JP2005014021A - レーザ加工機及びレーザ加工制御方法 - Google Patents
レーザ加工機及びレーザ加工制御方法 Download PDFInfo
- Publication number
- JP2005014021A JP2005014021A JP2003179650A JP2003179650A JP2005014021A JP 2005014021 A JP2005014021 A JP 2005014021A JP 2003179650 A JP2003179650 A JP 2003179650A JP 2003179650 A JP2003179650 A JP 2003179650A JP 2005014021 A JP2005014021 A JP 2005014021A
- Authority
- JP
- Japan
- Prior art keywords
- laser beam
- laser
- workpiece
- recess
- drilling position
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Laser Beam Processing (AREA)
Abstract
【課題】本発明はワークにレーザ光を照射した際にスパッタが垂直方向に飛散しないように穴あけ加工を行うことを課題とする。
【解決手段】レーザ加工機10は、任意のエネルギ密度のレーザ光をワークWの加工点に照射するようにレーザ電源14の電圧制御、及びXYステージ18の移動制御を行う制御装置24を有する。制御装置24は、ワークWの穴あけ加工位置に低エネルギのレーザ光を照射して穴あけ加工位置に凹部を形成し、その後、凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射するようにする。低エネルギのレーザ光によりワーク表面に凹部が形成されるため、高エネルギのレーザ光を照射した際は、スパッタが垂直方向に飛散せず、ノズル及び保護ガラスにスパッタが付着することが防止される。
【選択図】 図1
【解決手段】レーザ加工機10は、任意のエネルギ密度のレーザ光をワークWの加工点に照射するようにレーザ電源14の電圧制御、及びXYステージ18の移動制御を行う制御装置24を有する。制御装置24は、ワークWの穴あけ加工位置に低エネルギのレーザ光を照射して穴あけ加工位置に凹部を形成し、その後、凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射するようにする。低エネルギのレーザ光によりワーク表面に凹部が形成されるため、高エネルギのレーザ光を照射した際は、スパッタが垂直方向に飛散せず、ノズル及び保護ガラスにスパッタが付着することが防止される。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明はノズルの先端開口よりレーザ光をワークに照射して金属材料に穴あけ加工を行うレーザ加工機及びレーザ加工制御方法に関する。
【0002】
【従来の技術】
例えば、レーザ加工機を用いて金属材料に穴あけ加工する場合、穴あけ加工中に発生するスパッタ(溶融した金属の粒)が垂直方向に飛散してノズル及びノズル先端に装着された保護ガラスに付着するという問題があった。特にワークとしての金属材料の厚さ寸法が厚い場合には、ワークに照射されるレーザ光のエネルギを高める必要があり、その分穴あけ加工位置を高温に加熱し、且つレーザ光の照射時間も長くする必要があるので、レーザ加工の初期段階にスパッタが垂直方向に飛散しやすい傾向にある。
【0003】
このようなスパッタの発生原因としては、例えば、レーザ光のエネルギ密度が高すぎると金属表面の溶融部分から金属蒸気の反力による場合、あるいはワークの材料内部に介在する不純物や表面に付着している有機剤、亜鉛めっきなどの燃焼ガスが急激に膨張した場合などが考えられる。
【0004】
このようなレーザ光の照射によるスパッタによる影響を受けないようにレーザ加工する方法として、例えば、ワークと加工ヘッドとの距離を距離センサにより測定してスパッタの影響を受けないように加工モードを切り替える方法がある(例えば、特許文献1参照)。
【0005】
この特許文献1に記載された制御方法によれば、ワークと加工ヘッドとの距離を測定する必要があり、且つ比較的厚さのある金属板をレーザ加工する場合には、レーザ光のエネルギを高くして加工する必要があるので、スパッタがノズルに付着することを防止するために、加工ヘッドをワークから離間させることになる。
【0006】
【特許文献1】
特開平8−206862号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記制御方法では、ワークと加工ヘッドとの距離を測定する距離センサを設けなければならず、加工ヘッドの構成が複雑化するばかりか、加工開始時に加工ヘッドをワークから離間させると共に、加工ヘッドに設けられたレンズからワークまでの距離に応じてワークに対するレーザ光の焦点距離を制御し、且つレーザ光のエネルギを高くしなければならないため、厚さのあるワークを穴あけ加工するのに、加工効率が低下するという問題があった。
【0008】
そこで、本発明は上記課題を解決したレーザ加工機及びレーザ加工制御方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は上記課題を解決するため、以下のような特徴を有する。
【0010】
上記請求項1記載の発明は、ワークの穴あけ加工位置に低エネルギのレーザ光を照射して穴あけ加工位置に凹部を形成し、その後凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射するレーザ光制御手段を備えたものであり、ワークの穴あけ加工位置に予め凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止し、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止しうると共に、短時間で効率良く穴あけ加工を行える。
【0011】
また、請求項2記載の発明は、レーザ光制御手段が、穴あけ加工に必要なエネルギよりも低いエネルギに抑えたレーザ光をワークの穴あけ加工位置に照射して穴あけ加工位置に凹部を形成する第1段階制御手段と、凹部を形成された前記穴あけ加工位置に高エネルギのレーザ光を照射する第2段階制御手段と、を有するものであり、ワークの穴あけ加工位置に凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止し、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止しうると共に、短時間で効率良く穴あけ加工を行える。
【0012】
また、請求項3記載の発明は、低エネルギのレーザ光のエネルギ密度を高エネルギのレーザ光に対して1/10以下に制御するものであり、消費電力を節約できると共に、スパッタが垂直方向に飛散することを防止できる。
【0013】
また、請求項4記載の発明は、低エネルギのレーザ光の照射時間を高エネルギのレーザ光に対して1/3以下に制御するものであり、消費電力を節約できると共に、スパッタが垂直方向に飛散することを防止できる。
【0014】
また、請求項5記載の発明は、ノズルを耐熱性及び低摩擦係数を有する材料により形成したものであり、スパッタがノズル及びノズル内部に設けられた保護ガラスに付着することを防止しうる。
【0015】
また、請求項6記載の発明は、ワークの穴あけ加工位置に低エネルギのレーザ光を照射して穴あけ加工位置に凹部を形成し、その後凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射するものであり、ワークの穴あけ加工位置に予め凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止し、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止しうると共に、短時間で効率良く穴あけ加工を行える。
【0016】
また、請求項7記載の発明は、穴あけ加工に必要なエネルギよりも低いエネルギに抑えたレーザ光をワークの穴あけ加工位置に照射して穴あけ加工位置に凹部を形成する第1段階と、凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射する第2段階と、を有するものであり、ワークの穴あけ加工位置に凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止し、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止しうると共に、短時間で効率良く穴あけ加工を行える。
【0017】
【発明の実施の形態】
以下、図面と共に本発明の一実施例について説明する。
図1は本発明になるレーザ加工機の一実施例を示す正面図である。図2はレーザ加工機の平面図である。
【0018】
図1及び図2に示されるように、レーザ加工機10は、レーザ光を発生させるレーザ光ユニット12と、レーザ電源14と、ワーク保持テーブル16と、XYステージ18とを有する。また、レーザ加工機10は、移動可能なフレーム20に各機器が搭載されており、ワーク保持テーブル16に金属板からなるワークWが載置されると、ワークWをXYステージ18によりX方向及びY方向に移動させてレーザ光が照射される位置とワークWの被加工位置との位置合わせを行う。
【0019】
レーザ光ユニット12は、レーザ発振器50及びレンズ、ミラーなどからなる光学系から構成されており、レーザ発振器50はレーザ電源14から印加された電圧に応じたエネルギを有するレーザ光をノズルユニット22に出射する。レーザ光ユニット12の側面に取り付けられたノズルユニット22は、レーザ光を下方に位置するワークWに向けて照射するように構成されている。また、ノズルユニット22は、ワークWに対して高さ方向(Z方向)の位置を調整するように昇降可能に設けられている。
【0020】
また、レーザ加工機10は、任意のエネルギ密度のレーザ光をワークWの加工点に照射するようにレーザ電源14の電圧制御、及びXYステージ18の移動制御を行う制御装置24を有する。
【0021】
制御装置24は、例えば、マイクロコンピュータなどからなり、後述するように予めメモリ(図示せず)に格納された制御プログラムに基づいてワークWの材質や厚さに応じた加工条件(エネルギ密度、加工時間、レーザ周波数)でレーザ加工処理を行う。そして、制御装置24のメモリ(図示せず)には、ワークWの穴あけ加工位置に低エネルギのレーザ光を照射して穴あけ加工位置に凹部を形成し、その後、凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射する制御プログラム(レーザ光制御手段)が格納されている。
【0022】
ここで、ノズルユニット22の構成について図3及び図4を参照して説明する。
図3はノズルユニット22を拡大して示す正面図である。図4はノズルユニット22の内部構造を示す縦断面図である。
【0023】
図3及び図4に示されるように、ノズルユニット22は、円筒状に形成された筐体26と、筐体26の内部に保持された結像光学系のレンズ28と、筐体26の下方に同軸的に取り付けられた中空形状のノズルスリーブ30と、ノズルスリーブ30の内部に保持された保護ガラス32と、ノズルスリーブ30の下部に螺入されたノズル保持部材34と、ノズル保持部材34に固着されたノズル36とを有する。
【0024】
ノズル36は、耐熱性及び低摩擦係数を有する樹脂材料(例えば、4フッ化エチレン樹脂)により一体成形されている。そのため、ノズル36の表面は、熱に強く、且つ滑らかに形成されているため、例えば、ワークWにレーザ光を照射してスパッタが飛散した場合でもスパッタの粒子が付着しにくくなっている。これにより、ノズル36のスパッタ付着による損傷が軽減されてノズル寿命を延長することが可能になる。
【0025】
ノズル36は、内部が中空36aとされた円錐形状(テーパ状)に形成されており、先端(下端)がレーザ光を通過するように開口36bとなっている。このノズル36は、レンズ28と同軸に取り付けられており、レンズ28によって集光されたレーザ光をワークWに向けて出射させると共に、アシストガスを開口36bから噴出するように構成されている。このアシストガスの噴射によりレーザ加工時にワークから飛散するスパッタが周囲に吹き飛ばされる。
【0026】
さらに、筐体26の外周には、アシストガスをノズル36へ供給するガス供給管路38が接続される継手40と、アシストガスの圧力を測定する圧力計42とが取り付けられている。また、ノズルスリーブ30は、上端に嵌合固定された固定部44が筐体26の外周に螺入された締め付けねじ46により固定される。
【0027】
図5はレーザ加工機10の概略構成を示すブロック図である。
図5に示されるように、レーザ加工機10は、上記各部の他にレーザ発振器50、反射ミラー52、ガス出射装置54、駆動装置56、サーボモータ58とを有する。
【0028】
レーザ発振器50は、YAGレーザを出力するように構成されている。レーザ発振器50から出射されたレーザ光は、反射ミラー52を介して、ワーク保持テーブル16に向けてレーザ光を反射してワークWに入射される。そして、ノズルユニット22のレンズ28により、所望の穴径にて加工が行われるようレーザ光が集光され、ワークWに対するレーザ加工が行われる。
【0029】
さらに、ノズルユニット22には、レーザ加工により発生する融解物等を吹き飛ばすための酸素ガス、圧縮空気、又は、窒素ガス等からなるアシストガスがガス出射装置54から供給される。
【0030】
駆動装置56は、ノズルユニット22をZ方向に移動し、ワークWに対して結像位置の調整を行う。また、XYステージ18は、サーボモータ58によりX方向及び、Y方向へ移動する。また、XYステージ18は、例えばワークWの大きさに応じたストロークの範囲で移動可能に設けられている。
【0031】
また、制御装置24は、レーザ発振器50からのレーザ光の強度及び出射タイミングと、駆動装置56によるノズルユニット22の昇降移動と、ガス出射装置56からのアシストガスの出射タイミングと、サーボモータ58におけるXYステージ18の移動タイミングとを制御している。
【0032】
ここで、制御装置24が実行する制御処理について説明する。
図6は第1,第2段階エネルギ設定処理を説明するためのフローチャートである。
【0033】
図6に示されるように、制御装置24は、S11において、レーザ加工に必要なエネルギ密度の設定操作が行われ、ワークWの厚さ、材質(硬度や耐熱温度)に応じた数値(例えば、レーザ光のエネルギレベルの値)が入力されると、S12に進み、入力されたレーザエネルギ値に対応する第2段階(高レベル)のエネルギ密度を選択し、記憶する。本実施例においては、例えば、第2段階(高レベル)のエネルギ密度を12J/P程度に設定するものとする。
【0034】
次のS13では、設定されたエネルギ密度に基づいて第2段階レーザ加工の時間、レーザ周波数を選択する。本実施例においては、例えば、第2段階レーザ加工時間を1msecに設定し、レーザ周波数を10Hz程度に設定する。
【0035】
続いて、S14に進み、ワークWにレーザ光を照射した際、セルフバーニングが発生しない程度の低レベルのエネルギ値を第1段階(低レベル)のレーザエネルギとして選択し、記憶する。例えば、第1段階(低レベル)のエネルギ密度は、第2段階(高レベル)の1/10〜1/20となるように選択される。本実施例においては、例えば、第1段階(低レベル)のエネルギ密度を0.6J/P程度に設定するものとする。そのため、同じ加工点にレーザ光を2回照射することになるが、消費電力を節約できる。
【0036】
次のS15では、S14で設定された第1段階(低レベル)のレーザエネルギ値に基づいて第1段階レーザ加工時間、レーザ周波数を選択する。例えば、第1段階レーザ加工時間は、第2段階(高レベル)のレーザ加工時間の1/3以下となるように選択される。また、レーザ周波数、第2段階(高レベル)のレーザ周波数の1/10程度となるように選択される。本実施例においては、例えば、第1段階レーザ加工時間を0.3msecに設定し、レーザ周波数を100Hz程度に設定する。
【0037】
このように、制御装置24は、ワークWの厚さ、材質(硬度や耐熱温度)に応じた数値(例えば、レーザエネルギ値)が入力されると、その入力値に基づいて第1段階及び第2段階のエネルギ密度、レーザ加工時間、レーザ周波数を設定することができる。
【0038】
尚、本実施例では、図6に示す制御処理により第1段階の加工条件及び第2段階の加工条件を設定する方法について説明したが、これに限らず、例えば、レーザ加工機10の操作者がエネルギ密度、レーザ加工時間、レーザ周波数の数値を入力操作することで第1段階の加工条件及び第2段階の加工条件を設定することも可能である。
【0039】
図7は制御装置24が実行するレーザ加工処理を説明するためのフローチャートである。
図7に示されるように、制御装置24は、S21において、レーザ加工機10のスタートスイッチ(図示せず)がオンに操作されると、S22に進み、ワークWに対応して予め設定された第1の加工点のXY座標データをデータベースから読み出す。そして、S23に進み、第1の加工点のXY座標データに基づいてXYステージ18を駆動して第1の加工点をノズルユニット22の中心線(レーザ光の光軸)の座標位置と一致させる。
【0040】
S24では、レーザ光の照射位置(ノズルユニット22の中心線の座標位置)と第1の加工点の座標位置とが一致したことを確認する。S24において、レーザ光の照射位置と第1の加工点の座標位置とが不一致のときは、上記S23に戻り、XYステージ18を駆動する。そして、上記S24において、レーザ光の照射位置と第1の加工点の座標位置とが一致したときは、S25に進み、前述したS14、S15で設定された第1段階の加工条件の制御データ(エネルギ密度0.6J/P、第1段階レーザ加工時間0.3msec、レーザ周波数100Hz)を読み込む。
【0041】
続いて、S26に進み、上記S25で読み込んだ加工条件(第1段階の低エネルギ)の制御データ(パラメータ)に基づいてレーザ発振器50からレーザ光を出射し、図8(A)に示されるように、ワークWの第1の加工点に照射する。これにより、第1の加工点の表面には、低エネルギのレーザ光による微小な凹部60が形成される。この微小な凹部60は、比較的浅い凹みであり、僅かな傷を付けたようなものである。
【0042】
また、第1段階で低エネルギのレーザ光がワークWに照射される際、第1の加工点の温度上昇が比較的小さいので、セルフバーニングが発生せず、スパッタが殆ど飛散しない。さらに、ノズル36には、ガス出射装置54からアシストガスが供給されており、開口36bからワークWの表面に向けてアシストガスが吹き付けられる。そのため、少量のスパッタが発生してもアシストガスによって側方に飛ばされてしまうため、スパッタが垂直方向に飛ぶことが防止される。
【0043】
次のS27では、前述したS12、S13で設定された第2段階の加工条件の制御データ(エネルギ密度12J/P、第2段階レーザ加工時間1.0msec、レーザ周波数10Hz)を読み込む。
【0044】
続いて、S28に進み、上記S27で読み込んだ加工条件(第2段階の高エネルギ)の制御データ(パラメータ)に基づいてレーザ発振器50からレーザ光を出射し、図8(B)に示されるように、ワークWの第1の加工点に照射する。これにより、微小な凹部60に高エネルギのレーザ光が照射されてレーザ加工が行われる。
【0045】
その際、微小な凹部60の表面温度が上昇すると共に、深さ方向への溶融62が進行するが、微小な凹部60によってセルフバーニングが発生せず、スパッタの発生が抑制される。そのため、第1の加工点の周囲にスパッタによる盛り上がりが発生せず、クレータ状になることが防止される。これにより、レーザ光による穴あけ加工の品質を向上させることができる。
【0046】
さらに、凹部60の温度が上昇するのに伴ってスパッタ64が発生した場合には、ワークW表面が凹んでいるので、スパッタ64は、垂直方向に飛散せず、ノズル36及びノズル36の内部に保持された保護ガラス32に付着しない。そのため、ノズル36の寿命が延長されて交換回数を減らすことができる。
【0047】
このように、第1段階で低エネルギのレーザ光をワークWに照射し、第2段階で高エネルギのレーザ光をワークWに照射することにより、スパッタ64が垂直方向に飛散しないように穴あけ加工を行うことが可能になり、且つスパッタ付着を防止するためにワークWに対するノズル36の高さ位置を制御する必要もないので、短時間で効率良く穴あけ加工を完了することができる。
【0048】
次のS29では、次に加工する第2の加工点のデータ(座標位置)が設定されている場合には、前述したS22に戻り、第2の加工点の座標データを取得してS22〜S28の処理を繰り返す。そして、上記S29において、最後の加工点の穴あけ加工が終了すると、当該ワークWに対するレーザ加工が終了する。
【0049】
尚、上記実施例では、レーザ発振器50から出射するレーザ光をYAGレーザとしたが、これに限らないのは勿論である。
【0050】
また、上記実施例では、第1段階の加工条件と第2段階の加工条件を例示したが、上記エネルギ、加工時間、周波数の数値は、これに限らず、ワークWの材質や厚さに応じて任意に設定することが可能である。
【0051】
【発明の効果】
上述の如く、請求項1記載の発明によれば、ワークの穴あけ加工位置に低エネルギのレーザ光を照射して穴あけ加工位置に凹部を形成し、その後凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射するレーザ光制御手段を備えたため、ワークの穴あけ加工位置に予め凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止でき、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止できると共に、短時間で効率良く穴あけ加工を行うことができる。
【0052】
また、請求項2記載の発明によれば、穴あけ加工に必要なエネルギよりも低いエネルギに抑えたレーザ光をワークの穴あけ加工位置に照射して穴あけ加工位置に凹部を形成する第1段階制御手段と、凹部を形成された前記穴あけ加工位置に高エネルギのレーザ光を照射する第2段階制御手段と、を有するため、ワークの穴あけ加工位置に凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止でき、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止できると共に、短時間で効率良く穴あけ加工を行うことができる。
【0053】
また、請求項3記載の発明によれば、低エネルギのレーザ光のエネルギ密度を高エネルギのレーザ光に対して1/10以下に制御するため、消費電力を節約できると共に、スパッタが垂直方向に飛散することを防止できる。
【0054】
また、請求項4記載の発明によれば、低エネルギのレーザ光の照射時間を高エネルギのレーザ光に対して1/3以下に制御するため、消費電力を節約できると共に、スパッタが垂直方向に飛散することを防止できる。
【0055】
また、請求項5記載の発明によれば、ノズルを耐熱性及び低摩擦係数を有する材料により形成したため、スパッタがノズル及びノズル内部に設けられた保護ガラスに付着することを防止できる。
【0056】
また、請求項6記載の発明によれば、ワークの穴あけ加工位置に低エネルギのレーザ光を照射して穴あけ加工位置に凹部を形成し、その後凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射するため、ワークの穴あけ加工位置に予め凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止でき、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止できると共に、短時間で効率良く穴あけ加工を行うことができる。
【0057】
また、請求項7記載の発明によれば、穴あけ加工に必要なエネルギよりも低いエネルギに抑えたレーザ光をワークの穴あけ加工位置に照射して穴あけ加工位置に凹部を形成する第1段階と、凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射する第2段階と、を有するため、ワークの穴あけ加工位置に凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止でき、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止できると共に、短時間で効率良く穴あけ加工を行うことができる。
【図面の簡単な説明】
【図1】本発明になるレーザ加工機の一実施例を示す正面図である。
【図2】レーザ加工機の平面図である。
【図3】ノズルユニット22を拡大して示す正面図である。
【図4】ノズルユニット22の内部構造を示す縦断面図である。
【図5】レーザ加工機10の概略構成を示すブロック図である。
【図6】第1,第2段階エネルギ設定処理を説明するためのフローチャートである。
【図7】制御装置24が実行するレーザ加工処理を説明するためのフローチャートである。
【図8】第1,第2段階エネルギのレーザ光を照射した状態を説明するための図である。
【符号の説明】
10 レーザ加工機
12 レーザ光ユニット
14 レーザ電源
16 ワーク保持テーブル
18 XYステージ
22 ノズルユニット
24 制御装置
26 筐体
28 レンズ
30 ノズルスリーブ
34 ノズル保持部材
36 ノズル
50 レーザ発振器
54 ガス出射装置
56 駆動装置
58 サーボモータ
60 凹部
64 スパッタ
【発明の属する技術分野】
本発明はノズルの先端開口よりレーザ光をワークに照射して金属材料に穴あけ加工を行うレーザ加工機及びレーザ加工制御方法に関する。
【0002】
【従来の技術】
例えば、レーザ加工機を用いて金属材料に穴あけ加工する場合、穴あけ加工中に発生するスパッタ(溶融した金属の粒)が垂直方向に飛散してノズル及びノズル先端に装着された保護ガラスに付着するという問題があった。特にワークとしての金属材料の厚さ寸法が厚い場合には、ワークに照射されるレーザ光のエネルギを高める必要があり、その分穴あけ加工位置を高温に加熱し、且つレーザ光の照射時間も長くする必要があるので、レーザ加工の初期段階にスパッタが垂直方向に飛散しやすい傾向にある。
【0003】
このようなスパッタの発生原因としては、例えば、レーザ光のエネルギ密度が高すぎると金属表面の溶融部分から金属蒸気の反力による場合、あるいはワークの材料内部に介在する不純物や表面に付着している有機剤、亜鉛めっきなどの燃焼ガスが急激に膨張した場合などが考えられる。
【0004】
このようなレーザ光の照射によるスパッタによる影響を受けないようにレーザ加工する方法として、例えば、ワークと加工ヘッドとの距離を距離センサにより測定してスパッタの影響を受けないように加工モードを切り替える方法がある(例えば、特許文献1参照)。
【0005】
この特許文献1に記載された制御方法によれば、ワークと加工ヘッドとの距離を測定する必要があり、且つ比較的厚さのある金属板をレーザ加工する場合には、レーザ光のエネルギを高くして加工する必要があるので、スパッタがノズルに付着することを防止するために、加工ヘッドをワークから離間させることになる。
【0006】
【特許文献1】
特開平8−206862号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記制御方法では、ワークと加工ヘッドとの距離を測定する距離センサを設けなければならず、加工ヘッドの構成が複雑化するばかりか、加工開始時に加工ヘッドをワークから離間させると共に、加工ヘッドに設けられたレンズからワークまでの距離に応じてワークに対するレーザ光の焦点距離を制御し、且つレーザ光のエネルギを高くしなければならないため、厚さのあるワークを穴あけ加工するのに、加工効率が低下するという問題があった。
【0008】
そこで、本発明は上記課題を解決したレーザ加工機及びレーザ加工制御方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は上記課題を解決するため、以下のような特徴を有する。
【0010】
上記請求項1記載の発明は、ワークの穴あけ加工位置に低エネルギのレーザ光を照射して穴あけ加工位置に凹部を形成し、その後凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射するレーザ光制御手段を備えたものであり、ワークの穴あけ加工位置に予め凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止し、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止しうると共に、短時間で効率良く穴あけ加工を行える。
【0011】
また、請求項2記載の発明は、レーザ光制御手段が、穴あけ加工に必要なエネルギよりも低いエネルギに抑えたレーザ光をワークの穴あけ加工位置に照射して穴あけ加工位置に凹部を形成する第1段階制御手段と、凹部を形成された前記穴あけ加工位置に高エネルギのレーザ光を照射する第2段階制御手段と、を有するものであり、ワークの穴あけ加工位置に凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止し、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止しうると共に、短時間で効率良く穴あけ加工を行える。
【0012】
また、請求項3記載の発明は、低エネルギのレーザ光のエネルギ密度を高エネルギのレーザ光に対して1/10以下に制御するものであり、消費電力を節約できると共に、スパッタが垂直方向に飛散することを防止できる。
【0013】
また、請求項4記載の発明は、低エネルギのレーザ光の照射時間を高エネルギのレーザ光に対して1/3以下に制御するものであり、消費電力を節約できると共に、スパッタが垂直方向に飛散することを防止できる。
【0014】
また、請求項5記載の発明は、ノズルを耐熱性及び低摩擦係数を有する材料により形成したものであり、スパッタがノズル及びノズル内部に設けられた保護ガラスに付着することを防止しうる。
【0015】
また、請求項6記載の発明は、ワークの穴あけ加工位置に低エネルギのレーザ光を照射して穴あけ加工位置に凹部を形成し、その後凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射するものであり、ワークの穴あけ加工位置に予め凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止し、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止しうると共に、短時間で効率良く穴あけ加工を行える。
【0016】
また、請求項7記載の発明は、穴あけ加工に必要なエネルギよりも低いエネルギに抑えたレーザ光をワークの穴あけ加工位置に照射して穴あけ加工位置に凹部を形成する第1段階と、凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射する第2段階と、を有するものであり、ワークの穴あけ加工位置に凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止し、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止しうると共に、短時間で効率良く穴あけ加工を行える。
【0017】
【発明の実施の形態】
以下、図面と共に本発明の一実施例について説明する。
図1は本発明になるレーザ加工機の一実施例を示す正面図である。図2はレーザ加工機の平面図である。
【0018】
図1及び図2に示されるように、レーザ加工機10は、レーザ光を発生させるレーザ光ユニット12と、レーザ電源14と、ワーク保持テーブル16と、XYステージ18とを有する。また、レーザ加工機10は、移動可能なフレーム20に各機器が搭載されており、ワーク保持テーブル16に金属板からなるワークWが載置されると、ワークWをXYステージ18によりX方向及びY方向に移動させてレーザ光が照射される位置とワークWの被加工位置との位置合わせを行う。
【0019】
レーザ光ユニット12は、レーザ発振器50及びレンズ、ミラーなどからなる光学系から構成されており、レーザ発振器50はレーザ電源14から印加された電圧に応じたエネルギを有するレーザ光をノズルユニット22に出射する。レーザ光ユニット12の側面に取り付けられたノズルユニット22は、レーザ光を下方に位置するワークWに向けて照射するように構成されている。また、ノズルユニット22は、ワークWに対して高さ方向(Z方向)の位置を調整するように昇降可能に設けられている。
【0020】
また、レーザ加工機10は、任意のエネルギ密度のレーザ光をワークWの加工点に照射するようにレーザ電源14の電圧制御、及びXYステージ18の移動制御を行う制御装置24を有する。
【0021】
制御装置24は、例えば、マイクロコンピュータなどからなり、後述するように予めメモリ(図示せず)に格納された制御プログラムに基づいてワークWの材質や厚さに応じた加工条件(エネルギ密度、加工時間、レーザ周波数)でレーザ加工処理を行う。そして、制御装置24のメモリ(図示せず)には、ワークWの穴あけ加工位置に低エネルギのレーザ光を照射して穴あけ加工位置に凹部を形成し、その後、凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射する制御プログラム(レーザ光制御手段)が格納されている。
【0022】
ここで、ノズルユニット22の構成について図3及び図4を参照して説明する。
図3はノズルユニット22を拡大して示す正面図である。図4はノズルユニット22の内部構造を示す縦断面図である。
【0023】
図3及び図4に示されるように、ノズルユニット22は、円筒状に形成された筐体26と、筐体26の内部に保持された結像光学系のレンズ28と、筐体26の下方に同軸的に取り付けられた中空形状のノズルスリーブ30と、ノズルスリーブ30の内部に保持された保護ガラス32と、ノズルスリーブ30の下部に螺入されたノズル保持部材34と、ノズル保持部材34に固着されたノズル36とを有する。
【0024】
ノズル36は、耐熱性及び低摩擦係数を有する樹脂材料(例えば、4フッ化エチレン樹脂)により一体成形されている。そのため、ノズル36の表面は、熱に強く、且つ滑らかに形成されているため、例えば、ワークWにレーザ光を照射してスパッタが飛散した場合でもスパッタの粒子が付着しにくくなっている。これにより、ノズル36のスパッタ付着による損傷が軽減されてノズル寿命を延長することが可能になる。
【0025】
ノズル36は、内部が中空36aとされた円錐形状(テーパ状)に形成されており、先端(下端)がレーザ光を通過するように開口36bとなっている。このノズル36は、レンズ28と同軸に取り付けられており、レンズ28によって集光されたレーザ光をワークWに向けて出射させると共に、アシストガスを開口36bから噴出するように構成されている。このアシストガスの噴射によりレーザ加工時にワークから飛散するスパッタが周囲に吹き飛ばされる。
【0026】
さらに、筐体26の外周には、アシストガスをノズル36へ供給するガス供給管路38が接続される継手40と、アシストガスの圧力を測定する圧力計42とが取り付けられている。また、ノズルスリーブ30は、上端に嵌合固定された固定部44が筐体26の外周に螺入された締め付けねじ46により固定される。
【0027】
図5はレーザ加工機10の概略構成を示すブロック図である。
図5に示されるように、レーザ加工機10は、上記各部の他にレーザ発振器50、反射ミラー52、ガス出射装置54、駆動装置56、サーボモータ58とを有する。
【0028】
レーザ発振器50は、YAGレーザを出力するように構成されている。レーザ発振器50から出射されたレーザ光は、反射ミラー52を介して、ワーク保持テーブル16に向けてレーザ光を反射してワークWに入射される。そして、ノズルユニット22のレンズ28により、所望の穴径にて加工が行われるようレーザ光が集光され、ワークWに対するレーザ加工が行われる。
【0029】
さらに、ノズルユニット22には、レーザ加工により発生する融解物等を吹き飛ばすための酸素ガス、圧縮空気、又は、窒素ガス等からなるアシストガスがガス出射装置54から供給される。
【0030】
駆動装置56は、ノズルユニット22をZ方向に移動し、ワークWに対して結像位置の調整を行う。また、XYステージ18は、サーボモータ58によりX方向及び、Y方向へ移動する。また、XYステージ18は、例えばワークWの大きさに応じたストロークの範囲で移動可能に設けられている。
【0031】
また、制御装置24は、レーザ発振器50からのレーザ光の強度及び出射タイミングと、駆動装置56によるノズルユニット22の昇降移動と、ガス出射装置56からのアシストガスの出射タイミングと、サーボモータ58におけるXYステージ18の移動タイミングとを制御している。
【0032】
ここで、制御装置24が実行する制御処理について説明する。
図6は第1,第2段階エネルギ設定処理を説明するためのフローチャートである。
【0033】
図6に示されるように、制御装置24は、S11において、レーザ加工に必要なエネルギ密度の設定操作が行われ、ワークWの厚さ、材質(硬度や耐熱温度)に応じた数値(例えば、レーザ光のエネルギレベルの値)が入力されると、S12に進み、入力されたレーザエネルギ値に対応する第2段階(高レベル)のエネルギ密度を選択し、記憶する。本実施例においては、例えば、第2段階(高レベル)のエネルギ密度を12J/P程度に設定するものとする。
【0034】
次のS13では、設定されたエネルギ密度に基づいて第2段階レーザ加工の時間、レーザ周波数を選択する。本実施例においては、例えば、第2段階レーザ加工時間を1msecに設定し、レーザ周波数を10Hz程度に設定する。
【0035】
続いて、S14に進み、ワークWにレーザ光を照射した際、セルフバーニングが発生しない程度の低レベルのエネルギ値を第1段階(低レベル)のレーザエネルギとして選択し、記憶する。例えば、第1段階(低レベル)のエネルギ密度は、第2段階(高レベル)の1/10〜1/20となるように選択される。本実施例においては、例えば、第1段階(低レベル)のエネルギ密度を0.6J/P程度に設定するものとする。そのため、同じ加工点にレーザ光を2回照射することになるが、消費電力を節約できる。
【0036】
次のS15では、S14で設定された第1段階(低レベル)のレーザエネルギ値に基づいて第1段階レーザ加工時間、レーザ周波数を選択する。例えば、第1段階レーザ加工時間は、第2段階(高レベル)のレーザ加工時間の1/3以下となるように選択される。また、レーザ周波数、第2段階(高レベル)のレーザ周波数の1/10程度となるように選択される。本実施例においては、例えば、第1段階レーザ加工時間を0.3msecに設定し、レーザ周波数を100Hz程度に設定する。
【0037】
このように、制御装置24は、ワークWの厚さ、材質(硬度や耐熱温度)に応じた数値(例えば、レーザエネルギ値)が入力されると、その入力値に基づいて第1段階及び第2段階のエネルギ密度、レーザ加工時間、レーザ周波数を設定することができる。
【0038】
尚、本実施例では、図6に示す制御処理により第1段階の加工条件及び第2段階の加工条件を設定する方法について説明したが、これに限らず、例えば、レーザ加工機10の操作者がエネルギ密度、レーザ加工時間、レーザ周波数の数値を入力操作することで第1段階の加工条件及び第2段階の加工条件を設定することも可能である。
【0039】
図7は制御装置24が実行するレーザ加工処理を説明するためのフローチャートである。
図7に示されるように、制御装置24は、S21において、レーザ加工機10のスタートスイッチ(図示せず)がオンに操作されると、S22に進み、ワークWに対応して予め設定された第1の加工点のXY座標データをデータベースから読み出す。そして、S23に進み、第1の加工点のXY座標データに基づいてXYステージ18を駆動して第1の加工点をノズルユニット22の中心線(レーザ光の光軸)の座標位置と一致させる。
【0040】
S24では、レーザ光の照射位置(ノズルユニット22の中心線の座標位置)と第1の加工点の座標位置とが一致したことを確認する。S24において、レーザ光の照射位置と第1の加工点の座標位置とが不一致のときは、上記S23に戻り、XYステージ18を駆動する。そして、上記S24において、レーザ光の照射位置と第1の加工点の座標位置とが一致したときは、S25に進み、前述したS14、S15で設定された第1段階の加工条件の制御データ(エネルギ密度0.6J/P、第1段階レーザ加工時間0.3msec、レーザ周波数100Hz)を読み込む。
【0041】
続いて、S26に進み、上記S25で読み込んだ加工条件(第1段階の低エネルギ)の制御データ(パラメータ)に基づいてレーザ発振器50からレーザ光を出射し、図8(A)に示されるように、ワークWの第1の加工点に照射する。これにより、第1の加工点の表面には、低エネルギのレーザ光による微小な凹部60が形成される。この微小な凹部60は、比較的浅い凹みであり、僅かな傷を付けたようなものである。
【0042】
また、第1段階で低エネルギのレーザ光がワークWに照射される際、第1の加工点の温度上昇が比較的小さいので、セルフバーニングが発生せず、スパッタが殆ど飛散しない。さらに、ノズル36には、ガス出射装置54からアシストガスが供給されており、開口36bからワークWの表面に向けてアシストガスが吹き付けられる。そのため、少量のスパッタが発生してもアシストガスによって側方に飛ばされてしまうため、スパッタが垂直方向に飛ぶことが防止される。
【0043】
次のS27では、前述したS12、S13で設定された第2段階の加工条件の制御データ(エネルギ密度12J/P、第2段階レーザ加工時間1.0msec、レーザ周波数10Hz)を読み込む。
【0044】
続いて、S28に進み、上記S27で読み込んだ加工条件(第2段階の高エネルギ)の制御データ(パラメータ)に基づいてレーザ発振器50からレーザ光を出射し、図8(B)に示されるように、ワークWの第1の加工点に照射する。これにより、微小な凹部60に高エネルギのレーザ光が照射されてレーザ加工が行われる。
【0045】
その際、微小な凹部60の表面温度が上昇すると共に、深さ方向への溶融62が進行するが、微小な凹部60によってセルフバーニングが発生せず、スパッタの発生が抑制される。そのため、第1の加工点の周囲にスパッタによる盛り上がりが発生せず、クレータ状になることが防止される。これにより、レーザ光による穴あけ加工の品質を向上させることができる。
【0046】
さらに、凹部60の温度が上昇するのに伴ってスパッタ64が発生した場合には、ワークW表面が凹んでいるので、スパッタ64は、垂直方向に飛散せず、ノズル36及びノズル36の内部に保持された保護ガラス32に付着しない。そのため、ノズル36の寿命が延長されて交換回数を減らすことができる。
【0047】
このように、第1段階で低エネルギのレーザ光をワークWに照射し、第2段階で高エネルギのレーザ光をワークWに照射することにより、スパッタ64が垂直方向に飛散しないように穴あけ加工を行うことが可能になり、且つスパッタ付着を防止するためにワークWに対するノズル36の高さ位置を制御する必要もないので、短時間で効率良く穴あけ加工を完了することができる。
【0048】
次のS29では、次に加工する第2の加工点のデータ(座標位置)が設定されている場合には、前述したS22に戻り、第2の加工点の座標データを取得してS22〜S28の処理を繰り返す。そして、上記S29において、最後の加工点の穴あけ加工が終了すると、当該ワークWに対するレーザ加工が終了する。
【0049】
尚、上記実施例では、レーザ発振器50から出射するレーザ光をYAGレーザとしたが、これに限らないのは勿論である。
【0050】
また、上記実施例では、第1段階の加工条件と第2段階の加工条件を例示したが、上記エネルギ、加工時間、周波数の数値は、これに限らず、ワークWの材質や厚さに応じて任意に設定することが可能である。
【0051】
【発明の効果】
上述の如く、請求項1記載の発明によれば、ワークの穴あけ加工位置に低エネルギのレーザ光を照射して穴あけ加工位置に凹部を形成し、その後凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射するレーザ光制御手段を備えたため、ワークの穴あけ加工位置に予め凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止でき、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止できると共に、短時間で効率良く穴あけ加工を行うことができる。
【0052】
また、請求項2記載の発明によれば、穴あけ加工に必要なエネルギよりも低いエネルギに抑えたレーザ光をワークの穴あけ加工位置に照射して穴あけ加工位置に凹部を形成する第1段階制御手段と、凹部を形成された前記穴あけ加工位置に高エネルギのレーザ光を照射する第2段階制御手段と、を有するため、ワークの穴あけ加工位置に凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止でき、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止できると共に、短時間で効率良く穴あけ加工を行うことができる。
【0053】
また、請求項3記載の発明によれば、低エネルギのレーザ光のエネルギ密度を高エネルギのレーザ光に対して1/10以下に制御するため、消費電力を節約できると共に、スパッタが垂直方向に飛散することを防止できる。
【0054】
また、請求項4記載の発明によれば、低エネルギのレーザ光の照射時間を高エネルギのレーザ光に対して1/3以下に制御するため、消費電力を節約できると共に、スパッタが垂直方向に飛散することを防止できる。
【0055】
また、請求項5記載の発明によれば、ノズルを耐熱性及び低摩擦係数を有する材料により形成したため、スパッタがノズル及びノズル内部に設けられた保護ガラスに付着することを防止できる。
【0056】
また、請求項6記載の発明によれば、ワークの穴あけ加工位置に低エネルギのレーザ光を照射して穴あけ加工位置に凹部を形成し、その後凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射するため、ワークの穴あけ加工位置に予め凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止でき、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止できると共に、短時間で効率良く穴あけ加工を行うことができる。
【0057】
また、請求項7記載の発明によれば、穴あけ加工に必要なエネルギよりも低いエネルギに抑えたレーザ光をワークの穴あけ加工位置に照射して穴あけ加工位置に凹部を形成する第1段階と、凹部を形成された穴あけ加工位置に高エネルギのレーザ光を照射する第2段階と、を有するため、ワークの穴あけ加工位置に凹部を形成することにより高エネルギのレーザ光を照射した際にスパッタが垂直方向に飛散することを防止でき、ノズル及びノズル内部に設けられた保護ガラスにスパッタが付着することを防止できると共に、短時間で効率良く穴あけ加工を行うことができる。
【図面の簡単な説明】
【図1】本発明になるレーザ加工機の一実施例を示す正面図である。
【図2】レーザ加工機の平面図である。
【図3】ノズルユニット22を拡大して示す正面図である。
【図4】ノズルユニット22の内部構造を示す縦断面図である。
【図5】レーザ加工機10の概略構成を示すブロック図である。
【図6】第1,第2段階エネルギ設定処理を説明するためのフローチャートである。
【図7】制御装置24が実行するレーザ加工処理を説明するためのフローチャートである。
【図8】第1,第2段階エネルギのレーザ光を照射した状態を説明するための図である。
【符号の説明】
10 レーザ加工機
12 レーザ光ユニット
14 レーザ電源
16 ワーク保持テーブル
18 XYステージ
22 ノズルユニット
24 制御装置
26 筐体
28 レンズ
30 ノズルスリーブ
34 ノズル保持部材
36 ノズル
50 レーザ発振器
54 ガス出射装置
56 駆動装置
58 サーボモータ
60 凹部
64 スパッタ
Claims (7)
- ノズルの先端開口よりレーザ光をワークに照射して穴あけ加工を行うレーザ加工機において、
前記ワークの穴あけ加工位置に低エネルギのレーザ光を照射して前記穴あけ加工位置に凹部を形成し、その後前記凹部が形成された前記穴あけ加工位置に高エネルギのレーザ光を照射するレーザ光制御手段を備えたことを特徴とするレーザ加工機。 - 前記レーザ光制御手段は、
前記穴あけ加工に必要なエネルギよりも低いエネルギに抑えたレーザ光を前記ワークの穴あけ加工位置に照射して前記穴あけ加工位置に凹部を形成する第1段階制御手段と、
前記凹部を形成された前記穴あけ加工位置に高エネルギのレーザ光を照射する第2段階制御手段と、
を有することを特徴とする請求項1記載のレーザ加工機。 - 前記レーザ光制御手段は、低エネルギのレーザ光のエネルギ密度を高エネルギのレーザ光に対して1/10以下に制御することを特徴とする請求項1または2記載のレーザ加工機。
- 前記レーザ光制御手段は、低エネルギのレーザ光の照射時間を高エネルギのレーザ光に対して1/3以下に制御することを特徴とする請求項1または2記載のレーザ加工機。
- 前記ノズルは、耐熱性及び低摩擦係数を有する材料により形成されたことを特徴とする請求項1記載のレーザ加工機。
- ノズルの先端開口よりレーザ光をワークに照射して穴加工を行うレーザ加工制御方法において、
前記ワークの穴あけ加工位置に低エネルギのレーザ光を照射して前記穴あけ加工位置に凹部を形成し、その後前記凹部を形成された前記穴あけ加工位置に高エネルギのレーザ光を照射することを特徴とするレーザ加工制御方法。 - 前記穴あけ加工に必要なエネルギよりも低いエネルギに抑えたレーザ光を前記ワークの穴あけ加工位置に照射して前記穴あけ加工位置に凹部を形成する第1段階と、
前記凹部を形成された前記穴あけ加工位置に高エネルギのレーザ光を照射する第2段階と、
を有することを特徴とする請求項6記載のレーザ加工制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003179650A JP2005014021A (ja) | 2003-06-24 | 2003-06-24 | レーザ加工機及びレーザ加工制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003179650A JP2005014021A (ja) | 2003-06-24 | 2003-06-24 | レーザ加工機及びレーザ加工制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005014021A true JP2005014021A (ja) | 2005-01-20 |
Family
ID=34180923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003179650A Pending JP2005014021A (ja) | 2003-06-24 | 2003-06-24 | レーザ加工機及びレーザ加工制御方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005014021A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120241425A1 (en) * | 2011-03-22 | 2012-09-27 | Fujitsu Limited | Laser machining apparatus, method for laser machining, and medium for laser machining program |
CN102962589A (zh) * | 2012-11-28 | 2013-03-13 | 江苏金方圆数控机床有限公司 | 一种脉冲激光穿孔装置及其穿孔方法 |
CN104439721A (zh) * | 2013-09-18 | 2015-03-25 | 大族激光科技产业集团股份有限公司 | 采用紫外激光器在胶片上打孔径为微米级别的孔的方法 |
CN107378260A (zh) * | 2016-05-17 | 2017-11-24 | 发那科株式会社 | 激光加工装置和激光加工方法 |
CN115555740A (zh) * | 2022-10-08 | 2023-01-03 | 苏州科韵激光科技有限公司 | 一种玻璃面板钻孔装置及钻孔方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11267867A (ja) * | 1998-03-23 | 1999-10-05 | Seiko Epson Corp | レーザ加工方法及び装置 |
JP2001191178A (ja) * | 1999-04-16 | 2001-07-17 | Citizen Watch Co Ltd | 溶接用トーチノズルおよび溶接用コンタクトチップ |
-
2003
- 2003-06-24 JP JP2003179650A patent/JP2005014021A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11267867A (ja) * | 1998-03-23 | 1999-10-05 | Seiko Epson Corp | レーザ加工方法及び装置 |
JP2001191178A (ja) * | 1999-04-16 | 2001-07-17 | Citizen Watch Co Ltd | 溶接用トーチノズルおよび溶接用コンタクトチップ |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120241425A1 (en) * | 2011-03-22 | 2012-09-27 | Fujitsu Limited | Laser machining apparatus, method for laser machining, and medium for laser machining program |
JP2012196689A (ja) * | 2011-03-22 | 2012-10-18 | Fujitsu Ltd | レーザ加工方法及びそのプログラム |
CN102962589A (zh) * | 2012-11-28 | 2013-03-13 | 江苏金方圆数控机床有限公司 | 一种脉冲激光穿孔装置及其穿孔方法 |
CN104439721A (zh) * | 2013-09-18 | 2015-03-25 | 大族激光科技产业集团股份有限公司 | 采用紫外激光器在胶片上打孔径为微米级别的孔的方法 |
CN107378260A (zh) * | 2016-05-17 | 2017-11-24 | 发那科株式会社 | 激光加工装置和激光加工方法 |
CN107378260B (zh) * | 2016-05-17 | 2019-07-05 | 发那科株式会社 | 激光加工装置和激光加工方法 |
US10537964B2 (en) | 2016-05-17 | 2020-01-21 | Fanuc Corporation | Laser machining apparatus and laser machining method for performing laser machining while controlling reflected light |
CN115555740A (zh) * | 2022-10-08 | 2023-01-03 | 苏州科韵激光科技有限公司 | 一种玻璃面板钻孔装置及钻孔方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5276699B2 (ja) | ピアシングを行うレーザ加工方法及びレーザ加工装置 | |
JP5868559B1 (ja) | レーザ加工方法及びレーザ加工装置 | |
CN110814544B (zh) | 一种双激光复合切割的高精度制孔方法 | |
CN110280914B (zh) | 一种激光超声技术辅助脉冲激光打孔装置及方法 | |
Dhupal et al. | Parametric analysis and optimization of Nd: YAG laser micro-grooving of aluminum titanate (Al 2 TiO 5) ceramics | |
US20070023403A1 (en) | Method and device for welding structural parts | |
CN111496396A (zh) | 陶瓷基板皮秒激光钻孔装置及方法 | |
KR100597907B1 (ko) | 레이저빔을 이용한 공작물 가공장치 및 가공방법 | |
US7795560B2 (en) | Apparatus for processing work-piece | |
JP6393555B2 (ja) | レーザ加工機及びレーザ切断加工方法 | |
JP2005014021A (ja) | レーザ加工機及びレーザ加工制御方法 | |
JPH0947888A (ja) | レーザピアシング方法およびその装置 | |
JP3131357B2 (ja) | レーザ加工方法 | |
JP2007301672A (ja) | 透明材料の加工方法及び加工装置 | |
CN103658996A (zh) | 锯片基体氮气激光切割加工装置 | |
US20220274202A1 (en) | Additive manufacturing machine | |
CN212823458U (zh) | 陶瓷基板皮秒激光钻孔装置 | |
JP2022036420A (ja) | レーザノズル及びレーザ加工ヘッド | |
JPH07214357A (ja) | レーザ加工機 | |
JPH10216978A (ja) | レーザ加工ヘッド | |
JP2004291026A (ja) | 脆性材料の穴あけ加工方法およびその装置 | |
JPH04200891A (ja) | レーザーピアシング方法 | |
JP2006205178A (ja) | 加工方法および加工装置 | |
CN112091210A (zh) | 3d激光成型装置及3d激光成型方法 | |
JP2718224B2 (ja) | レーザ切断方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050705 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051101 |