JP2012082835A - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP2012082835A
JP2012082835A JP2011258388A JP2011258388A JP2012082835A JP 2012082835 A JP2012082835 A JP 2012082835A JP 2011258388 A JP2011258388 A JP 2011258388A JP 2011258388 A JP2011258388 A JP 2011258388A JP 2012082835 A JP2012082835 A JP 2012082835A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
timing
sensor
ratio sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011258388A
Other languages
Japanese (ja)
Inventor
Yutaka Shobu
豊 菖蒲
Kazuhiro Tomonaga
一洋 朝永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011258388A priority Critical patent/JP2012082835A/en
Publication of JP2012082835A publication Critical patent/JP2012082835A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce radiation noise generated when a heater of an air-fuel ratio sensor is turned ON.SOLUTION: An air-fuel ratio sensor 7 is disposed in a first exhaust passage 4 and a second air-fuel ratio sensor 11 is disposed in a second exhaust passage. The first and the second air-fuel ratio sensors 7 and 11 are controlled so that driving signal sending timings, that is, heater ON timings and heater OFF timings of heaters with-built in sensors may be different from each other. Thereby, radiation noise generated when heaters of the first and the second air-fuel ratio sensors 7 are turned ON can be reduced.

Description

本発明は、内燃機関、特に排気系統に複数の空燃比センサを有する内燃機関に関する。   The present invention relates to an internal combustion engine, and more particularly to an internal combustion engine having a plurality of air-fuel ratio sensors in an exhaust system.

内燃機関の排気系に空燃比センサと触媒とを配置し、空燃比センサで検出した空燃比のリッチ・リーン信号等を基に、燃料噴射量の増減を繰り返し行い、空燃比を触媒の転化率の高い理論空燃比付近の狭い範囲に制御するいわゆる空燃比フィードバック制御は、近年一般的に実施されている。   An air-fuel ratio sensor and a catalyst are placed in the exhaust system of the internal combustion engine, and the fuel injection amount is repeatedly increased and decreased based on the air-fuel ratio rich / lean signal detected by the air-fuel ratio sensor. In recent years, so-called air-fuel ratio feedback control for controlling the air-fuel ratio to a narrow range near a high stoichiometric air-fuel ratio has been generally performed.

このようなう空燃比フィードバック制御に用いられる空燃比センサは、空燃比の検出精度を維持するために、空燃比センサの空燃比検出素子が活性化状態に保たれることが不可欠であり、例えば特許文献1には、機関始動時から上記空燃比検出素子をヒータにより加熱し、早期活性化させてその活性化状態を維持するようにヒータの通電制御を行う技術が開示されている。
特開2000−292407号公報
In the air-fuel ratio sensor used for such air-fuel ratio feedback control, in order to maintain the air-fuel ratio detection accuracy, it is indispensable that the air-fuel ratio detection element of the air-fuel ratio sensor is kept in an activated state. Japanese Patent Application Laid-Open No. 2004-228561 discloses a technique for controlling the energization of the heater so that the air-fuel ratio detection element is heated by a heater from the start of the engine and is activated early to maintain its activated state.
JP 2000-292407 A

ここで、空燃比センサの空燃比検出素子を加熱するヒータの制御は、現状、空燃比センサが排気系に複数個配置されている場合であっても、全てのヒータが同時に対応する空燃比センサ素子を加熱するよう制御されている。すなわち、ヒータの通電制御は、例えば、ECM(エンジンコントロールモジュール)により、複数ある空燃比センサのヒータに、同時にヒータONまたはヒータOFFの指令を出すものとなっている。   Here, the control of the heater for heating the air-fuel ratio detection element of the air-fuel ratio sensor is currently performed even when a plurality of air-fuel ratio sensors are arranged in the exhaust system. It is controlled to heat the element. That is, the heater energization control is such that, for example, a heater ON or heater OFF command is simultaneously issued to the heaters of a plurality of air-fuel ratio sensors by an ECM (engine control module).

そのため、空燃比センサが複数ある場合、全てのヒータが同時にヒータON、ヒータOFFとなるために信号が干渉し、放射ノイズレベルが相対的に高くなり、車載のラジオ等の音源にノイズがのってしまう虞がある。また、全てのヒータが同時にヒータON、ヒータOFFすることで、電源変動が大きくなる虞がある。   Therefore, when there are multiple air-fuel ratio sensors, all the heaters are turned on and off at the same time, so the signal interferes, the radiation noise level becomes relatively high, and noise is added to the sound source such as in-vehicle radio. There is a risk that. Further, since all the heaters are turned on and off at the same time, the power supply fluctuation may increase.

そこで、本発明は、排気系統に複数の空燃比センサを有する内燃機関において、複数の空燃比センサは少なくとも2つ以上のグループに制御上区別され、これら各グループ毎に空燃比センサの駆動信号を出すタイミングが異なっていることを特徴としている。   Accordingly, the present invention provides an internal combustion engine having a plurality of air-fuel ratio sensors in an exhaust system, wherein the plurality of air-fuel ratio sensors are distinguished in terms of control into at least two groups, and a drive signal for the air-fuel ratio sensor is assigned to each of these groups. It is characterized by different timing.

本発明によれば、複数の空燃比センサに出される駆動信号が分散されることになり、空燃比センサの駆動信号によって生じる放射ノイズが互い干渉することを防止することができ、放射ノイズレベルを低減することができる。   According to the present invention, drive signals output to a plurality of air-fuel ratio sensors are dispersed, and radiation noise generated by the drive signals of the air-fuel ratio sensors can be prevented from interfering with each other, and the radiation noise level can be reduced. Can be reduced.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る内燃機関の第1実施形態を模式的に示した説明図であって、本発明が適用された6気筒のV型エンジン1の排気系を模式的に示したものである。   FIG. 1 is an explanatory view schematically showing a first embodiment of an internal combustion engine according to the present invention, schematically showing an exhaust system of a 6-cylinder V-type engine 1 to which the present invention is applied. It is.

V型エンジン1の一方のバンク1aには排気マニホールド3aを介して第1排気通路4が接続されている。第1排気通路4には、第1上流側三元触媒5と、第1上流側三元触媒5よりも排気下流側に位置する第1下流側三元触媒6とが介装されていると共に、第1上流側三元触媒5の上流側、すなわち第1上流側三元触媒5の排気入口側に排気空燃比を検出する第1空燃比センサ7が配置されている。第1空燃比センサ7は、内部のセンサ素子を活性化させるためのセンサ内蔵ヒータ(図示せず)を備え、V型エンジン1の運転制御を行うエンジンコントロールモジュール(以下、ECMと略す)15に検出値を出力していると共に、ECM15により上記センサ内蔵ヒータの駆動制御がなされている。   A first exhaust passage 4 is connected to one bank 1a of the V-type engine 1 via an exhaust manifold 3a. A first upstream three-way catalyst 5 and a first downstream three-way catalyst 6 located downstream of the first upstream three-way catalyst 5 are interposed in the first exhaust passage 4. The first air-fuel ratio sensor 7 for detecting the exhaust air-fuel ratio is disposed upstream of the first upstream three-way catalyst 5, that is, on the exhaust inlet side of the first upstream three-way catalyst 5. The first air-fuel ratio sensor 7 includes a sensor built-in heater (not shown) for activating an internal sensor element, and an engine control module (hereinafter abbreviated as ECM) 15 that controls the operation of the V-type engine 1. The detection value is output and the ECM 15 controls the drive of the sensor built-in heater.

V型エンジン1の他方のバンク1bには排気マニホールド3bを介して第2排気通路8が接続されている。第2排気通路8には、第2上流側三元触媒9と、第2上流側三元触媒9よりも排気下流側に位置する第2下流側三元触媒10とが介装されていると共に、第2上流側三元触媒9の上流側、すなわち第2下流側三元触媒9の排気入口側に排気空燃比を検出する第2空燃比センサ11が配置されている。第2空燃比センサ11は、内部のセンサ素子を活性化させるためのセンサ内蔵ヒータ(図示せず)を備え、ECM15に検出値を出力していると共に、ECM15により上記センサ内蔵ヒータの駆動制御がなされている。   A second exhaust passage 8 is connected to the other bank 1b of the V-type engine 1 via an exhaust manifold 3b. The second exhaust passage 8 includes a second upstream three-way catalyst 9 and a second downstream three-way catalyst 10 located on the exhaust downstream side of the second upstream side three-way catalyst 9. The second air-fuel ratio sensor 11 for detecting the exhaust air-fuel ratio is disposed upstream of the second upstream side three-way catalyst 9, that is, on the exhaust inlet side of the second downstream side three-way catalyst 9. The second air-fuel ratio sensor 11 includes a sensor built-in heater (not shown) for activating an internal sensor element, outputs a detection value to the ECM 15, and drive control of the sensor built-in heater is performed by the ECM 15. Has been made.

センサ内蔵ヒータの駆動制御とは空燃比センサ7,11の駆動制御であり、センサ内蔵ヒータに対して電力を供給するタイミングと電力の供給を終了するタイミングとを制御するということである。   The drive control of the sensor built-in heater is drive control of the air-fuel ratio sensors 7 and 11 and means that the timing of supplying power to the sensor built-in heater and the timing of ending the supply of power are controlled.

尚、第1排気通路4と第2排気通路9とは、第1下流側三元触媒6及び第2下流側三元触媒10の下流側で合流している。   The first exhaust passage 4 and the second exhaust passage 9 merge at the downstream side of the first downstream side three-way catalyst 6 and the second downstream side three-way catalyst 10.

ここで、上記各センサ内蔵ヒータに対して通電するタイミング(ヒータONタイミング)と通電を終了するタイミング(ヒータOFFタイミング)には、放射ノイズが発生する。つまり、空燃比センサの駆動信号であるセンサ内蔵ヒータへの通電信号のON/OFFにより放射ノイズが発生する。この放射ノイズは、複数の空燃比センサの通電開始時(ヒータONタイミング)もしくは通電終了時(ヒータOFFタイミング)を一致させると、各放射ノイズが互いに干渉することになり、例えば、上述した第1空燃比センサ7と第2空燃比センサ11において、センサ内蔵ヒータのヒータONタイミングとヒータOFFタイミングとを一致させると、図2に示すように相対的に大きな放射ノイズが発生することになる。   Here, radiation noise occurs at the timing of energizing the heaters with built-in sensors (heater ON timing) and the timing of ending energization (heater OFF timing). That is, radiation noise is generated by ON / OFF of an energization signal to the sensor built-in heater that is a drive signal of the air-fuel ratio sensor. This radiation noise interferes with each other when the energization start time (heater ON timing) or the energization end time (heater OFF timing) of the plurality of air-fuel ratio sensors is made to coincide with each other. In the air-fuel ratio sensor 7 and the second air-fuel ratio sensor 11, when the heater ON timing and the heater OFF timing of the sensor built-in heater are matched, relatively large radiation noise is generated as shown in FIG.

これに対して、この第1実施形態の内燃機関においては、図3に示すように、第1空燃比センサ7に対する通電のタイミングと第2空燃比センサ11に対する通電のタイミングとがずれるようにECM15で制御する。   On the other hand, in the internal combustion engine of the first embodiment, as shown in FIG. 3, the ECM 15 is arranged such that the timing of energizing the first air-fuel ratio sensor 7 and the timing of energizing the second air-fuel ratio sensor 11 are shifted. To control.

つまり、第1空燃比センサ7の通電開始時(ヒータONタイミング)に対して、第2空燃比センサ11の通電開始時(ヒータONタイミング)及び通電終了時(ヒータOFFタイミング)のいずれもが一致せず、第1空燃比センサ7の通電終了時(ヒータOFFタイミング)に対して、第2空燃比センサ11の通電開始時(ヒータONタイミング)及び通電終了時(ヒータOFFタイミング)のいずれもが一致しないようにすることで、放射ノイズ同士の干渉を防止し、センサ内蔵ヒータへの通電開始時(ヒータONタイミング)及び通電終了時(ヒータOFFタイミング)に発生する放射ノイズレベルを低減している。   In other words, both the start of energization of the second air-fuel ratio sensor 11 (heater ON timing) and the end of energization (heater OFF timing) coincide with the start of energization of the first air-fuel ratio sensor 7 (heater ON timing). Without regard to the end of energization of the first air-fuel ratio sensor 7 (heater OFF timing), both the start of energization of the second air-fuel ratio sensor 11 (heater ON timing) and the end of energization (heater OFF timing) By not matching, radiation noises are prevented from interfering with each other, and the radiation noise level generated at the start of energization (heater ON timing) and at the end of energization (heater OFF timing) is reduced. .

詳述すると、この第1実施形態においては、第1空燃比センサ7のセンサ内蔵ヒータへの通電開始のタイミングに対して、第2空燃比センサ11のセンサ内蔵ヒータへの通電開始のタイミングが50ms遅れるように、ECM15により各センサ内蔵ヒータに対する通電が制御されている。換言すれば、排気系統全体で、2つの空燃比センサを有する場合には、2つの空燃比センサ間で通電タイミングが50msずれるようにセンサ内蔵ヒータに対する通電が制御されている。   More specifically, in the first embodiment, the timing of starting energization of the sensor built-in heater of the second air-fuel ratio sensor 11 is 50 ms with respect to the timing of energizing the heater built in the sensor of the first air-fuel ratio sensor 7. Energization of each sensor built-in heater is controlled by the ECM 15 so as to be delayed. In other words, when the exhaust system as a whole has two air-fuel ratio sensors, the energization to the sensor built-in heater is controlled so that the energization timing is shifted by 50 ms between the two air-fuel ratio sensors.

このような第1実施形態においては、第1空燃比センサ7の駆動信号を出すタイミングと第2空燃比センサ11の駆動信号を出すタイミングがずれているので、ヒータONタイミング及びヒータOFFタイミングにおける放射ノイズレベルを低減することができると共に、各センサ内蔵ヒータに電力を供給するバッテリ(図示せず)の電圧変動(電源変動)を低減することができる。   In the first embodiment as described above, the timing at which the drive signal for the first air-fuel ratio sensor 7 is output is different from the timing at which the drive signal for the second air-fuel ratio sensor 11 is output. The noise level can be reduced, and voltage fluctuation (power fluctuation) of a battery (not shown) that supplies power to each sensor built-in heater can be reduced.

また、放射ノイズレベルを低減することができるので、車載のラジオ等の音源にノイズがのってしまうことを防止することができると共に、放射ノイズ低減用のコンデンサやフィルタ回路等を必要としないのでコスト低減を図ることができる。   In addition, since the radiation noise level can be reduced, it is possible to prevent noise from being added to a sound source such as an in-vehicle radio, and a capacitor or filter circuit for reducing radiation noise is not required. Cost reduction can be achieved.

以下、本発明の他の実施形態について説明していくが同一の構成要素に対しては同一の符号を付し、重複する説明を省略する。また、以下の各実施形態における空燃比センサは、上述した第1実施形態の空燃比センサ7,11と同様に、内部のセンサ素子を活性化させるためのセンサ内蔵ヒータ(図示せず)を備えるものとする。   Hereinafter, other embodiments of the present invention will be described. However, the same components are denoted by the same reference numerals, and redundant description will be omitted. In addition, the air-fuel ratio sensor in each of the following embodiments includes a sensor built-in heater (not shown) for activating internal sensor elements, like the air-fuel ratio sensors 7 and 11 of the first embodiment described above. Shall.

図4は、本発明の第2実施形態を示している。この第2実施形態は、4気筒の直列エンジン21の排気通路22に介装された三元触媒23の上流側と下流側に上流側空燃比センサ24、下流側空燃比センサ25が配置されたものである。   FIG. 4 shows a second embodiment of the present invention. In the second embodiment, an upstream air-fuel ratio sensor 24 and a downstream air-fuel ratio sensor 25 are arranged upstream and downstream of a three-way catalyst 23 interposed in an exhaust passage 22 of a four-cylinder in-line engine 21. Is.

この第2実施形態は、上述した第1実施形態と同様に、排気系統全体で、2つの空燃比センサ24,25を有するものであって、上述した図3に示すように、2つの空燃比センサ間で通電タイミングが50msずれるように各センサ内蔵ヒータに対する通電が制御されている。詳述すると、この第2実施形態においては、駆動信号はまず上流側空燃比センサ24に出され、50ms後に下流側空燃比センサ25に出されている。   As in the first embodiment, the second embodiment has two air-fuel ratio sensors 24 and 25 in the entire exhaust system. As shown in FIG. Energization to each sensor built-in heater is controlled so that the energization timing is deviated by 50 ms between the sensors. More specifically, in the second embodiment, the drive signal is first output to the upstream air-fuel ratio sensor 24, and is output to the downstream air-fuel ratio sensor 25 after 50 ms.

このような第2実施形態においても上述した第1実施形態と同様の作用効果を得ることができる。   In such a second embodiment, the same operational effects as those of the first embodiment described above can be obtained.

尚、この第2実施形態は、単一の排気系統に複数の空燃比センサが配置されたものである。   In the second embodiment, a plurality of air-fuel ratio sensors are arranged in a single exhaust system.

図5は、本発明の第3実施形態を示している。この第3実施形態は、4気筒の直列エンジン31の排気通路32に、上流側三元触媒33と上流側三元触媒33よりも排気下流側に位置する下流側三元触媒34とが介装されている。そして、上流側三元触媒33の上流側に第1空燃比センサ35が配置され、上流側三元触媒33と下流側三元触媒34との間に第2空燃比センサ36が配置され、下流側三元触媒34の下流側には第3空燃比センサ37が配置されている。   FIG. 5 shows a third embodiment of the present invention. In the third embodiment, an upstream side three-way catalyst 33 and a downstream side three-way catalyst 34 located downstream of the upstream side three-way catalyst 33 are interposed in an exhaust passage 32 of a four-cylinder in-line engine 31. Has been. A first air-fuel ratio sensor 35 is disposed upstream of the upstream side three-way catalyst 33, a second air-fuel ratio sensor 36 is disposed between the upstream side three-way catalyst 33 and the downstream side three-way catalyst 34, and the downstream side. A third air-fuel ratio sensor 37 is disposed downstream of the side three-way catalyst 34.

つまり、この第3実施形態は、排気系統全体で、3つの空燃比センサ35,36,37を有するものであって、図6に示すように、3つの空燃比センサ間で通電タイミングが30msづつずれるように各センサ内蔵ヒータに対する通電が制御されている。詳述すると、この第3実施形態においては、駆動信号はまず第1空燃比センサ35に出され、その30ms後に第2空燃比センサ36にだされ、さらにその30ms後に第3空燃比センサ37に出されている。   That is, this third embodiment has three air-fuel ratio sensors 35, 36, and 37 in the entire exhaust system, and as shown in FIG. 6, the energization timing between the three air-fuel ratio sensors is 30 ms. Energization to each sensor built-in heater is controlled so as to shift. More specifically, in the third embodiment, the drive signal is first output to the first air-fuel ratio sensor 35, 30 ms later to the second air-fuel ratio sensor 36, and 30 ms later to the third air-fuel ratio sensor 37. Has been issued.

このような第3実施形態においても上述した第1実施形態と同様の作用効果を得ることができる。   Also in the third embodiment, the same operational effects as those of the first embodiment described above can be obtained.

尚、この第3実施形態は、単一の排気系統に複数の空燃比センサが配置されたものである。   In the third embodiment, a plurality of air-fuel ratio sensors are arranged in a single exhaust system.

図7は、本発明の第4実施形態を示している。この第4実施形態は、上述した第1実施形態の6気筒のV型エンジン1と略同一構成となっているが、第1排気通路4には、第1上流側三元触媒5と第1下流側三元触媒6との間に第3空燃比センサ41が配置され、第2排気通路8には、第2上流側三元触媒9と第2下流側三元触媒10との間に第4空燃比センサ42が配置されている。   FIG. 7 shows a fourth embodiment of the present invention. The fourth embodiment has substantially the same configuration as the six-cylinder V-type engine 1 of the first embodiment described above, but the first exhaust passage 4 includes a first upstream three-way catalyst 5 and a first one. A third air-fuel ratio sensor 41 is disposed between the downstream side three-way catalyst 6 and the second exhaust passage 8 includes a second air-fuel ratio sensor 41 between the second upstream side three-way catalyst 9 and the second downstream side three-way catalyst 10. A four air-fuel ratio sensor 42 is arranged.

つまり、この第4実施形態は、排気系統全体で、4つの空燃比センサ7,11,41,42を有するものであって、図8に示すように、4つの空燃比センサ間で通電タイミングが20msづつずれるように各センサ内蔵ヒータに対する通電が制御されている。   In other words, the fourth embodiment has four air-fuel ratio sensors 7, 11, 41, and 42 in the entire exhaust system. As shown in FIG. 8, the energization timing is set between the four air-fuel ratio sensors. Energization of each sensor built-in heater is controlled so as to be shifted by 20 ms.

詳述すると、この第4実施形態においては、駆動信号はまず第1空燃比センサ7に出され、その後20ms経過毎に、第2空燃比センサ11、第3空燃比センサ41、第4空燃比センサ42の順番で出されている。   More specifically, in the fourth embodiment, the drive signal is first output to the first air-fuel ratio sensor 7, and thereafter, every 20 ms, the second air-fuel ratio sensor 11, the third air-fuel ratio sensor 41, the fourth air-fuel ratio. The sensors 42 are output in the order.

このような第4実施形態においても上述した第1実施形態と同様の作用効果を得ることができる。   Also in the fourth embodiment, the same operational effects as those of the first embodiment described above can be obtained.

図9は、本発明の第5実施形態を示している。この第5実施形態は、上述した第1実施形態の6気筒のV型エンジン1と略同一構成となっているが、第1排気通路4には、第1上流側三元触媒5と第1下流側三元触媒6との間に第3空燃比センサ41が配置され、第1下流側三元触媒6の排気下流側には第5空燃比センサ43が配置されている。また、第2排気通路8は、第2上流側三元触媒9と第2下流側三元触媒10との間に第4空燃比センサ42が配置され、第2下流側三元触媒10の排気下流側には第6空燃比センサ44が配置されている。   FIG. 9 shows a fifth embodiment of the present invention. The fifth embodiment has substantially the same configuration as the six-cylinder V-type engine 1 of the first embodiment described above, but the first exhaust passage 4 includes a first upstream three-way catalyst 5 and a first one. A third air-fuel ratio sensor 41 is disposed between the downstream three-way catalyst 6 and a fifth air-fuel ratio sensor 43 is disposed on the exhaust downstream side of the first downstream three-way catalyst 6. Further, in the second exhaust passage 8, a fourth air-fuel ratio sensor 42 is disposed between the second upstream side three-way catalyst 9 and the second downstream side three-way catalyst 10, and the exhaust of the second downstream side three-way catalyst 10. A sixth air-fuel ratio sensor 44 is disposed on the downstream side.

つまり、この第5実施形態は、排気系統全体で、6つの空燃比センサ7,11,41,42,43,44を有するものであって、図10に示すように、6つの空燃比センサ間で通電タイミングが10msづつずれるように各センサ内蔵ヒータに対する通電が制御されている。   That is, this fifth embodiment has six air-fuel ratio sensors 7, 11, 41, 42, 43, and 44 in the entire exhaust system, and as shown in FIG. Thus, energization of each sensor built-in heater is controlled so that the energization timing is shifted by 10 ms.

詳述すると、この第5実施形態においては、駆動信号はまず第1空燃比センサ7に出され、その後10ms経過毎に、第2空燃比センサ11、第3空燃比センサ41、第4空燃比センサ42、第5空燃比センサ43、第6空燃比センサ44の順番で出されている。   More specifically, in the fifth embodiment, the drive signal is first output to the first air-fuel ratio sensor 7 and then every 10 ms thereafter, the second air-fuel ratio sensor 11, the third air-fuel ratio sensor 41, the fourth air-fuel ratio. The sensor 42, the fifth air-fuel ratio sensor 43, and the sixth air-fuel ratio sensor 44 are output in this order.

このような第5実施形態においても上述した第1実施形態と同様の作用効果を得ることができる。   Also in the fifth embodiment, the same operational effects as those of the first embodiment described above can be obtained.

尚、上述した各実施形態においては、排気系統に配置された全ての空燃比センサの各センサ内蔵ヒータへの通電信号のON/OFFタイミングが互いに一致しないように設定されているが、排気系統に配置された複数の空燃比センサを少なくとも2つ以上のグループに制御上区別して、これら各グループ毎に空燃比センサの各センサ内蔵ヒータへの通電信号のON/OFFタイミングが異なるように設定することも可能である。すなわち、上記各グループ内の空燃比センサ同士は、センサ内蔵ヒータへの通電信号のON/OFFタイミングが同じとなるように設定し、上記各グループ間でセンサ内蔵ヒータへの通電信号のON/OFFタイミングが異なるように設定することも可能である。   In each of the above-described embodiments, the ON / OFF timings of the energization signals to the sensor built-in heaters of all the air-fuel ratio sensors arranged in the exhaust system are set so as not to coincide with each other. A plurality of arranged air-fuel ratio sensors are classified into at least two or more groups for control, and the ON / OFF timings of energization signals to the heaters built in the sensors of the air-fuel ratio sensors are set differently for each group. Is also possible. That is, the air-fuel ratio sensors in each group are set so that the ON / OFF timing of the energization signal to the sensor built-in heater is the same, and the ON / OFF of the energization signal to the sensor built-in heater is set between the groups. It is also possible to set the timing differently.

この場合にも、上述した第1〜5実施形態と同様の作用効果を得られるが、上記グループ内では、通電信号のON/OFFタイミングが一致して放射ノイズが互いに干渉してしまう点で、上述した第1〜第5実施形態に比べると不利である。   Even in this case, the same effect as the above-described first to fifth embodiments can be obtained, but in the above group, the ON / OFF timings of the energization signals coincide with each other, and radiation noises interfere with each other. It is disadvantageous compared to the first to fifth embodiments described above.

また、V型エンジンの場合には、各バンク毎に空燃比センサの各センサ内蔵ヒータへの通電信号のON/OFFタイミングが異なるように設定するようにしてもよい。すなわち、上述した第4、第5実施形態において、一方のバンク1aに接続された第1排気通路4に設けられた各空燃比センサの各センサ内蔵ヒータへの通電信号のON/OFFタイミングが同じとなるように設定し、他方のバンク1bに接続された第2排気通路8に設けられた各空燃比センサの各センサ内蔵ヒータへの通電信号のON/OFFタイミングが同じとなるように設定し、一方のバンク1a側の空燃比センサと他方のバンク1b側の空燃比センサとでセンサ内蔵ヒータへの通電信号のON/OFFタイミングが異なるように設定するようにしてもよい。   In the case of a V-type engine, the ON / OFF timing of the energization signal to each sensor built-in heater of the air-fuel ratio sensor may be set to be different for each bank. That is, in the above-described fourth and fifth embodiments, the ON / OFF timing of the energization signal to each sensor built-in heater of each air-fuel ratio sensor provided in the first exhaust passage 4 connected to one bank 1a is the same. And the ON / OFF timing of the energization signal to each sensor built-in heater of each air-fuel ratio sensor provided in the second exhaust passage 8 connected to the other bank 1b is set to be the same. The ON / OFF timing of the energization signal to the sensor built-in heater may be set to be different between the air / fuel ratio sensor on the one bank 1a side and the air / fuel ratio sensor on the other bank 1b side.

この場合にも、上述した第1〜5実施形態と同様の作用効果を得られるが、同一バンク側の空燃比センサ同士は、通電信号のON/OFFタイミングが一致して放射ノイズが互いに干渉してしまう点で、上述した第1〜第5実施形態に比べると不利である。   In this case as well, the same operational effects as those of the first to fifth embodiments described above can be obtained. However, the air-fuel ratio sensors on the same bank side match the ON / OFF timing of the energization signal and the radiation noise interferes with each other. This is disadvantageous compared to the first to fifth embodiments described above.

また、上述した実施形態における空燃比センサとしては、排気空燃比のリッチ・リーンのみを検出するものでも、排気空燃比を広範囲に検出可能な広域型の空燃比センサであってもよい。   Further, the air-fuel ratio sensor in the above-described embodiment may be a sensor that detects only the rich or lean exhaust air-fuel ratio, or a wide-range air-fuel ratio sensor that can detect the exhaust air-fuel ratio in a wide range.

上記実施形態から把握し得る本発明の技術的思想について、その効果とともに列記する。   The technical idea of the present invention that can be grasped from the above embodiment will be listed together with the effects thereof.

(1) 排気系統に複数の空燃比センサを有する内燃機関において、複数の空燃比センサは少なくとも2つ以上のグループに制御上区別され、これら各グループ毎に空燃比センサの駆動信号を出すタイミングが異なっている。これによって、複数の空燃比センサに出される駆動信号が分散されることになり、空燃比センサの駆動信号によって生じる放射ノイズが互い干渉することを防止することができ、放射ノイズレベルを低減することができる。   (1) In an internal combustion engine having a plurality of air-fuel ratio sensors in an exhaust system, the plurality of air-fuel ratio sensors are distinguished in terms of control into at least two or more groups, and the timing for issuing a drive signal for the air-fuel ratio sensor for each of these groups Is different. As a result, the drive signals output to the plurality of air-fuel ratio sensors are dispersed, and radiation noise generated by the drive signals of the air-fuel ratio sensors can be prevented from interfering with each other, and the radiation noise level is reduced. Can do.

(2) 上記(1)に記載の内燃機関は、具体的には、左右バンクに各空燃比センサを有し、各バンク毎に空燃比センサの駆動信号を出すタイミングが異なっている。   (2) The internal combustion engine described in the above (1) specifically includes the air-fuel ratio sensors in the left and right banks, and the timing for outputting the drive signal of the air-fuel ratio sensor is different for each bank.

(3) 上記(1)に記載の内燃機関は、具体的には、単一の排気系統に複数の空燃比センサを有する。   (3) Specifically, the internal combustion engine according to (1) has a plurality of air-fuel ratio sensors in a single exhaust system.

(4) 上記(1)〜(3)のいずれかに記載の内燃機関において、空燃比センサの駆動信号のタイミングは、全ての空燃比センサ同士で互いに異なるように設定されている。これによって、放射ノイズレベルを一層低減することができる。   (4) In the internal combustion engine according to any one of (1) to (3), the timing of the drive signal of the air-fuel ratio sensor is set to be different from each other among all the air-fuel ratio sensors. Thereby, the radiation noise level can be further reduced.

(5) 上記(1)〜(4)のいずれかに記載の内燃機関において、空燃比センサの駆動信号を出すタイミングとは、空燃比センサのセンサ素子を加熱するヒータに対して電力を供給するタイミングと電力の供給を終了するタイミングである。全てにヒータに同時に電力供給が開始されると電源変動が大きくなる虞があるが、複数の空燃比センサに出される駆動信号が分散されるので、電源変動(電圧変動)を低減できる。   (5) In the internal combustion engine according to any one of the above (1) to (4), the timing for issuing the drive signal of the air-fuel ratio sensor is to supply power to the heater that heats the sensor element of the air-fuel ratio sensor. This is the timing when the power supply ends. When power supply to all the heaters is started at the same time, the power supply fluctuation may increase. However, since the drive signals output to the plurality of air-fuel ratio sensors are dispersed, the power supply fluctuation (voltage fluctuation) can be reduced.

本発明に係る内燃機関の第1実施形態を模式的に示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which showed typically 1st Embodiment of the internal combustion engine which concerns on this invention. 通電タイミングを一致させた2つの空燃比センサの通電タイミングと放射ノイズの相関を示すタイミングチャート。The timing chart which shows the correlation of the electricity supply timing of two air-fuel ratio sensors and the radiation noise which made the electricity supply timing correspond. 第1実施形態における空燃比センサの通電タイミングと放射ノイズの相関を示すタイミングチャート。The timing chart which shows the correlation of the electricity supply timing of the air fuel ratio sensor in 1st Embodiment, and radiation noise. 本発明に係る内燃機関の第2実施形態を模式的に示した説明図。Explanatory drawing which showed typically 2nd Embodiment of the internal combustion engine which concerns on this invention. 本発明に係る内燃機関の第3実施形態を模式的に示した説明図。Explanatory drawing which showed typically 3rd Embodiment of the internal combustion engine which concerns on this invention. 第3実施形態における空燃比センサの通電タイミングと放射ノイズの相関を示すタイミングチャート。The timing chart which shows the correlation of the electricity supply timing of the air fuel ratio sensor in 3rd Embodiment, and radiation noise. 本発明に係る内燃機関の第4実施形態を模式的に示した説明図。Explanatory drawing which showed typically 4th Embodiment of the internal combustion engine which concerns on this invention. 第4実施形態における空燃比センサの通電タイミングと放射ノイズの相関を示すタイミングチャート。The timing chart which shows the correlation of the electricity supply timing of the air fuel ratio sensor in 4th Embodiment, and radiation noise. 本発明に係る内燃機関の第4実施形態を模式的に示した説明図。Explanatory drawing which showed typically 4th Embodiment of the internal combustion engine which concerns on this invention. 第5実施形態における空燃比センサの通電タイミングと放射ノイズの相関を示すタイミングチャート。The timing chart which shows the correlation of the electricity supply timing of the air fuel ratio sensor in 5th Embodiment, and radiation noise.

1…V型エンジン
7…第1空燃比センサ
11…第2空燃比センサ
15…ECM
DESCRIPTION OF SYMBOLS 1 ... V type engine 7 ... 1st air fuel ratio sensor 11 ... 2nd air fuel ratio sensor 15 ... ECM

そこで、本発明は、ラジオを備えた車両に搭載され、排気系統に複数の空燃比センサを有する内燃機関において、前記空燃比センサのセンサ素子を加熱するヒータに対して電力を供給するタイミングと電力の供給を終了するタイミングとが、前記車載のラジオの音源にノイズがのらないように、全ての空燃比センサ同士で互いに異なっていることを特徴としている。 Accordingly, the present invention is an internal combustion engine mounted on a vehicle equipped with a radio and having a plurality of air-fuel ratio sensors in an exhaust system, and a timing and power for supplying power to a heater that heats the sensor element of the air-fuel ratio sensor. This is characterized in that all the air-fuel ratio sensors are different from each other so that noise is not applied to the sound source of the in-vehicle radio .

Claims (5)

排気系統に複数の空燃比センサを有する内燃機関において、
複数の空燃比センサは少なくとも2つ以上のグループに制御上区別され、これら各グループ毎に空燃比センサの駆動信号を出すタイミングが異なっていることを特徴とする内燃機関。
In an internal combustion engine having a plurality of air-fuel ratio sensors in the exhaust system,
The internal combustion engine characterized in that the plurality of air-fuel ratio sensors are classified into at least two or more groups in terms of control, and the timing at which the drive signal of the air-fuel ratio sensor is different for each group.
内燃機関は、左右バンクに各空燃比センサを有し、各バンク毎に空燃比センサの駆動信号を出すタイミングが異なっていることを特徴とする請求項1に記載の内燃機関。   The internal combustion engine according to claim 1, wherein the internal combustion engine has air-fuel ratio sensors in the left and right banks, and the timing at which the drive signal of the air-fuel ratio sensor is different for each bank. 内燃機関は、単一の排気系統に複数の空燃比センサを有するものであることを特徴とする請求項1に記載の内燃機関。   The internal combustion engine according to claim 1, wherein the internal combustion engine has a plurality of air-fuel ratio sensors in a single exhaust system. 空燃比センサの駆動信号のタイミングは、全ての空燃比センサ同士で互いに異なるように設定されていることを特徴とする請求項1〜3のいずれかに記載の内燃機関。   The internal combustion engine according to any one of claims 1 to 3, wherein the timing of the drive signal of the air-fuel ratio sensor is set so that all the air-fuel ratio sensors are different from each other. 空燃比センサの駆動信号を出すタイミングとは、空燃比センサのセンサ素子を加熱するヒータに対して電力を供給するタイミングと電力の供給を終了するタイミングであることを特徴とする請求項1〜4のいずれかに記載の内燃機関。   5. The timing for issuing a drive signal for the air-fuel ratio sensor is a timing for supplying electric power to a heater for heating the sensor element of the air-fuel ratio sensor and a timing for terminating the supply of electric power. An internal combustion engine according to any one of the above.
JP2011258388A 2011-11-28 2011-11-28 Internal combustion engine Pending JP2012082835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011258388A JP2012082835A (en) 2011-11-28 2011-11-28 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011258388A JP2012082835A (en) 2011-11-28 2011-11-28 Internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006070228A Division JP4910434B2 (en) 2006-03-15 2006-03-15 Internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012082835A true JP2012082835A (en) 2012-04-26

Family

ID=46241929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011258388A Pending JP2012082835A (en) 2011-11-28 2011-11-28 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP2012082835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194108A1 (en) * 2014-06-20 2015-12-23 株式会社デンソー Control device
CN105275644A (en) * 2014-07-17 2016-01-27 福特环球技术公司 Dual hego method for identification and mitigation of air-fuel imbalance faults

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08147001A (en) * 1994-11-24 1996-06-07 Nippondenso Co Ltd Fail-safe device
JPH08338284A (en) * 1995-06-12 1996-12-24 Tokyo Gas Co Ltd Method and device for controlling operation of gas engine
JPH1010083A (en) * 1996-06-26 1998-01-16 Toyota Motor Corp Heater energizing control device for air-fuel ratio sensor
JPH11241646A (en) * 1998-02-26 1999-09-07 Denso Corp Control device for vehicle and radiation noise reducing method of control device for vehicle
JP2003050226A (en) * 2001-05-31 2003-02-21 Denso Corp Heater control device for gas concentration sensor
JP2003259634A (en) * 2002-03-01 2003-09-12 Auto Network Gijutsu Kenkyusho:Kk Load driving circuit and load driving method
JP2003295685A (en) * 2002-04-04 2003-10-15 Canon Inc Image forming apparatus
JP2004003405A (en) * 2002-06-03 2004-01-08 Toyota Motor Corp Catalyst degradation determining device
JP2004093386A (en) * 2002-08-30 2004-03-25 Denso Corp Detection device for gas concentration
JP2005003500A (en) * 2003-06-11 2005-01-06 Toyota Motor Corp Heater control device
JP2005009385A (en) * 2003-06-18 2005-01-13 Honda Motor Co Ltd Failure detecting device for exhaust secondary air supply system
JP2006046179A (en) * 2004-08-04 2006-02-16 Suzuki Motor Corp Failure diagnosis device for air fuel ratio sensor
JP2006053126A (en) * 2004-07-16 2006-02-23 Denso Corp Gas concentration detector
JP2006105959A (en) * 2004-09-07 2006-04-20 Denso Corp Apparatus for detecting gas concentration

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08147001A (en) * 1994-11-24 1996-06-07 Nippondenso Co Ltd Fail-safe device
JPH08338284A (en) * 1995-06-12 1996-12-24 Tokyo Gas Co Ltd Method and device for controlling operation of gas engine
JPH1010083A (en) * 1996-06-26 1998-01-16 Toyota Motor Corp Heater energizing control device for air-fuel ratio sensor
JPH11241646A (en) * 1998-02-26 1999-09-07 Denso Corp Control device for vehicle and radiation noise reducing method of control device for vehicle
JP2003050226A (en) * 2001-05-31 2003-02-21 Denso Corp Heater control device for gas concentration sensor
JP2003259634A (en) * 2002-03-01 2003-09-12 Auto Network Gijutsu Kenkyusho:Kk Load driving circuit and load driving method
JP2003295685A (en) * 2002-04-04 2003-10-15 Canon Inc Image forming apparatus
JP2004003405A (en) * 2002-06-03 2004-01-08 Toyota Motor Corp Catalyst degradation determining device
JP2004093386A (en) * 2002-08-30 2004-03-25 Denso Corp Detection device for gas concentration
JP2005003500A (en) * 2003-06-11 2005-01-06 Toyota Motor Corp Heater control device
JP2005009385A (en) * 2003-06-18 2005-01-13 Honda Motor Co Ltd Failure detecting device for exhaust secondary air supply system
JP2006053126A (en) * 2004-07-16 2006-02-23 Denso Corp Gas concentration detector
JP2006046179A (en) * 2004-08-04 2006-02-16 Suzuki Motor Corp Failure diagnosis device for air fuel ratio sensor
JP2006105959A (en) * 2004-09-07 2006-04-20 Denso Corp Apparatus for detecting gas concentration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194108A1 (en) * 2014-06-20 2015-12-23 株式会社デンソー Control device
CN105275644A (en) * 2014-07-17 2016-01-27 福特环球技术公司 Dual hego method for identification and mitigation of air-fuel imbalance faults
CN105275644B (en) * 2014-07-17 2020-12-15 福特环球技术公司 Dual HEGO method for identifying and mitigating air-fuel imbalance faults

Similar Documents

Publication Publication Date Title
JP6476295B2 (en) Engine control device
JP6082215B2 (en) Control device for variable valve timing mechanism
JP6550689B2 (en) Exhaust gas sensor heater control device
JP2007198158A (en) Air fuel ratio control device for hydrogen engine
JP2014101772A (en) Multi-cylinder internal combustion engine
JP2012082835A (en) Internal combustion engine
JP4910434B2 (en) Internal combustion engine
JP2014235104A (en) Gas sensor controller
US9046010B2 (en) Control unit for variable valve timing mechanism and control method for variable valve timing mechanism
JP2007321561A (en) Heater control device of exhaust gas sensor
JP2009185740A (en) Abnormality diagnosing device of internal combustion engine
JPH1010083A (en) Heater energizing control device for air-fuel ratio sensor
JP4993314B2 (en) Exhaust gas sensor heater control device
JP6349906B2 (en) Exhaust gas sensor heater control device
JP5776778B2 (en) Fuel supply device for internal combustion engine
JP2003138962A (en) Air/fuel ratio control device of multi-cylinder internal combustion engine
CN103440003B (en) A kind of Multifunctional heating control method of two point form lambda sensor
JP6421864B2 (en) Exhaust gas sensor heater control device
JP7452975B2 (en) Air-fuel ratio control system and air-fuel ratio control method
JP5956213B2 (en) Ignition control method for alternative fuel engine
JP2006046179A (en) Failure diagnosis device for air fuel ratio sensor
JP2910513B2 (en) Exhaust purification system for multi-cylinder engine
JP4253307B2 (en) Diagnostic device for secondary air supply device of internal combustion engine
JP5376073B2 (en) Air-fuel ratio control device for internal combustion engine
JP5791442B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312