WO2015194108A1 - Control device - Google Patents

Control device Download PDF

Info

Publication number
WO2015194108A1
WO2015194108A1 PCT/JP2015/002788 JP2015002788W WO2015194108A1 WO 2015194108 A1 WO2015194108 A1 WO 2015194108A1 JP 2015002788 W JP2015002788 W JP 2015002788W WO 2015194108 A1 WO2015194108 A1 WO 2015194108A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
ceramic heater
time
heater
power supply
Prior art date
Application number
PCT/JP2015/002788
Other languages
French (fr)
Japanese (ja)
Inventor
攻 田中
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015194108A1 publication Critical patent/WO2015194108A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells

Definitions

  • the present disclosure relates to a control device that detects the state of exhaust gas flowing through an exhaust passage connected to an internal combustion engine.
  • an internal combustion engine such as an automobile gasoline engine discharges exhaust gas generated by combustion of fuel to the outside. Since exhaust gas contains particulate matter such as nitrogen oxide and carbon monoxide, an internal combustion engine is generally equipped with a control device that optimizes the air-fuel ratio so that the particulate matter is reduced.
  • a control device adjusts the fuel supply amount and the air supply amount to the internal combustion engine while detecting the exhaust gas state by a sensor, thereby bringing the air-fuel ratio closer to the theoretical air-fuel ratio (for example, the following patents) Reference 1).
  • an A / F sensor or an O 2 sensor is often used. These are sensors that are attached to an exhaust passage, which is a flow path through which exhaust gas flows, and output an electrical signal corresponding to a difference in oxygen concentration inside and outside the exhaust passage.
  • Each of the A / F sensor and the O 2 sensor includes a solid electrolyte and a heater that heats and activates the solid electrolyte.
  • the A / F sensor outputs an electric signal that changes continuously according to the oxygen concentration in the exhaust passage. Therefore, highly accurate control according to the change of the air-fuel ratio is possible.
  • the O 2 sensor outputs an electric signal that changes stepwise with the oxygen concentration at the stoichiometric air-fuel ratio as a boundary.
  • the A / F sensor is disposed at a position upstream of the catalytic converter that purifies the exhaust gas in the exhaust passage
  • the O 2 sensor is disposed at a position downstream of the catalytic converter.
  • the above-described sensors are generally arranged in the exhaust passage instead of only one.
  • the control device for an internal combustion engine includes a power supply unit that supplies power to a heater of the sensor. When a plurality of sensors are arranged in the exhaust passage, power is supplied from the power supply unit to the plurality of heaters.
  • the control device for example, at the start of the internal combustion engine
  • power supply from the power supply unit to each heater is started.
  • the power supply unit may break down when the power supply is started. There is sex. Since the current flowing through the power supply unit is the sum of the currents flowing through the heaters, from the viewpoint of avoiding failure of the power supply unit, even if a current that overlaps the currents that can flow through the heaters flows, it will not fail. It is necessary to set the allowable current value of the power supply unit. However, the conventional control apparatus does not consider the countermeasures against the failure of the power supply unit.
  • the present disclosure has been made in view of such a problem, and an object of the present disclosure is a control device that detects a state of exhaust gas flowing through an exhaust passage connected to an internal combustion engine, and supplies power to the sensor at startup. It is in providing the control apparatus which can suppress that a part breaks down.
  • the control device includes a first heater that generates heat when supplied with electric power, and detects a state of exhaust gas that passes through a first position of an exhaust passage connected to the internal combustion engine. State of exhaust gas passing through a second position different from the first position in the exhaust passage, having a first receiver that receives a detection signal output from one sensor and a second heater that generates heat upon receiving power supply A second receiving unit that receives a detection signal output from the second sensor that detects the power, a power supply unit that supplies power to the first heater and the second heater, and a first unit that starts supplying power to the first heater And a control unit that controls the power supply unit to start supplying power to the second heater at a second time when the delay time has elapsed from one time.
  • the present disclosure paid attention to the fact that the current flowing through the power supply unit when starting the control device is instantaneous.
  • the control device When the control device is activated, the currents flowing through the first heater and the second heater increase instantaneously, and thereafter decrease over time to reach a steady state. Therefore, the present disclosure has been conceived using this temporal change. .
  • power supply from the power supply unit to the first heater and the second heater is started not at the same time but at different timings. At the start of power supply to the first heater, a large current is output from the power supply unit to the first heater, but the current decreases as the delay time elapses.
  • the power supply to the second heater is started after the delay time has elapsed, that is, after the current output from the power supply unit has decreased. Therefore, the first maximum current that is the maximum current that flows to the first heater at the start of power supply and the second maximum current that is the maximum current to flow to the second heater at the start of power supply are the power supply. Are not output simultaneously from the unit.
  • the current output from the power supply unit can always be smaller than the sum of the first maximum current and the second maximum current. For this reason, even if the allowable current value of the power supply unit is not excessively increased, it is possible to suppress the failure of the power supply unit during startup.
  • the upper limit value that is the upper limit current value within a range in which the sum of the current value flowing through the first heater and the current value flowing through the second heater at the second time does not interfere with the power supply unit. It is preferable that the delay time is determined so as not to exceed. According to such an aspect, the delay time can be shortened as much as possible within a range where the power supply unit does not fail at the time of startup, and the exhaust gas state detection can be started early.
  • it is a control device that detects the state of exhaust gas flowing through an exhaust passage connected to an internal combustion engine, and is capable of suppressing a failure of a power supply unit to the sensor during startup.
  • An apparatus can be provided.
  • FIG. 1 is a schematic diagram illustrating a state in which a control device according to an embodiment of the present disclosure is attached to an internal combustion engine and an exhaust system connected thereto.
  • FIG. 2 is a graph showing the time change of the voltage applied to the heater and the time change of the current supplied to the heater in the control device shown in FIG.
  • FIG. 3 is a graph showing the change over time of the current supplied to the heater in the control device shown in FIG.
  • FIG. 4 is a graph showing the time change of the voltage applied to the heater and the time change of the current supplied to the heater in the control device shown in FIG.
  • FIG. 1 is a schematic diagram illustrating a state in which a control device according to an embodiment of the present disclosure is attached to an internal combustion engine and an exhaust system connected thereto.
  • FIG. 2 is a graph showing the time change of the voltage applied to the heater and the time change of the current supplied to the heater in the control device shown in FIG.
  • FIG. 3 is a graph showing the change over time of the current supplied to the heater in
  • FIG. 5 is a flowchart showing the operation of the control device shown in FIG.
  • FIG. 6 is a diagram showing the relationship between the heater temperature and the set delay time.
  • FIG. 7 is a diagram showing the relationship between the temperature of the cooling water for cooling the internal combustion engine and the set delay time
  • FIG. 8 is a graph showing the time change of the voltage applied to the heater and the time change of the current supplied to the heater in the conventional control device.
  • the internal combustion engine 100 that is a control target of the control system 10 including the control device 40 according to the embodiment of the present disclosure is a spark ignition type automobile gasoline engine.
  • an intake pipe 101 and an exhaust pipe 110 are connected to the internal combustion engine 100.
  • the exhaust pipe 110 forms an exhaust passage.
  • the intake pipe 101 is a pipe that supplies an air-fuel mixture in which air and fuel are mixed to the internal combustion engine 100.
  • a throttle valve (not shown) for adjusting the amount of air supplied into the intake pipe 101 and a fuel injection valve (not shown) for adjusting the amount of fuel supplied into the intake pipe 101 are attached to the intake pipe 101. Yes.
  • the amount of air supplied into the intake pipe 101 changes depending on the opening of the throttle valve, and the amount of fuel supplied into the intake pipe 101 changes depending on the opening time of the fuel injection valve.
  • the control device 40 performs control to bring the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 100 closer to the stoichiometric air-fuel ratio by mainly adjusting the supply amount of fuel injected from the fuel injection valve.
  • the exhaust pipe 110 is a pipe connected to the internal combustion engine 100, and is an exhaust passage that discharges exhaust gas generated by fuel combustion in the internal combustion engine 100 to the outside.
  • the exhaust pipe 110 includes an upstream pipe 111 that is an upstream pipe, a downstream pipe 112 that is a downstream pipe, and a catalytic converter 120.
  • the catalytic converter 120 is disposed between the upstream pipe 111 and the downstream pipe 112. Exhaust gas generated in the internal combustion engine 100 flows through the upstream pipe 111, the catalytic converter 120, and the downstream pipe 112 in this order, and then is discharged to the outside from an exhaust port 114 that is an opening formed at the downstream end of the downstream pipe 112. Is done.
  • the catalytic converter 120 purifies particulate matter contained in the exhaust gas by oxidation or reduction, and has a catalyst carrier 121 carrying platinum, palladium, and rhodium as catalysts. Hydrocarbons, carbon monoxide, and nitrogen oxides contained in the exhaust gas are purified by touching these catalysts, and then flow through the downstream pipe 112 and are discharged to the outside through the discharge port 114.
  • the control system 10 includes a first sensor 20, a second sensor 30, a water temperature sensor 70, an air temperature sensor 80, and a control device 40.
  • the first sensor 20 is an A / F sensor that detects the state of exhaust gas (oxygen concentration) generated in the internal combustion engine 100, and is provided at the first position 111 a of the upstream pipe 111.
  • the first sensor 20 is an A / F sensor having a general configuration, and includes a plate-shaped solid electrolyte 21 and a ceramic heater 22 (first heater) for heating the solid electrolyte 21.
  • a detection electrode is disposed on the first surface of the solid electrolyte 21, and the exhaust gas in the upstream pipe 111 passes through the porous body and reaches the surface.
  • a reference electrode is formed on the second surface of the solid electrolyte 21, and a gas having a reference oxygen concentration, that is, the atmosphere reaches the surface.
  • the 1st sensor 20 is a sensor which outputs the electric signal which changes continuously according to the oxygen concentration inside the upstream piping 111.
  • FIG. 1st sensor 20 is a sensor which outputs the electric signal which changes continuously according to the oxygen concentration inside the upstream piping 111.
  • the second sensor 30 is an O 2 sensor that detects the state (oxygen concentration) of the exhaust gas after passing through the catalytic converter 120, and is provided at the second position 112 a of the downstream pipe 112.
  • the second sensor 30 is an O 2 sensor having a general configuration, and includes a solid electrolyte 31 formed in a plate shape and a ceramic heater 32 (second heater) for heating the solid electrolyte 31.
  • Detecting electrodes are arranged on the first surface of the solid electrolyte 31, and the exhaust gas in the downstream pipe 112 passes through the porous body and reaches the surface. Further, a reference electrode is formed on the second surface of the solid electrolyte 31, and a gas having a reference oxygen concentration, that is, the atmosphere reaches the surface.
  • the solid electrolyte 31 is heated to a high temperature by the ceramic heater 32, that is, activated so as to allow oxygen ions to pass therethrough. Maintained. A voltage is applied between the detection electrode and the reference electrode.
  • a current flows between the detection electrode and the reference electrode (solid electrolyte 31) due to the difference (concentration difference) between the oxygen concentration inside the downstream pipe 112 and the external oxygen concentration.
  • concentration difference exceeds a predetermined value
  • the second sensor 30 generates an electrical signal based on this current and outputs it as a detection signal to the control device 40.
  • the current itself may be directly input to the control device 40 as a detection signal.
  • the predetermined value is a value of the oxygen concentration in the downstream pipe 112 when the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 100 is the stoichiometric air-fuel ratio.
  • the control device 40 compares the current value with a threshold value stored in advance to determine whether or not the oxygen concentration in the downstream pipe 112 is greater than the oxygen concentration at the stoichiometric air-fuel ratio.
  • the second sensor 30 is a sensor that outputs an electrical signal indicating whether or not the oxygen concentration inside the downstream pipe 112 is higher than the oxygen concentration at the stoichiometric air-fuel ratio.
  • the internal combustion engine 100 is provided with a radiator (not shown). Cooling water for cooling the internal combustion engine 100 is circulated between the radiator and the internal combustion engine 100.
  • the water temperature sensor 70 is a sensor that detects the temperature of the circulating cooling water.
  • the temperature sensor 80 is a sensor that measures the temperature of the outside air.
  • the temperature of the cooling water measured by the water temperature sensor 70 and the temperature of the outside air measured by the air temperature sensor 80 are respectively input to the control device 40 described below.
  • the control device 40 is a computer system including a CPU, a ROM, a RAM, and an input / output interface, and is referred to as a so-called ECU (Engine Control Unit).
  • the control device 40 adjusts the opening degree of the throttle valve and the opening time of the fuel injection valve based on the electrical signal received from the first sensor 20 and the electrical signal received from the second sensor 30. Then, control is performed to bring the air-fuel ratio closer to the theoretical air-fuel ratio.
  • the electrical signal received from the first sensor 20 indicates the oxygen concentration in the upstream pipe 111
  • the electrical signal received from the second sensor 30 indicates the oxygen concentration in the downstream pipe 112.
  • the control device 40 includes a signal receiving unit 41, a power supply unit 42, and a control unit 43.
  • the signal receiving unit 41 includes a first receiving unit 411 and a second receiving unit 412.
  • the first receiving unit 411 is an input port that receives an electrical signal output from the first sensor 20.
  • the second receiving unit 412 is an input port that receives an electrical signal output from the second sensor 30.
  • the first receiver 411 and the first sensor 20 are connected by a signal line 51.
  • the electrical signal output from the first sensor 20 is transmitted via the signal line 51 and input to the first receiving unit 411.
  • the second receiver 412 and the second sensor 30 are connected by a signal line 61.
  • the electrical signal output from the second sensor 30 is transmitted via the signal line 61 and input to the second receiving unit 412.
  • the power supply unit 42 is an output port that supplies power necessary for heat generation to each of the ceramic heater 22 of the first sensor 20 and the ceramic heater 32 of the second sensor 30.
  • the power supply unit 42 and the ceramic heater 22 are connected by a power line 52.
  • the power output from the power supply unit 42 is supplied to the ceramic heater 22 via the power line 52.
  • the power supply unit 42 and the ceramic heater 32 are connected by a power line 62.
  • the power output from the power supply unit 42 is supplied to the ceramic heater 32 via the power line 62.
  • the power supply to the ceramic heater 22 and the power supply to the ceramic heater 32 can be performed independently (at different timings).
  • the power supply unit 42 is configured to be able to supply power independently to each of the ceramic heater 22 and the ceramic heater 32, but the part that generates the power is shared, A current in which the current flowing through the ceramic heater 22 and the current flowing through the ceramic heater 32 are superimposed flows.
  • the control unit 43 is a part that forms the center of the control device 40 that is a computer system, and that controls the throttle valve, the fuel injection valve, and the power supply unit 42. The timing at which the voltage is applied to each of the ceramic heater 22 and the ceramic heater 32 and the magnitude of the applied voltage are controlled by the control unit 43.
  • FIG. 2A is a diagram in which time is taken on the horizontal axis, and voltages applied to the ceramic heater 22 and the ceramic heater 32 are taken on the vertical axis.
  • FIG. 2B is a diagram in which time is taken on the horizontal axis, and currents flowing through the ceramic heater 22 and the ceramic heater 32 are taken on the vertical axis.
  • FIG. 2C is a diagram in which time is taken on the horizontal axis and current flowing in the power supply unit 42 is taken on the vertical axis.
  • FIG. 2A represents a time change of the voltage applied to the ceramic heater 22 with the power supply from the power supply unit 42.
  • the line G10 illustrated in FIG. Similarly, a line G ⁇ b> 20 shown in FIG. 2A represents a change over time in the voltage applied to the ceramic heater 32 as power is supplied from the power supply unit 42.
  • a line G30 shown in FIG. 2 (B) represents a time change of the current flowing through the ceramic heater 22 in accordance with the power supply from the power supply unit. In this case, this current is the first current.
  • a line G ⁇ b> 40 shown in FIG. 2B represents a time change of the current flowing through the ceramic heater 32 with the power supply from the power supply unit 42. In this case, this current is the second current.
  • a line G50 shown in FIG. 2C indicates a total current of the first current flowing through the ceramic heater 22 and the second current flowing through the ceramic heater 32, that is, the total output from the power supply unit 42. It represents the change in current over time. In this case, this current is the total current.
  • the control system 10 When the internal combustion engine 100 is started at time t0, the control system 10 is started at the same time, and supply of electric power to the ceramic heater 22 is started. In the period from time t0 to time t2, a relatively small voltage V 10 is applied to the ceramic heater 22 (see line G10). After time t2, a large voltage V 20 than the voltage V 10 is applied to the ceramic heater 22. The reason why the applied voltage is increased stepwise is to prevent the ceramic heater 22 from being damaged due to a rapid temperature rise.
  • the supply of power to the ceramic heater 32 is not started at time t0, but is started at time t1 when the delay time td1 has elapsed from time t0.
  • the time t1 is a time before the time t2.
  • the supply of power to the ceramic heater 22 and the supply of power to the ceramic heater 32 are not started simultaneously. The reason will be described later.
  • a relatively small voltage V 10 is applied to the ceramic heater 32 (see line G20).
  • a large voltage V 20 is applied to the ceramic heater 32 than the voltage V 10.
  • the reason why the applied voltage is increased stepwise is to prevent the ceramic heater 32 from being damaged due to a rapid temperature rise.
  • the value of the voltage applied to the ceramic heater 22 (V 10, V 20) , the value of the voltage applied to the ceramic heater 32 (V 10, V 20) and in the equal to each other Only the timing for applying or increasing the voltage is different from each other. However, the value of the voltage applied to each ceramic heater may be different from each other.
  • the time during which the voltage V 10 is applied to the ceramic heater 32 is the time during which the voltage V 20 is applied to the ceramic heater 22 (from time t0). (Time until time t2). Applying a relatively small voltage V 10 long, Evaporation of the water droplets with gentle rise in temperature of the ceramic heater 32, so as to prevent the ceramic heater 32 is cracked as described above.
  • the timing at which the voltage V 20 starts to be applied to the ceramic heater 32 is a point in time when a certain time (fixed length of time) has elapsed from the time t0 when the internal combustion engine 100 was started. However, it may be the time when the water temperature sensor 70 confirms that the temperature of the cooling water for cooling the internal combustion engine 100 has risen and exceeded a predetermined temperature.
  • the first current starts to flow through the ceramic heater 22 (see line G30).
  • the voltage V 10 to be applied is constant for the first current is not constant from the beginning.
  • the voltage V 10 begins to be applied, resulting in a large current (overcurrent) flows through the ceramic heater 22.
  • the first current flowing through the ceramic heater 22 gradually decreases and approaches a substantially constant current.
  • the maximum value of the overcurrent flowing when the voltage V 10 is applied to the ceramic heater 22 hereinafter referred to as maximum current I 10 is.
  • the overcurrent as described above flows also in the ceramic heater 32.
  • the voltage V 10 starts to be applied to the ceramic heater 32 at time t1
  • an overcurrent flows through the ceramic heater 32 (see line G40).
  • the second current flowing through the ceramic heater 32 gradually decreases and approaches a substantially constant current.
  • the electrical resistance value of the ceramic heater 22 and the electrical resistance value of the ceramic heater 32 are substantially equal to each other. Therefore, the maximum value of the overcurrent flowing when the voltage V 10 is applied to the ceramic heater 32 (second current at time t1) is substantially equal to the maximum current I 10. The maximum value of the overcurrent flowing when the voltage V 20 is applied to the ceramic heater 32 (second current at time t3) is substantially equal to the maximum current I 20.
  • overcurrent flows through the ceramic heater 22 at each time point (time t0, t2) when the voltage is applied or increased.
  • overcurrent flows through the ceramic heater 32 at each time point (time t1, t3) when the voltage is applied or increased.
  • time t1, t3 when the voltage is applied or increased.
  • the total current output from the power supply unit 42 also increases at each of the times t0, t1, t2, and t3 when the overcurrent flows.
  • FIG. 8A is a diagram in which time is taken on the horizontal axis and voltages applied to the ceramic heater 22 and the ceramic heater 32 are taken on the vertical axis.
  • FIG. 8B is a diagram in which time is taken on the horizontal axis and currents flowing through the ceramic heater 22 and the ceramic heater 32 are taken on the vertical axis.
  • FIG. 8C is a diagram in which time is taken on the horizontal axis and current flowing in the power supply unit 42 is taken on the vertical axis.
  • a line G12 shown in FIG. 8A represents a time change of the voltage applied to the ceramic heater 22, and is a line that follows the same transition as the line G10 of FIG.
  • a line G22 shown in FIG. 8A represents a time change of the voltage applied to the ceramic heater 32, and is a graph obtained by shifting the line G20 of FIG. 2 to the left by the delay time td1. It has become. 8, time t31 the voltage applied to the ceramic heater 32 is changed from the voltage V 10 to the voltage V 20 has a time earlier by a delay time td1 than the time t3 of FIG.
  • a line G ⁇ b> 52 shown in FIG. 8C represents a time change of the total current obtained by adding the first current flowing through the ceramic heater 22 and the second current flowing through the ceramic heater 32.
  • the power supply to the ceramic heater 22 and the power supply to the ceramic heater 32 may be started simultaneously at time t0.
  • the magnitude of the total current output from the power supply unit 42 at time t0 is the maximum value of the overcurrent flowing through the ceramic heater 22 (maximum current I 10 ) and the maximum value of the overcurrent flowing through the ceramic heater 32 ( The maximum current I 10 ) is superposed, that is, a current twice as large as the maximum current I 10 flows.
  • the allowable current value I TH is the maximum value of the current that can be output to the outside without failure of the power supply unit 42, and is a specific value determined by the specifications of various electronic components and protection circuits that constitute the power supply unit 42. Value.
  • the allowable current value I TH is an upper limit current value in a range that does not interfere with the power supply unit.
  • the allowable current value I TH is set sufficiently large.
  • the components of the power supply unit 42 for example, such that the allowable current value I TH is large enough to supply the maximum current I 10 simultaneously to both the ceramic heater 22 and the ceramic heater 32. It was necessary to select a protection circuit. However, such a measure is not preferable because the parts cost of the power supply unit 42 becomes large.
  • the power supply unit 42 is broken by devising the timing of power supply to each of the ceramic heater 22 and the ceramic heater 32 instead of increasing the allowable current value I TH. It is preventing. Specifically, as described with reference to FIG. 2, at time t ⁇ b> 1 (second time) when delay time td ⁇ b> 1 has elapsed from time t ⁇ b> 0 (first time) when supply of power to the ceramic heater 22 is started. Control of the power supply unit 42 by the control unit 43 is performed so as to start supply of power to the heater 32.
  • Such a device for power supply timing is an instantaneous eddy current as described below, and the time when the current flowing through the ceramic heater 22 and the ceramic heater 32 starts to flow (time t0, t2). ), And it was made by paying attention to the point where it gradually decreases.
  • the first current flowing through the ceramic heater 22 becomes the maximum current I 10 , and this time is peaked and thereafter gradually. Decrease (see line G30).
  • the power supply from the power supply unit 42 to the ceramic heater 32 is performed after the delay time td1 has elapsed from time t0 (time t1), that is, the first current output from the power supply unit 42 decreases and the maximum current I 10 is reduced. It starts after becoming smaller.
  • the first current flowing through the ceramic heater 22 and the second current flowing through the ceramic heater 32 do not simultaneously reach their maximum values (maximum current I 10 ).
  • the value of the total current output from the power supply unit 42 is smaller than twice the maximum current I 10 at both time t0 and time t1, and may exceed the allowable current value I TH. None (see line G50).
  • the current output from the power supply unit 42 has the maximum overcurrent (maximum current I 10 ) flowing through the ceramic heater 22 and the maximum overcurrent (maximum current I 10 ) flowing through the ceramic heater 32. It is always smaller than the superposition of the current I 10 ). For this reason, it is possible to prevent the power supply unit 42 from being damaged by an overcurrent without excessively increasing the allowable current value I TH of the power supply unit 42.
  • the delay time td1 in the present embodiment is set as short as possible within a range in which the total current does not exceed the allowable current value I TH even when current is supplied to the ceramic heater 32.
  • the total current at the time when the second current starts to be supplied to the ceramic heater 32 (time t1) is equal to the first current that has decreased during the delay time td1 (as shown in FIG. 2).
  • Current I 07 ) and the second current (maximum current I 10 ) the length of the delay time td 1 is set so that the magnitude is slightly less than the allowable current value I TH. ing.
  • the first current decreases from the maximum current I 10 and the upper limit current
  • the length of the delay time td1 is set so as to be a time required for the time to be slightly less than.
  • the total current at time t2 is the sum of the first current (maximum current I 20 ) at that time and the second current (the magnitude thereof is current I 08 as shown in FIG. 2). Further, the total current at time t3 is the sum of the first current at that time (the magnitude is current I 09 as shown in FIG. 2) and the second current (maximum current I 20 ). .
  • the delay time td1 is set to be as short as possible within the range where the total current does not exceed the allowable current value I TH not only at time t1 but also at time t2 and time t3. Yes. Therefore, while reliably preventing the power supply unit 42 from failing, the temperature of each of the ceramic heater 22 and the ceramic heater 32 is increased at an early stage, and control for optimizing the air-fuel ratio is started at an early stage. Is possible.
  • the ceramic heater 22 and the ceramic heater 32 are made of metal (tungsten) at the portion where current passes and generates heat. For this reason, the electrical resistance is not always constant, the electrical resistance decreases as the temperature decreases, and the electrical resistance increases as the temperature increases.
  • the magnitude of the first current flowing through the ceramic heater 22 and the magnitude of the second current flowing through the ceramic heater 32 also vary depending on the temperature of the ceramic heater 22 and the temperature of the ceramic heater 32, respectively.
  • the line G30 shown in FIG. 3 is the same line as the line G30 shown in FIG. 2, and represents the time change of the first current flowing through the ceramic heater 22. Also, the line G31 shown in FIG. 3 is the time change of the first current flowing through the ceramic heater 22, and the time of the first current when the ceramic heater 22 is at a lower temperature than in the case of the line G30. It represents a change.
  • the voltage applied to the ceramic heater 22 is the same as the voltage represented by the line G12 in FIG.
  • the first current flowing through the ceramic heater 22 increases as the electrical resistance decreases.
  • the first current at time t0 is larger than the maximum current I 10 (maximum current I 10 a).
  • the first current at time t2 has a large current (maximum current I 20 a) than the maximum current I 20.
  • the first current at the time t1 has a large current (current I 07 a) than the current I 07.
  • the total current is larger than the current I 07.
  • the maximum value of the second current (maximum current I 10 ) is added to the current I 07 a. As a result, the total current may exceed the allowable current value I TH at low temperatures.
  • the ceramic heater 22 when the ceramic heater 22 is at a low temperature, the ceramic heater 32 is also at a low temperature, and there is a high possibility that a current easily flows through the ceramic heater 32. Therefore, the possibility that the total current exceeds the allowable current value I TH is further increased.
  • the length of the delay time (td1) is not always fixed, but the delay time is set to an appropriate length based on the temperature of the ceramic heater 22 at the start of current supply. Is set. That is, the delay time is set based on the temperature of the ceramic heater 22 so that the delay time is as short as possible within a range where the total current does not exceed the allowable current value I TH .
  • FIG. 4 shows the control performed by the control device 40 when the temperature is low, that is, when the outside air temperature is low and the temperature of both the ceramic heater 22 and the ceramic heater 32 is low (than the case of FIG. 2). While explaining.
  • FIG. 4A is a diagram in which time is taken on the horizontal axis, and voltages applied to the ceramic heater 22 and the ceramic heater 32 are taken on the vertical axis.
  • FIG. 4B is a diagram in which time is taken on the horizontal axis, and currents flowing through the ceramic heater 22 and the ceramic heater 32 are taken on the vertical axis.
  • FIG. 4C is a diagram in which time is taken on the horizontal axis and current flowing through the power supply unit 42 is taken on the vertical axis.
  • a line G11 shown in FIG. 4A represents a time change of the voltage applied to the ceramic heater 22 at a low temperature, and follows the same transition as the line G10 in FIG.
  • a line G21 shown in FIG. 4A represents a change over time in the voltage applied to the ceramic heater 32 at a low temperature.
  • the waveform of the line G21 is the same as that of the line G20 shown in FIG. 2, but is different from the line G20 at the timing when the voltage starts to be applied to the ceramic heater 32.
  • a line G31 shown in FIG. 4B represents a time change of the first current flowing through the ceramic heater 22 at a low temperature, and follows the same transition as the line G31 shown in FIG. .
  • a line G41 shown in FIG. 4B represents a time change of the second current flowing through the ceramic heater 32 at a low temperature.
  • a line G50 shown in FIG. 4C represents a time change of the total current obtained by adding the first current flowing through the ceramic heater 22 and the second current flowing through the ceramic heater 32.
  • the delay time td2 set at this time is a time from time t0 to time t10, which is longer than the delay time td1 shown in FIG.
  • the electrical resistance of the ceramic heater 22 and the electrical resistance of the ceramic heater 32 are both lower than in the case of FIG. 2, and current easily flows through each ceramic heater. However, at a low temperature, a delay time td2 longer than the delay time td1 is set. Since the supply of the second current is started after the first current is sufficiently reduced, the total current does not exceed the allowable current value I TH .
  • the delay time td2 is set as short as possible within a range in which the total current does not exceed the allowable current value I TH even when current is supplied to the ceramic heater 32.
  • the total current at the time when the second current starts to be supplied to the ceramic heater 32 is the first current (current I 09 a) that has decreased during the lapse of the delay time td2 and the second current (maximum). although become the sum of the current I 10 a), its magnitude as slightly below the allowable current value I TH, the length of the delay time td2 is set.
  • the first current is calculated from the maximum current I 10 a.
  • the length of the delay time td2 is set so as to be the time required to decrease and slightly fall below the upper limit current.
  • the total current at time t30 is the sum of the first current at that time (the magnitude is current I 08 a as shown in FIG. 4) and the second current (maximum current I 20 a). It becomes.
  • the delay time td2 at low temperature is set to be as short as possible within a range where the total current does not exceed the allowable current value I TH. Yes. For this reason, it is possible to start the control for optimizing the air-fuel ratio at an early stage by increasing the temperatures of the ceramic heater 22 and the ceramic heater 32 at an early stage while preventing the power supply unit 42 from malfunctioning. It has become.
  • the delay time td1 or the delay time td2 is set according to the temperature of the ceramic heater 22. A flow of processing performed when the control system 10 is activated will be described with reference to FIG.
  • the control system 10 is started and control by the control device 40 is started.
  • the length of the delay time is set based on the temperature of the ceramic heater 22. Specifically, if the temperature of the ceramic heater 22 is higher than a predetermined threshold, a short delay time td1 is set. If the temperature of the ceramic heater 22 is equal to or lower than the threshold value, a long delay time td2 is set. The temperature of the ceramic heater 22 is acquired by a temperature sensor attached to the ceramic heater 22 directly or in the vicinity thereof.
  • control unit 43 starts supplying power from the power supply unit 42 to the ceramic heater 22. Since the process of S01 immediately before is performed instantaneously, the time when S02 is executed is the same as the time t0 when the control system 10 is activated.
  • S03 it is determined whether or not the set delay time (td1 or td2) has elapsed since time t0 when S01 was performed. If the delay time has not elapsed, the process of S03 is repeated. If the delay time has elapsed, the process proceeds to S04.
  • control unit 43 starts supplying power from the power supply unit 42 to the ceramic heater 32. Since the processing as described above is executed when the control system 10 is started, an appropriate delay time (td1 or td2) corresponding to the temperature of the ceramic heater 22 is set.
  • the temperature of the ceramic heater 22 is acquired by a temperature sensor attached to the ceramic heater 22 directly or in the vicinity thereof.
  • the temperature of the ceramic heater 22 may be acquired or estimated by another method.
  • the electrical resistance may be calculated from the voltage applied to the ceramic heater 22 and the current flowing therewith, and the temperature of the ceramic heater 22 may be estimated based on the electrical resistance.
  • the delay time td1 or the time based on whether the calculated electrical resistance is higher than a predetermined threshold value or One of the delay times td2 may be set. Specifically, when the calculated electric resistance is higher than a predetermined threshold, the delay time td1 is set, and when the calculated electric resistance is equal to or less than the predetermined threshold, the delay time td2 is set. It is good.
  • the temperature of the ceramic heater 22 may be estimated based on the element resistance value of the first sensor 20.
  • the element resistance value of the first sensor 20 is an electrical resistance that a current passing through the solid electrolyte 21 receives. Such an element resistance value can be calculated from the relationship between the applied voltage to the solid electrolyte 21 and the passing current when exhaust gas having a known oxygen concentration passes through the exhaust pipe 110.
  • the delay time is determined based on whether the calculated element resistance value is higher than a predetermined threshold value.
  • Either td1 or delay time td2 may be set. Specifically, the delay time td1 is set when the calculated element resistance value is higher than a predetermined threshold value, and the delay time td2 is set when the calculated element resistance value is less than or equal to the predetermined threshold value. It is good also as an aspect which is.
  • the temperature of the ceramic heater 32 may be directly acquired or may be estimated based on the electric resistance of the ceramic heater 32. Further, it may be estimated based on the element resistance value of the second sensor 30.
  • the element resistance value of the second sensor 30 is an electrical resistance received by the current passing through the solid electrolyte 31.
  • Either the delay time td1 or the delay time td2 may be set based on whether or not the coolant temperature measured by the water temperature sensor 70 is higher than a predetermined threshold. Specifically, the delay time td1 is set when the measured cooling water temperature is higher than a predetermined threshold, and the delay time td2 is set when the measured cooling water temperature is equal to or lower than the predetermined threshold. It is good also as a mode set up.
  • either the delay time td1 or the delay time td2 may be set. Specifically, the delay time td1 is set when the measured outside air temperature is higher than a predetermined threshold, and the delay time td2 is set when the measured outside air temperature is equal to or lower than the predetermined threshold. It is good also as an aspect which is.
  • either one of the two delay times is set based on whether or not the temperature of the ceramic heater 22 is higher than a predetermined threshold value.
  • the delay time may be set from the values (candidates).
  • the relationship between the temperature (horizontal axis) of the ceramic heater 22 and the delay time (vertical axis) to be set is stored in the control device 40, and based on the relationship, the ceramic heater The delay time corresponding to the temperature of 22 may be set. In the example shown in FIG. 6, a shorter delay time is set as the temperature of the ceramic heater 22 is higher.
  • the relationship between the temperature of the ceramic heater 22 and the delay time to be set is determined by experiments and simulations performed in advance and is stored by the control device 40.
  • the relationship between the coolant temperature (horizontal axis) measured by the water temperature sensor 70 and the delay time (vertical axis) to be set is stored in the control device 40. Based on this relationship, a delay time corresponding to the coolant temperature may be set. In the example shown in FIG. 7, a shorter delay time is set as the coolant temperature is higher.
  • the relationship between the temperature of the outside air measured by the temperature sensor 80 and the delay time to be set is stored in the control device 40, and the delay time corresponding to the temperature of the outside air is based on the relationship. It is good also as an aspect by which is set. Also in this case, a shorter delay time is set as the outside air temperature is higher.

Abstract

This control device (40) is provided with a first reception unit (411) that receives a detection signal outputted by a first sensor (20) that contains a first heater (22) and detects the state of an exhaust gas passing a first position (111a) in an exhaust passage (110), a second reception unit (412) that receives a detection signal outputted by a second sensor (30) that contains a second heater (32) and detects the state of the exhaust gas passing a second position (112a) that is different from the aforementioned first position (111a), a power supply unit (42) that supplies power to the first heater (22) and the second heater (32), and a control unit (43) that controls the power supply unit (42) such that said power supply unit (42) starts supplying power to the second heater (32) at a second point in time at which a given delay has elapsed since a first point in time at which the power supply unit (42) started supplying power to the first heater (22).

Description

制御装置Control device 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年6月20日に出願された日本出願番号2014-126839号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2014-126839 filed on June 20, 2014, the contents of which are incorporated herein by reference.
 本開示は、内燃機関に繋がれた排気通路を流れる排出ガスの状態を検知する制御装置に関するものである。 The present disclosure relates to a control device that detects the state of exhaust gas flowing through an exhaust passage connected to an internal combustion engine.
 例えば自動車用ガソリンエンジンのような内燃機関は、燃料の燃焼により生じた排出ガスを外部に排出する。排出ガスには窒素酸化物や一酸化炭素などの粒子状物質が含まれるため、当該粒子状物質が少なくなるよう、内燃機関には空燃比を最適化する制御装置が一般に備えられている。このような制御装置は、排出ガスの状態をセンサによって検知しながら、内燃機関に対する燃料供給量及び空気供給量を調整することにより、空燃比を理論空燃比に近づけるものである(例えば、下記特許文献1を参照)。 For example, an internal combustion engine such as an automobile gasoline engine discharges exhaust gas generated by combustion of fuel to the outside. Since exhaust gas contains particulate matter such as nitrogen oxide and carbon monoxide, an internal combustion engine is generally equipped with a control device that optimizes the air-fuel ratio so that the particulate matter is reduced. Such a control device adjusts the fuel supply amount and the air supply amount to the internal combustion engine while detecting the exhaust gas state by a sensor, thereby bringing the air-fuel ratio closer to the theoretical air-fuel ratio (for example, the following patents) Reference 1).
 上記のセンサとしては、A/FセンサやO2センサが用いられることが多い。これらは、排出ガスが流れる流路である排気通路に取り付けられて、排気通路内外の酸素濃度差に応じた電気信号を出力するセンサである。A/Fセンサ及びO2センサは、いずれも、固体電解質と、固体電解質を加熱して活性化するヒータとを備えている。 As the above sensor, an A / F sensor or an O 2 sensor is often used. These are sensors that are attached to an exhaust passage, which is a flow path through which exhaust gas flows, and output an electrical signal corresponding to a difference in oxygen concentration inside and outside the exhaust passage. Each of the A / F sensor and the O 2 sensor includes a solid electrolyte and a heater that heats and activates the solid electrolyte.
 A/Fセンサは、排気通路内の酸素濃度に応じて連続的に変化する電気信号を出力するものである。よって、空燃比の変化に応じた高精度の制御が可能となる。一方、O2センサは、理論空燃比における酸素濃度を境に階段状に変化する電気信号を出力するものである。 The A / F sensor outputs an electric signal that changes continuously according to the oxygen concentration in the exhaust passage. Therefore, highly accurate control according to the change of the air-fuel ratio is possible. On the other hand, the O 2 sensor outputs an electric signal that changes stepwise with the oxygen concentration at the stoichiometric air-fuel ratio as a boundary.
 例えば、排気通路のうち排出ガスを浄化する触媒コンバータよりも上流側となる位置にA/Fセンサを配置し、触媒コンバータよりも下流側となる位置にO2センサを配置したことで、空燃比の制御を高精度に行うことが可能となる。また、当該構成においては、触媒コンバータの性能劣化を検知することも可能となる。このように、排気通路には上記のセンサ(A/FセンサやO2センサ)が一つだけではなく複数配置されるのが一般的である。 For example, the A / F sensor is disposed at a position upstream of the catalytic converter that purifies the exhaust gas in the exhaust passage, and the O 2 sensor is disposed at a position downstream of the catalytic converter. Can be controlled with high accuracy. In this configuration, it is also possible to detect performance deterioration of the catalytic converter. As described above, the above-described sensors (A / F sensors and O 2 sensors) are generally arranged in the exhaust passage instead of only one.
特開2000-97902号公報JP 2000-97902 A
 排出ガスの状態を検知する際、A/FセンサやO2センサは、ヒータの発熱により固体電解質の温度を上昇させて、固体電解質を活性化させた状態、つまり酸素イオンが固体電解質内を通過し得る状態を保つ必要がある。内燃機関の制御装置は、センサのヒータに電力を供給する電力供給部を備えている。排気通路に複数のセンサが配置されている場合には、電力供給部から複数のヒータに電力が供給される。 When detecting the state of exhaust gas, the A / F sensor or O 2 sensor activates the solid electrolyte by raising the temperature of the solid electrolyte due to the heat generated by the heater, that is, oxygen ions pass through the solid electrolyte. It is necessary to maintain a state that can The control device for an internal combustion engine includes a power supply unit that supplies power to a heater of the sensor. When a plurality of sensors are arranged in the exhaust passage, power is supplied from the power supply unit to the plurality of heaters.
 制御装置の起動時(例えば内燃機関の始動時)には、電力供給部からそれぞれのヒータへの電力供給が開始されるのであるが、電力供給が開始された時点で電力供給部が故障する可能性がある。電力供給部に流れる電流は、各ヒータに流れる電流の総和となるため、電力供給部の故障を回避する観点からは、各ヒータに流れうる電流を重ねあわせた電流が流れたとしても故障しないように電力供給部の許容電流値を設定する必要がある。しかしながら、従来の制御装置では電力供給部の故障対策が考慮されていなかった。 At the start of the control device (for example, at the start of the internal combustion engine), power supply from the power supply unit to each heater is started. However, the power supply unit may break down when the power supply is started. There is sex. Since the current flowing through the power supply unit is the sum of the currents flowing through the heaters, from the viewpoint of avoiding failure of the power supply unit, even if a current that overlaps the currents that can flow through the heaters flows, it will not fail. It is necessary to set the allowable current value of the power supply unit. However, the conventional control apparatus does not consider the countermeasures against the failure of the power supply unit.
 本開示はこのような課題に鑑みてなされたものであり、その目的は、内燃機関に繋がれた排気通路を流れる排出ガスの状態を検知する制御装置であって、起動時にセンサへの電力供給部が故障してしまうことを抑制することのできる制御装置を提供することにある。 The present disclosure has been made in view of such a problem, and an object of the present disclosure is a control device that detects a state of exhaust gas flowing through an exhaust passage connected to an internal combustion engine, and supplies power to the sensor at startup. It is in providing the control apparatus which can suppress that a part breaks down.
 本開示の第一の態様において、制御装置は、電力の供給を受けて発熱する第1ヒータを有し内燃機関に繋がれた排気通路の第1位置を通過する排出ガスの状態を検知する第1センサから出力される検知信号を受信する第1受信部と、電力の供給を受けて発熱する第2ヒータを有し排気通路において第1位置とは異なる第2位置を通過する排出ガスの状態を検知する第2センサから出力される検知信号を受信する第2受信部と、第1ヒータ及び第2ヒータに電力を供給する電力供給部と、第1ヒータへの電力の供給を開始した第1時刻から遅延時間が経過した第2時刻に、第2ヒータへの電力の供給を開始するよう、電力供給部の制御を行う制御部と、を備える。 In the first aspect of the present disclosure, the control device includes a first heater that generates heat when supplied with electric power, and detects a state of exhaust gas that passes through a first position of an exhaust passage connected to the internal combustion engine. State of exhaust gas passing through a second position different from the first position in the exhaust passage, having a first receiver that receives a detection signal output from one sensor and a second heater that generates heat upon receiving power supply A second receiving unit that receives a detection signal output from the second sensor that detects the power, a power supply unit that supplies power to the first heater and the second heater, and a first unit that starts supplying power to the first heater And a control unit that controls the power supply unit to start supplying power to the second heater at a second time when the delay time has elapsed from one time.
 電力供給部が故障することの具体的な対策としては、電力供給部の許容電流値が、全てのヒータに流れうる電流の総和よりも大きなものとなるように、電力供給部の構成部品を選定し、場合によっては保護回路を設ける。しかしながら、このような対策は電力供給部の部品コストが大きなものとなってしまうために好ましくない。特に、センサ数が増えた場合に、確保すべき許容電流がその個数分だけ加算されてしまうため、電力供給部の部品コストが跳ね上がってしまう。また、センサ数が増えるたびに、その合算電流に耐えうるように電力供給部を再構成する必要があるため、汎用性のある制御装置を構成することができない。 As a specific countermeasure against the failure of the power supply unit, select the components of the power supply unit so that the allowable current value of the power supply unit is larger than the total current that can flow to all heaters. In some cases, a protective circuit is provided. However, such a countermeasure is not preferable because the component cost of the power supply unit becomes large. In particular, when the number of sensors increases, the allowable current to be secured is added by that number, so that the component cost of the power supply unit jumps. Moreover, since it is necessary to reconfigure | reconfigure a power supply part so that it can endure the total current, whenever a sensor number increases, a versatile control apparatus cannot be comprised.
 そこで、本開示者は、制御装置を起動する際に電力供給部に流れる電流瞬間的なものであることに着目した。制御装置を起動すると、第1ヒータ及び第2ヒータに流れる電流は瞬間的に上昇し、その後経時的に低下し定常状態となるため、この経時変化を利用して本開示に想到したものである。このような知見に基づいてなされた本開示では、第1ヒータ及び第2ヒータに対する電力供給部からの電力供給が、同時ではなく異なるタイミングで開始される。第1ヒータに対する電力供給の開始時には、電力供給部から第1ヒータに大きな電流が出力されるのであるが、当該電流は遅延時間が経過する間に減少して行く。第2ヒータに対する電力供給は、当該遅延時間が経過した後、すなわち、電力供給部から出力される電流が減少した後に開始される。このため、電力供給の開始時において第1ヒータに流れる最大の電流である第1最大電流と、電力供給の開始時において第2ヒータに流れる最大の電流である第2最大電流とが、電力供給部から同時に出力されてしまうことが無い。 Therefore, the present disclosure paid attention to the fact that the current flowing through the power supply unit when starting the control device is instantaneous. When the control device is activated, the currents flowing through the first heater and the second heater increase instantaneously, and thereafter decrease over time to reach a steady state. Therefore, the present disclosure has been conceived using this temporal change. . In the present disclosure made based on such knowledge, power supply from the power supply unit to the first heater and the second heater is started not at the same time but at different timings. At the start of power supply to the first heater, a large current is output from the power supply unit to the first heater, but the current decreases as the delay time elapses. The power supply to the second heater is started after the delay time has elapsed, that is, after the current output from the power supply unit has decreased. Therefore, the first maximum current that is the maximum current that flows to the first heater at the start of power supply and the second maximum current that is the maximum current to flow to the second heater at the start of power supply are the power supply. Are not output simultaneously from the unit.
 本開示によれば、電力供給部から出力される電流を、第1最大電流と第2最大電流との合計よりも常に小さくすることができる。このため、電力供給部の許容電流値を過剰に大きくしておかなくても、起動時に電力供給部が故障してしまうことを抑制することができる。 According to the present disclosure, the current output from the power supply unit can always be smaller than the sum of the first maximum current and the second maximum current. For this reason, even if the allowable current value of the power supply unit is not excessively increased, it is possible to suppress the failure of the power supply unit during startup.
 ところで、内燃機関の始動直後から排出ガスが排出されることに鑑みれば、第1ヒータ及び第2ヒータに対しては可能な限り早いタイミングで電力の供給を開始し、排出ガスの状態検知を早期に開始することが望ましい。しかしながら、遅延時間が短すぎる場合には、第1ヒータに流れる電流が第1最大電流から僅かしか低下していない状態で、第2ヒータに電流が供給され始めてしまう。その結果、電力供給部から出力される電流が許容電流値を超えてしまう可能性がある。 By the way, considering that exhaust gas is discharged immediately after the start of the internal combustion engine, power supply to the first heater and the second heater is started at the earliest possible timing to detect the state of the exhaust gas early. It is desirable to start on. However, if the delay time is too short, the current starts to be supplied to the second heater in a state where the current flowing through the first heater is only slightly lower than the first maximum current. As a result, the current output from the power supply unit may exceed the allowable current value.
 そこで、本開示においては、第2時刻において第1ヒータに流れる電流値と第2ヒータに流れる電流値との合算値が、電力供給部に支障をきたさない範囲の上限の電流値である上限値を超えないように遅延時間が定められることが好ましい。このような態様によれば、起動時に電力供給部が故障しない範囲で、遅延時間を可能な限り短くすることができ、排出ガスの状態検知を早期に開始することができる。 Therefore, in the present disclosure, the upper limit value that is the upper limit current value within a range in which the sum of the current value flowing through the first heater and the current value flowing through the second heater at the second time does not interfere with the power supply unit. It is preferable that the delay time is determined so as not to exceed. According to such an aspect, the delay time can be shortened as much as possible within a range where the power supply unit does not fail at the time of startup, and the exhaust gas state detection can be started early.
 本開示によれば、内燃機関に繋がれた排気通路を流れる排出ガスの状態を検知する制御装置であって、起動時にセンサへの電力供給部が故障してしまうことを抑制することのできる制御装置を提供することができる。 According to the present disclosure, it is a control device that detects the state of exhaust gas flowing through an exhaust passage connected to an internal combustion engine, and is capable of suppressing a failure of a power supply unit to the sensor during startup. An apparatus can be provided.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の実施形態に係る制御装置が内燃機関及びそれに繋がる排気系に取り付けられた状態を示す模式図であり、 図2は、図1に示された制御装置において、ヒータに印加される電圧の時間変化、及びヒータに供給される電流の時間変化を示すグラフであり、 図3は、図1に示された制御装置において、ヒータに供給される電流の時間変化を示すグラフであり、 図4は、図1に示された制御装置において、ヒータに印加される電圧の時間変化、及びヒータに供給される電流の時間変化を示すグラフであり、 図5は、図1に示された制御装置の動作を示すフローチャートであり、 図6は、ヒータの温度と、設定される遅延時間との関係を示す図であり、 図7は、内燃機関を冷却する冷却水の温度と、設定される遅延時間との関係を示す図であり、 図8は、従来の制御装置において、ヒータに印加される電圧の時間変化、及びヒータに供給される電流の時間変化を示すグラフである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a schematic diagram illustrating a state in which a control device according to an embodiment of the present disclosure is attached to an internal combustion engine and an exhaust system connected thereto. FIG. 2 is a graph showing the time change of the voltage applied to the heater and the time change of the current supplied to the heater in the control device shown in FIG. FIG. 3 is a graph showing the change over time of the current supplied to the heater in the control device shown in FIG. FIG. 4 is a graph showing the time change of the voltage applied to the heater and the time change of the current supplied to the heater in the control device shown in FIG. FIG. 5 is a flowchart showing the operation of the control device shown in FIG. FIG. 6 is a diagram showing the relationship between the heater temperature and the set delay time. FIG. 7 is a diagram showing the relationship between the temperature of the cooling water for cooling the internal combustion engine and the set delay time, FIG. 8 is a graph showing the time change of the voltage applied to the heater and the time change of the current supplied to the heater in the conventional control device.
 以下、添付図面を参照しながら本開示の実施の形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 本開示の実施形態に係る制御装置40を含む制御システム10の制御対象である内燃機関100は、火花点火式の自動車用ガソリンエンジンである。図1に模式的に示されるように、内燃機関100には、吸気管101と排気管110とが接続されている。排気管110は、排気通路を形成する。 The internal combustion engine 100 that is a control target of the control system 10 including the control device 40 according to the embodiment of the present disclosure is a spark ignition type automobile gasoline engine. As schematically shown in FIG. 1, an intake pipe 101 and an exhaust pipe 110 are connected to the internal combustion engine 100. The exhaust pipe 110 forms an exhaust passage.
 吸気管101は、空気と燃料とが混ざり合った混合気を内燃機関100に供給する配管である。吸気管101には、吸気管101内へ空気の供給量を調整するスロットル弁(不図示)と、吸気管101内への燃料の供給量調整する燃料噴射弁(不図示)とが取り付けられている。スロットル弁の開度によって吸気管101内へ空気の供給量が変化し、燃料噴射弁の開弁時間によって吸気管101内への燃料の供給量が変化する。制御装置40は、燃料噴射弁から噴射される燃料の供給量を主に調整することによって、内燃機関100に供給される混合気の空燃比を理論空燃比に近づける制御を行う。 The intake pipe 101 is a pipe that supplies an air-fuel mixture in which air and fuel are mixed to the internal combustion engine 100. A throttle valve (not shown) for adjusting the amount of air supplied into the intake pipe 101 and a fuel injection valve (not shown) for adjusting the amount of fuel supplied into the intake pipe 101 are attached to the intake pipe 101. Yes. The amount of air supplied into the intake pipe 101 changes depending on the opening of the throttle valve, and the amount of fuel supplied into the intake pipe 101 changes depending on the opening time of the fuel injection valve. The control device 40 performs control to bring the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 100 closer to the stoichiometric air-fuel ratio by mainly adjusting the supply amount of fuel injected from the fuel injection valve.
 排気管110は、内燃機関100に繋げられた配管であって、内燃機関100における燃料の燃焼により生じた排出ガスを外部に排出する排気通路である。排気管110は、上流側の配管である上流配管111と、下流側の配管である下流配管112と、触媒コンバータ120とを備えている。触媒コンバータ120は、上流配管111と下流配管112との間に配置されている。内燃機関100において生じた排出ガスは、上流配管111、触媒コンバータ120、及び下流配管112を順に流れた後、下流配管112の下流側端部に形成された開口である排出口114から外部に排出される。 The exhaust pipe 110 is a pipe connected to the internal combustion engine 100, and is an exhaust passage that discharges exhaust gas generated by fuel combustion in the internal combustion engine 100 to the outside. The exhaust pipe 110 includes an upstream pipe 111 that is an upstream pipe, a downstream pipe 112 that is a downstream pipe, and a catalytic converter 120. The catalytic converter 120 is disposed between the upstream pipe 111 and the downstream pipe 112. Exhaust gas generated in the internal combustion engine 100 flows through the upstream pipe 111, the catalytic converter 120, and the downstream pipe 112 in this order, and then is discharged to the outside from an exhaust port 114 that is an opening formed at the downstream end of the downstream pipe 112. Is done.
 触媒コンバータ120は、排出ガスに含まれる粒子状物質を酸化又は還元により浄化するものであって、触媒であるプラチナ、パラジウム、ロジウムを担持した触媒担体121を内部に有する。排出ガスに含まれる炭化水素、一酸化炭素、窒素酸化物は、これら触媒に触れることによりそれぞれ浄化された後、下流配管112を流れて排出口114から外部に排出される。 The catalytic converter 120 purifies particulate matter contained in the exhaust gas by oxidation or reduction, and has a catalyst carrier 121 carrying platinum, palladium, and rhodium as catalysts. Hydrocarbons, carbon monoxide, and nitrogen oxides contained in the exhaust gas are purified by touching these catalysts, and then flow through the downstream pipe 112 and are discharged to the outside through the discharge port 114.
 制御システム10は、第1センサ20と、第2センサ30と、水温センサ70と、気温センサ80と、制御装置40とを備えている。第1センサ20は、内燃機関100において生じた排出ガスの状態(酸素濃度)を検知するA/Fセンサであり、上流配管111の第1位置111aに備えられている。第1センサ20は一般的な構成のA/Fセンサであって、板状に形成された固体電解質21と、固体電解質21を加熱するセラミックヒータ22(第1ヒータ)とを有している。 The control system 10 includes a first sensor 20, a second sensor 30, a water temperature sensor 70, an air temperature sensor 80, and a control device 40. The first sensor 20 is an A / F sensor that detects the state of exhaust gas (oxygen concentration) generated in the internal combustion engine 100, and is provided at the first position 111 a of the upstream pipe 111. The first sensor 20 is an A / F sensor having a general configuration, and includes a plate-shaped solid electrolyte 21 and a ceramic heater 22 (first heater) for heating the solid electrolyte 21.
 固体電解質21の第1面には検出電極が配置されており、上流配管111内の排出ガスが多孔質体を通過して当該面に到達するよう構成されている。また、固体電解質21の第2面には基準電極が形成されており、基準酸素濃度の気体、すなわち大気が当該面に到達するよう構成されている。第1センサ20によって排出ガスの状態が検知される際には、固体電解質21は、セラミックヒータ22によって加熱されて高温となった状態、すなわち、酸素イオンを透過させ得るように活性化した状態に維持される。また、検出電極と基準電極との間には電圧が印加される。このような状態において、上流配管111の内部の酸素濃度と、外部(大気)の酸素濃度との差(濃度差)が生じると、当該濃度差に略比例した大きさの電流が検出電極と基準電極との間(固体電解質21)を流れる。つまり、上流配管111内の排出ガスの酸素濃度が高いほど大きな電流が流れる。第1センサ20は、この電流に基づいて電気信号を生成し、制御装置40に向けて検知信号として出力する。又は、電流そのものが検知信号として制御装置40に直接入力される構成であってもよい。制御装置40は、検知信号を受信すると、あらかじめ記憶されている電流値と空燃比との関係に基づいて空燃比を算出する。このように、第1センサ20は、上流配管111の内部の酸素濃度に応じて連続的に変化する電気信号を出力するセンサである。 A detection electrode is disposed on the first surface of the solid electrolyte 21, and the exhaust gas in the upstream pipe 111 passes through the porous body and reaches the surface. A reference electrode is formed on the second surface of the solid electrolyte 21, and a gas having a reference oxygen concentration, that is, the atmosphere reaches the surface. When the state of the exhaust gas is detected by the first sensor 20, the solid electrolyte 21 is heated to a high temperature by the ceramic heater 22, that is, activated so as to allow oxygen ions to pass therethrough. Maintained. A voltage is applied between the detection electrode and the reference electrode. In such a state, when a difference (concentration difference) occurs between the oxygen concentration inside the upstream pipe 111 and the oxygen concentration outside (atmosphere), a current having a magnitude approximately proportional to the concentration difference is detected between the detection electrode and the reference. It flows between the electrodes (solid electrolyte 21). That is, a larger current flows as the oxygen concentration of the exhaust gas in the upstream pipe 111 is higher. The first sensor 20 generates an electrical signal based on this current and outputs it as a detection signal to the control device 40. Alternatively, the current itself may be directly input to the control device 40 as a detection signal. When receiving the detection signal, control device 40 calculates the air-fuel ratio based on the relationship between the current value stored in advance and the air-fuel ratio. Thus, the 1st sensor 20 is a sensor which outputs the electric signal which changes continuously according to the oxygen concentration inside the upstream piping 111. FIG.
 第2センサ30は、触媒コンバータ120を通過した後の排出ガスの状態(酸素濃度)を検知するO2センサであり、下流配管112の第2位置112aに備えられている。第2センサ30は一般的な構成のO2センサであって、板状に形成された固体電解質31と、固体電解質31を加熱するセラミックヒータ32(第2ヒータ)とを有している。 The second sensor 30 is an O 2 sensor that detects the state (oxygen concentration) of the exhaust gas after passing through the catalytic converter 120, and is provided at the second position 112 a of the downstream pipe 112. The second sensor 30 is an O 2 sensor having a general configuration, and includes a solid electrolyte 31 formed in a plate shape and a ceramic heater 32 (second heater) for heating the solid electrolyte 31.
 固体電解質31の第1面には検出電極が配置されており、下流配管112内の排出ガスが多孔質体を通過して当該面に到達するよう構成されている。また、固体電解質31の第2面には基準電極が形成されており、基準酸素濃度の気体、すなわち大気が当該面に到達するよう構成されている。第2センサ30によって排出ガスの状態が検知される際には、固体電解質31は、セラミックヒータ32によって加熱されて高温となった状態、すなわち、酸素イオンを透過させ得るように活性化した状態に維持される。また、検出電極と基準電極との間には電圧が印加される。このような状態においては、下流配管112の内部の酸素濃度と、外部の酸素濃度との差(濃度差)に起因して、検出電極と基準電極との間(固体電解質31)を電流が流れるのであるが、濃度差が所定値を超えたところで当該起電流の大きさは急激に(階段状に)変化する。第2センサ30は、この電流に基づいて電気信号を生成し、制御装置40に向けて検知信号として出力する。又は、電流そのものが検知信号として制御装置40に直接入力される構成であってもよい。尚、所定値とは、内燃機関100に供給される混合気の空燃比が理論空燃比であるときの、下流配管112内の酸素濃度の値である。制御装置40は、検知信号を受信すると、電流値とあらかじめ記憶されている閾値とを比較することにより、下流配管112の内部の酸素濃度が理論空燃比における酸素濃度よりも大きいか否かを判定する。このように、第2センサ30は、下流配管112の内部の酸素濃度が理論空燃比における酸素濃度よりも大きいか否かを示す電気信号を出力するセンサである。 Detecting electrodes are arranged on the first surface of the solid electrolyte 31, and the exhaust gas in the downstream pipe 112 passes through the porous body and reaches the surface. Further, a reference electrode is formed on the second surface of the solid electrolyte 31, and a gas having a reference oxygen concentration, that is, the atmosphere reaches the surface. When the state of the exhaust gas is detected by the second sensor 30, the solid electrolyte 31 is heated to a high temperature by the ceramic heater 32, that is, activated so as to allow oxygen ions to pass therethrough. Maintained. A voltage is applied between the detection electrode and the reference electrode. In such a state, a current flows between the detection electrode and the reference electrode (solid electrolyte 31) due to the difference (concentration difference) between the oxygen concentration inside the downstream pipe 112 and the external oxygen concentration. However, when the concentration difference exceeds a predetermined value, the magnitude of the electromotive current changes abruptly (stepwise). The second sensor 30 generates an electrical signal based on this current and outputs it as a detection signal to the control device 40. Alternatively, the current itself may be directly input to the control device 40 as a detection signal. The predetermined value is a value of the oxygen concentration in the downstream pipe 112 when the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine 100 is the stoichiometric air-fuel ratio. When receiving the detection signal, the control device 40 compares the current value with a threshold value stored in advance to determine whether or not the oxygen concentration in the downstream pipe 112 is greater than the oxygen concentration at the stoichiometric air-fuel ratio. To do. Thus, the second sensor 30 is a sensor that outputs an electrical signal indicating whether or not the oxygen concentration inside the downstream pipe 112 is higher than the oxygen concentration at the stoichiometric air-fuel ratio.
 内燃機関100にはラジエータ(不図示)が備えられている。当該ラジエータと内燃機関100との間には、内燃機関100を冷却する冷却水が循環している。水温センサ70は、循環する冷却水の温度を検知するセンサである。 The internal combustion engine 100 is provided with a radiator (not shown). Cooling water for cooling the internal combustion engine 100 is circulated between the radiator and the internal combustion engine 100. The water temperature sensor 70 is a sensor that detects the temperature of the circulating cooling water.
 気温センサ80は、外気の温度を測定するセンサである。水温センサ70によって測定された冷却水の温度、及び気温センサ80によって測定された外気の温度は、次に説明する制御装置40にそれぞれ入力される。 The temperature sensor 80 is a sensor that measures the temperature of the outside air. The temperature of the cooling water measured by the water temperature sensor 70 and the temperature of the outside air measured by the air temperature sensor 80 are respectively input to the control device 40 described below.
 制御装置40は、CPU、ROM、RAM、及び入出力インタフェースを備えたコンピュータシステムであり、所謂ECU(Engine Control Unit)と称されるものである。制御装置40は、第1センサ20から受信した電気信号及び第2センサ30から受信した電気信号に基づいて、スロットル弁の開度を調整するとともに、燃料噴射弁の開弁時間を調整することにより、空燃比を理論空燃比に近づける制御を行う。本実施形態では、第1センサ20から受信した電気信号は上流配管111内の酸素濃度を示し、第2センサ30から受信した電気信号は下流配管112内の酸素濃度を示している。 The control device 40 is a computer system including a CPU, a ROM, a RAM, and an input / output interface, and is referred to as a so-called ECU (Engine Control Unit). The control device 40 adjusts the opening degree of the throttle valve and the opening time of the fuel injection valve based on the electrical signal received from the first sensor 20 and the electrical signal received from the second sensor 30. Then, control is performed to bring the air-fuel ratio closer to the theoretical air-fuel ratio. In the present embodiment, the electrical signal received from the first sensor 20 indicates the oxygen concentration in the upstream pipe 111, and the electrical signal received from the second sensor 30 indicates the oxygen concentration in the downstream pipe 112.
 制御装置40は、信号受信部41と、電力供給部42と、制御部43とを備えている。信号受信部41は、第1受信部411と、第2受信部412とを備えている。第1受信部411は、第1センサ20から出力された電気信号を受信する入力ポートである。第2受信部412は、第2センサ30から出力された電気信号を受信する入力ポートである。第1受信部411と第1センサ20とは信号線51で繋がっている。第1センサ20から出力された電気信号は信号線51を介して伝達され、第1受信部411に入力される。同様に、第2受信部412と第2センサ30とは信号線61で繋がっている。第2センサ30から出力された電気信号は信号線61を介して伝達され、第2受信部412に入力される。 The control device 40 includes a signal receiving unit 41, a power supply unit 42, and a control unit 43. The signal receiving unit 41 includes a first receiving unit 411 and a second receiving unit 412. The first receiving unit 411 is an input port that receives an electrical signal output from the first sensor 20. The second receiving unit 412 is an input port that receives an electrical signal output from the second sensor 30. The first receiver 411 and the first sensor 20 are connected by a signal line 51. The electrical signal output from the first sensor 20 is transmitted via the signal line 51 and input to the first receiving unit 411. Similarly, the second receiver 412 and the second sensor 30 are connected by a signal line 61. The electrical signal output from the second sensor 30 is transmitted via the signal line 61 and input to the second receiving unit 412.
 電力供給部42は、第1センサ20のセラミックヒータ22、及び第2センサ30のセラミックヒータ32のそれぞれに対し、発熱に必要な電力を供給する出力ポートである。電力供給部42とセラミックヒータ22とは電力線52で繋がっている。電力供給部42から出力された電力は、電力線52を介してセラミックヒータ22に供給される。同様に、電力供給部42とセラミックヒータ32とは電力線62で繋がっている。電力供給部42から出力された電力は、電力線62を介してセラミックヒータ32に供給される。尚、セラミックヒータ22に対する電力の供給と、セラミックヒータ32に対する電力の供給は、それぞれ独立に(異なるタイミングで)行うことが可能となっている。電力供給部42は、セラミックヒータ22とセラミックヒータ32とのそれぞれに独立して電力を供給することが可能なように構成されているが、その電力を生成する部分は共通化されているので、セラミックヒータ22に流れる電流とセラミックヒータ32に流れる電流とが重ね合わされた電流が流れる。 The power supply unit 42 is an output port that supplies power necessary for heat generation to each of the ceramic heater 22 of the first sensor 20 and the ceramic heater 32 of the second sensor 30. The power supply unit 42 and the ceramic heater 22 are connected by a power line 52. The power output from the power supply unit 42 is supplied to the ceramic heater 22 via the power line 52. Similarly, the power supply unit 42 and the ceramic heater 32 are connected by a power line 62. The power output from the power supply unit 42 is supplied to the ceramic heater 32 via the power line 62. The power supply to the ceramic heater 22 and the power supply to the ceramic heater 32 can be performed independently (at different timings). The power supply unit 42 is configured to be able to supply power independently to each of the ceramic heater 22 and the ceramic heater 32, but the part that generates the power is shared, A current in which the current flowing through the ceramic heater 22 and the current flowing through the ceramic heater 32 are superimposed flows.
 制御部43は、コンピュータシステムである制御装置40の中枢をなす部分であって、スロットル弁、燃料噴射弁、及び電力供給部42のそれぞれに対する制御を実行する部分である。セラミックヒータ22及びセラミックヒータ32のそれぞれに電圧が印加されるタイミングや印加電圧の大きさは、制御部43によって制御される。 The control unit 43 is a part that forms the center of the control device 40 that is a computer system, and that controls the throttle valve, the fuel injection valve, and the power supply unit 42. The timing at which the voltage is applied to each of the ceramic heater 22 and the ceramic heater 32 and the magnitude of the applied voltage are controlled by the control unit 43.
 図2を参照しながら、制御システム10の起動時における動作について説明する。図2の(A)は、横軸に時間を取り、縦軸にセラミックヒータ22及びセラミックヒータ32それぞれに印加される電圧を取った図である。図2の(B)は、横軸に時間を取り、縦軸にセラミックヒータ22及びセラミックヒータ32それぞれに流れる電流を取った図である。図2の(C)は、横軸に時間を取り、縦軸に電力供給部42に流れる電流を取った図である。 Referring to FIG. 2, the operation when the control system 10 is started will be described. FIG. 2A is a diagram in which time is taken on the horizontal axis, and voltages applied to the ceramic heater 22 and the ceramic heater 32 are taken on the vertical axis. FIG. 2B is a diagram in which time is taken on the horizontal axis, and currents flowing through the ceramic heater 22 and the ceramic heater 32 are taken on the vertical axis. FIG. 2C is a diagram in which time is taken on the horizontal axis and current flowing in the power supply unit 42 is taken on the vertical axis.
 図2の(A)に示された線G10は、電力供給部42からの電力供給に伴いセラミックヒータ22に印加される電圧の時間変化を表している。同じく図2の(A)に示された線G20は、電力供給部42からの電力供給に伴いセラミックヒータ32に印加される電圧の時間変化を表している。 2A represents a time change of the voltage applied to the ceramic heater 22 with the power supply from the power supply unit 42. The line G10 illustrated in FIG. Similarly, a line G <b> 20 shown in FIG. 2A represents a change over time in the voltage applied to the ceramic heater 32 as power is supplied from the power supply unit 42.
 図2の(B)に示された線G30は、電力供給部42からの電力供給に伴いセラミックヒータ22を流れる電流の時間変化を表している。この場合、この電流は第1電流である。同じく図2の(B)に示された線G40は、電力供給部42からの電力供給に伴いセラミックヒータ32を流れる電流の時間変化を表している。この場合、この電流は第2電流である。図2の(C)に示された線G50は、セラミックヒータ22を流れる第1電流と、セラミックヒータ32を流れる第2電流とを合計した電流、すなわち、電力供給部42から出力される全体の電流の時間変化を表している。この場合、この電流は合計電流である。 A line G30 shown in FIG. 2 (B) represents a time change of the current flowing through the ceramic heater 22 in accordance with the power supply from the power supply unit. In this case, this current is the first current. Similarly, a line G <b> 40 shown in FIG. 2B represents a time change of the current flowing through the ceramic heater 32 with the power supply from the power supply unit 42. In this case, this current is the second current. A line G50 shown in FIG. 2C indicates a total current of the first current flowing through the ceramic heater 22 and the second current flowing through the ceramic heater 32, that is, the total output from the power supply unit 42. It represents the change in current over time. In this case, this current is the total current.
 時刻t0において内燃機関100が始動されると、同時に制御システム10が起動されて、セラミックヒータ22への電力の供給が開始される。時刻t0から時刻t2までの間においては、比較的小さい電圧V10がセラミックヒータ22に印加される(線G10参照)。時刻t2以降は、電圧V10よりも大きな電圧V20がセラミックヒータ22に印加される。このように印加電圧を階段状に増加させるのは、急激な温度上昇に伴うセラミックヒータ22の破損を防止するためである。 When the internal combustion engine 100 is started at time t0, the control system 10 is started at the same time, and supply of electric power to the ceramic heater 22 is started. In the period from time t0 to time t2, a relatively small voltage V 10 is applied to the ceramic heater 22 (see line G10). After time t2, a large voltage V 20 than the voltage V 10 is applied to the ceramic heater 22. The reason why the applied voltage is increased stepwise is to prevent the ceramic heater 22 from being damaged due to a rapid temperature rise.
 一方、セラミックヒータ32への電力の供給は、時刻t0においては開始されず、時刻t0から遅延時間td1が経過した時刻t1において開始される。時刻t1は、上記の時刻t2よりも前の時刻である。このように、本実施形態においては、セラミックヒータ22への電力の供給と、セラミックヒータ32への電力の供給とが同時には開始されない。その理由については後に説明する。 On the other hand, the supply of power to the ceramic heater 32 is not started at time t0, but is started at time t1 when the delay time td1 has elapsed from time t0. The time t1 is a time before the time t2. Thus, in this embodiment, the supply of power to the ceramic heater 22 and the supply of power to the ceramic heater 32 are not started simultaneously. The reason will be described later.
 時刻t1から時刻t3までの間においては、比較的小さい電圧V10がセラミックヒータ32に印加される(線G20参照)。時刻t3以降は、電圧V10よりも大きな電圧V20がセラミックヒータ32に印加される。このように印加電圧を階段状に増加させるのは、急激な温度上昇に伴うセラミックヒータ32の破損を防止するためである。尚、本実施形態においては、セラミックヒータ22に印加される電圧の値(V10,V20)と、セラミックヒータ32に印加される電圧の値(V10,V20)とが互いに等しくなっており、電圧を印加又は増加させるタイミングのみが互いに異なっている。しかしながら、それぞれのセラミックヒータに印加される電圧の値は、互いに異なっていてもよい。 In the period from time t1 to time t3, a relatively small voltage V 10 is applied to the ceramic heater 32 (see line G20). After time t3, a large voltage V 20 is applied to the ceramic heater 32 than the voltage V 10. The reason why the applied voltage is increased stepwise is to prevent the ceramic heater 32 from being damaged due to a rapid temperature rise. In the present embodiment, the value of the voltage applied to the ceramic heater 22 (V 10, V 20) , the value of the voltage applied to the ceramic heater 32 (V 10, V 20) and in the equal to each other Only the timing for applying or increasing the voltage is different from each other. However, the value of the voltage applied to each ceramic heater may be different from each other.
 内燃機関100が始動された直後においては、排気管110のうち触媒コンバータ120よりも下流側の部分(下流配管112)の内壁面には、水滴が付着していることある。従って、下流配管112に備えられたセラミックヒータ32にも水滴が付着している可能性がある。このように水滴が付着している状態においてセラミックヒータ32の温度を大きく上昇させると、セラミックヒータ32において大きな温度ムラ(場所による温度差)が生じてしまい、局所的な熱膨張によってセラミックヒータ32が割れてしまう恐れがある。 Immediately after the internal combustion engine 100 is started, water droplets may adhere to the inner wall surface of the exhaust pipe 110 on the downstream side of the catalytic converter 120 (downstream piping 112). Accordingly, there is a possibility that water droplets are also attached to the ceramic heater 32 provided in the downstream pipe 112. If the temperature of the ceramic heater 32 is greatly increased in a state where water droplets are attached in this way, a large temperature unevenness (temperature difference depending on the location) occurs in the ceramic heater 32, and the ceramic heater 32 is caused to local thermal expansion. There is a risk of breaking.
 そこで、本実施形態においては、セラミックヒータ32に電圧V10が印加されている時間(時刻t1から時刻t3までの時間)が、セラミックヒータ22に電圧V20が印加されている時間(時刻t0から時刻t2までの時間)よりも長くなっている。比較的小さい電圧V10を長時間印加し、セラミックヒータ32を緩やかに温度上昇させながら水滴を蒸発させることで、上記のようにセラミックヒータ32が割れてしまうことを防止している。尚、セラミックヒータ32に電圧V20が印加され始めるタイミング(本実施形態では時刻t3)は、内燃機関100が始動された時刻t0から一定の時間(固定された長さの時間)が経過した時点としてもよいのであるが、内燃機関100を冷却する冷却水の温度が上昇して所定温度を超えたことが水温センサ70によって確認された時点としてもよい。 Therefore, in this embodiment, the time during which the voltage V 10 is applied to the ceramic heater 32 (time from time t1 to time t3) is the time during which the voltage V 20 is applied to the ceramic heater 22 (from time t0). (Time until time t2). Applying a relatively small voltage V 10 long, Evaporation of the water droplets with gentle rise in temperature of the ceramic heater 32, so as to prevent the ceramic heater 32 is cracked as described above. The timing at which the voltage V 20 starts to be applied to the ceramic heater 32 (time t3 in the present embodiment) is a point in time when a certain time (fixed length of time) has elapsed from the time t0 when the internal combustion engine 100 was started. However, it may be the time when the water temperature sensor 70 confirms that the temperature of the cooling water for cooling the internal combustion engine 100 has risen and exceeded a predetermined temperature.
 時刻t0においてセラミックヒータ22に電圧V10が印加され始めると、セラミックヒータ22には第1電流が流れ始める(線G30参照)。このとき、印加される電圧V10は一定なのであるが、第1電流は当初から一定とはならない。電圧V10が印加され始めた時刻t0において、セラミックヒータ22には大きな電流(過電流)が流れてしまう。その後は、セラミックヒータ22を流れる第1電流は次第に減少して行き、略一定の電流に近づいていく。電圧V10が印加された際にセラミックヒータ22に流れる過電流の最大値(時刻t0における第1電流)を、以下では最大電流I10と表記する。 When the voltage V 10 starts to be applied to the ceramic heater 22 at time t0, the first current starts to flow through the ceramic heater 22 (see line G30). At this time, the voltage V 10 to be applied is constant for the first current is not constant from the beginning. At time t0 the voltage V 10 begins to be applied, resulting in a large current (overcurrent) flows through the ceramic heater 22. Thereafter, the first current flowing through the ceramic heater 22 gradually decreases and approaches a substantially constant current. The maximum value of the overcurrent flowing when the voltage V 10 is applied to the ceramic heater 22 (first current at time t0), hereinafter referred to as maximum current I 10 is.
 セラミックヒータ22に電圧V20が印加され始めた時点(時刻t2)においても、上記のような過電流が再び生じる。電圧V20が印加され始めた時刻t2において、セラミックヒータ22には再び過電流が流れてしまう(線G30参照)。その後は、セラミックヒータ22を流れる第1電流は次第に減少して行き、略一定の電流に近づいていく。電圧V20が印加された際にセラミックヒータ22に流れる過電流の最大値(時刻t2における第1電流)を、以下では最大電流I20と表記する。 Even when the voltage V 20 starts to be applied to the ceramic heater 22 (time t2), the overcurrent as described above occurs again. At time t2 the voltage V 20 begins to be applied, resulting in overcurrent flows again to the ceramic heater 22 (see line G30). Thereafter, the first current flowing through the ceramic heater 22 gradually decreases and approaches a substantially constant current. The maximum value of the overcurrent flowing when the voltage V 20 is applied to the ceramic heater 22 (first current at time t2), in the following referred to as maximum current I 20.
 セラミックヒータ22の場合と同様に、セラミックヒータ32においても上記のような過電流が流れる。時刻t1においてセラミックヒータ32に電圧V10が印加され始めると、セラミックヒータ32には過電流が流れてしまう(線G40参照)。その後は、セラミックヒータ32を流れる第2電流は次第に減少して行き、略一定の電流に近づいていく。 Similar to the case of the ceramic heater 22, the overcurrent as described above flows also in the ceramic heater 32. When the voltage V 10 starts to be applied to the ceramic heater 32 at time t1, an overcurrent flows through the ceramic heater 32 (see line G40). Thereafter, the second current flowing through the ceramic heater 32 gradually decreases and approaches a substantially constant current.
 セラミックヒータ32に電圧V20が印加され始めた時点(時刻t3)においても、上記のような過電流が再び生じる。線G40に示されるように、電圧V20が印加され始めた時刻t3において、セラミックヒータ32には再び過電流が流れてしまう。その後は、セラミックヒータ32を流れる第2電流は次第に減少して行き、略一定の電流に近づいていく。 Even when the voltage V 20 starts to be applied to the ceramic heater 32 (time t3), the overcurrent as described above occurs again. As shown in line G40, at time t3 the voltage V 20 begins to be applied, resulting in overcurrent flows again to the ceramic heater 32. Thereafter, the second current flowing through the ceramic heater 32 gradually decreases and approaches a substantially constant current.
 尚、本実施形態では、セラミックヒータ22の電気抵抗値とセラミックヒータ32の電気抵抗値は互いに略等しくなっている。このため、電圧V10が印加された際にセラミックヒータ32に流れる過電流の最大値(時刻t1における第2電流)は、最大電流I10に略等しい。また、電圧V20が印加された際にセラミックヒータ32に流れる過電流の最大値(時刻t3における第2電流)は、最大電流I20に略等しい。 In the present embodiment, the electrical resistance value of the ceramic heater 22 and the electrical resistance value of the ceramic heater 32 are substantially equal to each other. Therefore, the maximum value of the overcurrent flowing when the voltage V 10 is applied to the ceramic heater 32 (second current at time t1) is substantially equal to the maximum current I 10. The maximum value of the overcurrent flowing when the voltage V 20 is applied to the ceramic heater 32 (second current at time t3) is substantially equal to the maximum current I 20.
 以上のように、セラミックヒータ22には、電圧を印加又は上昇させたそれぞれの時点(時刻t0,t2)において過電流が流れる。同様に、セラミックヒータ32には、電圧を印加又は上昇させたそれぞれの時点(時刻t1,t3)において過電流が流れる。このため、線G50に示されるように、電力供給部42から出力される合計電流も、過電流が流れるそれぞれの時刻t0,t1,t2,t3において大きくなっている。 As described above, overcurrent flows through the ceramic heater 22 at each time point (time t0, t2) when the voltage is applied or increased. Similarly, overcurrent flows through the ceramic heater 32 at each time point (time t1, t3) when the voltage is applied or increased. For this reason, as indicated by a line G50, the total current output from the power supply unit 42 also increases at each of the times t0, t1, t2, and t3 when the overcurrent flows.
 従来は、一対のヒータに通電する場合に、このような遅延時間を意図的に設定することは行われていなかった。ここで、仮に遅延時間td1が0となってしまった場合、換言すればセラミックヒータ22への電力供給とセラミックヒータ32への電力供給とが時刻t0において同時に開始されてしまった場合に生じる現象について、図8を参照しながら説明する。図8の(A)は、横軸に時間を取り、縦軸にセラミックヒータ22及びセラミックヒータ32それぞれに印加される電圧を取った図である。図8の(B)は、横軸に時間を取り、縦軸にセラミックヒータ22及びセラミックヒータ32それぞれに流れる電流を取った図である。図8の(C)は、横軸に時間を取り、縦軸に電力供給部42に流れる電流を取った図である。 Conventionally, such a delay time has not been intentionally set when energizing a pair of heaters. Here, if the delay time td1 becomes 0, in other words, a phenomenon that occurs when power supply to the ceramic heater 22 and power supply to the ceramic heater 32 are started simultaneously at time t0. This will be described with reference to FIG. FIG. 8A is a diagram in which time is taken on the horizontal axis and voltages applied to the ceramic heater 22 and the ceramic heater 32 are taken on the vertical axis. FIG. 8B is a diagram in which time is taken on the horizontal axis and currents flowing through the ceramic heater 22 and the ceramic heater 32 are taken on the vertical axis. FIG. 8C is a diagram in which time is taken on the horizontal axis and current flowing in the power supply unit 42 is taken on the vertical axis.
 図8の(A)に示された線G12は、セラミックヒータ22に印加される電圧の時間変化を表しており、図2の線G10と同一の遷移をたどる線である。同じく図8の(A)に示された線G22は、セラミックヒータ32に印加される電圧の時間変化を表しており、図2の線G20を遅延時間td1の分だけ左にシフトさせたグラフとなっている。図8において、セラミックヒータ32に印加される電圧が電圧V10から電圧V20に変化する時刻t31は、図2の時刻t3よりも遅延時間td1だけ早い時刻となっている。 A line G12 shown in FIG. 8A represents a time change of the voltage applied to the ceramic heater 22, and is a line that follows the same transition as the line G10 of FIG. Similarly, a line G22 shown in FIG. 8A represents a time change of the voltage applied to the ceramic heater 32, and is a graph obtained by shifting the line G20 of FIG. 2 to the left by the delay time td1. It has become. 8, time t31 the voltage applied to the ceramic heater 32 is changed from the voltage V 10 to the voltage V 20 has a time earlier by a delay time td1 than the time t3 of FIG.
 図8の(B)に示された線G32は、セラミックヒータ22に流れる第1電流の時間変化を表しており、図2の線G30と同一の遷移をたどる線である。同じく図8の(B)に示された線G42は、セラミックヒータ32に流れる第2電流の時間変化を表しており、図2の線G40を遅延時間td1の分だけ左にシフトさせたグラフとなっている。図8の(C)に示された線G52は、セラミックヒータ22に流れる第1電流と、セラミックヒータ32に流れる第2電流とを合計した合計電流の時間変化を表している。 8B represents a time change of the first current flowing through the ceramic heater 22, and follows the same transition as the line G30 in FIG. Similarly, a line G42 shown in FIG. 8B represents a time change of the second current flowing through the ceramic heater 32, and is a graph obtained by shifting the line G40 of FIG. 2 to the left by the delay time td1. It has become. A line G <b> 52 shown in FIG. 8C represents a time change of the total current obtained by adding the first current flowing through the ceramic heater 22 and the second current flowing through the ceramic heater 32.
 従来の制御においては、各セラミックヒータ22、32に対する電力の供給開始タイミングについての特段の考慮がなされていなかった。このため、図8に示されるように、セラミックヒータ22への電力供給とセラミックヒータ32への電力供給とが、時刻t0において同時に開始されることがあった。この場合、時刻t0において電力供給部42から出力される合計電流の大きさは、セラミックヒータ22に流れる過電流の最大値(最大電流I10)と、セラミックヒータ32に流れる過電流の最大値(最大電流I10)とを重ね合わせた大きさ、すなわち最大電流I10の2倍の大きさの電流が流れてしまう。その結果、電力供給部42の許容電流値ITHを超えた電流が時刻t0において出力されてしまい(線G52参照)、電力供給部42が故障してしまう可能性がある。尚、許容電流値ITHとは、電力供給部42が故障することなく外部に出力し得る電流の最大値であり、電力供給部42を構成する各種電子部品及び保護回路の仕様によって定まる固有の値である。また、許容電流値ITHは、電力供給部に支障をきたさない範囲の上限の電流値である。 In conventional control, no special consideration has been given to the supply start timing of power to the ceramic heaters 22 and 32. For this reason, as shown in FIG. 8, the power supply to the ceramic heater 22 and the power supply to the ceramic heater 32 may be started simultaneously at time t0. In this case, the magnitude of the total current output from the power supply unit 42 at time t0 is the maximum value of the overcurrent flowing through the ceramic heater 22 (maximum current I 10 ) and the maximum value of the overcurrent flowing through the ceramic heater 32 ( The maximum current I 10 ) is superposed, that is, a current twice as large as the maximum current I 10 flows. As a result, a current exceeding the allowable current value I TH of the power supply unit 42 is output at time t0 (see line G52), and the power supply unit 42 may break down. The allowable current value I TH is the maximum value of the current that can be output to the outside without failure of the power supply unit 42, and is a specific value determined by the specifications of various electronic components and protection circuits that constitute the power supply unit 42. Value. The allowable current value I TH is an upper limit current value in a range that does not interfere with the power supply unit.
 電力供給部42の故障を回避する観点から、従来は許容電流値ITHを十分に大きく設定しておく必要があった。具体的には、セラミックヒータ22及びセラミックヒータ32の両方に対して同時に最大電流I10を供給し得る程度に、許容電流値ITHが大きな値となるよう、電力供給部42の構成部品(例えば保護回路)を選定する必要があった。しかしながら、このような対策は電力供給部42の部品コストが大きなものとなってしまうために好ましいものではなかった。 From the viewpoint of avoiding the failure of the power supply unit 42, conventionally, it has been necessary to set the allowable current value I TH sufficiently large. Specifically, the components of the power supply unit 42 (for example, such that the allowable current value I TH is large enough to supply the maximum current I 10 simultaneously to both the ceramic heater 22 and the ceramic heater 32). It was necessary to select a protection circuit. However, such a measure is not preferable because the parts cost of the power supply unit 42 becomes large.
 そこで、本実施形態では、許容電流値ITHを大きくするのではなく、セラミックヒータ22及びセラミックヒータ32のそれぞれに対する電力供給のタイミングを工夫することにより、電力供給部42が故障してしまうことを防止している。具体的には、図2に基づいて説明したように、セラミックヒータ22への電力の供給を開始した時刻t0(第1時刻)から遅延時間td1が経過した時刻t1(第2時刻)に、セラミックヒータ32への電力の供給を開始するよう、制御部43による電力供給部42の制御が行われる。このような電力供給のタイミングの工夫は、以下で説明するように渦電流が瞬間的なものであり、セラミックヒータ22及びセラミックヒータ32を流れる電流が、電流を流し始めた時点(時刻t0、t2)をピークにして次第に減少していくものであるところに着目してなされたものである。 Therefore, in the present embodiment, the power supply unit 42 is broken by devising the timing of power supply to each of the ceramic heater 22 and the ceramic heater 32 instead of increasing the allowable current value I TH. It is preventing. Specifically, as described with reference to FIG. 2, at time t <b> 1 (second time) when delay time td <b> 1 has elapsed from time t <b> 0 (first time) when supply of power to the ceramic heater 22 is started. Control of the power supply unit 42 by the control unit 43 is performed so as to start supply of power to the heater 32. Such a device for power supply timing is an instantaneous eddy current as described below, and the time when the current flowing through the ceramic heater 22 and the ceramic heater 32 starts to flow (time t0, t2). ), And it was made by paying attention to the point where it gradually decreases.
 図2の(B)に示されるように、時刻t0、すなわちセラミックヒータ22に対する電力供給の開始時には、セラミックヒータ22に流れる第1電流は最大電流I10となり、この時点をピークにしてその後は次第に減少して行く(線G30参照)。セラミックヒータ32に対する電力供給部42からの電力供給は、時刻t0から遅延時間td1が経過した後(時刻t1)、すなわち、電力供給部42から出力される第1電流が減少して最大電流I10よりも小さくなった後に開始される。 As shown in FIG. 2B, at time t0, that is, at the start of power supply to the ceramic heater 22, the first current flowing through the ceramic heater 22 becomes the maximum current I 10 , and this time is peaked and thereafter gradually. Decrease (see line G30). The power supply from the power supply unit 42 to the ceramic heater 32 is performed after the delay time td1 has elapsed from time t0 (time t1), that is, the first current output from the power supply unit 42 decreases and the maximum current I 10 is reduced. It starts after becoming smaller.
 このため、電力供給の開始時において、セラミックヒータ22に流れる第1電流と、セラミックヒータ32に流れる第2電流とが、同時にそれぞれの最大値(最大電流I10)となってしまうことが無い。その結果、電力供給部42から出力される合計電流の値は、時刻t0及び時刻t1のいずれにおいても最大電流I10の2倍よりも小さな値となり、許容電流値ITHを超えてしまうことが無い(線G50参照)。 For this reason, at the start of power supply, the first current flowing through the ceramic heater 22 and the second current flowing through the ceramic heater 32 do not simultaneously reach their maximum values (maximum current I 10 ). As a result, the value of the total current output from the power supply unit 42 is smaller than twice the maximum current I 10 at both time t0 and time t1, and may exceed the allowable current value I TH. None (see line G50).
 このように、制御システム10では、電力供給部42から出力される電流が、セラミックヒータ22に流れる過電流の最大値(最大電流I10)と、セラミックヒータ32に流れる過電流の最大値(最大電流I10)とを重ね合わせた大きさよりも常に小さくなっている。このため、電力供給部42の許容電流値ITHを過剰に大きくすることなく、電力供給部42が過電流によって故障してしまうことが防止されている。 As described above, in the control system 10, the current output from the power supply unit 42 has the maximum overcurrent (maximum current I 10 ) flowing through the ceramic heater 22 and the maximum overcurrent (maximum current I 10 ) flowing through the ceramic heater 32. It is always smaller than the superposition of the current I 10 ). For this reason, it is possible to prevent the power supply unit 42 from being damaged by an overcurrent without excessively increasing the allowable current value I TH of the power supply unit 42.
 ところで、内燃機関100の始動直後から排出ガスが排出されることに鑑みれば、セラミックヒータ22及びセラミックヒータ32に対しては可能な限り早いタイミングで電力の供給が開始され、空燃比を最適化する制御が早期に開始されることが望ましい。しかしながら、遅延時間td1が短すぎる場合には、セラミックヒータ22に流れる電流が最大電流I10から僅かしか低下していない状態で、セラミックヒータ32に電流が供給され始めてしまう。その結果、電力供給部42から出力される合計電流が許容電流値ITHを超えてしまう可能性がある。 By the way, considering that exhaust gas is discharged immediately after the internal combustion engine 100 is started, power supply to the ceramic heater 22 and the ceramic heater 32 is started at the earliest possible timing to optimize the air-fuel ratio. It is desirable that control be started early. However, when the delay time td1 is too short, in a state where the current flowing through the ceramic heater 22 is not decreased only slightly from the maximum current I 10, current may begin to be supplied to the ceramic heater 32. As a result, the total current output from the power supply unit 42 may exceed the allowable current value I TH .
 そこで、本実施形態における遅延時間td1は、セラミックヒータ32に電流が供給され始めても合計電流が許容電流値ITHを超えてしまうことの無い範囲で、可能な限り短い時間として設定されている。 Therefore, the delay time td1 in the present embodiment is set as short as possible within a range in which the total current does not exceed the allowable current value I TH even when current is supplied to the ceramic heater 32.
 つまり、セラミックヒータ32に第2電流が供給され始めた時点(時刻t1)における合計電流は、遅延時間td1が経過する間に低下した第1電流(図2に示されるように、その大きさを電流I07とする)と、第2電流(最大電流I10)との合計となるのであるが、その大きさが許容電流値ITHを僅かに下回るよう、遅延時間td1の長さが設定されている。換言すれば、許容電流値ITHから第2電流の最大値(最大電流I10)を差し引いた電流値を上限電流と定義したときに、第1電流が最大電流I10から低下して上限電流を僅かに下回るまでに要する時間となるよう、遅延時間td1の長さが設定されている。 That is, the total current at the time when the second current starts to be supplied to the ceramic heater 32 (time t1) is equal to the first current that has decreased during the delay time td1 (as shown in FIG. 2). Current I 07 ) and the second current (maximum current I 10 ), the length of the delay time td 1 is set so that the magnitude is slightly less than the allowable current value I TH. ing. In other words, when the current value obtained by subtracting the maximum value (maximum current I 10 ) of the second current from the allowable current value I TH is defined as the upper limit current, the first current decreases from the maximum current I 10 and the upper limit current The length of the delay time td1 is set so as to be a time required for the time to be slightly less than.
 時刻t2における合計電流は、当該時刻における第1電流(最大電流I20)と、第2電流(図2に示されるように、その大きさを電流I08とする)との合計となる。また、時刻t3における合計電流は、当該時刻における第1電流(図2に示されるように、その大きさを電流I09とする)と、第2電流(最大電流I20)との合計となる。本実施形態においては、時刻t1においてのみならず、時刻t2及び時刻t3においても合計電流が許容電流値ITHを超えることの無い範囲で、遅延時間td1が可能な限り短くなるように設定されている。このため、電力供給部42が故障することを確実に防止しながらも、セラミックヒータ22及びセラミックヒータ32のそれぞれの温度を早期に上昇させて、空燃比を最適化する制御を早期に開始することが可能となっている。 The total current at time t2 is the sum of the first current (maximum current I 20 ) at that time and the second current (the magnitude thereof is current I 08 as shown in FIG. 2). Further, the total current at time t3 is the sum of the first current at that time (the magnitude is current I 09 as shown in FIG. 2) and the second current (maximum current I 20 ). . In the present embodiment, the delay time td1 is set to be as short as possible within the range where the total current does not exceed the allowable current value I TH not only at time t1 but also at time t2 and time t3. Yes. Therefore, while reliably preventing the power supply unit 42 from failing, the temperature of each of the ceramic heater 22 and the ceramic heater 32 is increased at an early stage, and control for optimizing the air-fuel ratio is started at an early stage. Is possible.
 セラミックヒータ22及びセラミックヒータ32は、電流が通過して発熱する部分が金属(タングステン)により構成されている。このため、その電気抵抗は常に一定ではなく、温度が低いほど電気抵抗は小さくなり、温度が高いほど電気抵抗は大きくなる。セラミックヒータ22に流れる第1電流の大きさ、及びセラミックヒータ32に流れる第2電流の大きさも、それぞれセラミックヒータ22の温度及びセラミックヒータ32の温度によって変化する。 The ceramic heater 22 and the ceramic heater 32 are made of metal (tungsten) at the portion where current passes and generates heat. For this reason, the electrical resistance is not always constant, the electrical resistance decreases as the temperature decreases, and the electrical resistance increases as the temperature increases. The magnitude of the first current flowing through the ceramic heater 22 and the magnitude of the second current flowing through the ceramic heater 32 also vary depending on the temperature of the ceramic heater 22 and the temperature of the ceramic heater 32, respectively.
 図3に示された線G30は、図2に示された線G30と同一の線であって、セラミックヒータ22に流れる第1電流の時間変化を表している。また、図3に示された線G31は、セラミックヒータ22を流れる第1電流の時間変化であって、線G30の場合よりもセラミックヒータ22が低温となっているときにおける、第1電流の時間変化を表している。セラミックヒータ22に印加される電圧は、図2の線G12で表される電圧と同一である。 The line G30 shown in FIG. 3 is the same line as the line G30 shown in FIG. 2, and represents the time change of the first current flowing through the ceramic heater 22. Also, the line G31 shown in FIG. 3 is the time change of the first current flowing through the ceramic heater 22, and the time of the first current when the ceramic heater 22 is at a lower temperature than in the case of the line G30. It represents a change. The voltage applied to the ceramic heater 22 is the same as the voltage represented by the line G12 in FIG.
 線G31に表されているように、セラミックヒータ22が低温となっているときには、電気抵抗が小さくなることに伴い、セラミックヒータ22を流れる第1電流が大きくなっている。具体的には、時刻t0における第1電流は、最大電流I10よりも大きな電流(最大電流I10a)となっている。また、時刻t2における第1電流は、最大電流I20よりも大きな電流(最大電流I20a)となっている。更に、時刻t1における第1電流は、電流I07よりも大きな電流(電流I07a)となっている。 As indicated by the line G31, when the ceramic heater 22 is at a low temperature, the first current flowing through the ceramic heater 22 increases as the electrical resistance decreases. Specifically, the first current at time t0 is larger than the maximum current I 10 (maximum current I 10 a). The first current at time t2 has a large current (maximum current I 20 a) than the maximum current I 20. Furthermore, the first current at the time t1 has a large current (current I 07 a) than the current I 07.
 従って、セラミックヒータ22が低温となっているときにおいて、図2の線G20の場合と同様に時刻t1において第2電流の供給が開始された場合には、合計電流は、電流I07よりも大きな電流I07aに第2電流の最大値(最大電流I10)を加えたものとなる。その結果、低温時においては合計電流が許容電流値ITHを超えてしまう可能性がある。 Therefore, when the supply of the second current is started at time t1 as in the case of the line G20 in FIG. 2 when the ceramic heater 22 is at a low temperature, the total current is larger than the current I 07. The maximum value of the second current (maximum current I 10 ) is added to the current I 07 a. As a result, the total current may exceed the allowable current value I TH at low temperatures.
 更に、セラミックヒータ22が低温となっているときには、セラミックヒータ32も低温となっており、セラミックヒータ32にも電流が流れやすくなっている可能性が高い。従って、合計電流が許容電流値ITHを超えてしまう可能性は更に高くなる。 Further, when the ceramic heater 22 is at a low temperature, the ceramic heater 32 is also at a low temperature, and there is a high possibility that a current easily flows through the ceramic heater 32. Therefore, the possibility that the total current exceeds the allowable current value I TH is further increased.
 そこで、本実施形態では、遅延時間(td1)の長さが常に固定されているのではなく、電流供給の開始時におけるセラミックヒータ22の温度に基づいて、遅延時間が適切な長さとなるように設定される。つまり、合計電流が許容電流値ITHを超えることの無い範囲で、遅延時間が可能な限り短くなるように、セラミックヒータ22の温度に基づいて遅延時間が設定される。 Therefore, in this embodiment, the length of the delay time (td1) is not always fixed, but the delay time is set to an appropriate length based on the temperature of the ceramic heater 22 at the start of current supply. Is set. That is, the delay time is set based on the temperature of the ceramic heater 22 so that the delay time is as short as possible within a range where the total current does not exceed the allowable current value I TH .
 低温時、すなわち外気温が低く、セラミックヒータ22及びセラミックヒータ32のいずれもの温度が(図2の場合よりも)低温となっているときにおいて、制御装置40により行われる制御を、図4を参照しながら説明する。図4の(A)は、横軸に時間を取り、縦軸にセラミックヒータ22及びセラミックヒータ32それぞれに印加される電圧を取った図である。図4の(B)は、横軸に時間を取り、縦軸にセラミックヒータ22及びセラミックヒータ32それぞれに流れる電流を取った図である。図4の(C)は、横軸に時間を取り、縦軸に電力供給部42に流れる電流を取った図である。 FIG. 4 shows the control performed by the control device 40 when the temperature is low, that is, when the outside air temperature is low and the temperature of both the ceramic heater 22 and the ceramic heater 32 is low (than the case of FIG. 2). While explaining. FIG. 4A is a diagram in which time is taken on the horizontal axis, and voltages applied to the ceramic heater 22 and the ceramic heater 32 are taken on the vertical axis. FIG. 4B is a diagram in which time is taken on the horizontal axis, and currents flowing through the ceramic heater 22 and the ceramic heater 32 are taken on the vertical axis. FIG. 4C is a diagram in which time is taken on the horizontal axis and current flowing through the power supply unit 42 is taken on the vertical axis.
 図4の(A)に示された線G11は、低温時においてセラミックヒータ22に印加される電圧の時間変化を表しており、図2の線G10と同一の遷移をたどる線である。同じく図4の(A)に示された線G21は、低温時においてセラミックヒータ32に印加される電圧の時間変化を表している。線G21の波形は、図2に示された線G20の波形と同一であるが、セラミックヒータ32に電圧が印加され始めるタイミングにおいて線G20と異なっている。 A line G11 shown in FIG. 4A represents a time change of the voltage applied to the ceramic heater 22 at a low temperature, and follows the same transition as the line G10 in FIG. Similarly, a line G21 shown in FIG. 4A represents a change over time in the voltage applied to the ceramic heater 32 at a low temperature. The waveform of the line G21 is the same as that of the line G20 shown in FIG. 2, but is different from the line G20 at the timing when the voltage starts to be applied to the ceramic heater 32.
 図4の(B)に示された線G31は、低温時においてセラミックヒータ22を流れる第1電流の時間変化を表しており、図3に示された線G31と同一の遷移をたどる線である。同じく図4の(B)に示された線G41は、低温時においてセラミックヒータ32を流れる第2電流の時間変化を表している。図4の(C)に示された線G50は、セラミックヒータ22を流れる第1電流と、セラミックヒータ32を流れる第2電流とを合計した合計電流の時間変化を表している。 A line G31 shown in FIG. 4B represents a time change of the first current flowing through the ceramic heater 22 at a low temperature, and follows the same transition as the line G31 shown in FIG. . Similarly, a line G41 shown in FIG. 4B represents a time change of the second current flowing through the ceramic heater 32 at a low temperature. A line G50 shown in FIG. 4C represents a time change of the total current obtained by adding the first current flowing through the ceramic heater 22 and the second current flowing through the ceramic heater 32.
 図3を参照しながら説明したように、低温時においてはセラミックヒータ22に電流(第1電流)が流れやすくなっている。このため、線G20の場合と同一の時刻t1においてセラミックヒータ32への電力供給が開始されると、その時点で合計電流が許容電流値ITHを超えてしまう可能性がある。また、その後の時刻t2においてセラミックヒータ22には再び大きな電流が流れるため、時刻t2でも合計電流が許容電流値ITHを超えてしまう可能性がある。 As described with reference to FIG. 3, current (first current) easily flows through the ceramic heater 22 at low temperatures. For this reason, if power supply to the ceramic heater 32 is started at the same time t1 as in the case of the line G20, the total current may exceed the allowable current value I TH at that time. Moreover, since in the subsequent time t2 large current flows again to the ceramic heater 22, the total current even time t2 may exceed the allowable current value I TH.
 そこで、線G41に表されているように、低温時には、時刻t2よりも後である時刻t10において、セラミックヒータ32への電力供給が開始される。このときに設定される遅延時間td2は、時刻t0から時刻t10までの時間であって、図2に示された遅延時間td1よりも長い時間となっている。 Therefore, as indicated by the line G41, at the time of low temperature, power supply to the ceramic heater 32 is started at time t10 after time t2. The delay time td2 set at this time is a time from time t0 to time t10, which is longer than the delay time td1 shown in FIG.
 セラミックヒータ22の電気抵抗、及びセラミックヒータ32の電気抵抗は、いずれも図2の場合よりも低くなっており、それぞれのセラミックヒータに電流が流れやすくなっている。しかしながら、低温時においては、遅延時間td1よりも長い遅延時間td2が設定されている。第1電流が十分に低下してから第2電流の供給が開始されるため、合計電流が許容電流値ITHを超えてしまうことが無い。 The electrical resistance of the ceramic heater 22 and the electrical resistance of the ceramic heater 32 are both lower than in the case of FIG. 2, and current easily flows through each ceramic heater. However, at a low temperature, a delay time td2 longer than the delay time td1 is set. Since the supply of the second current is started after the first current is sufficiently reduced, the total current does not exceed the allowable current value I TH .
 また、遅延時間td2は、セラミックヒータ32に電流が供給され始めても合計電流が許容電流値ITHを超えてしまうことの無い範囲で、可能な限り短い時間として設定されている。 Further, the delay time td2 is set as short as possible within a range in which the total current does not exceed the allowable current value I TH even when current is supplied to the ceramic heater 32.
 つまり、セラミックヒータ32に第2電流が供給され始めた時点(時刻t10)における合計電流は、遅延時間td2が経過する間に低下した第1電流(電流I09a)と、第2電流(最大電流I10a)との合計となるのであるが、その大きさが許容電流値ITHを僅かに下回るよう、遅延時間td2の長さが設定されている。換言すれば、許容電流値ITHから低温時における第2電流の最大値(最大電流I10a)を差し引いた電流値を上限電流と定義したときに、第1電流が最大電流I10aから低下して上限電流を僅かに下回るまでに要する時間となるよう、遅延時間td2の長さが設定されている。 That is, the total current at the time when the second current starts to be supplied to the ceramic heater 32 (time t10) is the first current (current I 09 a) that has decreased during the lapse of the delay time td2 and the second current (maximum). although become the sum of the current I 10 a), its magnitude as slightly below the allowable current value I TH, the length of the delay time td2 is set. In other words, when the current value obtained by subtracting the maximum value of the second current at the low temperature (maximum current I 10 a) from the allowable current value I TH is defined as the upper limit current, the first current is calculated from the maximum current I 10 a. The length of the delay time td2 is set so as to be the time required to decrease and slightly fall below the upper limit current.
 また、時刻t30における合計電流は、当該時刻における第1電流(図4に示されるように、その大きさを電流I08aとする)と、第2電流(最大電流I20a)との合計となる。本実施形態においては、時刻t10においてのみならず、時刻t30においても合計電流が許容電流値ITHを超えることの無い範囲で、低温時における遅延時間td2が可能な限り短くなるように設定されている。このため、電力供給部42が故障することを防止しながらも、セラミックヒータ22及びセラミックヒータ32のそれぞれの温度を早期に上昇させて、空燃比を最適化する制御を早期に開始することが可能となっている。 The total current at time t30 is the sum of the first current at that time (the magnitude is current I 08 a as shown in FIG. 4) and the second current (maximum current I 20 a). It becomes. In the present embodiment, not only at time t10 but also at time t30, the delay time td2 at low temperature is set to be as short as possible within a range where the total current does not exceed the allowable current value I TH. Yes. For this reason, it is possible to start the control for optimizing the air-fuel ratio at an early stage by increasing the temperatures of the ceramic heater 22 and the ceramic heater 32 at an early stage while preventing the power supply unit 42 from malfunctioning. It has become.
 このように、本実施形態に係る制御システム10では、セラミックヒータ22の温度に応じて遅延時間td1又は遅延時間td2が設定される。制御システム10の起動時に行われる処理の流れについて、図5を参照しながら説明する。 Thus, in the control system 10 according to the present embodiment, the delay time td1 or the delay time td2 is set according to the temperature of the ceramic heater 22. A flow of processing performed when the control system 10 is activated will be described with reference to FIG.
 内燃機関100が始動されると同時に制御システム10が起動され、制御装置40による制御が開始される。当該制御の最初のS01では、セラミックヒータ22の温度に基づき、遅延時間の長さが設定される。具体的には、セラミックヒータ22の温度が所定の閾値よりも高ければ、短い遅延時間td1が設定される。セラミックヒータ22の温度が閾値以下であれば、長い遅延時間td2が設定される。セラミックヒータ22の温度は、セラミックヒータ22に直接またはその近傍に取り付けられた温度センサによって取得される。 At the same time when the internal combustion engine 100 is started, the control system 10 is started and control by the control device 40 is started. In the first S01 of the control, the length of the delay time is set based on the temperature of the ceramic heater 22. Specifically, if the temperature of the ceramic heater 22 is higher than a predetermined threshold, a short delay time td1 is set. If the temperature of the ceramic heater 22 is equal to or lower than the threshold value, a long delay time td2 is set. The temperature of the ceramic heater 22 is acquired by a temperature sensor attached to the ceramic heater 22 directly or in the vicinity thereof.
 S02では、制御部43により、電力供給部42からセラミックヒータ22への電力の供給が開始される。尚、直前のS01の処理は瞬時に行われるため、S02が実行される時刻は、制御システム10が起動された時刻t0と同一の時刻となっている。 In S02, the control unit 43 starts supplying power from the power supply unit 42 to the ceramic heater 22. Since the process of S01 immediately before is performed instantaneously, the time when S02 is executed is the same as the time t0 when the control system 10 is activated.
 S03では、S01が行われた時刻t0から、設定された遅延時間(td1又はtd2)が経過したか否かが判定される。遅延時間が経過していなければS03の処理が繰り返される。遅延時間が経過していれば、S04に移行する。 In S03, it is determined whether or not the set delay time (td1 or td2) has elapsed since time t0 when S01 was performed. If the delay time has not elapsed, the process of S03 is repeated. If the delay time has elapsed, the process proceeds to S04.
 S04では、制御部43により、電力供給部42からセラミックヒータ32への電力の供給が開始される。以上のような処理が制御システム10の起動時において実行されるため、セラミックヒータ22の温度に応じた適切な遅延時間(td1又はtd2)が設定される。 In S04, the control unit 43 starts supplying power from the power supply unit 42 to the ceramic heater 32. Since the processing as described above is executed when the control system 10 is started, an appropriate delay time (td1 or td2) corresponding to the temperature of the ceramic heater 22 is set.
 本実施形態においては、上記のように、セラミックヒータ22の温度は、セラミックヒータ22に直接またはその近傍に取り付けられた温度センサによって取得される。しかしながら、他の方法でセラミックヒータ22の温度が取得または推定されることとしてもよい。例えば、セラミックヒータ22に印加された電圧と、それに伴って流れる電流とから電気抵抗が算出され、当該電気抵抗に基づいてセラミックヒータ22の温度が推定されることとしてもよい。 In the present embodiment, as described above, the temperature of the ceramic heater 22 is acquired by a temperature sensor attached to the ceramic heater 22 directly or in the vicinity thereof. However, the temperature of the ceramic heater 22 may be acquired or estimated by another method. For example, the electrical resistance may be calculated from the voltage applied to the ceramic heater 22 and the current flowing therewith, and the temperature of the ceramic heater 22 may be estimated based on the electrical resistance.
 算出された電気抵抗に基づいて温度が推定され、温度に基づいて遅延時間が設定される態様に替えて、算出された電気抵抗が所定の閾値よりも高いかどうかに基づいて、遅延時間td1又は遅延時間td2のいずれかが設定される態様としてもよい。具体的には、算出された電気抵抗が所定の閾値よりも高い場合には遅延時間td1が設定され、算出された電気抵抗が所定の閾値以下である場合には遅延時間td2が設定される態様としてもよい。 Instead of the mode in which the temperature is estimated based on the calculated electrical resistance and the delay time is set based on the temperature, the delay time td1 or the time based on whether the calculated electrical resistance is higher than a predetermined threshold value or One of the delay times td2 may be set. Specifically, when the calculated electric resistance is higher than a predetermined threshold, the delay time td1 is set, and when the calculated electric resistance is equal to or less than the predetermined threshold, the delay time td2 is set. It is good.
 また、セラミックヒータ22の温度が、第1センサ20の素子抵抗値に基づいて推定される態様としてもよい。第1センサ20の素子抵抗値とは、固体電解質21を通過する電流が受ける電気抵抗である。このような素子抵抗値は、酸素濃度が既知の排出ガスが排気管110を通過する際における、固体電解質21への印加電圧と通過電流との関係から算出することができる。 Further, the temperature of the ceramic heater 22 may be estimated based on the element resistance value of the first sensor 20. The element resistance value of the first sensor 20 is an electrical resistance that a current passing through the solid electrolyte 21 receives. Such an element resistance value can be calculated from the relationship between the applied voltage to the solid electrolyte 21 and the passing current when exhaust gas having a known oxygen concentration passes through the exhaust pipe 110.
 算出された素子抵抗値に基づいて温度が推定され、温度に基づいて遅延時間が設定される態様に替えて、算出された素子抵抗値が所定の閾値よりも高いかどうかに基づいて、遅延時間td1又は遅延時間td2のいずれかが設定される態様としてもよい。具体的には、算出された素子抵抗値が所定の閾値よりも高い場合には遅延時間td1が設定され、算出された素子抵抗値が所定の閾値以下である場合には遅延時間td2が設定される態様としてもよい。 Instead of the mode in which the temperature is estimated based on the calculated element resistance value and the delay time is set based on the temperature, the delay time is determined based on whether the calculated element resistance value is higher than a predetermined threshold value. Either td1 or delay time td2 may be set. Specifically, the delay time td1 is set when the calculated element resistance value is higher than a predetermined threshold value, and the delay time td2 is set when the calculated element resistance value is less than or equal to the predetermined threshold value. It is good also as an aspect which is.
 セラミックヒータ22の温度のみならず、セラミックヒータ32の温度をも取得または推定して、これらの温度に基づいて遅延時間が設定される態様としてもよい。例えば、セラミックヒータ22の温度及びセラミックヒータ32のいずれもが所定の閾値よりも低い場合には、遅延時間td2よりもさらに長い遅延時間が設定されることとしてもよい。また、セラミックヒータ22の温度及びセラミックヒータ32のいずれもが所定の閾値よりも高い場合には、遅延時間td1よりもさらに短い遅延時間が設定されることとしてもよい。このように、セラミックヒータ22の温度及びセラミックヒータ32の温度の両方に基づいて遅延時間が設定されれば、合計電流が許容電流値ITHを超えてしまうことをより確実に防止することができる。 It is possible to obtain or estimate not only the temperature of the ceramic heater 22 but also the temperature of the ceramic heater 32 and set the delay time based on these temperatures. For example, when both the temperature of the ceramic heater 22 and the ceramic heater 32 are lower than a predetermined threshold value, a delay time longer than the delay time td2 may be set. Further, when both the temperature of the ceramic heater 22 and the ceramic heater 32 are higher than a predetermined threshold value, a delay time shorter than the delay time td1 may be set. Thus, if the delay time is set based on both the temperature of the ceramic heater 22 and the temperature of the ceramic heater 32, it is possible to more reliably prevent the total current from exceeding the allowable current value ITH. .
 セラミックヒータ22の場合と同様に、セラミックヒータ32の温度は直接取得されてもよく、セラミックヒータ32の電気抵抗に基づいて推定されてもよい。また、第2センサ30の素子抵抗値に基づいて推定されてもよい。この場合、第2センサ30の素子抵抗値は、固体電解質31を通過する電流が受ける電気抵抗である。 As in the case of the ceramic heater 22, the temperature of the ceramic heater 32 may be directly acquired or may be estimated based on the electric resistance of the ceramic heater 32. Further, it may be estimated based on the element resistance value of the second sensor 30. In this case, the element resistance value of the second sensor 30 is an electrical resistance received by the current passing through the solid electrolyte 31.
 水温センサ70によって測定された冷却水の水温が所定の閾値よりも高いかどうかに基づいて、遅延時間td1又は遅延時間td2のいずれかが設定される態様としてもよい。具体的には、測定された冷却水の温度が所定の閾値よりも高い場合には遅延時間td1が設定され、測定された冷却水の温度が所定の閾値以下である場合には遅延時間td2が設定される態様としてもよい。 Either the delay time td1 or the delay time td2 may be set based on whether or not the coolant temperature measured by the water temperature sensor 70 is higher than a predetermined threshold. Specifically, the delay time td1 is set when the measured cooling water temperature is higher than a predetermined threshold, and the delay time td2 is set when the measured cooling water temperature is equal to or lower than the predetermined threshold. It is good also as a mode set up.
 気温センサ80によって測定された外気の温度が所定の閾値よりも高いかどうかに基づいて、遅延時間td1又は遅延時間td2のいずれかが設定される態様としてもよい。具体的には、測定された外気の温度が所定の閾値よりも高い場合には遅延時間td1が設定され、測定された外気の温度が所定の閾値以下である場合には遅延時間td2が設定される態様としてもよい。 Depending on whether the temperature of the outside air measured by the temperature sensor 80 is higher than a predetermined threshold, either the delay time td1 or the delay time td2 may be set. Specifically, the delay time td1 is set when the measured outside air temperature is higher than a predetermined threshold, and the delay time td2 is set when the measured outside air temperature is equal to or lower than the predetermined threshold. It is good also as an aspect which is.
 尚、本実施形態では、セラミックヒータ22の温度が所定の閾値よりも高いか否かに基づいて2つの遅延時間(td1又はtd2)のいずれかが設定される態様としたが、3つ以上の値(候補)の中から遅延時間が設定される態様としてもよい。図6に示されるように、セラミックヒータ22の温度(横軸)と、設定されるべき遅延時間(縦軸)との関係を制御装置40に記憶させておき、当該関係に基づいて、セラミックヒータ22の温度に対応した遅延時間が設定される態様としてもよい。図6に示された例では、セラミックヒータ22の温度が高いほど、短い遅延時間が設定される。セラミックヒータ22の温度と、設定されるべき遅延時間との関係は、予め行われた実験やシミュレーションによって定められており、制御装置40により記憶されている。 In the present embodiment, either one of the two delay times (td1 or td2) is set based on whether or not the temperature of the ceramic heater 22 is higher than a predetermined threshold value. The delay time may be set from the values (candidates). As shown in FIG. 6, the relationship between the temperature (horizontal axis) of the ceramic heater 22 and the delay time (vertical axis) to be set is stored in the control device 40, and based on the relationship, the ceramic heater The delay time corresponding to the temperature of 22 may be set. In the example shown in FIG. 6, a shorter delay time is set as the temperature of the ceramic heater 22 is higher. The relationship between the temperature of the ceramic heater 22 and the delay time to be set is determined by experiments and simulations performed in advance and is stored by the control device 40.
 また、図7に示されるように、水温センサ70により測定された冷却水の水温(横軸)と、設定されるべき遅延時間(縦軸)との関係を制御装置40に記憶させておき、当該関係に基づいて、冷却水の水温に対応した遅延時間が設定される態様としてもよい。図7に示された例では、冷却水の水温が高いほど短い遅延時間が設定される。 Further, as shown in FIG. 7, the relationship between the coolant temperature (horizontal axis) measured by the water temperature sensor 70 and the delay time (vertical axis) to be set is stored in the control device 40. Based on this relationship, a delay time corresponding to the coolant temperature may be set. In the example shown in FIG. 7, a shorter delay time is set as the coolant temperature is higher.
 これと同様に、気温センサ80により測定された外気の温度と、設定されるべき遅延時間との関係を制御装置40に記憶させておき、当該関係に基づいて、外気の温度に対応した遅延時間が設定される態様としてもよい。この場合にも、外気の温度が高いほど短い遅延時間が設定される。 Similarly, the relationship between the temperature of the outside air measured by the temperature sensor 80 and the delay time to be set is stored in the control device 40, and the delay time corresponding to the temperature of the outside air is based on the relationship. It is good also as an aspect by which is set. Also in this case, a shorter delay time is set as the outside air temperature is higher.
 以上、具体例を参照しつつ本開示の実施の形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。例えば、前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示されたものに限定されるわけではなく適宜変更することができる。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本開示の特徴を含む限り本開示の範囲に包含される。

 
The embodiments of the present disclosure have been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. That is, those specific examples modified by appropriate design by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. For example, the elements included in each of the specific examples described above and their arrangement, materials, conditions, shapes, sizes, and the like are not limited to those illustrated, but can be changed as appropriate. Moreover, each element with which each embodiment mentioned above is provided can be combined as long as technically possible, and the combination of these is also included in the scope of the present disclosure as long as it includes the features of the present disclosure.

Claims (7)

  1.  電力の供給を受けて発熱する第1ヒータ(22)を有し内燃機関(100)に繋がれた排気通路(110)の第1位置(111a)を通過する排出ガスの状態を検知する第1センサ(20)から出力される検知信号を受信する第1受信部(411)と、
     電力の供給を受けて発熱する第2ヒータ(32)を有し前記排気通路において前記第1位置とは異なる第2位置(112a)を通過する前記排出ガスの状態を検知する第2センサ(30)から出力される検知信号を受信する第2受信部(412)と、
     前記第1ヒータ及び前記第2ヒータに電力を供給する電力供給部(42)と、
     前記第1ヒータへの電力の供給を開始した第1時刻から遅延時間が経過した第2時刻に、前記第2ヒータへの電力の供給を開始するよう、前記電力供給部の制御を行う制御部(43)と、を備えた制御装置。
    A first detector for detecting a state of exhaust gas passing through a first position (111a) of an exhaust passage (110) connected to the internal combustion engine (100) having a first heater (22) that generates heat upon receiving electric power. A first receiver (411) for receiving a detection signal output from the sensor (20);
    A second sensor (30) that has a second heater (32) that generates heat upon receiving electric power and detects the state of the exhaust gas that passes through a second position (112a) different from the first position in the exhaust passage. A second receiving unit (412) for receiving a detection signal output from
    A power supply unit (42) for supplying power to the first heater and the second heater;
    A control unit that controls the power supply unit to start supplying power to the second heater at a second time when a delay time has elapsed from the first time at which supply of power to the first heater is started. (43).
  2.  前記遅延時間は、前記第2時刻において前記第1ヒータに流れる電流値と前記第2ヒータに流れる電流値との合算値が、前記電力供給部に支障をきたさない範囲の上限の電流値である上限値を超えないように定められる、請求項1に記載の制御装置。 The delay time is an upper limit current value within a range in which the sum of the current value flowing through the first heater and the current value flowing through the second heater at the second time does not interfere with the power supply unit. The control device according to claim 1, wherein the control device is determined not to exceed an upper limit value.
  3.  前記遅延時間は、前記第1ヒータの温度及び前記第2ヒータの温度のうち少なくともいずれか一方に基づいて設定される、請求項2に記載の制御装置。 The control device according to claim 2, wherein the delay time is set based on at least one of a temperature of the first heater and a temperature of the second heater.
  4.  前記遅延時間は、前記第1ヒータの電気抵抗値及び前記第2ヒータの電気抵抗値のうち少なくともいずれか一方に基づいて定められる、請求項2に記載の制御装置。 The control device according to claim 2, wherein the delay time is determined based on at least one of an electric resistance value of the first heater and an electric resistance value of the second heater.
  5.  前記遅延時間は、前記第1センサの素子抵抗値及び前記第2センサの素子抵抗値のうち少なくともいずれか一方に基づいて定められる、請求項2に記載の制御装置。 The control device according to claim 2, wherein the delay time is determined based on at least one of an element resistance value of the first sensor and an element resistance value of the second sensor.
  6.  前記遅延時間は、前記内燃機関を冷却する冷却水の温度に基づいて定められる、請求項2に記載の制御装置。 The control device according to claim 2, wherein the delay time is determined based on a temperature of cooling water for cooling the internal combustion engine.
  7.  前記遅延時間は、外気の温度に基づいて定められる、請求項2に記載の制御装置。

     
    The control device according to claim 2, wherein the delay time is determined based on a temperature of outside air.

PCT/JP2015/002788 2014-06-20 2015-06-02 Control device WO2015194108A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014126839A JP2016006384A (en) 2014-06-20 2014-06-20 Control device
JP2014-126839 2014-06-20

Publications (1)

Publication Number Publication Date
WO2015194108A1 true WO2015194108A1 (en) 2015-12-23

Family

ID=54935120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002788 WO2015194108A1 (en) 2014-06-20 2015-06-02 Control device

Country Status (2)

Country Link
JP (1) JP2016006384A (en)
WO (1) WO2015194108A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809908B2 (en) 2016-01-15 2021-01-06 日本電産株式会社 A waveguide device and an antenna device including the waveguide device
KR102572461B1 (en) * 2021-12-15 2023-08-30 주식회사 현대케피코 Method for controlling plural heater for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882149A (en) * 1981-11-11 1983-05-17 Nissan Motor Co Ltd Control device for heater incorporating oxygen concentration sensor
JPH0815215A (en) * 1994-06-28 1996-01-19 Nippondenso Co Ltd Oxygen content determining device
JPH1010083A (en) * 1996-06-26 1998-01-16 Toyota Motor Corp Heater energizing control device for air-fuel ratio sensor
JP2006250945A (en) * 2006-04-17 2006-09-21 Honda Motor Co Ltd Temperature control of exhaust gas sensor
JP2012082835A (en) * 2011-11-28 2012-04-26 Nissan Motor Co Ltd Internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882149A (en) * 1981-11-11 1983-05-17 Nissan Motor Co Ltd Control device for heater incorporating oxygen concentration sensor
JPH0815215A (en) * 1994-06-28 1996-01-19 Nippondenso Co Ltd Oxygen content determining device
JPH1010083A (en) * 1996-06-26 1998-01-16 Toyota Motor Corp Heater energizing control device for air-fuel ratio sensor
JP2006250945A (en) * 2006-04-17 2006-09-21 Honda Motor Co Ltd Temperature control of exhaust gas sensor
JP2012082835A (en) * 2011-11-28 2012-04-26 Nissan Motor Co Ltd Internal combustion engine

Also Published As

Publication number Publication date
JP2016006384A (en) 2016-01-14

Similar Documents

Publication Publication Date Title
EP2343526B1 (en) Vehicle device controller and temperature sensor anomaly detection method therefor
US7467628B2 (en) Oxygen sensor heater control methods and systems
JP5907345B2 (en) Gas sensor control device and control device for internal combustion engine
CN103261604B (en) Device for detecting malfunction in electrically heated catalyst
EP2570802A1 (en) Internal combustion engine controller
JP2011231708A (en) Apparatus for diagnosis of catalyst temperature conditions
JP2006336626A (en) Failure detection system of cooling device of internal combustion engine
WO2015194108A1 (en) Control device
JP6965578B2 (en) Gas sensor controller
JP6119434B2 (en) Gas sensor control device
KR102028420B1 (en) Method and device for operating an exhaust gas sensor
JP2007040130A (en) Exhaust emission control device of internal combustion engine
JP2006105136A (en) Control method and device for electrical heating of lambda sensor
US20200088665A1 (en) Gas sensor diagnosis device
JP4654946B2 (en) Fuel supply device for internal combustion engine
US20210363905A1 (en) Methods and systems for detecting an impedance of a catalytic converter
JP2013189865A (en) Control device for exhaust gas sensor
JP2019074360A (en) Gas sensor control device
JP4877291B2 (en) Heater deterioration detector
JP2007225560A (en) Heater control apparatus of gas sensor
JP2006207424A (en) Heater control device
EP3094839B1 (en) Filter abnormality determination system
JP2019094829A (en) Deterioration determination device of oxygen concentration detector
US11286833B2 (en) Systems and methods for detecting structural and operational states of a component of an exhaust aftertreatment system
JP2008082295A (en) Abnormality diagnostic device of exhaust gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809594

Country of ref document: EP

Kind code of ref document: A1