JP2005009410A - ガスタービン及びロータシール空気導入方法 - Google Patents

ガスタービン及びロータシール空気導入方法 Download PDF

Info

Publication number
JP2005009410A
JP2005009410A JP2003174743A JP2003174743A JP2005009410A JP 2005009410 A JP2005009410 A JP 2005009410A JP 2003174743 A JP2003174743 A JP 2003174743A JP 2003174743 A JP2003174743 A JP 2003174743A JP 2005009410 A JP2005009410 A JP 2005009410A
Authority
JP
Japan
Prior art keywords
stationary blade
blade cascade
seal air
compressed air
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003174743A
Other languages
English (en)
Inventor
Toru Ito
亨 伊藤
Eitaro Murata
英太郎 村田
Isao Takehara
竹原  勲
Hidetoshi Kuroki
英俊 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003174743A priority Critical patent/JP2005009410A/ja
Publication of JP2005009410A publication Critical patent/JP2005009410A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

【課題】各シール箇所に対し、要求に応じた圧力及び流量のロータシール空気を供給でき、なおかつエネルギー効率を向上させることができるガスタービン及びロータシール空気導入方法を提供する。
【解決手段】圧縮空気を燃料とともに燃焼して生じさせた燃焼ガスをタービン3に供給し、回転動力を得るガスタービンにおいて、第2段落及び第3段落のそれぞれの静翼23,25に、圧力の異なる圧縮空気をそれぞれ流通する互いに独立した第1及び第2シール空気路を経由させ、第1シール空気路を経由した圧力が高い方の圧縮空気を前側の動翼翼列との間隙のシール空気として噴射させ、第2シール空気路を経由した圧力が低い方の圧縮空気を後側の動翼翼列との間隙のシール空気として噴射させる。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮空気を燃料とともに燃焼して生じさせた燃焼ガスにより回転動力を得るガスタービン及びそのロータシール空気導入方法に関する。
【0002】
【従来の技術】
高温高圧の燃焼ガスにより回転動力を得るガスタービンにおいては、一般に、タービンのガスパスを流れる燃焼ガスがタービンロータ内部に侵入することを防止するために、圧縮機から抽気した圧縮空気(ロータシール空気)を静翼と動翼との間隙からガスパスに噴出させる。静翼内に導入した圧縮空気をロータシール空気として用いる場合、従来、静翼先端に取り付けたダイヤフラムの前側から噴出させた圧縮空気により、圧力が高い静翼翼列前側の(動翼翼列との)間隙をシールし、更に、このシール空気を分流させ、ダイヤフラム内周側のタービンロータとの間隙のシール部を介して後側に迂回させ、ガスパスの圧力の下がった後側の(動翼翼列との)間隙をシールしていた(例えば、特許文献1等参照)。
【0003】
【特許文献1】
特開平11−22413号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術においては、静翼前後の静圧圧力差が大きいにも関わらず、各段落において静翼前後のシール空気を同一の供給系統から導いているため、要求圧力が低い静翼後側に対しては、必要以上に高圧の圧縮空気が供給されてしまう。しかも、静翼前側に比して要求圧力の低い静翼後側へのシール空気は、前述のようにシール部を通過させ、敢えて圧力を損失させることにより圧力を適正化している。これらのことから、従来構造には、エネルギー効率の面で改善の余地があった。
【0005】
また、静翼前後へのシール空気の流量割合は、分流した圧縮空気を通過させるシール部の圧力損失に実質的に委ねられる。しかしながら、ダイヤフラム及びロータの間隙のバラツキや運転時の熱変形等の影響を受け、シール部で生じる圧力損失を一定に保つことは難しいため、従来構造では、静翼前後のシール空気の流量割合を所望値に制御することは困難であった。
【0006】
本発明の目的は、各シール箇所に対し、要求に応じた圧力及び流量のロータシール空気を供給でき、なおかつエネルギー効率を向上させることができるガスタービン及びロータシール空気導入方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、圧縮空気を燃料とともに燃焼して生じさせた燃焼ガスをタービンに供給し、回転動力を得るガスタービンにおいて、同一段落の静翼翼列に、圧力の異なる圧縮空気をそれぞれ流通する互いに独立した第1及び第2シール空気路を経由させ、第1シール空気路を経由した圧力が高い方の圧縮空気をこの静翼翼列前側のシール空気として噴射し、第2シール空気路を経由した圧力が低い方の圧縮空気をこの静翼翼列後側のシール空気として噴射させる。
【0008】
【発明の実施の形態】
以下、本発明のガスタービンの実施の形態を図面を参照しつつ説明する。
図1は、本発明のガスタービンの第1の実施の形態の全体構成を簡略的に表す回路図である。この図1に示すように、本実施の形態のガスタービンは、取り入れた吸気を圧縮し圧縮空気を精製する圧縮機1と、この圧縮機1からの圧縮空気を燃料とともに燃焼し高温高圧の燃焼ガスを生じさせる燃焼器2と、この燃焼器2からの燃焼ガスによって回転動力を得るタービン3とを備えている。圧縮機1の圧縮機ロータ(図示せず)は、中心軸4によってタービン3のタービンロータ15(後述の図2参照)と同心状に連結されている。そして、特に図示していないが、タービンロータ15には、更に発電機ロータ(図示せず)が同心状に連結され、得られた回転エネルギーが電気エネルギーに変換される。
【0009】
圧縮機1のケーシング5には、ロータシール空気(後述)としてそれぞれ圧力の異なる圧縮空気を圧縮空気流路(図示せず)から抽気する抽気スリット6,7が設けられている。抽気スリット6は、抽気スリット7よりも圧縮空気流路の下流側に位置するため、この抽気スリット6から抽気される圧縮空気は、抽気スリット7から抽気される圧縮空気よりも高圧である。また、これら抽気スリット6,7は、それぞれシール空気配管8,9を介し、タービン3のケーシング10の空気導入孔11,12に接続している。シール空気配管8,9には、ケーシング10の外部でシール空気配管8,9の流量調整が行えるように、開口径が調整可能な(若しくは異なる開口径のものと交換可能な)空気量調整手段としてのオリフィス13,14が設けてある。
【0010】
図2は、タービン3の詳細構造を表す軸方向断面図である。なお、以下において、この図2における「左」・「右」に相当する位置関係を、ガスタービンにおける「前」・「後」の位置関係として扱う。図2において、タービン3は、ケーシング10と、このケーシング10内に回転自在に設けたタービンロータ15とを備えている。ケーシング10は、概略円筒形状の周壁16と、この周壁16の内周部に軸方向に所定の間隔で設けたシュラウド17〜19と、最前のシュラウド17の軸方向前側に当接するように設けたリテーナリング20とを備えている。
【0011】
リテーナリング20の内周側には、空洞の静翼21が支持されている。静翼21は、周方向に所定の間隔で放射状に複数設けられており、これら複数の静翼21によって第1段静翼翼列が構成されている。また、各静翼21は、環状の外輪によって根元部(外周側端部)が連結されており、外輪はリテーナリング20の内周側に支持されている。また、各静翼21の先端部(内周側端部)は、内輪により連結されている。この内輪の内周側には、各静翼21に各々接続した複数のダイヤフラム(静翼ダイヤフラム)22が環状に支持されている。これら第1段の静翼ダイヤフラム22の後側壁面には、開口径が調整可能な(又は異なる開口径のものと交換可能な)オリフィス27が設けてある。
【0012】
同じように、シュラウド17,18の内周側には、第2段落の静翼翼列を構成する複数の静翼23が、シュラウド18,19の内周側には、第3段落の静翼翼列を構成する複数の静翼25が、それぞれ外輪を介して支持されている。これら第2段落及び第3段落の静翼23,25の先端部は内輪を介して各々のダイヤフラム(静翼ダイヤフラム)24,26に接続している。これら第2段落及び第3段落のダイヤフラム24,26には、それぞれ前後両側壁面に、開口径が調整可能な(又は異なる開口径のものと交換可能な)オリフィス27が設けてある。
【0013】
タービンロータ15は、外周部にそれぞれ動翼28〜30を設けたタービンディスク31〜33を、スペーサ34,35を介して積層し、スタッキングボルト(図示せず)によって締結してなり、ケーシング10内に回転自在に設けられている。動翼28〜30は、タービンディスク31〜33の外周部に周方向に所定の間隔を持って放射状に複数固定され、それぞれ周方向に複数(本例では第1〜第3段落の3段落)の動翼翼列を構成している。これら第1〜第3段落の動翼翼列の前側には、それぞれ同段落の静翼翼列が位置しており、図2に示すように、第1〜第3段落の静翼翼列及び動翼翼列が軸方向に交互に取り付けられている。また、第2及び第3段落の静翼ダイヤフラム24,26とそれぞれ対向するスペーサ34,35との間隙は、シール手段36,37によってシールしてある。これらシール手段36,37としては、静翼23,25それぞれの前後間のシール空気のリークが極力抑制されるよう、例えばハニカムパッキンやブラシパッキン等といったシール効果の高い接触型のパッキン等を用いることが好ましい。
【0014】
続いて、図2とともに図3〜図5を参照しつつ、ロータシール空気の流路構造について説明する。図3は図2の第2段静翼23付近の拡大図、図4は図2中のIV−IV断面による断面図、図5は図2中のV−V断面による断面図である。但し、これら図3〜図5において、図1及び図2と同様の部分には同符号を付し説明を省略する。
【0015】
まず、図2に示すように、リテーナリング20の内周部には、第1段静翼21(厳密にはその外輪)によって封止されたキャビティ(第1段キャビティ)38が形成されている。このキャビティ38には、リテーナリング20の外周部に設けた空気導入孔39が連通している。また、キャビティ38は、第1段静翼21の空洞部及びダイヤフラム22の内部空間を介し、ダイヤフラム22のオリフィス27に連通している。
【0016】
また、図2又は図3に示すように、第2段静翼23の根元部分には、周壁16、シュラウド17,18、及び第2段静翼23(厳密にはその外輪)により画定されたキャビティ(第2段キャビティ)40が設けられている。この第2段キャビティ40は、仕切り壁41により、軸方向に隣り合う2つのキャビティ42,43に仕切られている。キャビティ42は、シュラウド17に設けた分岐流路50を介し、リテーナリング20に設けた先の第1段キャビティ38に接続している。キャビティ43は、ケーシング周壁16に設けた上記空気導入孔11を介しシール空気配管8(図1参照)に接続している。仕切り壁41の内周側には、切り欠き部44が設けてあり、第2段静翼23の外輪に設けた凸部45をこの切り欠き部44に嵌合させることにより、隣り合うキャビティ42,43間のリークを防止している。
【0017】
第3段落についても同様、図2に示すように、第3段静翼25の根元部分には、周壁16、シュラウド18,19、及び第3段静翼25により形成され、仕切り壁46により、軸方向に隣り合うキャビティ47,48に仕切られた第3段キャビティ49が設けられている。キャビティ47は、シュラウド18に設けた分岐流路51を介して、前側の第2段落のキャビティ43に接続しており、キャビティ48は、ケーシング周壁16に設けた空気導入孔12を介し、シール空気配管9(図1参照)に接続している。また、仕切り壁46の内周側に設けた切り欠き部に第3段静翼25の外輪に設けた凸部を嵌合させることにより、キャビティ47,48間のリークを防止している。
【0018】
なお、以上の第2段キャビティ40及び第3段キャビティ49において、前側のキャビティ42,47には、後側のキャビティ43,48に導入される圧縮空気よりも高圧の圧縮空気が導入されることから、以下、各段落(第2段落又は第3段落)において、前側のキャビティ42,47をそれぞれ第2段落、第3段落の高圧キャビティ、後側のキャビティ43,48をそれぞれ第2段落、第3段落の低圧キャビティと適宜記載する。
【0019】
本実施の形態において、第2段落の高圧キャビティ42は、図4に示すように、第2段落の各静翼23に対応して個々に接続するように、周方向に複数に区画されている。このように区画された各高圧キャビティ42は、それぞれ径方向に連通する(周方向位置の対応する)第2段静翼23の空洞部及び静翼ダイヤフラム24の内部空間を介し、この静翼ダイヤフラム24前側のオリフィス27に接続している。これに対し、第2段落の低圧キャビティ43は、図5に示すように、仕切りのない環状流路を形成しており、第2段落の特定の静翼23及びその静翼ダイヤフラム24の内部を通した管路(パイプ)52を介し、この静翼ダイヤフラム24の後側のオリフィス27に連通している。
【0020】
同様に、第3段落の高圧キャビティ47も、第3段落の各静翼25に対応する形で周方向に区画されており、それぞれ径方向に連通する第3段静翼25及び静翼ダイヤフラム26を介し、各静翼ダイヤフラム26前側のオリフィス27に接続している。一方、第3段落の低圧キャビティ48は、仕切りのない環状流路を形成しており、第3段落の特定の静翼25及びその静翼ダイヤフラム26の内部を通した管路(パイプ)53を介し、該静翼ダイヤフラム26の後側のオリフィス27に連通している。
【0021】
以上の構成により、本実施の形態のガスタービンが稼働すると、圧縮機1から燃焼器2に供給される高圧の圧縮空気の一部が、空気導入孔39を介してリテーナリング20内のキャビティ38に流入する。キャビティ38に導入された圧縮空気は、第1段静翼21及びダイヤフラム22を通ってこれらを冷却した後、第1段静翼21及びその軸方向後側に隣り合う第1段動翼28の間隙のロータシール空気として、静翼ダイヤフラム22のオリフィス27を介しガスパスに噴出される。
【0022】
また、キャビティ38に導入された高圧の圧縮空気の一部は、各シュラウド17の分岐流路50を介し、各シュラウド17を冷却しつつ第2段落の各高圧キャビティ42に流入する。各高圧キャビティ42に導入された圧縮空気は、第2段落の各静翼23の空洞部及びそのダイヤフラム24の内部空間を通ってこれらを冷却した後、第2段静翼翼列及び軸方向前側に隣り合う前段落(第1段落)の動翼翼列の間隙のロータシール空気として、各ダイヤフラム24前側のオリフィス27を介しガスパスに噴出される。
【0023】
同時に、第2段落の低圧キャビティ43には、圧縮機1に設けた抽気スリット6(図1参照)から抽気された圧縮空気流路中の中圧の圧縮空気が、シール空気配管8及び空気導入孔11を介して導入される。第2段落の低圧キャビティ43に導入された圧縮空気は、管路52を通ってダイヤフラム24後側のオリフィス27に直接導かれ、第2段静翼翼列及び軸方向後側に隣り合う同段落(第2段落)の動翼翼列の間隙のロータシール空気としてガスパスに噴出される。前述のように、シール手段36には、シール効果が高い接触型のパッキンを使用し、静翼23前後のリーク量を極力抑制しているので、この第2段静翼翼列の後側へのシール空気の大部分は、管路52により導かれた圧縮空気である。
【0024】
また、第2段落の低圧キャビティ43に導入された中圧の圧縮空気の一部は、各シュラウド18の分岐流路51を介し、各シュラウド18を冷却しつつ第3段落の各高圧キャビティ47に流入する。各高圧キャビティ47に導入された圧縮空気は、第3段落の各静翼25の空洞部及びそのダイヤフラム26の内部空間を通ってこれらを冷却した後、第3段静翼翼列及び軸方向前側に隣り合う前段落の動翼翼列の間隙のロータシール空気として、各ダイヤフラム26前側のオリフィス27を介しガスパスに噴出される。
【0025】
また同時に、第3段落の低圧キャビティ48には、圧縮機1に設けた抽気スリット7(図1参照)から抽気された圧縮空気流路中の低圧の圧縮空気が、シール空気配管9及び空気導入孔12を介して導入される。第3段落の低圧キャビティ48に導入された圧縮空気は、管路53を通ってダイヤフラム26後側のオリフィス27に直接導かれ、第3段静翼翼列及び軸方向後側に隣り合う同段落の動翼翼列の間隙のロータシール空気としてガスパスに噴出される。シール手段37には、シール効果が高い接触型のパッキンを使用し、静翼25前後のリーク量を極力抑制しているので、この第3段静翼翼列の後側へのシール空気の大部分は、管路53により導かれた圧縮空気である。
【0026】
以上のように、本実施の形態において、例えば、第2段落の静翼23とその軸方向前側に隣り合う第1段動翼28との間隙のロータシール空気を、「リテーナリング20のキャビティ38→シュラウド17の分岐流路50→第2段高圧キャビティ42→第2段静翼23→ダイヤフラム24→(ダイヤフラム24前側の)オリフィス27」からなる、第2段落における第1シール空気路(言い換えれば、第2段落における高圧側シール空気路)を経由して導入する。これに対し、同じ第2段静翼とその軸方向後側に隣り合う第2段動翼29との間隙のロータシール空気は、「抽気スリット6→シール空気配管8→空気導入孔11→第2段低圧キャビティ43→管路52→(ダイヤフラム24後側の)オリフィス27」からなる、先の第1シール空気路とは独立した第2段落における第2シール空気路(第2段落における低圧側シール空気路)を経由して導入する。
【0027】
先の第2段落の静翼翼列における第1シール空気路を流通する圧縮空気は、圧縮機1から燃焼器2に供給されるものの一部であり、要求される圧力が高い第2段静翼翼列及びその前の第1段動翼翼列との間隙のロータシール空気として十分かつ適正な圧力を有する。それに対し、第2段静翼翼列の後側は、前側に比べて圧力が低下するので、第1シール空気路を流通する圧縮空気よりも低圧の適正圧力の圧縮空気を、圧縮空気流路の抽気スリット6から抽気して、第1シール空気路とは別系統で直接導いている。
【0028】
上記した第2段静翼翼列の前後に対するロータシール空気の流通路については、第3段落においても概ね同様である。すなわち、第3段落の静翼25と第2段動翼29との間隙のロータシール空気は、「抽気スリット6→シール空気配管8→空気導入孔11→第2段低圧キャビティ43→シュラウド18の分岐流路51→第3段高圧キャビティ47→第3段静翼25→ダイヤフラム26→(ダイヤフラム26前側の)オリフィス27」からなる(第3段落における)第1シール空気路(第3段落における高圧側シール空気路)を経由して導入する。それに対し、第3段静翼25と第3段動翼30との間隙のロータシール空気は、「抽気スリット7→シール空気配管9→空気導入孔12→第3段低圧キャビティ48→管路53→(ダイヤフラム26後側の)オリフィス27」からなる独立した第2シール空気路(第3段落における低圧側シール空気路)を経由して導入する。第3段静翼翼列における第1シール空気路を流通する圧縮空気は、抽気スリット6から抽気されたものであり、抽気スリット6よりも上流側に位置する抽気スリット7から抽気された、同段落における第2シール空気路を流れる圧縮空気よりも高圧であることは言うまでもない。
【0029】
ここで、本実施の形態に対する比較例として各段落の静翼翼列の前後のシール空気を1系統で導くガスタービンのロータシール空気路の構成例を図6〜図8を用いて説明する。図6は本比較例のガスタービンのシール空気供給系統を示した図、図7及び図8は図6の第2段静翼付近の拡大図である。但し、これら図6〜図8において、先の各図と同様の部分には同符号を付し説明を省略する。
【0030】
図6の構造においては、例えば圧縮機の比較的高圧の抽気段からバイパスさせた圧縮空気を空気導入孔11を介してキャビティ40内に導き、第2段静翼23の空洞部及びそのダイヤフラム24の内部空間を介し、ダイヤフラム24前側に設けたオリフィス27から噴出させる。そして、図7に示すように、流出したシール空気は、第2段静翼23とその前側に隣り合う第1段動翼28との間隙のシール空気としてガスパスヘ流出し、同時にその一部がラビリンスシール手段36を介しダイヤフラム24とスペーサ34との間隙を通過してダイヤフラム24の後側から後側に隣り合う動翼29との間隙のロータシール空気としてガスパスヘ流出する。第3段落についても同様であり、図6において、例えば圧縮機の比較的低圧の抽気段からの圧縮空気をキャビティ49内に導き、ダイヤフラム26前側に設けたオリフィス27から噴出させた第3段静翼25とその前側に隣り合う第2段動翼29との間隙のシール空気の一部を、シール手段37を通過させて第3段動翼30との間隙のロータシール空気としてガスパスヘ流出させる。
【0031】
一般に、ガスタービンでは、動翼の前後に比べ静翼の前後の方が静圧圧力差が大きいため、各段落において、静翼の後側のロータシール空気は、前側のロータシール空気に比して要求される圧力が低く、この比較例のように、前側のロータシール空気と同じものを用いた場合、圧力・流量とも必要以上に高くなってしまう。
【0032】
そこで、本比較例において、各段落における静翼翼列の後側へのシール空気には、シール手段を介して圧力を低下させた静翼翼列の前側への圧縮空気の一部を用いている。このように、各段落において静翼翼列の前側と後側とに同系統から圧縮空気を導く場合、抽気する圧縮空気の設定圧力は静翼前側の要求圧力に応じて決まり、要求圧力が低くなる静翼後側びシール空気としては必要以上に圧力が高くなるため、静翼後側のシール空気を、シール手段を通過させることにより、敢えて圧力損失を立てて減圧している。したがって、結果的には、空気の圧縮に要したエネルギーをロスさせている。
【0033】
また、シール空気量は、抽気配管のオリフィス(例えば、図1のオリフィス13,14等参照)の径を調整することにより行われるものであるが、各段落の静翼前後にけるロータシール空気の流量配分は、シール手段36,37の流路抵抗(シール手段で生じる圧力損失)に左右される。しかしながら、シール手段とスペーサとの間隙が設定や運転時の熱変形等の影響によって不均一となるため、シール手段の流路抵抗を一定に保つことは困難であり、ダイヤフラム後側のシール空気流量を常に想定通りに保つことはできない。
【0034】
但し、シール手段36にハニカムパッキン等の接触型のパッキンを用いて、図8のように、ダイヤフラム24の内周のリーク流量を少なくし、ダイヤフラム24の前後にオリフィス27を設ける構成とすれば、シール手段の流路抵抗の変動から受ける影響を低減することはできる。しかしながら、ガスタービンを運転するサイトの気温を始めとする気象条件等により圧縮機の吸い込み量等が変動するため、ガスパスの静圧圧力差が大きい静翼前後においては、シール空気の供給圧力の変化に対する流量の感度が変化し易い。そのため、静翼の前後に1系統でシール空気を導く構成であると、抽気管のオリフィス調整だけではシール空気の流量割合を静翼前後で適正化することは困難な場合がある。
【0035】
以上のように、各段落の静翼の前後のシール空気の流量バランスが想定を外れた場合、図6〜図8の構成例においては、抽気配管のオリフィスを調整するだけでは流量配分を所望値に復帰させられない場合がある。そして、抽気配管のオリフィスを調整するだけではシール空気量の分配が所望値に制御できなくなった場合には、各段落のダイヤフラムのオリフィスの開口径を直接調整する必要が生じる。ダイヤフラムのオリフィスを調整するためには、ケーシングを開放しなければならず、この作業には多大な労力及び時間を要する。
【0036】
それに対し、本実施の形態によれば、各段落における静翼翼列の前後には、それぞれ互いに独立した第1及び第2シール空気路を経由させて適正圧力のロータシール空気を導いている。そのため、サイトの気温等といった気象条件等により、シール部の流路抵抗や静翼翼列前後におけるシール空気とガスパス内のホットガス(燃焼ガス)との圧力バランス(感度)が変動しても、シール空気配管8,9に設けたオリフィス13,14を調整することにより、静翼翼列前後のシール空気量を個々に流量調整することができる。各シール空気は、エネルギー効率も考慮しつつ、圧縮機中の圧縮空気流路における所要圧力の抽気位置から抽気することにより、各シール箇所のガスパスの圧力条件に適した圧力値に設定できることは言うまでもない。
【0037】
このように、本実施の形態においては、例えば図6及び図7に示した構成のように、シール空気路中で圧力損失をロスさせなくても、各シール箇所に対し、要求に応じた圧力及び流量のロータシール空気を供給でき、そして、圧縮に要するエネルギーを無駄にすることがないため、エネルギー効率を向上させることができ、タービン性能を向上させることができる。また、ケーシング10外部にあるシール空気配管8,9のオリフィス13,14の調整のみで各シール空気の流量を容易かつ適正に調整することができるので、従来のようにケーシング10を開放する労力や時間を軽減することができる。
【0038】
また、本実施の形態では、第2及び第3段落間においては、後段落の第1シール空気路(高圧側のシール空気路)は、前段落の第2シール空気路(低圧側のシール空気路)から分岐させたものであり、動翼翼列の前後で見た場合、それぞれのシール空気路が共用されている。前述したように、動翼前後の静圧圧力差は、静翼前後の静圧圧力差に比して小さく、動翼翼列の前後のロータシール空気の要求圧力はさほど差がないため、動翼翼列の前後のシール空気路を共用することにより、抽気段数を必要最小限に抑え、構成を簡素化することができる。また、シュラウド17,18等を経由させて圧縮空気をバイパスさせることにより、シュラウド17,18を冷却することができることもメリットである。
【0039】
また、第2又は第3段静翼23,25には、管路52又は53を通したものと通していないものとが存在するため、両者間の翼内温度に差が生じる可能性があるが、管路52又は53の周囲は第1シール空気路を流れる圧縮空気が流通しているため、上記温度差の発生も抑制することができる。また、管路52又は53により、低圧キャビティ43又は48からの圧縮空気を直接導くことにより、第2シール空気路中の圧縮空気のリークを極力防止することができる。
【0040】
続いて、本発明のガスタービンの第2の実施の形態を図9及び図10を用いて説明する。
図9及び図10は、ともに本実施の形態におけるロータシール空気の流路構造を表す図で、第1の実施の形態の図4及び図5にそれぞれ対応する図である。但し、これら図9及び図10において、先の各図と同様の部分には同符号を付し説明を省略する。また、第2段静翼翼列の構造を図示してあるが、第3段静翼翼列においても同様である。
【0041】
これら図9及び図10において、本実施の形態が、前述した第1の実施の形態と異なる点は、第1の実施の形態においては各静翼の先端にそれぞれ設けてあった静翼ダイヤフラムを、複数個分を連結して内部空間を連通させ、複数の静翼に跨って設けたことである。本実施の形態におけるダイヤフラム24Aは、管路52を通した静翼23とその周方向両側の静翼23からなる計3つの静翼23に接続しているが、これに限られず、2つ又は4つ以上の静翼23に接続する構成としても良く、場合によっては、環状にして全ての静翼23に接続する構成としても構わない。それ以外の構成については、前述した第1の実施の形態と同様であり、本実施の形態においても、各段落において、静翼翼列に互いに独立した2系統のシール空気路を設けることにより、第1の実施の形態と同様の効果を得ることができる。
【0042】
また、第1の実施の形態においては、管路52(又は53)が設置される静翼23(又は25)は、管路52(又は53)が設置されない静翼23(又は25)に比べ、管路52(又は53)の体積分だけ翼内の流路面積が小さくなり、ダイヤフラム前側に流出するシール空気量が減少することも考えられる。これに対し、本実施の形態においては、1つのダイヤフラム内で、管路を設けた静翼からの圧縮空気に、管路が通っていない静翼からの圧縮空気が合流し、圧力が均一化することができるので、ダイヤフラム前側へのシール空気流量の周方向位置による不均一を是正することができ、より安定したシール性を確保することができる。
【0043】
また、管路は全ての静翼に通してあるわけではなく、管路が通っていない静翼もあるため、同じ静翼翼列であっても、ダイヤフラムの後側へのシール空気流量が、周方向位置によって不均一になる可能性があるが、例えば、ダイヤフラム後側のオリフィスを軸方向に対して周方向に傾斜させ、シール空気に旋回成分を与えることにより、周方向位置によるシール空気量の不均一を防止することができる。
【0044】
なお、以上において、第2及び第3段落の両方に、第1及び第2シール空気路を設けたが、いずれかだけに第1及び第2シール空気路を設けても良い。また、第1段落においては、系統の異なる2つのシール空気路を経由させていないが、必要であれば、第2又は第3段落と同じ要領で第1及び第2シール空気路を経由させても良い。これらの場合も同様の効果を得る。
【0045】
また、3段のタービンに本発明を適用した例を説明したが、3段未満又は4段以上のタービンに対しても本発明は適用可能である。また、1軸のタービンを例に挙げて説明したが、タービンロータの回転軸が2軸に分かれたタービンにも本発明は適用可能である。また、タービンディスクに中心孔がないタービンに限られず、タービンロータの中心軸付近に空気を流通させる型のタービンにも本発明は適用可能である。また、ケーシングにおいて、シュラウドと周壁は一体構成であっても構わない。これらの場合も同様の効果を得る。
【0046】
【発明の効果】
本発明によれば、各シール箇所に対し、要求に応じた圧力及び流量のロータシール空気を供給でき、なおかつエネルギー効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明のガスタービンの第1の実施の形態の全体構成を簡略的に表す回路図である。
【図2】タービンの詳細構造を表す軸方向断面図である。
【図3】図2の第2段静翼付近の拡大図である。
【図4】図2中のIV−IV断面による断面図である。
【図5】図2中のV−V断面による断面図である。
【図6】本発明に対する比較例のガスタービンのシール空気供給系統を示した図である。
【図7】図6の第2段静翼付近の拡大図である。
【図8】図6の第2段静翼付近の他の拡大図である。
【図9】本発明のガスタービンの第2の実施の形態におけるロータシール空気の流路構造を表す図であり、図4に対応する図である。
【図10】本発明のガスタービンの第2の実施の形態におけるロータシール空気の流路構造を表す図であり、図5に対応する図である。
【符号の説明】
3 タービン
6 抽気スリット(第1シール空気路,第2シール空気路)
7 抽気スリット(第2シール空気路)
8 シール空気配管(第1シール空気路,第2シール空気路)
9 シール空気配管(第2シール空気路)
10 ケーシング
11,12 空気導入孔(第2シール空気路)
13,14 オリフィス(空気量調整手段)
15 ロータ
17〜19 シュラウド
20 リテーナリング
21 第1段静翼
22 ダイヤフラム
23 第2段静翼(第1シール空気路)
24 ダイヤフラム(第1シール空気路)
25 第3段静翼(第1シール空気路)
26 ダイヤフラム(第1シール空気路)
27 オリフィス27(第1シール空気路,第2シール空気路)
28〜30 動翼
36,37 シール手段
38 キャビティ(第1シール空気路)
40,49 キャビティ
41,46 仕切り壁
42 高圧キャビティ(第1シール空気路)
43 低圧キャビティ(第1シール空気路,第2シール空気路)
47 高圧キャビティ(第1シール空気路)
48 低圧キャビティ(第2シール空気路)
50,51 分岐流路(第1シール空気路)
52,53 管路(第2シール空気路)

Claims (12)

  1. 圧縮空気を燃料とともに燃焼して生じさせた燃焼ガスをタービンに供給し、回転動力を得るガスタービンにおいて、
    前記タービンのケーシングと、
    このケーシング内に回転自在に設けられ、軸方向に複数段の動翼翼列を有するロータと、
    前記ケーシングの内周側に、前記動翼翼列と軸方向に交互に取り付けた複数段の静翼翼列と、
    これら静翼翼列のうちのある静翼翼列内に圧縮空気を導入し、導入した圧縮空気を当該静翼翼列及び当該静翼翼列に軸方向前方側に隣り合う動翼翼列の間隙のロータシール空気として導く第1シール空気路と、
    この第1シール空気路が経由する静翼翼列を前記第1シール空気路とは別系統で経由し、前記第1シール空気路を流れる圧縮空気よりも低圧の圧縮空気を、当該静翼翼列及び当該静翼翼列に軸方向後方側に隣り合う動翼翼列の間隙のロータシール空気として導く第2シール空気路と
    を備えたことを特徴とするガスタービン。
  2. 圧縮空気を燃料とともに燃焼して生じさせた燃焼ガスをタービンに供給し、回転動力を得るガスタービンにおいて、
    前記タービンのケーシングと、
    このケーシング内に回転自在に設けられ、軸方向に複数段の動翼翼列を有するロータと、
    前記ケーシングの内周側に、前記動翼翼列と軸方向に交互に取り付けた複数段の静翼翼列と、
    前記ケーシングと前記静翼翼列との間に創出したキャビティと、
    このキャビティをそれぞれ高圧キャビティ及び低圧キャビティに分割する仕切り壁と、
    前記静翼翼列のうちのある静翼翼列内に前記高圧キャビティを介し圧縮空気を導入し、導入した圧縮空気を当該静翼翼列及び当該静翼翼列に軸方向前方側に隣り合う動翼翼列の間隙のロータシール空気として導く第1シール空気路と、
    この第1シール空気路が経由する静翼翼列を前記第1シール空気路とは別系統で経由し、前記低圧キャビティを介して導入した前記第1シール空気路を流れる圧縮空気よりも低圧の圧縮空気を、当該静翼翼列及び当該静翼翼列に軸方向後方側に隣り合う動翼翼列の間隙のロータシール空気として導く第2シール空気路とを備えたことを特徴とするガスタービン。
  3. 圧縮空気を燃料とともに燃焼して生じさせた燃焼ガスをタービンに供給し、回転動力を得るガスタービンにおいて、
    前記タービンのケーシングと、
    このケーシング内に回転自在に設けられ、軸方向に複数段の動翼翼列を有するロータと、
    前記ケーシングの内周側に、前記動翼翼列と軸方向に交互に取り付けた複数段の静翼翼列と、
    これら静翼翼列の先端部に前記ロータと対向するように取り付けたダイヤフラムと、
    このダイヤフラムと前記ロータとの間隙をシールするシール手段と、
    前記静翼翼列のうちのある静翼翼列及びこれに取り付けたダイヤフラム内に圧縮空気を導入し、導入した圧縮空気を当該静翼翼列及び当該静翼翼列に軸方向前方側に隣り合う動翼翼列の間隙のロータシール空気として導く第1シール空気路と、
    この第1シール空気路が経由する静翼翼列及びこれに取り付けたダイヤフラムを前記第1シール空気路とは別系統で経由し、前記第1シール空気路を流れる圧縮空気よりも低圧の圧縮空気を、当該静翼翼列及び当該静翼翼列に軸方向後方側に隣り合う動翼翼列の間隙のロータシール空気として導く第2シール空気路と
    を備えたことを特徴とするガスタービン。
  4. 請求項1記載のガスタービンにおいて、前記第1シール空気路は、前記静翼の空洞部を経由し、前記第2シール空気路は、前記空洞部内に配設された管路を経由することを特徴とするガスタービン。
  5. 請求項2記載のガスタービンにおいて、前記低圧キャビティ内に導かれた圧縮空気の一部を、後方側に隣接する段落の高圧キャビティに導く分岐流路を備えたことを特徴とするガスタービン。
  6. 請求項5記載のガスタービンにおいて、前記分岐流路は、前記キャビティを形成するシュラウドを貫通して設けられていることを特徴とするガスタービン。
  7. 請求項1記載のガスタービンにおいて、前記ケーシング外で前記第1又は第2シール空気路を流れる圧縮空気量をそれぞれ調整可能な空気量調整手段を設けたことを特徴とするガスタービン。
  8. 請求項2記載のガスタービンにおいて、前記低圧キャビティは、環状流路を形成していることを特徴とするガスタービン。
  9. 請求項3記載のガスタービンにおいて、前記ダイヤフラムは、周方向に隣り合う複数の静翼の先端に跨って取り付けられており、接続した複数の静翼からの圧縮空気を合流させることを特徴とするガスタービン。
  10. 圧縮空気を燃料とともに燃焼して生じさせた燃焼ガスをタービンに供給し、回転動力を得るガスタービンにおいて、
    複数段落ある静翼翼列のうちの少なくとも1つの段落の静翼翼列に、圧力の異なる圧縮空気をそれぞれ流通する互いに独立した第1及び第2シール空気路を経由させ、前記第1シール空気路を経由した圧力が高い方の圧縮空気を当該静翼翼列とその前側の動翼翼列との間隙に噴射させ、前記第2シール空気路を経由した圧力が低い方の圧縮空気を当該静翼翼列とその後側の動翼翼列との間隙に噴射させる
    ことを特徴とするガスタービン。
  11. 圧縮空気を燃料とともに燃焼して生じさせた燃焼ガスをタービンに供給し、回転動力を得るガスタービンのロータシール空気導入方法において、
    前記タービンの任意の静翼翼列と当該静翼翼列に軸方向前方側に隣り合う動翼翼列との間隙、並びに当該静翼翼列と当該静翼翼列に軸方向後方側に隣り合う動翼翼列との間隙に対し、互いに系統の異なる第1及び第2シール空気路を介して導入した圧縮空気をそれぞれロータシール空気として導くことを特徴とするガスタービンのロータシール空気導入方法。
  12. 圧縮空気を燃料とともに燃焼して生じさせた燃焼ガスをタービンに供給し、回転動力を得るガスタービンのロータシール空気導入方法において、
    前記タービンの任意の静翼翼列と当該静翼翼列に軸方向前方側に隣り合う動翼翼列との間隙には、当該静翼翼列と前記ガスタービンのケーシングとの間に設けた低圧キャビティを経由する第1シール空気路を介して導入した圧縮空気をロータシール空気として導く一方、
    前記静翼翼列と当該静翼翼列に軸方向後方側に隣り合う動翼翼列との間隙には、当該静翼翼列と前記ガスタービンのケーシングとの間に前記低圧キャビティと区画された高圧キャビティを経由する、前記第1シール空気路とは別系統の第2シール空気路を介して導入した圧縮空気をロータシール空気として導く
    ことを特徴とするガスタービンのロータシール空気導入方法。
JP2003174743A 2003-06-19 2003-06-19 ガスタービン及びロータシール空気導入方法 Pending JP2005009410A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174743A JP2005009410A (ja) 2003-06-19 2003-06-19 ガスタービン及びロータシール空気導入方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174743A JP2005009410A (ja) 2003-06-19 2003-06-19 ガスタービン及びロータシール空気導入方法

Publications (1)

Publication Number Publication Date
JP2005009410A true JP2005009410A (ja) 2005-01-13

Family

ID=34098139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174743A Pending JP2005009410A (ja) 2003-06-19 2003-06-19 ガスタービン及びロータシール空気導入方法

Country Status (1)

Country Link
JP (1) JP2005009410A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156261A (ja) * 2007-12-27 2009-07-16 General Electric Co <Ge> マルチソース型ガスタービン冷却
JP2010077868A (ja) * 2008-09-25 2010-04-08 Mitsubishi Heavy Ind Ltd ガスタービンのリムシール構造
JP2014020326A (ja) * 2012-07-20 2014-02-03 Toshiba Corp タービンおよびタービン冷却方法
JP2015004313A (ja) * 2013-06-21 2015-01-08 三菱日立パワーシステムズ株式会社 ガスタービン
US9631510B2 (en) 2012-02-29 2017-04-25 Hanwha Techwin Co., Ltd. Turbine seal assembly and turbine apparatus comprising the turbine seal assembly
US20190211698A1 (en) * 2018-01-08 2019-07-11 Doosan Heavy Industries & Construction Co., Ltd. Turbine vane assembly and gas turbine including the same
KR102265202B1 (ko) * 2019-12-18 2021-06-15 주식회사 포스코 노정압 터빈의 스테이터 블레이드에 부착된 더스트 판단 장치 및 판단 방법
WO2023214507A1 (ja) * 2022-05-06 2023-11-09 三菱重工業株式会社 タービン翼環組立体及びタービンの組立て方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156261A (ja) * 2007-12-27 2009-07-16 General Electric Co <Ge> マルチソース型ガスタービン冷却
JP2010077868A (ja) * 2008-09-25 2010-04-08 Mitsubishi Heavy Ind Ltd ガスタービンのリムシール構造
US9631510B2 (en) 2012-02-29 2017-04-25 Hanwha Techwin Co., Ltd. Turbine seal assembly and turbine apparatus comprising the turbine seal assembly
JP2014020326A (ja) * 2012-07-20 2014-02-03 Toshiba Corp タービンおよびタービン冷却方法
JP2015004313A (ja) * 2013-06-21 2015-01-08 三菱日立パワーシステムズ株式会社 ガスタービン
US20190211698A1 (en) * 2018-01-08 2019-07-11 Doosan Heavy Industries & Construction Co., Ltd. Turbine vane assembly and gas turbine including the same
KR20190084465A (ko) * 2018-01-08 2019-07-17 두산중공업 주식회사 터빈 베인 조립체 및 이를 포함하는 가스터빈
KR102028591B1 (ko) * 2018-01-08 2019-10-04 두산중공업 주식회사 터빈 베인 조립체 및 이를 포함하는 가스터빈
US11035240B2 (en) 2018-01-08 2021-06-15 DOOSAN Heavy Industries Construction Co., LTD Turbine vane assembly and gas turbine including the same
KR102265202B1 (ko) * 2019-12-18 2021-06-15 주식회사 포스코 노정압 터빈의 스테이터 블레이드에 부착된 더스트 판단 장치 및 판단 방법
WO2023214507A1 (ja) * 2022-05-06 2023-11-09 三菱重工業株式会社 タービン翼環組立体及びタービンの組立て方法

Similar Documents

Publication Publication Date Title
US8087249B2 (en) Turbine cooling air from a centrifugal compressor
US8147178B2 (en) Centrifugal compressor forward thrust and turbine cooling apparatus
US20170248155A1 (en) Centrifugal compressor diffuser passage boundary layer control
JP2009501861A (ja) シュラウドの半径方向脚部に配置されるタービンシュラウドセグメント用フェザーシール
JP2001207862A (ja) タービンホイール空洞をパージする方法と装置
JP4170583B2 (ja) ガスタービンのタービン段における冷却空気の分配装置
JP2009156261A (ja) マルチソース型ガスタービン冷却
JP5692966B2 (ja) 蒸気タービン内部の回転部品を冷却するための方法及び装置
JP2000186572A (ja) ガスタ―ビンエンジン
JP2009108861A (ja) 非対称流れ抽出システム
US10738791B2 (en) Active high pressure compressor clearance control
JP2017198184A (ja) ロータとステータとの間にリムシールを有するガスタービンエンジン
JP2005083375A (ja) ガスタービンエンジンロータ組立体を冷却するための方法及び装置
US10422244B2 (en) System for cooling a turbine shroud
US10539035B2 (en) Compliant rotatable inter-stage turbine seal
JP2016050494A (ja) ガスタービン
EP1188901A2 (en) Bypass holes for rotor cooling
CN108138655B (zh) 燃气轮机转子、燃气轮机以及燃气轮机设备
JP2017020494A (ja) ガスタービンを冷却する方法及び該方法を実施するガスタービン
JP4841680B2 (ja) ガスタービン圧縮機の抽気構造
CN108138656B (zh) 压缩机转子、具备该压缩机转子的燃气轮机转子、以及燃气轮机
JP2005009410A (ja) ガスタービン及びロータシール空気導入方法
JP2010276022A (ja) ターボ機械圧縮機ホイール部材
JP3977780B2 (ja) ガスタービン
EP3047110B1 (en) Flow splitting first vane support for gas turbine engine and method of flowing fluid through a gas turbine engine