JP2005013116A - Feed for eel fingerling - Google Patents

Feed for eel fingerling Download PDF

Info

Publication number
JP2005013116A
JP2005013116A JP2003183308A JP2003183308A JP2005013116A JP 2005013116 A JP2005013116 A JP 2005013116A JP 2003183308 A JP2003183308 A JP 2003183308A JP 2003183308 A JP2003183308 A JP 2003183308A JP 2005013116 A JP2005013116 A JP 2005013116A
Authority
JP
Japan
Prior art keywords
feed
eel
krill
larvae
egg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003183308A
Other languages
Japanese (ja)
Other versions
JP4530248B2 (en
Inventor
Hideki Tanaka
秀樹 田中
Kazuharu Nomura
和晴 野村
Itaru Shiotani
格 塩谷
Toshihiro Nakamori
俊宏 中森
Hitoshi Furuta
均 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Fisheries Research Agency
Nissui Corp
Original Assignee
Fuji Oil Co Ltd
Nippon Suisan Kaisha Ltd
Fisheries Research Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd, Nippon Suisan Kaisha Ltd, Fisheries Research Agency filed Critical Fuji Oil Co Ltd
Priority to JP2003183308A priority Critical patent/JP4530248B2/en
Publication of JP2005013116A publication Critical patent/JP2005013116A/en
Application granted granted Critical
Publication of JP4530248B2 publication Critical patent/JP4530248B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • Y02A40/818Alternative feeds for fish, e.g. in aquacultures

Abstract

<P>PROBLEM TO BE SOLVED: To provide feed for eel fingerling for growing/metamorphosing eel fingerling to elver. <P>SOLUTION: The feed for eel fingerling contains a krill decomposition product and/or a soy peptide subjected to phytic acid decreasing treatment. The krill decomposition product is such one as to use krill intrinsic enzymes for decomposition treatment and be further heated and degenerated. The soy peptide subjected to phytic acid decreasing treatment is obtained by making protease and phytase act on soy proteins, and contains not more than 1 wt.% of phytic acid. The feed can grow eel fingerling to elver and is formulated with the egg component of a living thing. The egg component is derived from fish egg or hen's egg. The feed contains highly unsaturated fatty acid-containing oil and fat. Eel seeds and saplings are raised using the feed for eel fingerling. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、オキアミおよび/またはフィチン酸低減処理した大豆ペプチドを含有するウナギ種苗生産に不可欠なウナギ仔魚用飼料に関する。詳しくは、オキアミおよび/またはフィチン酸低減処理した大豆ペプチドを含有した、ウナギ仔魚をシラスウナギまで成長させることができるウナギ仔魚用飼料に関する。また、本発明はそれらウナギ仔魚用飼料を用いて育成したウナギ種苗に関する。
【0002】
【従来の技術】
ウナギは生産量が多い重要な養殖魚種であるが、種苗は全て天然のシラスウナギに依存している。したがって、漁獲量の多少によってシラスウナギの取り引き価格は大きく変動し、養鰻経営の不安定化の一因となっている。ウナギの種苗生産、すなわちシラスウナギが飼育下で安定的に大量生産できれば、養鰻経営の安定化だけでなく近年急速に減少しているウナギ資源の保護にも寄与する。ウナギの人工孵化が可能になった現在、仔魚をシラスウナギまで成長・変態させる飼料の開発が必要である。
【0003】
天然のウナギは成熟過程、産卵場、孵化から仔魚の成長など謎に包まれていることが多い。ウナギは孵化後、プレレプトケファルスからレプトケファルスへと成長し、その後シラスウナギへと劇的に変態する。これまでに多数の天然レプトケファルスが採取され、消化管内滞留物の研究が進められているが、レプトケファルスの餌については未だ不明である。
【0004】
ウナギの人工孵化が可能になってから20年以上経過し、ウナギ仔魚の餌としてこれまでにワムシなどの生物餌料、市販の初期飼料、市販の栄養強化飼料、魚介類の生殖腺や鶏卵など極めて多くの物質が試されてきた。しかし、ウナギ仔魚の初期飼料としては、独立行政法人水産総合研究センター養殖研究所(当時水産庁養殖研究所)の研究グループが見いだしたサメ卵粉末が有効であるという知見(特許文献1)以外には、これまで多くの試みがなされたにもかかわらず、ウナギ仔魚に対し摂餌誘因性や成長性を有する飼料は全く見出されていなかった。しかも、前述のサメ卵でも、レプトケファルスをシラスまで成長・変態させることは不可能であった。
【0005】
その後、サメ卵粉末に大豆ペプチド、ビタミンミックス、ミネラルミックス、オキアミ水抽出物を配合した沈降性飼料でウナギ仔魚をレプトケファルスまで成長させることに成功した(非特許文献1)が、この飼料によってもシラスウナギまで成長・変態するには至らなかった。
【0006】
ところで、南極オキアミ(Euphausia superba)は魚介類の餌として成長性や摂餌性に優れていることが知られている。養魚飼料原料としての南極オキアミは育成用飼料に用いられ、その利用形態は生あるいはミールである。上述のようにウナギ仔魚の飼料原料としてオキアミ水抽出物の有効性が示されていたが、オキアミの機能性を最大限に活用しているとは言えなかった。しかし、生やミールのような利用形態では、消化吸収能の弱いウナギ仔魚に対してオキアミの機能性を最大限に活用することはできなかった。
【0007】
また、大豆ペプチドの飼料原料への有効性は既に確認されているが(非特許文献1)、ウナギ仔魚をシラスウナギまで成長させることができるような飼料には至っていなかった。
なお、大豆からフィチン酸を除去する方法には、塩を利用して大豆蛋白の水抽出過程でフィチン酸を除去するもの(特許文献2、特許文献3)、フィターゼ等でフィチン酸を分解する方法、樹脂などに吸着させて除去する方法(特許文献4)などがある。
【0008】
【特許文献1】
特開平11−253111号公報
【特許文献2】
特開平8−173052号公報
【特許文献3】
特開平9−121780号公報
【特許文献4】
特開2001−163800号公報
【非特許文献1】
田中ら,プロダクション・オブ・レプトケファリ・オブ・ジャパニーズ ・イール(アングイラ・ジャポニカ)・イン・キャプティビティー (Production of leptocephali of Japanese eel (Anguilla japonica) in captivity),「アクアカルチャー(Aquaculture)」,(オランダ),エルセビア・サイエンス・ビーブイ(ELSEVIER SCIENCE BV), 2001年9月14日,201巻,1−2号,p.51−60
【0009】
【発明が解決しようとする課題】
本発明は、ウナギ仔魚をシラスウナギまで成長・変態させることができるウナギ仔魚用飼料を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは上記課題を解決するために、鋭意研究を重ねた結果、オキアミ分解物および/またはフィチン酸低減処理した大豆ペプチドを配合した飼料がウナギ仔魚に対し摂餌誘因性、成長性を有することを見出し本研究を完成するに至った。
【0011】
本発明は、オキアミ分解物、好ましくはオキアミ内在酵素を分解処理に用いたオキアミ分解物、必要に応じ内在酵素により分解した後加熱変性させたオキアミ分解物、および/または、フィチン酸低減処理した大豆ペプチド、好ましくは大豆蛋白にプロテアーゼとフィターゼを作用させて得られるもの、より具体的にはフィチン酸低減処理した大豆ペプチドがフィチン酸含量として大豆ペプチド中の1%以下であるもの、を含有するウナギ仔魚用飼料を要旨とする。
本発明は、ウナギ仔魚をシラスウナギまで成長させることができる飼料である。
【0012】
また、本発明はオキアミ分解物および/またはフィチン酸低減処理した大豆ペプチドに加え、生物の卵成分、好ましくは魚卵または鶏卵由来の卵成分、さらに必要に応じ高度不飽和脂肪酸含有油脂を配合したウナギ仔魚用飼料を要旨としている。
また、本発明は、オキアミ分解物、好ましくはオキアミ内在酵素を分解処理に用いたオキアミ分解物、必要に応じ内在酵素により分解した後加熱変性させたオキアミ分解物、および/または、フィチン酸低減処理した大豆ペプチド、好ましくは大豆蛋白にプロテアーゼとフィターゼを作用させて得られるもの、より具体的にはフィチン酸低減処理した大豆ペプチドがフィチン酸含量として大豆ペプチド中の1%以下であるもの、を含有するウナギ仔魚用飼料を用いて育成したウナギ種苗を要旨とする。
【0013】
【発明の実施の形態】
本発明の対象となるウナギの仔魚は、例えばニホンウナギ(Anguilla japonica)、ヨーロッパウナギ(Anguilla anguilla)等、養殖対象となるウナギの仔魚が挙げられる。なお、本発明で言うウナギ仔魚とは、プレレプトケファレス、レプトケファレス等、シラスウナギに変態する前の段階にあるウナギ仔魚を指す。
本発明で用いるオキアミとしては、産業上有用なオキアミ目(Euphausiacea)が挙げられるが、南極オキアミ(Euphausia superba)を用いるのが好ましい。又、このオキアミについては、内在性酵素による分解物(自己消化物)、あるいは市販の酵素を外添し、内在性酵素による分解を増強して得られた分解物を用いても良い。オキアミ分解物は例えば、オキアミをミンチにして撹拌しながら50℃で1時間加熱を維持することで得ることができる。さらに、オキアミ分解物を常法により加熱変性させたものを用いても良い。
【0014】
本発明で用いられるフィチン酸低減処理した大豆ペプチド(以下、「低フィチン大豆ペプチド」と言う。)は、以下に説明される。
まず大豆からフィチン酸を除去する方法は、(1)塩を利用して大豆蛋白の水抽出過程でフィチン酸を除去するもの(上記特許文献2、3)、(2)フィターゼ等でフィチン酸を分解する方法、(3)樹脂などに吸着させて除去する方法(上記特許文献4)などがあり、(1)や(3)の方法に比べて(2)の方法が工程が煩雑でなく工業的に有利である。このような方法により低フィチン化された原料にプロテアーゼを作用させて蛋白分解を行うことにより低フィチン大豆ペプチドを製造することができる。なお、低フィチン化とプロテアーゼによる分解はいずれを先に行っても、あるいは同時に行うことも可能である。残存するフィチン酸については完全除去が望ましいが、通常残存フィチン酸量としてバナドモリブテン酸吸光光度法による定量で(検出限界5mg/100g)で1.0%以下であればよく、好ましくは0.5%以下である。
【0015】
本発明に用いる蛋白分解酵素(プロテアーゼ)は、エキソプロテアーゼまたはエンドプロテアーゼを単独または併用することができ、動物起源、植物起源あるいは微生物起源は問わない。具体的には、セリンプロテアーゼ(動物由来のトリプシン、キモトリプシン、微生物由来のズブチリシン、カルボキシペプチダーゼ等)、アスペルギルス・オリゼ起源の「プロチンFN」 (大和化成(株)製)、「プロテアーゼS」(天野製薬(株)製)や「プロチンAC−10」(大和化成(株)製)が例示できる。
【0016】
本発明の加水分解の条件は用いる蛋白分解酵素の種類により多少異なるが、概してその蛋白分解酵素の作用pH域、作用温度域で、低フィチン化された大豆蛋白を加水分解するに充分な量を用いるのがよい。加水分解の程度は、蛋白成分の15%トリクロロ酢酸可溶率でいう大豆蛋白分解率で、5〜98%程度、より通常には50〜90%程度になるまで行なわれる。蛋白分解酵素を作用させる時間は、使用する蛋白分解酵素の活性や量にもよるが、通常5分〜12時間程度、好ましくは30分〜5時間程度とすることができる。酵素分解時間が長すぎると腐敗を招きやすい。
【0017】
本発明で用いる卵成分としては、魚卵あるいは鶏卵由来のものが挙げられる。魚卵としては、サメ卵、スケコ、マダラコ、マダイ卵等が挙げられ、特にサメ卵が好ましい。又、これらは液卵あるいは粉末のどちら状態のものを用いても良いが、液卵を用いる方が特に好ましい。
本発明で用いる高度不飽和脂肪酸含有油脂としては、動物起源、植物起源あるいは微生物起源は問わない。具体的には、イワシフィードオイル、タラ肝油、ω‐3やω‐6の高度不飽和脂肪酸を高濃度に含有する精製魚油等が挙げられる。
【0018】
本発明のウナギ仔魚用飼料は、上述の成分を適宜混合して製造される。この時、オキアミ分解物と低フィチン大豆ペプチドはそれぞれ単独あるいは組み合わせて用いても良い。いずれも配合量は問わないが、飼料全体に対しオキアミ分解物は3〜50%、低フィチン大豆ペプチドは3〜50%で適宜組み合わせて用いることができる。例えば、卵成分を20%、オキアミ分解物3%、低フィチン大豆ペプチド3%、DHA高含有油4%、蒸留水70%のような組み合わせが使用できる。
【0019】
【作用】
本発明は、オキアミ分解物、好ましくはオキアミ内在酵素を分解処理に用いたオキアミ分解物および/または低フィチン大豆ペプチドを含むことを特徴とするウナギ仔魚用飼料である。飼料あるいは飼料原料に南極オキアミおよび/または低フィチン大豆ペプチドを用いることにより、ウナギ人工孵化仔魚をシラスウナギまで成長・変態させることができる。
【0020】
【実施例】
以下に実施例を示し、本発明をより具体的に説明する。本発明はこれらの実施例によって何ら限定されるものではない。
【0021】
実施例1
各種成分によるウナギ仔魚の成長性確認試験
人為催熟によって得られた受精卵から孵化し、目や口器が形成され摂餌可能となった孵化後8日のウナギ仔魚を供試魚とした。5Lアクリル製ボウル型水槽を12個用い、それぞれにウナギ仔魚をおよそ200尾収容した。飼育水温は21.5℃とした。無給餌生存日数は孵化後15日前後であるため、給餌期間を10日間とした。
試験区をサメ卵給餌区(飼料1)、サメ卵+低フィチン大豆ペプチド区(飼料2)、サメ卵+オキアミ分解物区(飼料3)、およびサメ卵+低フィチン大豆ペプチド+オキアミ分解物区(飼料4)とした。飼料組成を表1に示す。なお、サメ卵液卵は水分50%である。
【0022】
【表1】
【0023】
飼料の給餌方法は、特開平11−253111号公報(上記特許文献1)およびTanakaら〔上記非特許文献1(H.Tanaka, H.Kagawa, H.Ohta, Aquqculture 201(2001)51−60)〕に準じた。すなわち、給餌前日あるいは当日調製して0〜1℃で保存し、給餌直前に注水を停止させた水槽の底に駒込ピペットで約5ml注入した。給餌30分後に調温ろ過海水を0.4L/minで注入し、飼育海水をかけ流しとして水槽内を清潔に保った。給餌回数は1日5回、2時間毎とし、毎日夜間にサイフォンを用いて仔魚を清潔な水槽へ移動させた。飼育成績の統計処理は、分散分析で有意だった項目についてチューキー多重比較を行った。結果を図1(各試験区のウナギ仔魚の生存率)、図2(オキアミ分解物と低フィチン酸大豆ペプチドがウナギ仔魚の全長へ与える効果)、図3(オキアミ分解物と低フィチン酸大豆ペプチドがウナギ仔魚の体高へ与える効果)、図4(オキアミ分解物と低フィチン酸大豆ペプチドがウナギ仔魚の体高/全長へ与える効果)、および表2(成長に関する飼育成績)にそれぞれ示す。
【0024】
この結果、いずれの飼料でも仔魚は良好な摂餌性を示し、順調に成長した。給餌10日後の平均生残率は、飼料1が33.1%、飼料2が38.2%、飼料3が37.7%、および飼料4が54.7%であった。サメ卵とオキアミ分解物あるいはサメ卵と低フィチン大豆ペプチドを配合した飼料を給餌した場合、サメ卵単独給餌よりも生残率が高かった。さらに、サメ卵とオキアミ分解物と低フィチン大豆ペプチドを配合した場合で、最も高い生残率を示した。
【0025】
給餌開始時の仔魚の平均全長は6.65±0.26mmであった。給餌10日後の各試験区の平均全長は、飼料1が8.25±0.56mm、飼料2が8.53±0.66mm、飼料3が8.88±0.64mmおよび飼料4が8.97±0.55mmであった。いずれの飼料についても給餌効果が認められ、給餌開始時と比較して有意(p<0.01)に全長が伸びていた。サメ卵とオキアミ分解物を配合した飼料とサメ卵と低フィチン大豆ペプチドを配合した飼料はサメ卵単独と比べて有意に全長が伸びた(p<0.01)。さらに、サメ卵とオキアミ分解物と低フィチン大豆ペプチドを配合した場合で、最も全長の伸長を示した。
【0026】
ウナギ仔魚の体形を評価するために体高を測定した。典型的なレプトケファルスは体高が高く、体高/体長比が大きい。給餌開始時の仔魚の平均体高は0.65±0.05mmであった。給餌10日後の各試験区の平均体高は、飼料1が0.82±0.08mm、飼料2が0.85±0.10mm、飼料3が0.95±0.11mmおよび飼料4が0.97±0.11mmであった。いずれの飼料についても給餌効果が認められ、給餌開始時と比較して有意(p<0.01)に体高が高くなった。サメ卵とオキアミ分解物を配合した飼料を給餌した場合、サメ卵単独あるいはサメ卵と大豆ペプチドを配合した場合と比べて有意に体高が高くなった(p<0.01)。さらに、サメ卵と大豆ペプチドとオキアミ分解物を配合した場合で、最も体高が高くなった。
【0027】
各試験区の体高/体長(%)は、試験開始時が9.79±0.48%、飼料1が9.91±0.68%、飼料2が9.91±0.67%、飼料3が10.75±0.83%および飼料4が10.78±0.92%であった。オキアミ分解物を配合した飼料の給餌が、体高/体長比に関しても有意に大きくなることが示された(p<0.01)。
以上の結果より、魚卵成分とオキアミ分解物あるいは低フィチン大豆ペプチドあるいはそれらの組み合わせの配合により、ウナギ仔魚を有意に成長させるものであることが確認された。
【0028】
【表2】
【0029】
実施例2
卵成分の違いによる成長性確認試験
人為催熟によって得られた受精卵から孵化し、目や口器が形成され摂餌可能となった孵化後8日の仔魚を用いた。ウナギ仔魚を20Lアクリル製水槽に収容した。飼育水温は21.5℃とした。
試験区を、サメ卵粉末と低フィチン大豆ペプチドとオキアミ分解物を配合した飼料を与えた飼料5と、鶏卵粉末と低フィチン大豆ペプチドとオキアミ分解物とω‐3高含有精製魚油(DHA含有量46%)を配合した飼料を与えた飼料6とした。飼料組成を表3に示す。なお、飼料の給餌方法は実施例1と同様に行った。
【0030】
【表3】
【0031】
これまでウナギ仔魚は、サメ卵を配合した飼料以外では成長が認められていなかった。しかし、サメ卵粉末を全く配合していない飼料6でも仔魚は良好な摂餌性を示し、順調に成長した。ふ化後28日の平均全長について比較すると飼料5が9.85±0.70mm、飼料6が9.43±0.89mmであった (図5)。ふ化後28日の最長個体の全長は飼料5で10.9mm、飼料6で11.0mmであった。
【0032】
サメ卵粉末主体飼料を用いたTanakaら〔上記非特許文献1(H.Tanaka, H.Kagawa, H.Ohta, Aquqculture 201(2001)51−60)〕によると、人工受精により得られた仔魚は孵化後25日で10.6mmまで成長している。本試験の結果より、鶏卵粉末、オキアミ分解物、低フィチン大豆ペプチドおよび魚油を配合した飼料6においても、サメ卵を配合した飼料である飼料5の成長に匹敵する成長性が示された。
【0033】
本発明の飼料ではふ化後28日で10mmを超える個体が多数認められ、鶏卵粉末、オキアミ分解物、低フィチン大豆ペプチドおよび魚油を配合した飼料は、サメ卵粉末主体飼料に十分に匹敵しうることが確認された。
【0034】
実施例3
シラスウナギへの変態確認試験
人為催熟によって得られた受精卵から孵化し、目や口器が形成され摂餌可能となった孵化後8日の仔魚を用いた。ウナギ仔魚を20Lアクリル製水槽に収容した。飼育水温は21.5℃とした。飼料組成を表4に示す。なお、サメ卵液卵は水分50%である。孵化18日後までは飼料7を給餌し、孵化19日後からは飼料8を給餌した。
【0035】
【表4】
【0036】
この結果、仔魚は順調に成長し、孵化から約7〜9ヶ月後に全長50〜60mmに達し、レプトケファルスからシラスウナギへの変態を開始し、変態途中に体が湾曲した個体を除き約2〜3週間で全長が2〜8%短くなり,シラスウナギへと変態したことが確認された(図6、図7)。
【0037】
【発明の効果】
本発明により、ウナギ仔魚をシラスウナギまで成長させることができる優れたウナギ仔魚用飼料を提供することが可能となった。
【図面の簡単な説明】
【図1】実施例1における、サメ卵給餌区(飼料1)、サメ卵+低フィチン大豆ペプチド区(飼料2)、サメ卵+オキアミ分解物区(飼料3)およびサメ卵+低フィチン大豆ペプチド+オキアミ分解物区(飼料4)の生残率比較。
【図2】実施例1における、サメ卵給餌区(飼料1)、サメ卵+低フィチン大豆ペプチド区(飼料2)、サメ卵+オキアミ分解物区(飼料3)およびサメ卵+低フィチン大豆ペプチド+オキアミ分解物区(飼料4)の全長(mm)比較。
【図3】実施例1における、サメ卵給餌区(飼料1)、サメ卵+低フィチン大豆ペプチド区(飼料2)、サメ卵+オキアミ分解物区(飼料3)およびサメ卵+低フィチン大豆ペプチド+オキアミ分解物区(飼料4)の体高(mm)比較。
【図4】実施例1における、サメ卵給餌区(飼料1)、サメ卵+低フィチン大豆ペプチド区(飼料2)、サメ卵+オキアミ分解物区(飼料3)およびサメ卵+低フィチン大豆ペプチド+オキアミ分解物区(飼料4)の体高/全長(%)比較。
【図5】実施例2における、サメ卵粉末+低フィチン大豆ペプチド+オキアミ分解物区(飼料5)と、鶏卵粉末+低フィチン大豆ペプチド+オキアミ分解物+魚油区(飼料6)の全長(mm)推移比較。
【図6】実施例3における、仔魚の成長と変態。
【図7】実施例3における仔魚の変態例。上からふ化後248,254,262日の同一個体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a eel larvae feed that is indispensable for the production of eel seedlings containing soybean peptides treated with krill and / or phytic acid reduction. More specifically, the present invention relates to a eel larvae feed that contains soybean peptides treated with krill and / or phytic acid reduction and can grow eel larvae to glass eels. The present invention also relates to an eel seedling grown using these eel larvae feeds.
[0002]
[Prior art]
Eels are important aquaculture species with high production, but all seedlings depend on natural white eels. Therefore, the trading price of glass eels fluctuates greatly depending on the amount of catch, contributing to the destabilization of sericulture management. Eel seedling production, that is, if glass eels can be stably mass-produced in captivity, will contribute not only to stabilization of sericulture management but also to the protection of eel resources that have been rapidly decreasing in recent years. Now that eels can be artificially hatched, it is necessary to develop feed that grows and transforms larvae into glass eels.
[0003]
Natural eels are often enveloped in mysteries such as maturation, spawning grounds, hatching and larval growth. After hatching, eels grow from preleptocephalus to leptocephalus and then dramatically transform into glass eels. A large number of natural leptocephalus has been collected so far, and studies on gastrointestinal retention have been carried out, but the diet of leptocephalus is still unclear.
[0004]
More than 20 years have passed since the eel artificial hatching became possible, and so far there are a lot of biological foods such as rotifers, commercial early feeds, commercial fortified feeds, seafood gonads and chicken eggs, etc. The substance has been tried. However, for the initial feed of eel larvae, other than the knowledge (Patent Document 1) that the shark egg powder found by the research group of the National Fisheries Research Center In spite of many attempts so far, no feed has been found that has feeding incentive and growth potential for eel larvae. Moreover, even with the shark eggs described above, it has been impossible to grow and transform Leptocephalus to shirasu.
[0005]
Subsequently, eel larvae were successfully grown to leptocephalus with a sedimentary feed containing soy peptide, vitamin mix, mineral mix, and krill water extract in shark egg powder (Non-patent Document 1). Even the glass eel did not grow or metamorphose.
[0006]
By the way, it is known that Antarctic krill ( Euphausia superba ) is excellent in growth and feeding as a food for seafood. Antarctic krill as a raw material for fish feed is used as feed for breeding, and its utilization is raw or meal. As described above, the effectiveness of the krill water extract as a feed raw material for eel larvae has been shown, but it cannot be said that the functionality of krill has been fully utilized. However, in the form of use such as raw or meal, the functionality of krill could not be utilized to the maximum for eel larvae with weak digestive absorption ability.
[0007]
Moreover, although the effectiveness to the feed raw material of a soybean peptide has already been confirmed (nonpatent literature 1), it has not reached the feed which can grow an eel larva to a glass eel.
In addition, as a method for removing phytic acid from soybean, a method for removing phytic acid in a water extraction process of soybean protein using a salt (Patent Document 2, Patent Document 3), a method of decomposing phytic acid with phytase or the like And a method of removing it by adsorbing it to a resin or the like (Patent Document 4).
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-253111 [Patent Document 2]
Japanese Patent Laid-Open No. 8-173052 [Patent Document 3]
JP-A-9-121780 [Patent Document 4]
JP 2001-163800 A [Non-Patent Document 1]
Tanaka et al., Production of Leptocefari of Japanese eel (Anguilla Japonica) in Capability (Production of leptocephali of Japan) (Anguilla japonica) Culture in the Netherlands ELSEVIER SCIENCE BV, September 14, 2001, 201, 1-2, p. 51-60
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a feed for eel larvae that can grow and transform eel larvae to white eels.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, a feed containing a krill degradation product and / or a soy peptide reduced in phytic acid has a feeding-inducing property and growth potential for eel larvae. I found out that I had this and completed this research.
[0011]
The present invention relates to a krill decomposition product, preferably a krill decomposition product using a krill endogenous enzyme in the decomposition treatment, a krill decomposition product that is denatured by an endogenous enzyme and then heat-denatured, and / or soybeans reduced in phytic acid. Eels containing peptides, preferably those obtained by allowing protease and phytase to act on soy protein, more specifically, phytic acid-reduced soy peptide having a phytic acid content of 1% or less of the soy peptide The main point is the feed for larvae.
The present invention is a feed that can grow eel larvae to glass eels.
[0012]
In addition, the present invention contains a biological egg component, preferably an egg component derived from a fish egg or a chicken egg, and, if necessary, a highly unsaturated fatty acid-containing fat in addition to a krill degradation product and / or a phytic acid-reduced soybean peptide. The essence is feed for eel larvae.
In addition, the present invention provides a krill decomposition product, preferably a krill decomposition product using a krill endogenous enzyme for the decomposition treatment, a krill decomposition product that is heat-denatured after being decomposed by the endogenous enzyme, and / or a phytic acid reduction treatment. Soy peptide, preferably obtained by allowing protease and phytase to act on soy protein, more specifically, soy peptide reduced in phytic acid content is 1% or less of the soy peptide as phytic acid content Eel seed seedlings grown using eel larvae feed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the eel larvae to be the subject of the present invention include eel larvae to be cultured such as Japanese eel ( Anguilla japonica ) and European eel ( Anguilla anguilla ). The eel larvae referred to in the present invention refers to eel larvae at a stage prior to transformation into a glass eel such as pre-leptokephales and leptokephales.
Examples of the krill used in the present invention include industrially useful krill ( Euphausiacea ), and it is preferable to use Antarctic krill ( Euphausia superba ). As for this krill, a degradation product obtained by endogenous enzymes (autolyzed product) or a degradation product obtained by externally adding a commercially available enzyme and enhancing degradation by endogenous enzymes may be used. The krill decomposition product can be obtained, for example, by maintaining the heating at 50 ° C. for 1 hour with minced krill. Further, a krill decomposition product heat-denatured by a conventional method may be used.
[0014]
The phytic acid-reduced soybean peptide (hereinafter referred to as “low phytic soybean peptide”) used in the present invention is described below.
First, methods for removing phytic acid from soybean include (1) removing phytic acid in the process of aqueous extraction of soybean protein using a salt (Patent Documents 2 and 3 above), (2) phytate with phytase, etc. There is a method of decomposing, (3) a method of removing it by adsorbing it to a resin or the like (Patent Document 4), and the method of (2) is less complicated than the methods of (1) and (3). Is advantageous. A low phytin soy peptide can be produced by proteolysis by causing a protease to act on a raw material reduced in phytin by such a method. It should be noted that hypophytization and protease degradation can be performed first or simultaneously. Although it is desirable to completely remove the remaining phytic acid, the amount of the remaining phytic acid is usually 1.0% or less as determined by vanadomolybutenoic acid spectrophotometry (detection limit 5 mg / 100 g), and is preferably 0.8. 5% or less.
[0015]
The proteolytic enzyme (protease) used in the present invention can be exoprotease or endoprotease alone or in combination, regardless of animal origin, plant origin or microbial origin. Specifically, serine protease (animal-derived trypsin, chymotrypsin, microbial-derived subtilisin, carboxypeptidase, etc.), “Protin FN” (produced by Daiwa Kasei Co., Ltd.) derived from Aspergillus oryzae, “Protease S” (Amano Pharmaceutical) And Protin AC-10 (manufactured by Daiwa Kasei Co., Ltd.).
[0016]
The hydrolysis conditions of the present invention vary somewhat depending on the type of proteolytic enzyme to be used. In general, an amount sufficient to hydrolyze soy protein that has been reduced in the phytase in the working pH range and temperature range. It is good to use. The degree of hydrolysis is about 5 to 98%, more usually about 50 to 90% of soybean protein degradation rate in terms of 15% trichloroacetic acid solubility of protein components. The time for which the protease is allowed to act is usually about 5 minutes to 12 hours, preferably about 30 minutes to 5 hours, although it depends on the activity and amount of the protease used. If the enzymatic degradation time is too long, it tends to cause spoilage.
[0017]
Examples of egg components used in the present invention include those derived from fish eggs or chicken eggs. Examples of fish eggs include shark eggs, sukeko, madarako, red sea bream eggs, and shark eggs are particularly preferred. These may be either liquid eggs or powders, but it is particularly preferable to use liquid eggs.
The highly unsaturated fatty acid-containing fat used in the present invention may be of animal origin, plant origin or microbial origin. Specific examples include sardine feed oil, cod liver oil, and refined fish oil containing ω-3 and ω-6 highly unsaturated fatty acids at high concentrations.
[0018]
The feed for eel larvae of this invention is manufactured by mixing the above-mentioned component suitably. At this time, the krill degradation product and the low phytic soybean peptide may be used alone or in combination. In any case, the blending amount is not limited, but the krill decomposition product is 3 to 50% and the low phytic soy peptide is 3 to 50% and can be used in combination as appropriate. For example, a combination such as 20% egg component, 3% krill degradation product, 3% low phytic acid soybean peptide, 4% DHA-rich oil, and 70% distilled water can be used.
[0019]
[Action]
The present invention is a feed for eel larvae characterized by comprising a krill degradation product, preferably a krill degradation product using a krill endogenous enzyme for degradation treatment and / or a low phytic soybean peptide. By using Antarctic krill and / or low phytin soy peptide as feed or feed material, it is possible to grow and transform eel artificially hatched larvae to white eel.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited by these examples.
[0021]
Example 1
Tests to confirm the growth of eel larvae by various components <br/> Eating eel larvae 8 days after hatching, which hatched from fertilized eggs obtained by artificial ripening and formed eyes and mouth organs and became ready for feeding It was fish. Twelve 5 L acrylic bowl-shaped aquariums were used, each containing approximately 200 eel larvae. The breeding water temperature was 21.5 ° C. Since the number of days without feeding was around 15 days after hatching, the feeding period was set to 10 days.
The test plots were shark egg feeding zone (feed 1), shark egg + low phytic soy peptide zone (feed 2), shark egg + krill degradation product zone (feed 3), and shark egg + low phytic soybean peptide + krill degradation zone. (Feed 4). Table 1 shows the feed composition. The shark egg liquid egg has a water content of 50%.
[0022]
[Table 1]
[0023]
The feed feeding method is disclosed in JP-A-11-253111 (Patent Document 1) and Tanaka et al. [Non-Patent Document 1 (H. Tanaka, H. Kagawa, H. Ohta, Accuculture 201 (2001) 51-60). ]. That is, about 5 ml was injected with a Komagome pipette into the bottom of a water tank prepared on the day before or on the day of feeding and stored at 0 to 1 ° C., and the water injection was stopped immediately before feeding. Temperature-controlled filtered seawater was injected at 0.4 L / min 30 minutes after feeding, and the inside of the aquarium was kept clean by pouring the breeding seawater. The number of feeding was 5 times a day, every 2 hours, and the larvae were moved to a clean water tank using a siphon at night every day. For statistical processing of breeding results, Tukey multiple comparison was performed for items that were significant by analysis of variance. The results are shown in FIG. 1 (survival rate of eel larvae in each test section), FIG. 2 (effect of krill degradation product and low phytic acid soybean peptide on the total length of eel larvae), and FIG. 3 (krill degradation product and low phytic acid soybean peptide). (Effects of eel larvae on body height), FIG. 4 (effects of krill degradation products and low phytic acid soy peptide on body height / full length of eel larvae), and Table 2 (feeding results on growth).
[0024]
As a result, the larvae showed good food intake and grew well with any feed. The average survival rate after 10 days of feeding was 33.1% for feed 1, 38.2% for feed 2, 37.7% for feed 3, and 54.7% for feed 4. Survival rates were higher when shark eggs and krill degradation products or diets containing shark eggs and low phytin soy peptide were fed than shark eggs alone. Furthermore, the highest survival rate was obtained when shark eggs, krill degradation products and low phytin soy peptide were added.
[0025]
The average total length of the larvae at the start of feeding was 6.65 ± 0.26 mm. The average total length of each test group 10 days after feeding was 8.25 ± 0.56 mm for feed 1, 8.53 ± 0.66 mm for feed 2, 8.88 ± 0.64 mm for feed 3, and 8. It was 97 ± 0.55 mm. The feeding effect was recognized for all feeds, and the overall length was significantly (p <0.01) longer than that at the start of feeding. The feed blended with shark egg and krill degradation product and the feed blended with shark egg and low phytin soy peptide significantly increased in total length compared to shark egg alone (p <0.01). Furthermore, when the shark egg, krill decomposition product and low phytin soy peptide were blended, the full-length elongation was shown.
[0026]
Body height was measured to evaluate the body shape of eel larvae. Typical leptocephalus has a high body height and a large body height / body length ratio. The average height of the larvae at the start of feeding was 0.65 ± 0.05 mm. The average height of each test group 10 days after feeding was 0.82 ± 0.08 mm for feed 1, 0.85 ± 0.10 mm for feed 2, 0.95 ± 0.11 mm for feed 3, and 0. It was 97 ± 0.11 mm. The feeding effect was recognized for all the feeds, and the body height was significantly higher (p <0.01) than when feeding was started. When the feed containing the shark egg and krill degradation product was fed, the body height was significantly higher than when the shark egg alone or the shark egg and soybean peptide was added (p <0.01). Furthermore, when the shark egg, soybean peptide, and krill degradation product were blended, the body height was the highest.
[0027]
The body height / length (%) of each test group was 9.79 ± 0.48% at the start of the test, 9.91 ± 0.68% for feed 1, 9.91 ± 0.67% for feed 2 and feed 3 was 10.75 ± 0.83% and feed 4 was 10.78 ± 0.92%. It was shown that the feeding of the feed containing the krill degradation product was significantly increased with respect to the height / length ratio (p <0.01).
From the above results, it was confirmed that the eel larvae were significantly grown by the combination of the fish egg component and the krill degradation product, the low phytin soy peptide, or a combination thereof.
[0028]
[Table 2]
[0029]
Example 2
Test for confirming growth by the difference in egg components Larvae hatched from fertilized eggs obtained by artificial ripening and formed eyes and mouth organs and became feedable were used 8 days after hatching. Eel larvae were housed in a 20 L acrylic water tank. The breeding water temperature was 21.5 ° C.
The test plots were feed 5 fed with shark egg powder, low phytic soy peptide and krill degradation product, chicken egg powder, low phytic soy peptide, krill degradation product, and ω-3 high-purified fish oil (DHA content) 46%), feed 6 was obtained. Table 3 shows the feed composition. The feed feeding method was the same as in Example 1.
[0030]
[Table 3]
[0031]
So far, eel larvae have not been observed to grow except for feed containing shark eggs. However, the larvae showed good food intake even with the feed 6 containing no shark egg powder and grew smoothly. When the average total length on the 28th day after hatching was compared, the feed 5 was 9.85 ± 0.70 mm and the feed 6 was 9.43 ± 0.89 mm (FIG. 5). The total length of the longest individual 28 days after hatching was 10.9 mm for feed 5 and 11.0 mm for feed 6.
[0032]
According to Tanaka et al. Using shark egg powder-based feed [Non-Patent Document 1 (H. Tanaka, H. Kagawa, H. Ohta, Accuculture 201 (2001) 51-60)], larvae obtained by artificial insemination are It has grown to 10.6 mm 25 days after hatching. From the results of this test, the feed 6 containing chicken egg powder, krill degradation product, low phytin soy peptide and fish oil also showed growth comparable to the growth of feed 5 which is a feed containing shark eggs.
[0033]
In the feed of the present invention, many individuals exceeding 10 mm are observed 28 days after hatching, and the feed containing chicken egg powder, krill degradation product, low phytic soy peptide and fish oil can be sufficiently comparable to shark egg powder-based feed Was confirmed.
[0034]
Example 3
Test for confirming metamorphosis to glass eel The larvae 8 days after hatching, which hatched from fertilized eggs obtained by artificial ripening and formed eyes and mouth organs, were made available. Eel larvae were housed in a 20 L acrylic water tank. The breeding water temperature was 21.5 ° C. Table 4 shows the feed composition. The shark egg liquid egg has a water content of 50%. Feed 7 was fed until 18 days after hatching, and feed 8 was fed from 19 days after hatching.
[0035]
[Table 4]
[0036]
As a result, the larvae grow smoothly, reach a total length of 50 to 60 mm about 7 to 9 months after hatching, start transformation from Leptocephalus to glass eel, and about 2 to 2 except for individuals whose bodies are curved during transformation. It was confirmed that the whole length was shortened by 2 to 8% in 3 weeks and transformed into glass eel (FIGS. 6 and 7).
[0037]
【The invention's effect】
According to the present invention, it has become possible to provide an excellent eel larvae feed that can grow eel larvae to white eels.
[Brief description of the drawings]
FIG. 1 shows a shark egg feeding group (feed 1), a shark egg + low phytin soybean peptide group (feed 2), a shark egg + krill degradation product group (feed 3), and a shark egg + low phytin soybean peptide in Example 1. + Survival rate comparison of krill degradation product section (feed 4).
FIG. 2 shows a shark egg feeding group (feed 1), a shark egg + low phytin soy peptide group (feed 2), a shark egg + krill degradation product group (feed 3), and a shark egg + low phytin soybean peptide in Example 1. + Comparison of the total length (mm) of the krill decomposition product (feed 4).
FIG. 3 shows a shark egg feeding group (feed 1), a shark egg + low phytin soy peptide group (feed 2), a shark egg + krill degradation product group (feed 3), and a shark egg + low phytin soybean peptide in Example 1. + Body height (mm) comparison of krill decomposition product group (feed 4).
4 shows a shark egg feeding group (feed 1), a shark egg + low phytin soy peptide group (feed 2), a shark egg + krill degradation product group (feed 3), and a shark egg + low phytin soybean peptide in Example 1. FIG. + Comparison of body height / full length (%) of the krill decomposition product group (feed 4).
FIG. 5 shows the total length (mm) of shark egg powder + low phytic soy peptide + krill degradation product (feed 5) and chicken egg powder + low phytic soy peptide + krill degradation product + fish oil division (feed 6) in Example 2. ) Transition comparison.
FIG. 6 shows growth and transformation of larvae in Example 3.
7 shows an example of metamorphosis of larvae in Example 3. FIG. Same individuals from 248, 254, 262 days after hatching from above.

Claims (10)

オキアミ分解物および/またはフィチン酸低減処理した大豆ペプチドを含有するウナギ仔魚用飼料。A feed for eel larvae containing a krill degradation product and / or a soybean peptide reduced in phytic acid. オキアミ分解物が、オキアミ内在酵素を分解処理に用いたオキアミ分解物である、請求項1のウナギ仔魚用飼料。The feed for eel larvae of Claim 1 whose krill decomposition product is a krill decomposition product which used the krill endogenous enzyme for a decomposition | disassembly process. オキアミ分解物が、さらに加熱変性されたものである、請求項1または2のウナギ仔魚用飼料。The feed for eel larvae of Claim 1 or 2 whose krill decomposition product is further heat-denatured. フィチン酸低減処理した大豆ペプチドが、大豆蛋白にプロテアーゼとフィターゼを作用させて得られるものである、請求項1、2または3のウナギ仔魚用飼料。The eel larvae feed according to claim 1, 2 or 3, wherein the soybean peptide subjected to the phytic acid reduction treatment is obtained by allowing protease and phytase to act on soybean protein. フィチン酸低減処理した大豆ペプチドが、フィチン酸含量として大豆ペプチド中の1%以下である、請求項1ないし4のいずれかのウナギ仔魚用飼料。The feed for eel larvae according to any one of claims 1 to 4, wherein the phytic acid-reduced soybean peptide has a phytic acid content of 1% or less of the soybean peptide. ウナギ仔魚をシラスウナギまで成長させることができる飼料である請求項1ないし5のいずれかのウナギ仔魚用飼料。The feed for eel larvae according to any one of claims 1 to 5, wherein the eel larvae are feeds that can be grown to glass eels. さらに、生物の卵成分を配合したものである請求項1ないし6のいずれかのウナギ仔魚用飼料。Furthermore, the feed for eel larvae in any one of Claim 1 thru | or 6 which mix | blended the egg component of the organism. 卵成分が魚卵または鶏卵由来のものである請求項7のウナギ仔魚用飼料。The feed for eel larvae according to claim 7, wherein the egg component is derived from fish eggs or chicken eggs. さらに高度不飽和脂肪酸含有油脂を含有する請求項1ないし8のいずれかのウナギ仔魚用飼料。Furthermore, the feed for eel larvae in any one of Claim 1 thru | or 8 containing highly unsaturated fatty acid containing fats and oils. 請求項1ないし9いずれかのウナギ仔魚用飼料を用いて育成したウナギ種苗。An eel seedling grown using the feed for eel larvae according to claim 1.
JP2003183308A 2003-06-26 2003-06-26 Eel larvae feed Expired - Lifetime JP4530248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183308A JP4530248B2 (en) 2003-06-26 2003-06-26 Eel larvae feed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183308A JP4530248B2 (en) 2003-06-26 2003-06-26 Eel larvae feed

Publications (2)

Publication Number Publication Date
JP2005013116A true JP2005013116A (en) 2005-01-20
JP4530248B2 JP4530248B2 (en) 2010-08-25

Family

ID=34183447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183308A Expired - Lifetime JP4530248B2 (en) 2003-06-26 2003-06-26 Eel larvae feed

Country Status (1)

Country Link
JP (1) JP4530248B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239695A (en) * 2010-05-14 2011-12-01 Nippon Suisan Kaisha Ltd Larval eel feed
JP2011239696A (en) * 2010-05-14 2011-12-01 Nippon Suisan Kaisha Ltd Larval eel feed
JP2014012017A (en) * 2013-08-26 2014-01-23 Meiji Shiryo Kk Pharmaceutical for improving animal body type
KR101548417B1 (en) 2013-05-22 2015-08-28 구골홀딩스 주식회사 Feed composite for culturing leptocephalus
KR101568465B1 (en) 2013-05-29 2015-11-11 구골홀딩스 주식회사 Solid feed composite for culturing leptocephalus and method for culturing leptosephalus by using the same
KR101568464B1 (en) * 2013-05-29 2015-11-11 구골홀딩스 주식회사 Method for promoting feminization of eel with feed composite and light source
KR101568463B1 (en) * 2013-05-29 2015-11-11 구골홀딩스 주식회사 Liquefied feed composite for culturing leptocephalus and method for fabricating the same
CN105192266A (en) * 2015-10-15 2015-12-30 无锡市南阳湖水产科技有限公司 Whitebait aquatic product aquaculture feed
WO2016117690A1 (en) * 2015-01-23 2016-07-28 株式会社新日本科学 Micro-encapsulated aquaculture feed
WO2018124160A1 (en) 2016-12-28 2018-07-05 株式会社新日本科学 Breeding water for anguilliformes and method for rearing anguilliformes
KR20190111390A (en) * 2018-03-22 2019-10-02 주식회사 대동사료 Additive capable of improving the function of mixed feed for marine aquaculture and production method thereof
WO2022034924A1 (en) * 2020-08-13 2022-02-17 三栄源エフ・エフ・アイ株式会社 Binder-containing feed for eel larvae

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294042A (en) * 1986-06-11 1987-12-21 Nippon Nousan Kogyo Kk Production of expanded feed for pisciculture
JPS63291544A (en) * 1987-05-22 1988-11-29 Hayashikane Sangyo Kk Feed containing blended protease for raising fish
JPH02257836A (en) * 1989-03-30 1990-10-18 Sakamoto Shiryo Kk Semidried cellular settling type feed for culturing fish
JPH05292898A (en) * 1992-04-21 1993-11-09 Taiyo Kagaku Co Ltd Feed for young fish
JPH0851937A (en) * 1994-08-09 1996-02-27 Fuji Oil Co Ltd Feed for cultured shrimp and method for culturing shrimp
JPH0923822A (en) * 1995-07-14 1997-01-28 Nichimo Co Ltd Peptide product and its production
JPH09511913A (en) * 1994-04-22 1997-12-02 ノボ ノルディスク アクティーゼルスカブ How to improve the solubility of vegetable proteins
JPH10218692A (en) * 1997-02-06 1998-08-18 Nichimo Co Ltd Biological nutritive substance from organism-derived matter as stock and its production
JPH1156257A (en) * 1997-08-18 1999-03-02 Yoji Muramatsu Feed for feed organism for eel fry and culture of eel fry
JPH1175712A (en) * 1997-09-08 1999-03-23 Oriental Yeast Co Ltd Feed for parent fish

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294042A (en) * 1986-06-11 1987-12-21 Nippon Nousan Kogyo Kk Production of expanded feed for pisciculture
JPS63291544A (en) * 1987-05-22 1988-11-29 Hayashikane Sangyo Kk Feed containing blended protease for raising fish
JPH02257836A (en) * 1989-03-30 1990-10-18 Sakamoto Shiryo Kk Semidried cellular settling type feed for culturing fish
JPH05292898A (en) * 1992-04-21 1993-11-09 Taiyo Kagaku Co Ltd Feed for young fish
JPH09511913A (en) * 1994-04-22 1997-12-02 ノボ ノルディスク アクティーゼルスカブ How to improve the solubility of vegetable proteins
JPH0851937A (en) * 1994-08-09 1996-02-27 Fuji Oil Co Ltd Feed for cultured shrimp and method for culturing shrimp
JPH0923822A (en) * 1995-07-14 1997-01-28 Nichimo Co Ltd Peptide product and its production
JPH10218692A (en) * 1997-02-06 1998-08-18 Nichimo Co Ltd Biological nutritive substance from organism-derived matter as stock and its production
JPH1156257A (en) * 1997-08-18 1999-03-02 Yoji Muramatsu Feed for feed organism for eel fry and culture of eel fry
JPH1175712A (en) * 1997-09-08 1999-03-23 Oriental Yeast Co Ltd Feed for parent fish

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239695A (en) * 2010-05-14 2011-12-01 Nippon Suisan Kaisha Ltd Larval eel feed
JP2011239696A (en) * 2010-05-14 2011-12-01 Nippon Suisan Kaisha Ltd Larval eel feed
KR101548417B1 (en) 2013-05-22 2015-08-28 구골홀딩스 주식회사 Feed composite for culturing leptocephalus
KR101568465B1 (en) 2013-05-29 2015-11-11 구골홀딩스 주식회사 Solid feed composite for culturing leptocephalus and method for culturing leptosephalus by using the same
KR101568464B1 (en) * 2013-05-29 2015-11-11 구골홀딩스 주식회사 Method for promoting feminization of eel with feed composite and light source
KR101568463B1 (en) * 2013-05-29 2015-11-11 구골홀딩스 주식회사 Liquefied feed composite for culturing leptocephalus and method for fabricating the same
JP2014012017A (en) * 2013-08-26 2014-01-23 Meiji Shiryo Kk Pharmaceutical for improving animal body type
WO2016117690A1 (en) * 2015-01-23 2016-07-28 株式会社新日本科学 Micro-encapsulated aquaculture feed
CN107404906A (en) * 2015-01-23 2017-11-28 株式会社新日本科学 The feed used for aquiculture of microencapsulation
JPWO2016117690A1 (en) * 2015-01-23 2017-12-14 株式会社新日本科学 Microencapsulated aquaculture feed
US20180000122A1 (en) * 2015-01-23 2018-01-04 Shin Nippon Biomedical Laboratories, Ltd. Micro-encapsulated aquaculture feed
EP3248470A4 (en) * 2015-01-23 2018-09-05 Shin Nippon Biomedical Laboratories, Ltd. Micro-encapsulated aquaculture feed
CN105192266A (en) * 2015-10-15 2015-12-30 无锡市南阳湖水产科技有限公司 Whitebait aquatic product aquaculture feed
WO2018124160A1 (en) 2016-12-28 2018-07-05 株式会社新日本科学 Breeding water for anguilliformes and method for rearing anguilliformes
KR20190093672A (en) 2016-12-28 2019-08-09 신 니뽄 바이오메디칼 라보라토리즈, 엘티디. Breeding stocks of eel fish and how to grow eel fish
KR20190111390A (en) * 2018-03-22 2019-10-02 주식회사 대동사료 Additive capable of improving the function of mixed feed for marine aquaculture and production method thereof
KR102109496B1 (en) * 2018-03-22 2020-05-19 주식회사 대동사료 A method for producing an additive capable of improving the function of a feed for aquaculture
WO2022034924A1 (en) * 2020-08-13 2022-02-17 三栄源エフ・エフ・アイ株式会社 Binder-containing feed for eel larvae

Also Published As

Publication number Publication date
JP4530248B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
CN100506070C (en) Cultivation of DHA-rich prey organisms containing rich docosahexenoic acid for aquatic species
JP5485457B1 (en) Eel feed
JP4530248B2 (en) Eel larvae feed
Concha-Frias et al. Partial characterization of digestive proteases in the common snook Centropomus undecimalis
Rostika et al. Papain and bromelain crude enzyme extract in commercial feed, effectiveness toward pisciculture production of striped catfish (Pangasianodon hypophthalmus) in aquaculture facility
JP2015047162A (en) Method for growing eel fry, and method for producing cultured eel
Hofer Digestion
JP3334792B2 (en) Feed additives
JP4046239B2 (en) Tuna fish feeding facilitator, tuna fish formula feed and simulated food for catching tuna fish
JP6215074B2 (en) Suppon feed and farming suppon production method and suppon flesh meat amino acid increasing method
JP3259803B2 (en) Farmed shrimp feed and shrimp farming method
JPWO2004014145A1 (en) Animal feed material and animal feed made from the same
JP5357830B2 (en) Eel larvae feed
CN107278978A (en) A kind of cultural method of black porgy fish
JP5524431B1 (en) How to increase amino acids in suppon meat
CN101066097A (en) Feed for fry young fishes and method of producing hydrolyzate of low-phytin vegetable protein to be used therein
TW201528961A (en) Feed for soft-shelled turtles, method for producing farmed soft-shelled turtle, and method for increasing amino acids in meat of soft-shelled turtle
US20220009850A1 (en) Production of organic fertilizer from aquatic organisms
JP2001204397A (en) Feed additive for cultured fish and formula feed
CN111990535A (en) Defatted tenebrio molitor protein feed rich in multiple trace elements and preparation method thereof
KR101815626B1 (en) Frozen Feed for Elver&#39;s Initial Feeding
KR20210088817A (en) Fish feed using bass and bluegill and manufacturing method thereof
JP3201840B2 (en) Fish farm feed
KR20200031345A (en) Method for producing animal feeds for improving the digestibility of livestock using animal protein raw materials
Fernández-Gimenez Properties and some new applications of enzymes from wastes of the shrimp Pleoticus muelleri (Decapoda, Penaeoidea)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4530248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term