdk株式会社 Ferrite plate
JP2015128142A (en) 2013-11-28 2015-07-09 Tdk株式会社 Coil unit
KR102006344B1 (en) 2016-07-28 2019-08-02 에스케이씨 주식회사 Composite sheet, antenna module and preparation thereof

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7924235B2 (en) 2004-07-28 2011-04-12 Panasonic Corporation Antenna apparatus employing a ceramic member mounted on a flexible sheet
US8507072B2 (en) 2004-07-28 2013-08-13 Panasonic Corporation Antenna apparatus
WO2006129704A1 (en) * 2005-06-03 2006-12-07 Murata Manufacturing Co., Ltd. Ferrite sheet and process for producing the same
JP2007123373A (en) * 2005-10-26 2007-05-17 Tdk Corp Composite magnetic sheet laminated body for noise suppression and its mounting method
JP4529906B2 (en) * 2006-01-10 2010-08-25 Tdk株式会社 Ferrite parts
JP2007184494A (en) * 2006-01-10 2007-07-19 Tdk Corp Ferrite part
JP2007273671A (en) * 2006-03-31 2007-10-18 Tdk Corp Ferrite sheet
JP4748315B2 (en) * 2006-03-31 2011-08-17 Tdk株式会社 Ferrite sheet
JP2008112830A (en) * 2006-10-30 2008-05-15 Toshiba Corp Method of manufacturing magnetic sheet
US9394204B2 (en) 2007-03-07 2016-07-19 Toda Kogyo Corporation Molded ferrite sheet, sintered ferrite substrate and antenna module
JP2008252089A (en) * 2007-03-07 2008-10-16 Toda Kogyo Corp Molded ferrite sheet, sintered ferrite substrate and antenna module
JP2008296431A (en) * 2007-05-30 2008-12-11 Kitagawa Ind Co Ltd Ceramic sheet
JP2009099895A (en) * 2007-10-19 2009-05-07 Fdk Corp Ferrite sheet for noise countermeasure
JP2009184872A (en) * 2008-02-06 2009-08-20 Panasonic Corp Ferrite sintered product and production method therefor
JP4752849B2 (en) * 2008-02-06 2011-08-17 パナソニック株式会社 Manufacturing method of sintered ferrite
KR101197684B1 (en) * 2009-04-07 2012-11-05 주식회사 아모텍 Magnetic Sheet, RF Identification Antenna Having Radiation Pattern Incorporated into Magnetic Sheet, and Method for Producing the Same
JP2011233740A (en) * 2010-04-28 2011-11-17 Nec Tokin Corp Magnetic sheet
US8323776B2 (en) 2011-04-08 2012-12-04 Maruwa Co., Ltd. Composite ferrite sheet, method of fabricating the composite ferrite sheet, and array of sintered ferrite segments used to form the composite ferrite sheet
WO2013035281A1 (en) * 2011-09-09 2013-03-14 パナソニック株式会社 Non-contact charging module, electronic apparatus, and non-contact charging apparatus
CN103200807A (en) * 2012-01-10 2013-07-10 3M创新有限公司 Drilling sintering ferrite sheet, antenna isolation body and antenna module
WO2013104110A1 (en) * 2012-01-10 2013-07-18 3M Innovative Properties Company Hole-drilled sintered ferrite sheet, antenna isolator, and antenna module
CN103200807B (en) * 2012-01-10 2016-08-03 3M创新有限公司 Boring ferrite sintered body sheet material, antenna isolation body and Anneta module
JP5045858B1 (en) * 2012-04-12 2012-10-10 パナソニック株式会社 Non-contact charging module manufacturing method and non-contact charging module
JP5136710B1 (en) * 2012-04-26 2013-02-06 パナソニック株式会社 Manufacturing method of magnetic sheet
JP2014019163A (en) * 2012-07-12 2014-02-03 Skc Co Ltd Ceramic laminated sheet having flexibility and method for producing the same
KR102018411B1 (en) * 2012-10-31 2019-09-04 도다 고교 가부시끼가이샤 Ferrite sintered plate and ferrite sintered sheet
CN104756204B (en) * 2012-10-31 2019-01-22 户田工业株式会社 Ferrite sintered plate and ferrite sintered
CN104756204A (en) * 2012-10-31 2015-07-01 户田工业株式会社 Ferrite sintered plate and ferrite sintered sheet
KR20150079612A (en) 2012-10-31 2015-07-08 도다 고교 가부시끼가이샤 Ferrite sintered plate and ferrite sintered sheet
US9824802B2 (en) 2012-10-31 2017-11-21 Toda Kogyo Corp. Ferrite sintered plate and ferrite sintered sheet
WO2014069440A1 (en) 2012-10-31 2014-05-08 戸田工業株式会社 Ferrite sintered plate and ferrite sintered sheet
WO2014088954A1 (en) * 2012-12-06 2014-06-12 3M Innovative Properties Company Ferrite green sheet, sintered ferrite sheet, ferrite composite sheet comprising the same, and conductive loop antenna module
CN104885166A (en) * 2012-12-06 2015-09-02 3M创新有限公司 Ferrite green sheet, sintered ferrite sheet, ferrite composite sheet comprising the same, and conductive loop antenna module
JP2016503233A (en) * 2012-12-06 2016-02-01 スリーエム イノベイティブ プロパティズ カンパニー Ferrite green sheet, sintered ferrite sheet, ferrite composite sheet including the same, and conductive loop antenna module
US9847577B2 (en) 2012-12-06 2017-12-19 3M Innovative Properties Company Ferrite green sheet, sintered ferrite sheet, ferrite composite sheet comprising the same, and conductive loop antenna module
KR101484006B1 (en) 2013-01-24 2015-01-20 에스케이씨 주식회사 Ceramic laminate sheet with improved adhesion and preparation method thereof
KR101447533B1 (en) * 2013-02-27 2014-10-06 에스케이씨 주식회사 Flexible ceramic component
CN104107983A (en) * 2013-04-19 2014-10-22 上海景奕电子科技有限公司 Novel laser cutting method for ferrite
CN104107984A (en) * 2013-04-19 2014-10-22 上海景奕电子科技有限公司 Laser die-cutting jig for ferrite materials
US10231343B2 (en) 2014-02-28 2019-03-12 Murata Manufacturing Co., Ltd. Methods for producing ceramic substrates and module components
CN103963389A (en) * 2014-04-30 2014-08-06 广州新莱福磁电有限公司 Flexible diaphragm type ceramic material and preparation method thereof
KR20160132462A (en) 2014-05-27 2016-11-18 가부시키가이샤 무라타 세이사쿠쇼 Mother ceramic substrate, ceramic substrate, mother module component, module component, and manufacturing method for mother ceramic substrate
US10257927B2 (en) 2014-05-27 2019-04-09 Murata Manufacturing Co., Ltd. Mother ceramic substrate, ceramic substrate, mother module component, module component, and method of manufacturing mother ceramic substrate
WO2016092735A1 (en) * 2014-12-11 2016-06-16 戸田工業株式会社 Ceramic composite sheet and method for manufacturing same
KR102384341B1 (en) 2014-12-12 2022-04-08 미래나노텍(주) Ferrite sheet, ferrite complex sheet comprising the same and manufacturing method thereof and patterning mold
KR20160072396A (en) * 2014-12-12 2016-06-23 미래나노텍(주) Ferrite sheet, ferrite complex sheet comprising the same and manufacturing method thereof and patterning mold
CN108349814A (en) * 2015-11-11 2018-07-31 阿莫泰克有限公司 The manufacturing method of ferrite sheet and use its ferrite sheet
CN108349814B (en) * 2015-11-11 2021-09-28 阿莫泰克有限公司 Ferrite sheet manufacturing method and ferrite sheet using same
US10587049B2 (en) 2015-12-08 2020-03-10 3M Innovative Properties Company Magnetic isolator, method of making the same, and device containing the same
US10734725B2 (en) 2015-12-08 2020-08-04 3M Innovative Properties Company Magnetic isolator, method of making the same, and device containing the same
JP2017204553A (en) * 2016-05-11 2017-11-16 Fdk株式会社 Ferrite core and method of manufacturing ferrite core
CN113168947A (en) * 2018-12-20 2021-07-23 3M创新有限公司 Magnetic film
JP2020150105A (en) * 2019-03-13 2020-09-17 Tdk株式会社 Ferrite structure and manufacturing method thereof
WO2023026890A1 (en) * 2021-08-26 2023-03-02 戸田工業株式会社 Ferrite sheet, and antenna apparatus and non-contact power supply apparatus using same

Also Published As

Publication number Publication date
JP4277596B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4277596B2 (en) Sintered ferrite substrate
JP3908549B2 (en) RFID tag manufacturing method
US20160249495A1 (en) An electrically conductive article containing shaped particles and methods of making same
KR101476044B1 (en) Ferrite Green Sheet, Sintered Ferrite Sheet, Ferrite Complex Sheet Comprising the Same, and Conductive Loop Antenna Module
JP5868175B2 (en) Manufacturing method of electronic parts
JP4876542B2 (en) Non-contact IC tag label
JP5499443B2 (en) Composite magnetic material and wireless communication apparatus including the same
WO2017100029A1 (en) Magnetic isolator, method of making the same, and device containing the same
WO2014088954A1 (en) Ferrite green sheet, sintered ferrite sheet, ferrite composite sheet comprising the same, and conductive loop antenna module
KR101259080B1 (en) Ferrite Sheet Assembly and Method for making the same
JP4899403B2 (en) Non-contact IC tag label
KR101286167B1 (en) Ferrite sheet complex and method for fabricating the same
JP2005223470A (en) Transfer-type copper foil antenna
US20220367325A1 (en) Methods and devices using microchannels for interconnections
KR101178836B1 (en) RFID antenna structures and RFID antenna manufacturing method thereof
JP4876842B2 (en) IC tag label
JPWO2016092735A1 (en) Ceramic composite sheet and manufacturing method thereof
KR101310358B1 (en) Sintered Ferrite Powder, Electromagnetic Absorbing Sheet Assembly using the same and Method for making the Powder and the Assembly
JP2006127475A (en) Communication circuit holder
JP6451801B1 (en) Electromagnetic shielding film used for manufacturing method of electromagnetic shielding electronic device and manufacturing method of electromagnetic shielding electronic device
JP2017033436A (en) Ic tag label, ic tag label sheet and manufacturing method of ic tag label sheet
JP2006127472A (en) Communication circuit holder
JP2014160174A (en) IC tag label
KR101195048B1 (en) Ferrite sheet complex and method for fabricating the same
JPWO2016067616A1 (en) Manufacturing method of ceramic composite sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4277596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term