JP2005009385A - Failure detecting device for exhaust secondary air supply system - Google Patents

Failure detecting device for exhaust secondary air supply system Download PDF

Info

Publication number
JP2005009385A
JP2005009385A JP2003173700A JP2003173700A JP2005009385A JP 2005009385 A JP2005009385 A JP 2005009385A JP 2003173700 A JP2003173700 A JP 2003173700A JP 2003173700 A JP2003173700 A JP 2003173700A JP 2005009385 A JP2005009385 A JP 2005009385A
Authority
JP
Japan
Prior art keywords
air supply
exhaust
secondary air
air
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003173700A
Other languages
Japanese (ja)
Other versions
JP4367749B2 (en
Inventor
Yosuke Tachibana
洋介 立花
Tetsuya Ono
哲也 大野
Takao Higashihama
隆夫 東浜
Takashi Masuda
俊 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003173700A priority Critical patent/JP4367749B2/en
Priority to US10/870,000 priority patent/US20040255575A1/en
Publication of JP2005009385A publication Critical patent/JP2005009385A/en
Application granted granted Critical
Publication of JP4367749B2 publication Critical patent/JP4367749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a failure detecting device for an exhaust secondary air supply system for simply and precisely detecting a failure of the exhaust secondary air supply system. <P>SOLUTION: In a V-type engine with air supply pipes connected to the respective banks, two air-fuel ratio sensors are provided at their downstream positions for generating outputs corresponding to the concentration of oxygen in exhaust gas. A difference Δmax between maximum values KO2RMAX, KO2LMAX for air-fuel feedback correction, calculated in accordance with the outputs, is calculated (S16, S18) and the calculated difference is compared with a prescribed value (S20). When the calculated difference exceeds the prescribed value, the exhaust secondary air supply system is detected to be in failure (S24). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は排気二次エア供給装置の故障検知装置に関する。
【0002】
【従来の技術】
排気二次エア供給装置は、例えば、内燃機関の排気系に配置された触媒装置の上流位置に接続されるエア供給管とエアポンプからなり、エアポンプを駆動してエア供給管から排気二次エアを導入して燃焼を促進し、排気中の未燃成分を低減する。
【0003】
排気二次エア供給装置においては、エア供給管の破損などの故障が生じると、所期の機能が達成されないことから、その故障検知手法が種々提案されており、その例として特許文献1に記載の技術が提案されている。
【0004】
【特許文献1】
特開平5−26033号公報
【0005】
特許文献1に記載の技術にあっては、内燃機関で駆動されるエアポンプに接続されて触媒装置の上流に二次エアを供給するエア供給管とその開度を調節して二次エア供給量を制御する制御バルブを備える排気二次エア供給装置において、所定の診断運転領域で排気二次エアを断続的に供給し、エア供給位置と触媒装置の間に配置された空燃比センサ(O2センサ)の出力が断続的な供給に見合って反転しているか否か判定することで、その故障を検知している。
【0006】
【発明が解決しようとする課題】
このように従来技術においては、精度良く故障検知するには、排気二次エア供給装置が正常のときの空燃比センサ出力などを学習するなどして確認しておく必要があって煩瑣であると共に、それによって故障検知が遅れる不都合もあった。かかる不都合は、特にV型機関のようにバンクごとに排気系を備える場合などに顕著となる。
【0007】
従って、この発明の目的は上記した不具合を解消し、排気二次エア供給装置の故障を簡易かつ精度良く検知するようにした排気二次エア供給装置の故障検知装置を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、請求項1項にあっては、内燃機関の排気系に配置された触媒装置の上流位置に排気二次エアを供給する排気二次エア供給装置の故障検知装置において、前記内燃機関の排気系に接続されてそれぞれ前記排気二次エアを供給する複数本のエア供給管、前記複数本のエア供給管の下流位置において前記排気系に配置されてそれぞれ前記排気系を流れる排気中の酸素濃度に応じた出力を生じる複数個の空燃比センサ、前記複数個の空燃比センサの出力に基づいて得られる値同士を比較して前記排気二次エア供給装置の故障を検知する故障検知手段を備える如く構成した。
【0009】
内燃機関の排気系に接続されてそれぞれ前記排気二次エアを供給する複数本のエア供給管の下流位置において前記排気系に配置されてそれぞれ前記排気系を流れる排気中の酸素濃度に応じた出力を生じる複数個の空燃比センサを備えると共に、それらの出力に基づいて得られる値同士を比較して排気二次エア供給装置の故障を検知する故障検知手段を備える如く構成したので、排気二次エア供給装置の故障を簡易かつ精度良く検知することができる。また、排気二次エア供給装置が正常のときの空燃比センサ出力などを学習するなどして確認しておくような煩瑣の作業も不要となると共に、学習によって故障検知が遅れるなどの不都合が生じることもない。また、V型機関のようにバンクごとに排気系を備える機関のそれぞれにエア供給管を配置する場合、単に故障の有無を検知できるに止まらず、故障が検知されるとき、それがどちらのバンクのエア供給管に生じたのかも検知することができる。
【0010】
請求項2項にあっては、前記故障検知手段は、前記複数個の空燃比センサの出力に基づいてそれぞれ算出される空燃比フィードバック補正係数の差を算出する補正係数差算出手段と、前記算出された差を所定値と比較する比較手段を備え、前記算出された差が所定値を超えるとき、前記排気二次エア供給装置が故障と検知する如く構成した。
【0011】
複数個の空燃比センサの出力に基づいてそれぞれ算出される空燃比フィードバック補正係数の差を算出して所定値と比較し、算出された差が所定値を超えるとき、排気二次エア供給装置が故障と検知する如く構成したので、排気二次エア供給装置の故障を一層簡易かつ精度良く検知することができる。
【0012】
請求項3項にあっては、前記内燃機関がV型機関であり、1個のエアポンプを備え、前記エア供給管が前記エアポンプに接続されると共に、途中から分岐して前記V型機関のそれぞれのバンクに接続される如く構成した。
【0013】
これにより、エア供給管がそのそれぞれのバンクに接続されるようなV型機関において、排気二次エア供給装置の故障を簡易かつ精度良く検知することができる。
【0014】
【発明の実施の形態】
以下、添付図面に即してこの発明の一つの実施の形態に係る排気二次エア供給装置の故障検知装置について説明する。
【0015】
図1は、その実施の形態に係る排気二次エア供給装置の故障検知装置の全体構成を示す概略図である。
【0016】
同図において符合10は多気筒内燃機関(以下「エンジン」という)を示す。エンジン10は、4サイクルのV型6気筒のDOHCエンジンからなり、右バンク10Rに#1,#2,#3の3個の気筒(シリンダ)12を備えると共に、左バンク10Lに#4,#5,#6の3個の気筒12を備える。
【0017】
エンジン10において、エアクリーナ14から吸入された空気は吸気管16を流れ、スロットルバルブ20で流量を調節されつつ吸気マニホルド(図示せず)を介して各気筒12の吸気ポートに至り、そこに配置されたインジェクタ(図示せず)からガソリン燃料を噴射される。よって生じた混合気は吸気バルブ(図示せず)が開放されるとき気筒燃焼室(図示せず)に入り、点火プラグ(図示せず)で点火されて燃焼する。
【0018】
燃焼によって生じた排気(排出ガス)は排気バルブ(図示せず)が開放されたとき、左右バンク10R,Lごとに設けられた排気マニホルド22を流れ、集合部で合流した後、排気管24を流れ、触媒装置(三元型)26で有害成分が除去された後、エンジン外に放出される。
【0019】
排気マニホルド22と排気管24からなる排気系には、排気二次エア供給装置30が設けられる。排気二次エア供給装置30は主として、エンジン10の排気系において触媒装置26の上流位置に接続されたエア供給管(デリバリパイプ)32と、エアポンプ34からなる。
【0020】
吸気管16はスロットルバルブ20の上流側で分岐され、分岐管16aの他端はエアポンプ34の吸入側に接続される。エアポンプ34の吐出側はエア供給管32に接続される。エア供給管32はカットオフバルブ36を介して分岐し、それぞれ左右バンク10R,Lの排気マニホルド22に接続される。右バンク10R側の排気マニホルド22に配置されるエア供給管を32R、左バンク10L側のそれを32Lとする。尚、エア供給管32R,Lは、同量のエアを供給する形状に構成される。
【0021】
図2にエア供給管32などの構成を詳細に示すが、図示の如く、エア供給管32の先端には開口32aの付近にフランジ32bが形成され、開口32aを排気マニホルド22に穿設された孔(図1に破線で示す)22aに合致させつつ、フランジ32bで排気マニホルド22にボルト止めすることで、エア供給管32は排気マニホルド22に接続される。
【0022】
エアポンプ34には電動モータ40が接続され、その回転で駆動されてエアクリーナ14から吸入された空気を吸引してエア供給管32に圧送する。カットオフバルブ36は負圧ダイアフラム(図示せず)を備え、図示しない負圧導入機構を介して負圧が導入されるとき、開放して吸入口36aから導入した圧送空気を排気マニホルド22に供給する。
【0023】
図1において、エンジン10のクランク軸などの回転軸(図示せず)の付近にはクランク角センサ42が配置されて気筒判別信号を出力すると共に、各気筒のTDC位置あるいはその付近でTDC信号を、またそれを細分化してなるクランク角度信号を出力する。
【0024】
また、吸気管16のスロットルバルブ20の配置位置の下流には絶対圧センサ44が設けられ、吸気管内絶対圧(エンジン負荷)PBAに応じた信号を出力すると共に、エンジン10の冷却水通路(図示せず)には水温センサ46が配置され、エンジン冷却水温TWに応じた信号を出力する。
【0025】
また、排気系において、触媒装置26の上流側には第1の空燃比センサ50が配置されると共に、その下流には第2の空燃比センサ52が配置され、それぞれ配置位置を流れる排気中の酸素濃度に応じた信号を出力する(以下、右バンク10Rに配置されたセンサを50R,52R、左バンク10Lに配置されたそれを50L,52Lとする)。第1、第2の空燃比センサ50,52は共にO2センサであり、理論空燃比相当値を中心としてリッチ方向とリーン方向に反転を繰り返す信号を出力する。以下、第1の空燃比センサ50を「PO2センサ」、第2の空燃比センサ52を「SO2センサ」という。
【0026】
上記したセンサ群の出力は、ECU54に送られる。ECU54はマイクロコンピュータからなり、入力したクランク角センサ42のクランク角度信号をカウントしてエンジン回転数NEを検出すると共に、クランク角センサ42を含むセンサ出力に基づいてエンジン10に供給されるべき、燃料噴射量TIを以下のように算出する。
【0027】
TI=TIM×KO2×KTOTAL+TTOTAL
上記で、TIMはエンジン回転数NEとエンジン負荷(吸気管内絶対圧)PBAからマップ検索して得られる基本値である。またKO2はPO2センサ出力から得られる検出空燃比に基づいて決定される空燃比フィードバック補正係数であって、以下のように算出される。以下でnは離散系のサンプル番号、より具体的には制御周期である。
KO2(n)=KO2(n−1)−KO2I (検出空燃比がリッチな場合)
KO2(n)=KO2(n−1)+KO2I (検出空燃比がリーンな場合)
即ち、KO2はPO2センサ出力の理論空燃比相当値(反転中心値)からの偏差にI(積分制御項)を加減算して決定される。尚、KO2は左右バンク10R,Lにそれぞれ配置されたPO2センサ50R,Lの出力に基づいてバンクごとに算出される。また、KO2は学習制御される。
【0028】
また、KTOTALはその他の乗算形式による補正係数、TTOTALは加算形式による補正係数である。尚、燃料噴射量TIは、インジェクタの開弁時間として示される。また、燃料噴射量TIは、エンジン10の始動時などに増量される。
【0029】
ECU54は、エンジン回転数NEなどを用いて点火時期も決定すると共に、エンジン10が始動された後、所定時間、電動モータ40に通電指令してエアポンプ34を駆動し、排気二次エアを排気系に供給する。それにより、始動時に増量された燃料の未燃成分は排気マニホルド22およびその下流の排気管24で燃焼させられ、触媒装置26を加熱しつつ、大気に放出される。これにより、触媒装置26の活性化が促進されると共に、大気への未燃成分の放出が低減させられる。また、ECU54は、排気二次エア供給装置30の故障検知も行う。
【0030】
次いで、その排気二次エア供給装置30の故障検知動作を説明する。
【0031】
図3は、その動作を示すフロー・チャートである。
【0032】
以下説明すると、S10でモニタ領域(故障検知領域)か否か判断する。エンジン10が始動されて暖機が終了した後、アイドル状態あるいはその他の定常運転状態にあるとき、モニタ領域と判断される。
【0033】
S10で否定されるときは以降の処理をスキップすると共に、肯定されるときはS12に進み、排気二次エア供給装置30の故障が検知ずみか否か判断する。S12で肯定されるときも、以降の処理をスキップする。尚、電動モータ40が故障ではないが、それへの通電が過大となって過熱していると判断される場合なども、以降の処理をスキップする。
【0034】
他方、S12で否定されるときはS14に進み、エアポンプ34をオン、即ち、電動モータ40に通電してエアポンプ34を駆動すると共に、空燃比フィードバック補正係数KO2の学習を禁止する。即ち、故障検知のための人為的な空燃比の操作による本来の空燃比フィードバック制御に影響を与えないため、その学習を禁止する。
【0035】
次いでS16に進み、左右バンクのPO2センサ50R,Lの出力から空燃比フィードバック補正係数KO2をそれぞれ算出する。尚、右バンク側のPO2センサ50Rから算出される補正係数をKO2R、左バンク側のそれをKO2Lとする。次いでその最大値KO2RMAXおよびKO2LMAXを求める。
【0036】
次いでS18に進み、求めた最大値KO2RMAXからKO2LMAXを減算してその差Δmaxを絶対値で求める。
【0037】
次いでS20に進み、絶対値で求めた差Δmaxを所定値と比較し、差Δmaxが所定値を超えるか否か判断し、否定されるときはS22に進み、エア供給管32が正常と判断(検知)すると共に、肯定されるときはS24に進み、エア供給管32が故障と判断(検知)する。
【0038】
ここで、図4および図5を参照して説明すると、排気二次エア供給装置30が正常であれば、図4において時点taでエアポンプ34の駆動が開始したとすれば、左右バンクの排気マニホルド22には同量のエアが供給されて排気管24を流れる結果、PO2センサ50R,50Lの配置位置で排気は徐々にリーンとなる。従って、その検出値に基づいて算出される空燃比フィードバック補正係数KO2R,Lの値も、同図に示す如く、リッチ方向に補正するように徐々に変化するが、その最大値同士の差も零か微小な値となる。
【0039】
他方、左右バンクのエア供給管32R,Lのいずれかに亀裂などの破損が生じてエアがリークしているなどの故障が生じた場合など、左右バンクの排気マニホルド22に同量のエアが供給されていないとき、排気管24を流れるエア量も左右バンクで異なる。
【0040】
例えば、図5に示すように、右バンク10R側のエア供給管に上記したような故障が生じたとすると、供給されるエア量は不足することから、PO2センサ50Rの検出値に基づいて算出される空燃比フィードバック補正係数KO2Rの値の変化は、所期のエア量が供給される左バンク10L側の空燃比フィードバック補正係数KO2Lの変化に比して小さくなり、両者の差が徐々に増加して最大値KO2LMAXで最大となる。
【0041】
従って、前記した所定値を適宜設定して左右バンクの空燃比フィードバック補正係数KO2RMAXとKO2LMAXの差Δmaxと比較することで、排気二次エア供給装置30に故障、より正確には、最大値が小さい(空燃比フィードバック補正係数の変化が小さい)方のエア供給管32に亀裂などの破損が生じる、そのフランジ部32bと排気マニホルド22との接続部のシールが不十分となる、あるいはエアポンプ34またはカットオフバルブ36とエア供給管32との接続部のシールが不十分となるなどの故障が生じたと判断することができる。
【0042】
この実施の形態に係る故障検知装置は上記の如く構成したので、排気二次エア供給装置30の故障、より具体的にはそのエア供給管32の破損などの故障を簡易かつ精度良く検知することができる。
【0043】
尚、所定値は上記したように差から故障を判定するに足る値を適宜選択して設定するが、例えば、排気二次エアが供給されていないときのPO2センサ50R,Lの出力の差を学習し、学習値に応じて設定された所定値を補正しても良い。
【0044】
尚、上記において、左右バンクの空燃比フィードバック補正係数KO2R,Lの最大値KO2RMAX,KO2LMAXを求め、それらの差Δmaxを算出して所定値と比較することで故障を検出したが、必ずしも厳密に最大値を求める必要はない。例えば、空燃比フィードバック補正係数KO2R,Lの一方についてのみ最大値を求めると共に、他方は最大値に至る前の値を用いて両者の差を算出して所定値と比較しても良い。あるいは、KO2R,L共、最大値に至る前の値を用いて両者の差を算出し、所定値と比較しても良い。
【0045】
さらには、PO2センサ50R,Lの出力(あるいはその最大値)同士の差を求め、その差を適宜設定する所定の値と比較して故障を検知するようにしても良い。この場合も、差が所定の値を超えるとき、リッチ方向の値を出力するか、あるいは出力の反転を示すPO2センサ50Rあるいは50L側のエア供給管32が故障とみなすことができる。
【0046】
この実施の形態は上記の如く、内燃機関(エンジン)10の排気系(排気マニホルド22、排気管24)に配置された触媒装置26の上流位置に排気二次エアを供給する排気二次エア供給装置30の故障検知装置において、前記内燃機関の排気系(排気マニホルド22)に接続されてそれぞれ前記排気二次エアを供給する複数本のエア供給管32R,L、前記複数本のエア供給管の下流位置において前記排気系(排気管24)に配置されてそれぞれ前記排気系を流れる排気中の酸素濃度に応じた出力を生じる複数個の空燃比センサ(PO2センサ50R,L)、前記複数個の空燃比センサの出力に基づいて得られる値同士を比較して前記排気二次エア供給装置の故障を検知する故障検知手段(ECU54,S10からS24)を備える如く構成した。
【0047】
より具体的には、前記故障検知手段は、前記複数個の空燃比センサの出力に基づいてそれぞれ算出される空燃比フィードバック補正係数KO2R,Lの差(より正確にはそれらの最大値KO2RMAXとKO2LMAXの差Δmax)を算出する補正係数差算出手段(ECU54,S16,S18)と、前記算出された差を所定値と比較する比較手段(ECU54,S20)を備え、前記算出された差が所定値を超えるとき、前記排気二次エア供給装置が故障と検知する(ECU54,S24)如く構成した。
【0048】
尚、前記内燃機関がV型機関であり、1個のエアポンプ34を備え、前記エア供給管32R,Lが前記エアポンプに接続されると共に、途中から分岐して前記V型機関のそれぞれのバンク10R,Lに接続される如く構成した。
【0049】
尚、この実施の形態においては、V型エンジンの左右バンク10R,Lごとにエア供給管30R,Lを配置する共に、その下流にPO2センサ50R,Lを配置する構成を例にとって説明したが、この発明はそれに限られるものでなく、V型エンジンではなくても排気系が複数の系からなり、そのそれぞれにエア供給管と空燃比センサを配置可能なものであれば、同様に妥当する。また、空燃比センサとしてO2センサを使用したが、それに限られるものではなく、酸素濃度に比例した出力を生じるセンサを用いても良い。
【0050】
【発明の効果】
請求項1項にあっては、排気二次エア供給装置の故障を簡易かつ精度良く検知することができる。また、排気二次エア供給装置が正常のときの空燃比センサ出力などを学習するなどして確認しておくような煩瑣の作業も不要となると共に、学習によって故障検知が遅れるなどの不都合が生じることもない。また、V型機関のようにバンクごとに排気系を備える機関のそれぞれにエア供給管を配置する場合、単に故障の有無を検知できるに止まらず、故障が検知されるとき、それがどちらのバンクのエア供給管に生じたのかも検知することができる。
【0051】
請求項2項にあっては、排気二次エア供給装置の故障を一層簡易かつ精度良く検知することができる。
【0052】
請求項3項にあっては、エア供給管がそのそれぞれのバンクに接続されるようなV型機関において、排気二次エア供給装置の故障を簡易かつ精度良く検知することができる。
【図面の簡単な説明】
【図1】この発明の一つの実施の形態に係る排気二次エア供給装置の故障検知装置の全体構成を示す概略図である。
【図2】図1に示す装置のうち、エア供給管などの排気二次エア供給装置の構成部品の一部を詳細に示す説明斜視図である。
【図3】図1に示す装置の動作を示すフロー・チャートである。
【図4】図3に示す装置の動作を説明する、排気二次エア供給装置に故障がない場合の空燃比センサ(O2センサ)の出力とそれに基づいて算出される空燃比フィードバック補正係数を示すタイム・チャートである。
【図5】図3に示す装置の動作を説明する、排気二次エア供給装置に故障が発生した場合の空燃比センサ(O2センサ)の出力とそれに基づいて算出される空燃比フィードバック補正係数を示すタイム・チャートである。
【符号の説明】
10 エンジン(内燃機関)
22 排気マニホルド
24 排気管
26 触媒装置
30 排気二次エア供給装置
32 エア供給管
34 エアポンプ
50 第1の空燃比センサ(PO2センサ)
54 ECU(電子制御ユニット)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a failure detection device for an exhaust secondary air supply device.
[0002]
[Prior art]
The exhaust secondary air supply device includes, for example, an air supply pipe and an air pump connected to an upstream position of a catalyst device disposed in an exhaust system of the internal combustion engine. The exhaust secondary air is driven from the air supply pipe by driving the air pump. Introduce to promote combustion and reduce unburned components in the exhaust.
[0003]
In the exhaust secondary air supply device, when a failure such as breakage of the air supply pipe occurs, the intended function is not achieved. Therefore, various failure detection methods have been proposed, and examples thereof are described in Patent Document 1. The technology has been proposed.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-26033
In the technique described in Patent Literature 1, an air supply pipe that is connected to an air pump driven by an internal combustion engine and supplies secondary air to the upstream side of the catalyst device, and its opening degree are adjusted to adjust the secondary air supply amount. In the exhaust secondary air supply device including a control valve for controlling the exhaust, secondary exhaust air is intermittently supplied in a predetermined diagnostic operation region, and an air-fuel ratio sensor (O2 sensor) disposed between the air supply position and the catalyst device The failure is detected by determining whether or not the output of () is reversed in accordance with intermittent supply.
[0006]
[Problems to be solved by the invention]
As described above, in the prior art, in order to detect a failure with high accuracy, it is necessary to learn and confirm the output of the air-fuel ratio sensor when the exhaust secondary air supply device is normal. As a result, failure detection is delayed. Such inconvenience is particularly noticeable when an exhaust system is provided for each bank as in a V-type engine.
[0007]
Accordingly, an object of the present invention is to provide a failure detection device for an exhaust secondary air supply device that solves the above-described problems and detects a failure of the exhaust secondary air supply device easily and accurately.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to claim 1, a failure detection device for an exhaust secondary air supply device for supplying exhaust secondary air to an upstream position of a catalyst device arranged in an exhaust system of an internal combustion engine. A plurality of air supply pipes connected to the exhaust system of the internal combustion engine for supplying the exhaust secondary air, respectively, and disposed in the exhaust system at positions downstream of the plurality of air supply pipes, respectively. A plurality of air-fuel ratio sensors that produce an output corresponding to the oxygen concentration in the exhaust gas flowing through the exhaust gas, and by comparing values obtained based on the outputs of the plurality of air-fuel ratio sensors, the failure of the exhaust secondary air supply device The apparatus is configured to include failure detection means for detecting.
[0009]
An output according to the oxygen concentration in the exhaust gas that is connected to the exhaust system of the internal combustion engine and is disposed in the exhaust system at a downstream position of a plurality of air supply pipes that supply the exhaust secondary air, respectively, and flows through the exhaust system. And a plurality of air-fuel ratio sensors for generating the exhaust gas, and a failure detection means for detecting a failure of the exhaust secondary air supply device by comparing values obtained based on their outputs. A failure of the air supply device can be detected easily and accurately. In addition, troublesome work such as learning and checking the output of the air-fuel ratio sensor when the exhaust secondary air supply device is normal is unnecessary, and inconveniences such as delay in failure detection due to learning occur. There is nothing. Further, when an air supply pipe is arranged in each engine having an exhaust system for each bank such as a V-type engine, it is not only possible to detect the presence or absence of a failure, but when a failure is detected, which bank It is also possible to detect whether it has occurred in the air supply pipe.
[0010]
3. The correction coefficient difference calculating means for calculating the difference between the air-fuel ratio feedback correction coefficients calculated based on the outputs of the plurality of air-fuel ratio sensors, and the calculation Comparing means for comparing the calculated difference with a predetermined value is provided, and when the calculated difference exceeds the predetermined value, the exhaust secondary air supply device is detected as a failure.
[0011]
A difference between air-fuel ratio feedback correction coefficients calculated based on outputs of a plurality of air-fuel ratio sensors is calculated and compared with a predetermined value. When the calculated difference exceeds a predetermined value, the exhaust secondary air supply device Since it is configured to detect a failure, a failure of the exhaust secondary air supply device can be detected more easily and accurately.
[0012]
According to a third aspect of the present invention, the internal combustion engine is a V-type engine, includes one air pump, the air supply pipe is connected to the air pump, and branches from the middle to each of the V-type engines. It was configured to be connected to the bank.
[0013]
Thereby, in a V-type engine in which an air supply pipe is connected to each bank, a failure of the exhaust secondary air supply device can be detected easily and accurately.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a failure detection device for an exhaust secondary air supply device according to one embodiment of the present invention will be described with reference to the accompanying drawings.
[0015]
FIG. 1 is a schematic diagram showing the overall configuration of a failure detection device for an exhaust secondary air supply device according to the embodiment.
[0016]
In the figure, reference numeral 10 denotes a multi-cylinder internal combustion engine (hereinafter referred to as “engine”). The engine 10 is composed of a 4-cycle V-type 6-cylinder DOHC engine. The right bank 10R includes three cylinders (cylinders) # 1, # 2, and # 3, and the left bank 10L includes # 4 and # 4. Three cylinders 5 and # 6 are provided.
[0017]
In the engine 10, the air drawn from the air cleaner 14 flows through the intake pipe 16, reaches the intake port of each cylinder 12 through an intake manifold (not shown) while the flow rate is adjusted by the throttle valve 20, and is arranged there. Gasoline fuel is injected from an injector (not shown). Thus, the generated air-fuel mixture enters a cylinder combustion chamber (not shown) when an intake valve (not shown) is opened, and is ignited and burned by a spark plug (not shown).
[0018]
Exhaust gas (exhaust gas) generated by combustion flows through the exhaust manifold 22 provided for each of the left and right banks 10R and 10L when an exhaust valve (not shown) is opened, and merges at the gathering portion. After the harmful components are removed by the flow and the catalytic device (three-way type) 26, they are discharged outside the engine.
[0019]
An exhaust secondary air supply device 30 is provided in an exhaust system including the exhaust manifold 22 and the exhaust pipe 24. The exhaust secondary air supply device 30 mainly includes an air supply pipe (delivery pipe) 32 connected to an upstream position of the catalyst device 26 in the exhaust system of the engine 10 and an air pump 34.
[0020]
The intake pipe 16 is branched upstream of the throttle valve 20, and the other end of the branch pipe 16 a is connected to the intake side of the air pump 34. The discharge side of the air pump 34 is connected to the air supply pipe 32. The air supply pipe 32 branches via a cut-off valve 36 and is connected to the exhaust manifolds 22 of the left and right banks 10R and 10L, respectively. The air supply pipe disposed in the exhaust manifold 22 on the right bank 10R side is 32R, and the air supply pipe on the left bank 10L side is 32L. The air supply pipes 32R and 32L are configured to supply the same amount of air.
[0021]
FIG. 2 shows the configuration of the air supply pipe 32 and the like in detail. As shown in the drawing, a flange 32b is formed in the vicinity of the opening 32a at the tip of the air supply pipe 32, and the opening 32a is formed in the exhaust manifold 22. The air supply pipe 32 is connected to the exhaust manifold 22 by being bolted to the exhaust manifold 22 with a flange 32b while being matched with a hole (shown by a broken line in FIG. 1) 22a.
[0022]
An electric motor 40 is connected to the air pump 34, and is driven by its rotation to suck air sucked from the air cleaner 14 and pump it to the air supply pipe 32. The cut-off valve 36 includes a negative pressure diaphragm (not shown), and when negative pressure is introduced through a negative pressure introduction mechanism (not shown), the cut-off valve 36 is opened to supply the pumped air introduced from the suction port 36a to the exhaust manifold 22. To do.
[0023]
In FIG. 1, a crank angle sensor 42 is arranged near a rotation shaft (not shown) such as a crank shaft of the engine 10 to output a cylinder discrimination signal, and a TDC signal is output at or near the TDC position of each cylinder. In addition, a crank angle signal obtained by subdividing it is output.
[0024]
Further, an absolute pressure sensor 44 is provided downstream of the position of the throttle valve 20 in the intake pipe 16 to output a signal corresponding to the intake pipe absolute pressure (engine load) PBA, and to the cooling water passage (see FIG. (Not shown) is provided with a water temperature sensor 46 and outputs a signal corresponding to the engine cooling water temperature TW.
[0025]
Further, in the exhaust system, a first air-fuel ratio sensor 50 is disposed upstream of the catalyst device 26, and a second air-fuel ratio sensor 52 is disposed downstream thereof. A signal corresponding to the oxygen concentration is output (hereinafter, the sensors arranged in the right bank 10R are 50R and 52R, and those arranged in the left bank 10L are 50L and 52L). The first and second air-fuel ratio sensors 50 and 52 are both O2 sensors, and output signals that repeat inversion in the rich direction and the lean direction around the theoretical air-fuel ratio equivalent value. Hereinafter, the first air-fuel ratio sensor 50 is referred to as “PO2 sensor”, and the second air-fuel ratio sensor 52 is referred to as “SO2 sensor”.
[0026]
The output of the sensor group described above is sent to the ECU 54. The ECU 54 is composed of a microcomputer, counts the crank angle signal of the input crank angle sensor 42 to detect the engine rotational speed NE, and supplies the fuel to the engine 10 based on the sensor output including the crank angle sensor 42. The injection amount TI is calculated as follows.
[0027]
TI = TIM × KO2 × KTOTAL + TTOTAL
In the above, TIM is a basic value obtained by map search from the engine speed NE and the engine load (intake pipe absolute pressure) PBA. KO2 is an air-fuel ratio feedback correction coefficient determined based on the detected air-fuel ratio obtained from the PO2 sensor output, and is calculated as follows. In the following, n is a discrete sample number, more specifically, a control cycle.
KO2 (n) = KO2 (n-1) -KO2I (when the detected air-fuel ratio is rich)
KO2 (n) = KO2 (n-1) + KO2I (when the detected air-fuel ratio is lean)
That is, KO2 is determined by adding / subtracting I (integral control term) to the deviation from the theoretical air-fuel ratio equivalent value (reversal center value) of the PO2 sensor output. Note that KO2 is calculated for each bank based on the outputs of the PO2 sensors 50R and 50L disposed in the left and right banks 10R and L, respectively. Also, KO2 is learning controlled.
[0028]
KTOTAL is a correction coefficient in another multiplication format, and TTOTAL is a correction coefficient in an addition format. The fuel injection amount TI is indicated as the valve opening time of the injector. Further, the fuel injection amount TI is increased when the engine 10 is started.
[0029]
The ECU 54 determines the ignition timing using the engine speed NE and the like, and after the engine 10 is started, energizes the electric motor 40 for a predetermined time to drive the air pump 34 to drive the exhaust secondary air to the exhaust system. To supply. Thereby, the unburned component of the fuel increased at the time of start-up is burned in the exhaust manifold 22 and the exhaust pipe 24 downstream thereof, and released to the atmosphere while heating the catalyst device 26. Thereby, the activation of the catalyst device 26 is promoted, and the release of unburned components to the atmosphere is reduced. The ECU 54 also detects a failure of the exhaust secondary air supply device 30.
[0030]
Next, the failure detection operation of the exhaust secondary air supply device 30 will be described.
[0031]
FIG. 3 is a flowchart showing the operation.
[0032]
In the following, it is determined in S10 whether or not the monitor area (failure detection area). After the engine 10 is started and the warm-up is completed, it is determined as the monitor region when the engine 10 is in an idle state or other steady operation state.
[0033]
When the result in S10 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S12, and it is determined whether or not a failure of the exhaust secondary air supply device 30 has been detected. Even when the result in S12 is affirmative, the subsequent processing is skipped. Even when the electric motor 40 is not faulty, the subsequent processing is skipped also when it is determined that the electric current to the electric motor 40 is excessive and overheated.
[0034]
On the other hand, when the result in S12 is negative, the program proceeds to S14, in which the air pump 34 is turned on, that is, the electric motor 40 is energized to drive the air pump 34, and learning of the air-fuel ratio feedback correction coefficient KO2 is prohibited. That is, since the original air-fuel ratio feedback control by the artificial air-fuel ratio operation for failure detection is not affected, the learning is prohibited.
[0035]
Next, in S16, the air-fuel ratio feedback correction coefficient KO2 is calculated from the outputs of the PO2 sensors 50R, L in the left and right banks, respectively. The correction coefficient calculated from the PO2 sensor 50R on the right bank side is KO2R, and the correction coefficient on the left bank side is KO2L. Then, the maximum values KO2RMAX and KO2LMAX are obtained.
[0036]
Next, in S18, KO2LMAX is subtracted from the obtained maximum value KO2RMAX, and the difference Δmax is obtained as an absolute value.
[0037]
Next, the process proceeds to S20, where the difference Δmax obtained as an absolute value is compared with a predetermined value, and it is determined whether or not the difference Δmax exceeds the predetermined value. If the result is negative, the process proceeds to S22, where the air supply pipe 32 is determined to be normal ( When the determination is affirmative, the process proceeds to S24, where it is determined (detected) that the air supply pipe 32 is out of order.
[0038]
4 and FIG. 5, if the exhaust secondary air supply device 30 is normal, and the air pump 34 starts to be driven at the time ta in FIG. 22 is supplied with the same amount of air and flows through the exhaust pipe 24. As a result, the exhaust gas gradually becomes lean at the positions where the PO2 sensors 50R and 50L are arranged. Therefore, the values of the air-fuel ratio feedback correction coefficients KO2R, L calculated based on the detected values also gradually change so as to correct in the rich direction as shown in the figure, but the difference between the maximum values is also zero. It becomes a very small value.
[0039]
On the other hand, the same amount of air is supplied to the exhaust manifolds 22 of the left and right banks, such as when a failure such as a crack has occurred in either of the air supply pipes 32R, L of the left and right banks, causing air leakage. When not done, the amount of air flowing through the exhaust pipe 24 also differs between the left and right banks.
[0040]
For example, as shown in FIG. 5, if the above-described failure occurs in the air supply pipe on the right bank 10R side, the amount of supplied air is insufficient, and thus is calculated based on the detected value of the PO2 sensor 50R. The change in the value of the air-fuel ratio feedback correction coefficient KO2R is smaller than the change in the air-fuel ratio feedback correction coefficient KO2L on the left bank 10L side to which the desired air amount is supplied, and the difference between the two gradually increases. The maximum value KO2LMAX becomes the maximum.
[0041]
Therefore, the exhaust secondary air supply apparatus 30 is broken by comparing the difference between the air-fuel ratio feedback correction coefficients KO2RMAX and KO2LMAX between the right and left banks as appropriate, and more accurately, the maximum value is small. The air supply pipe 32 (the change in the air-fuel ratio feedback correction coefficient is small) is damaged, such as a crack, the seal of the connecting portion between the flange portion 32b and the exhaust manifold 22 is insufficient, or the air pump 34 or cut It can be determined that a failure has occurred, such as insufficient sealing at the connection between the off valve 36 and the air supply pipe 32.
[0042]
Since the failure detection device according to this embodiment is configured as described above, it is possible to easily and accurately detect a failure such as a failure of the exhaust secondary air supply device 30, more specifically, a failure of the air supply pipe 32. Can do.
[0043]
As described above, the predetermined value is set by appropriately selecting a value sufficient for determining a failure from the difference. For example, the difference between the outputs of the PO2 sensors 50R and 50L when the secondary exhaust air is not supplied. Learning may be performed and a predetermined value set according to the learning value may be corrected.
[0044]
In the above, the maximum value KO2RMAX, KO2LMAX of the air-fuel ratio feedback correction coefficients KO2R, L of the left and right banks is calculated, and the difference Δmax is calculated and compared with a predetermined value. There is no need to find a value. For example, the maximum value may be obtained for only one of the air-fuel ratio feedback correction coefficients KO2R and L, and the other value may be calculated using a value before reaching the maximum value and compared with a predetermined value. Alternatively, for both KO2R and L, the difference between the two may be calculated using the value before reaching the maximum value and compared with a predetermined value.
[0045]
Further, the difference between the outputs (or the maximum values) of the PO2 sensors 50R, 50L may be obtained, and the failure may be detected by comparing the difference with a predetermined value set as appropriate. Also in this case, when the difference exceeds a predetermined value, the value in the rich direction is output, or the air supply pipe 32 on the PO2 sensor 50R or 50L side indicating the inversion of the output can be regarded as a failure.
[0046]
In this embodiment, as described above, the exhaust secondary air supply for supplying the exhaust secondary air to the upstream position of the catalyst device 26 disposed in the exhaust system (exhaust manifold 22, exhaust pipe 24) of the internal combustion engine (engine) 10. In the failure detection device of the device 30, a plurality of air supply pipes 32R, L connected to an exhaust system (exhaust manifold 22) of the internal combustion engine and supplying the exhaust secondary air respectively, and the plurality of air supply pipes A plurality of air-fuel ratio sensors (PO2 sensors 50R, L) that are arranged in the exhaust system (exhaust pipe 24) at downstream positions and generate outputs corresponding to the oxygen concentration in the exhaust flowing through the exhaust system, respectively. A failure detection means (ECU 54, S10 to S24) for detecting a failure of the exhaust secondary air supply device by comparing values obtained based on the output of the air-fuel ratio sensor is provided. It was.
[0047]
More specifically, the failure detection means is configured to detect the difference between the air-fuel ratio feedback correction coefficients KO2R and L calculated based on the outputs of the plurality of air-fuel ratio sensors (more precisely, the maximum values KO2RMAX and KO2LMAX). Correction coefficient difference calculating means (ECU 54, S16, S18) for calculating the difference Δmax), and comparing means (ECU 54, S20) for comparing the calculated difference with a predetermined value, wherein the calculated difference is a predetermined value. Is exceeded, the exhaust secondary air supply device is configured to detect a failure (ECU 54, S24).
[0048]
The internal combustion engine is a V-type engine, and includes one air pump 34. The air supply pipes 32R and L are connected to the air pump, and branch from the middle to branch into each bank 10R of the V-type engine. , L to be connected.
[0049]
In this embodiment, the air supply pipes 30R, L are arranged for each of the left and right banks 10R, L of the V-type engine, and the PO2 sensors 50R, L are arranged downstream thereof. The present invention is not limited to this, and even if it is not a V-type engine, if the exhaust system is composed of a plurality of systems and each can be provided with an air supply pipe and an air-fuel ratio sensor, it is equally valid. Further, although the O2 sensor is used as the air-fuel ratio sensor, the present invention is not limited to this, and a sensor that generates an output proportional to the oxygen concentration may be used.
[0050]
【The invention's effect】
According to the first aspect, a failure of the exhaust secondary air supply device can be detected easily and accurately. In addition, troublesome work such as learning and checking the output of the air-fuel ratio sensor when the exhaust secondary air supply device is normal is unnecessary, and inconveniences such as delay in failure detection due to learning occur. There is nothing. Further, when an air supply pipe is arranged in each engine having an exhaust system for each bank such as a V-type engine, it is not only possible to detect the presence or absence of a failure, but when a failure is detected, which bank It is also possible to detect whether it has occurred in the air supply pipe.
[0051]
According to the second aspect of the present invention, it is possible to detect a failure of the exhaust secondary air supply device more easily and accurately.
[0052]
According to the third aspect of the present invention, in the V-type engine in which the air supply pipe is connected to each bank, a failure of the exhaust secondary air supply device can be detected easily and accurately.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an overall configuration of a failure detection device for an exhaust secondary air supply device according to an embodiment of the present invention.
2 is an explanatory perspective view showing in detail a part of components of an exhaust secondary air supply device such as an air supply pipe in the device shown in FIG. 1;
FIG. 3 is a flowchart showing the operation of the apparatus shown in FIG. 1;
4 illustrates the operation of the apparatus shown in FIG. 3 and shows the output of the air-fuel ratio sensor (O2 sensor) when the exhaust secondary air supply apparatus is not broken and the air-fuel ratio feedback correction coefficient calculated based on the output. It is a time chart.
FIG. 5 explains the operation of the apparatus shown in FIG. 3. The output of the air-fuel ratio sensor (O2 sensor) when a failure occurs in the exhaust secondary air supply apparatus and the air-fuel ratio feedback correction coefficient calculated based on the output. It is a time chart which shows.
[Explanation of symbols]
10 Engine (Internal combustion engine)
22 Exhaust manifold 24 Exhaust pipe 26 Catalytic device 30 Exhaust secondary air supply device 32 Air supply pipe 34 Air pump 50 First air-fuel ratio sensor (PO2 sensor)
54 ECU (Electronic Control Unit)

Claims (3)

内燃機関の排気系に配置された触媒装置の上流位置に排気二次エアを供給する排気二次エア供給装置の故障検知装置において、前記内燃機関の排気系に接続されてそれぞれ前記排気二次エアを供給する複数本のエア供給管、前記複数本のエア供給管の下流位置において前記排気系に配置されてそれぞれ前記排気系を流れる排気中の酸素濃度に応じた出力を生じる複数個の空燃比センサ、前記複数個の空燃比センサの出力に基づいて得られる値同士を比較して前記排気二次エア供給装置の故障を検知する故障検知手段を備えたことを特徴とする排気二次エア供給装置の故障検知装置。In a failure detection device of an exhaust secondary air supply device for supplying exhaust secondary air to a position upstream of a catalyst device disposed in an exhaust system of an internal combustion engine, the exhaust secondary air is connected to the exhaust system of the internal combustion engine and is connected to the exhaust secondary air. And a plurality of air-fuel ratios that are arranged in the exhaust system at positions downstream of the plurality of air supply pipes and generate outputs corresponding to the oxygen concentration in the exhaust gas flowing through the exhaust system. An exhaust secondary air supply comprising a sensor and a failure detection means for detecting a failure of the exhaust secondary air supply device by comparing values obtained based on outputs of the plurality of air-fuel ratio sensors Device failure detection device. 前記故障検知手段は、前記複数個の空燃比センサの出力に基づいてそれぞれ算出される空燃比フィードバック補正係数の差を算出する補正係数差算出手段と、前記算出された差を所定値と比較する比較手段を備え、前記算出された差が所定値を超えるとき、前記排気二次エア供給装置が故障と検知することを特徴とする請求項1項記載の排気二次エア供給装置の故障検知装置。The failure detection means compares the calculated difference with a predetermined value with correction coefficient difference calculation means for calculating a difference between air-fuel ratio feedback correction coefficients calculated based on outputs of the plurality of air-fuel ratio sensors. The failure detection device for an exhaust secondary air supply device according to claim 1, further comprising a comparison unit, wherein when the calculated difference exceeds a predetermined value, the exhaust secondary air supply device is detected as a failure. . 前記内燃機関がV型機関であり、1個のエアポンプを備え、前記エア供給管が前記エアポンプに接続されると共に、途中から分岐して前記V型機関のそれぞれのバンクに接続されることを特徴とする請求項1項または2項記載の排気二次エア供給装置の故障検知装置。The internal combustion engine is a V-type engine, includes one air pump, the air supply pipe is connected to the air pump, and is branched from the middle to be connected to each bank of the V-type engine. The failure detection device for an exhaust secondary air supply device according to claim 1 or 2.
JP2003173700A 2003-06-18 2003-06-18 Failure detection device for exhaust secondary air supply device Expired - Fee Related JP4367749B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003173700A JP4367749B2 (en) 2003-06-18 2003-06-18 Failure detection device for exhaust secondary air supply device
US10/870,000 US20040255575A1 (en) 2003-06-18 2004-06-18 Failure detecting apparatus for exhaust secondary air supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003173700A JP4367749B2 (en) 2003-06-18 2003-06-18 Failure detection device for exhaust secondary air supply device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007292460A Division JP4637891B2 (en) 2007-11-09 2007-11-09 Failure detection device for exhaust secondary air supply device

Publications (2)

Publication Number Publication Date
JP2005009385A true JP2005009385A (en) 2005-01-13
JP4367749B2 JP4367749B2 (en) 2009-11-18

Family

ID=34097453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173700A Expired - Fee Related JP4367749B2 (en) 2003-06-18 2003-06-18 Failure detection device for exhaust secondary air supply device

Country Status (1)

Country Link
JP (1) JP4367749B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7770382B2 (en) 2005-08-22 2010-08-10 Toyota Jidosha Kabushiki Kaisha Secondary air supply system and abnormality detection method for secondary air supply system
JP2012082835A (en) * 2011-11-28 2012-04-26 Nissan Motor Co Ltd Internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7770382B2 (en) 2005-08-22 2010-08-10 Toyota Jidosha Kabushiki Kaisha Secondary air supply system and abnormality detection method for secondary air supply system
JP2012082835A (en) * 2011-11-28 2012-04-26 Nissan Motor Co Ltd Internal combustion engine

Also Published As

Publication number Publication date
JP4367749B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4736058B2 (en) Air-fuel ratio control device for internal combustion engine
JP2009203884A (en) Control device for internal combustion engine
JPH06193438A (en) Secondary air supply device for internal combustion engine
JP2008163815A (en) Fuel injection control device for internal combustion engine
JP4637891B2 (en) Failure detection device for exhaust secondary air supply device
JP4367749B2 (en) Failure detection device for exhaust secondary air supply device
JP2009185740A (en) Abnormality diagnosing device of internal combustion engine
JP2006329003A (en) Secondary air supply device for internal combustion engine
JP4535648B2 (en) Intake system abnormality determination device for internal combustion engine
JP4034697B2 (en) Failure detection device for exhaust secondary air supply device
JP2000097088A (en) Fuel injection amount control device of internal- combustion engine
US20040255575A1 (en) Failure detecting apparatus for exhaust secondary air supply system
JP2010164010A (en) Fuel supply control device for internal combustion engine
JP3854949B2 (en) Failure detection device for exhaust secondary air supply device
JP2007262895A (en) Failure diagnostic device for exhaust system
JP2010053825A (en) Control unit of internal combustion engine
JP4462419B2 (en) Engine exhaust system abnormality detection device
JP2007205274A (en) Control device of internal combustion engine
JP3720200B2 (en) Damage detection device for intake manifold of internal combustion engine
JP2017002748A (en) Internal combustion engine device
JP2015203407A (en) Engine control device
JP5555496B2 (en) Control device for internal combustion engine
JP2005256832A (en) Secondary air supply system for internal combustion engine, and fuel injection amount control device using the same
JP2006348812A (en) Secondary air supply device for internal combustion engine
JP2006112251A (en) Exhaust system of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071121

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees