JP2005008967A - Steel for welded structure - Google Patents

Steel for welded structure Download PDF

Info

Publication number
JP2005008967A
JP2005008967A JP2003175856A JP2003175856A JP2005008967A JP 2005008967 A JP2005008967 A JP 2005008967A JP 2003175856 A JP2003175856 A JP 2003175856A JP 2003175856 A JP2003175856 A JP 2003175856A JP 2005008967 A JP2005008967 A JP 2005008967A
Authority
JP
Japan
Prior art keywords
steel
content
haz
toughness
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003175856A
Other languages
Japanese (ja)
Inventor
博幸 ▲角▼
Hiroyuki Sumi
Satoshi Iki
聡 伊木
Yoshiaki Murakami
善明 村上
Toshifumi Kojima
敏文 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003175856A priority Critical patent/JP2005008967A/en
Publication of JP2005008967A publication Critical patent/JP2005008967A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel having excellent low temperature toughness in a high heat input weld HAZ. <P>SOLUTION: The steel for a welded structure has a componential composition satisfying the following expression (1) and in which the transformation point in a CCT curve at a cooling rate of ≤2°C/s reaches ≥670°C, or a componential composition satisfying the following expression (2). Further, the steel for a welded structure preferably comprises, by mass, 0.04 to 0.12% C, 0.01 to 0.5% Si, 0.5 to 2% Mn, 0.001 to 0.01% S, 0.04 to 0.08% sol.Al, 0.005 to 0.03% Ti, 0.001 to 0.003% B, 0.001 to 0.005% O and 0.004 to 0.007% N, and, if required, comprises one or more kinds of metals selected from ≤0.5% Cu, ≤1.0% Ni, ≤0.5% Cr, ≤0.5% Mo, ≤0.1% V and ≤0.03% Nb, and the balance Fe with inevitable impurities: 0.9×IN≤N≤1.2×IN (1), and T=A+B×[1+expä-C(LN(1/v)-D)}]<SP>-1</SP>≥670 (2). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、海洋構造物、圧力容器、船舶、橋梁、建築およびラインパイプ等に用いられる溶接構造用鋼であって、特にBond部を含む大入熱溶接HAZの低温靭性に優れたものに関する
【0002】
【従来の技術】
近年、海洋構造物、圧力容器、船舶等の鋼構造物の大型化に伴い、使用される鋼材は厚肉化される傾向にある。厚肉材の場合、仮付け溶接等の小入熱溶接時の低温割れの防止とともに、溶接作業能率を向上させるために適用されるエレクトロガス溶接(EGW),サブマージアーク溶接(SAW)などで大入熱溶接した際の溶接部の低温靭性の確保が課題とされている。
【0003】
そのため、厚肉材の成分設計では、小入熱溶接時の低温割れ防止のため、低Ceq,低Pcm化するとともに、大入熱溶接HAZ部の靭性劣化を防止することが求められてきたが、最近、構造物によっては従来より遥かに入熱量が増加した溶接部において−40℃での優れた低温靭性が求められるようになり成分設計の困難性が増大している。
【0004】
大入熱溶接HAZ部の靭性向上に関して種々の技術が提案されているが、それらは主にHAZ部の組織を微細組織とするもので、その技術思想は1.析出物、介在物によるピンニング作用でγ粒の粗大化を防止する。2.介在物などを析出サイトとして粒内フェライトを生成させ、実質的に微細粒とすることに大別される。
【0005】
特許文献1、特許文献2は前者に関し、特許文献1には微細なTiNを析出させγ結晶粒の粗大化を抑制することが記載されているが、ボンド部では1400℃前後となり、TiNの大部分が溶解するため粗大組織となり靭性は改善されない。
【0006】
特許文献2には、微細なAl析出物を多量に析出させ、オーステナイト粒を微細化させることが記載されているが、エレクトロガス溶接のように高温で長時間保持される大入熱溶接ではその効果は不充分である。
【0007】
特許文献3、特許文献4は後者に関し、特許文献3にはTi酸化物粒子を核生成サイトとして粒内フェライトを生成させ微細なHAZ組織とすることが記載されているが、Ti酸化物を鋼中に微細に分散させるため、強脱酸元素のAlを0.007%以下とする特殊な成分組成であり、実製造においては鋼種編成が複雑になる。
【0008】
特許文献4には、Ca酸化物を安定して確保するためOを0.0040%以下とし、強脱酸元素のAlを0.007%以下とすることが記載されているが、脱酸方法、成分元素の添加に精密な制御が必要で、溶接材料によっては溶接金属の靭性が低下することも懸念される。
【0009】
これらの技術を更に改善したものとして特許文献5、特許文献6がある。特許文献5には、NをTi及びBの添加量に応じて添加し、TiN,BNを生成させ、ボンド部の靭性を向上させることが記載されているが、余剰なNが1000〜1200℃となるHAZ部に固溶し、脆化を生じる。
【0010】
特許文献6は、入熱量500〜1000kJ/cmの超大入熱溶接熱影響部の低温靭性向上を目的とし、超大入熱溶接においても溶解しない寸法のTiNを微細組織化に必要な数だけ確保し、更にHAZにおいて固定されない過剰なNによる靭性低下を防止するため、鋼中N量をTi,B量との関係において規定しBNとして溶接Bond部を含むHAZ全域での低温靭性を向上させることが記載されている。
【0011】
【特許文献1】特公昭55−26164号公報
【0012】
【特許文献2】特許第2950076号公報
【0013】
【特許文献3】特開昭61−79745号公報
【0014】
【特許文献4】特開平5−287374号公報
【0015】
【特許文献5】特開平9−20955号公報
【0016】
【特許文献6】特許第2931065号公報
【0017】
【発明が解決しようとする課題】
上述したように、大入熱溶接HAZ部を微細化するため析出物を用いる場合、析出物が溶解して十分なピンニング効果が得られなかったり、析出物を形成するため特殊な成分組成や、脱酸条件の精密化などが必要となるなど母材製造条件に制約が生じていた。
【0018】
例えば、特許文献6記載の技術ではTiNが入熱量500〜1000kJ/cmの超大入熱溶接部に特有の長い高温滞留時間でも溶解しないように、鋳造凝固過程の冷却速度を5℃/分以下とすることが必要で、大型化の著しいコンテナ船用として多量の鋼板を対象とする場合、生産性の観点から好ましくない。
【0019】
また、いずれの特許文献においても、構造物の局所脆化をもたらし、安全性を低下させるため好ましくないとされるシャルピー衝撃値の変動幅に関する検討が十分なされているとは言い難い。
【0020】
本発明は生産性に優れ、且つ大入熱溶接部のBondを含むHAZの各位置でのシャルピー衝撃試験において、シャルピー衝撃値(vE−40:試験温度ー40℃)が、少なくとも100J以上となる鋼を提供することを目的とする。本発明は溶接Bond部の800〜500℃の冷却速度が2℃/s以下の溶接を対象とする。
【0021】
【課題を解決するための手段】
本発明者らは特許文献6記載の技術に関して詳細に検討を行った。その結果添加されるTi量を鋼板の表面性状や製造性を考慮して低く抑えた場合、靭性を改善するBの効果が安定して得られず、−40℃のような低温におけるシャルピー衝撃試験ではむしろその焼入れ性効果によるものと推測される靭性値の変動が切欠位置によっては観察された。
【0022】
そこで本発明者等は溶接熱影響部における焼入れ性(変態現象)と粒内フェライトによる靭性改善効果との関係を把握すべく、種々の成分組成の鋼について母材のCCT曲線を用いて変態現象と粒内フェライトの生成状況を観察し、以下の知見を得た。
【0023】
溶接Bond部の冷却速度が2℃/s以下となる溶接部では、長い高温滞留時間が観察され、母材製造の冷却過程に匹敵する緩慢な冷却状態となることから母材のCCT曲線における粒内フェライトの生成状況と変態現象を溶接部におけるものと見做した。
【0024】
1.成分組成によっては、粒内フェライトの析出開始温度が同じであっても常温で観察される粒内フェライトの生成量に差が生じる場合がある。
2.粒内フェライト生成量が多く観察され、溶接部の低温靭性が良好と予測される鋼は粒内フェライト生成量が少ないものより変態点が高くなる。
3.すなわち、超大入熱溶接部で粒内フェライト生成量が多い微細組織とするためには、粒内フェライトが生成しやすい成分組成を選定し、溶接部における変態点が高くなるように成分元素相互の関係を規定することが有効である。
【0025】
また、本発明者等はN量をTi,B量との関係において規定した場合、大入熱溶接部においてもHAZ全域で−40℃の低温靭性が優れていることも見出した。
【0026】
本発明はこれらの知見に更に検討を加えて成されたものであり、すなわち本発明は、
1.下記(1)式を満足するC−Si−Mn−Ti−B系溶接構造用鋼であって、冷却速度が2℃/s以下のCCT曲線における変態点が670℃以上となる溶接構造用鋼。
0.9×IN≦N≦1.2×IN (1)
ここで、IN=Ti/3.4+1.3B
N,Ti,Bは含有量(%)をppmで表示した数値とする。
【0027】
2.下記(1)式、(2)式を満足するC−Si−Mn−Ti−B系溶接構造用鋼。
0.9×IN≦N≦1.2×IN (1)
ここで、IN=Ti/3.4+1.3B
N,Ti,Bは含有量(%)をppmで表示した数値とする。
T=A+B×[1+exp{−C(LN(1/2)−D)}]−1 ≧670(2)
ここで、A,B,C,Dは以下の式により求まる値とする。
【0028】
A=714−451×[C+Mn/6+(Cu+Ni)/15
+(Cr+Mo+V)/5]、
B=102+1.8×√[X]√[Y]
C=2.5+0.5×√[X]√[Y]
D=0.6+0.025×√[X]√[Y]
但し、[X]はN−Ti/3.4で求められる値で、N−Ti/3.4が<10の場合は[X]=0,N−Ti/3.4が>50の場合は[X]=50とし,N−Ti/3.4が10〜50の場合は計算値とする。
[Y]はボロン(B)の含有量により規定される値で、ボロン(B)の含有量が>18となる場合は[Y]=18とし、18以下の場合は、ボロン(B)の含有量の値を[Y]とする。ここで、N,Ti,Bは含有量(%)をppmで表示した数値とする。
【0029】
C,Mn,Cu,Ni,Cr,Mo,Vは成分組成における含有量(%)で添加されないものは0とする。
【0030】
3.前記C−Si−Mn−Ti−B系溶接構造用鋼が、質量%で、C:0.04〜0.12%、Si:0.01〜0.5%、Mn:0.5〜2%、S:0.001〜0.01%、sol.Al:0.04〜0.08%、Ti:0.005〜0.03%、B:0.001〜0.003%、O:0.001〜0.005%、N:0.004〜0.007%、残部Feおよび不可避的不純物なる鋼であることを特徴とする1または2記載の溶接構造用鋼。
【0031】
4.更に、質量%でCu≦0.5%、Ni≦1.0%、Cr≦0.5%、Mo≦0.5%、V≦0.1%、Nb≦0.03%の一種又は二種以上を含有することを特徴とする3記載の溶接構造用鋼。
【0032】
【発明の実施の形態】
本発明鋼は基本成分組成をC−Si−Mn−Ti−B系とする溶接構造用鋼であって、溶接Bond部に粒内フェライトを生成させるため、冷却速度が2℃/s以下のCCT曲線で変態点が670℃以上となる成分組成を特徴とする。
【0033】
図1は冷却速度を2℃/sとした場合のCCT曲線における粒内フェライトの析出開始温度と変態点の関係を示す図で、熱膨張計による変態点の測定結果を模式的に示している。CCT曲線は母材のCCT曲線で、その冷却速度は800−500℃において2℃/sである。
【0034】
供試鋼は基本成分組成をC−Si−Mn−Ti−B系とする溶接構造用鋼で、Ti,B添加量を変えた2種類の鋼1,2を用いた。
【0035】
図において、Tは熱膨張曲線上の極小点で変態点を示し、Aは粒界フェライトの生成開始温度を示す。鋼1と鋼2の熱膨張曲線を比較すると、鋼1の粒界フェライトの生成開始温度A1と鋼2の粒界フェライトの生成開始温度A2は同じであるが、熱膨張曲線の極小点を示す温度に違いがある。
【0036】
つまり、鋼1の極小点T1は、鋼2の極小点T2よりも高くなっている。これは、鋼1ではBNの析出が十分なため粒界フェライトの生成開始後、粒内フェライトの生成が速やかに生じる。このため、鋼1の極小点は、BNの析出が不十分な鋼2の極小点T2よりも高く670℃以上となっている。
【0037】
Ti,B量を種々変えた鋼について同様の実験で求めた変態点とシャルピー衝撃試験値との関係を求めたところ、変態点が670℃以上の鋼で優れたシャルピー衝撃試験値の得られることが確認された。
【0038】
従って、基本成分組成をC−Si−Mn−Ti−B系とする溶接構造用鋼の場合、溶接Bond部組織に粒内フェライトを確保するため、溶接後の冷却過程における変態点が670℃以上となるように、すなわち溶接部と同じ冷却速度のCCT曲線における変態点として670℃以上が得られるように成分組成を調整することが必要である。
【0039】
更に、本発明鋼では、溶接部における固溶Nを低減するため、Ti,BとN量の関係を下記(1)のように規定する。
0.9×IN≦N≦1.2×IN(但し、IN=Ti/3.4+1.3B,N,Ti,Bは含有量(%)をppmで表示した数値とする。)(1)
本パラメータ式は、Nの含有量をTiおよびBとの関係で規定するもので、本パラメータ式を満足することにより、含有されるNの大部分がTiN,BNとなり、固溶Nが低減され、溶接部の靭性が向上する。
【0040】
本発明でCCT曲線における変態点Tを成分組成、CCT曲線の冷却速度を用い規定する場合は下記のパラメータ式で規定する。
T=A+B×[1+exp{−C(LN(1/v)−D)}]−1 ≧670(2)
本パラメータ式を満足するように調整した成分組成の鋼は、800−500℃の冷却速度がv≦2℃/sとなる溶接Bond部で粒内フェライトの析出した組織が得られる。本パラメータ式でvはCCT曲線の冷却速度(℃/s),A,B,C,Dは以下の式により求まる値とする。
【0041】
A=714−451×[C+Mn/6+(Cu+Ni)/15
+(Cr+Mo+V)/5]、
B=102+1.8×√[X]√[Y]
C=2.5+0.5×√[X]√[Y]
D=0.6+0.025×√[X]√[Y]
但し、[X]はN−Ti/3.4で求められる値で、N−Ti/3.4が<10の場合は[X]=0,N−Ti/3.4が>50の場合は[X]=50とし,N−Ti/3.4が10〜50の場合は計算により求められた値とする。
[Y]はボロン(B)の含有量により規定される値で、ボロン(B)の含有量が>18となる場合は[Y]=18とし、18以下の場合は、ボロン(B)の含有量の値を[Y]とする。ここで、N,Ti,Bは含有量(%)をppmで表示した数値とする。 尚、C,Mn,Cu,Ni,Cr,Mo,Vは成分組成における含有量(%)で添加されないものは0とする。
【0042】
本発明鋼として好ましい成分組成は以下の様であり、該成分組成範囲内で上述したパラメータ式の(1)式や、(2)式を満足するように成分設計を行うことにより、本発明鋼は具体化される。例えば(1)式を満足し、(2)式において冷却速度vを2℃/sとして求められる鋼は溶接Bond部の冷却速度が2℃/s以下となる溶接HAZで優れた低温靭性が得られる。
【0043】

Cは、鋼材の強度を確保するため、添加する。そのような効果を得るため0.04%以上添加し、一方、0.12%を超えて添加すると高炭素島状マルテンサイトが生成し、HAZ靭性を低下させるため0.04〜0.12%を添加することが好ましい。尚、0.04%未満の場合、強度を確保するため、焼入れ性向上元素を多量に添加しなければならず、生産原価が上昇し、靭性、溶接性が劣化する。
【0044】
Si
Siは、脱酸材として、また鋼材の強度を確保するため、0.01%以上添加する。一方、0.5%を超えて添加すると高炭素島状マルテンサイトの生成が容易となり、HAZ靭性が低下するようになるため、0.01〜0.5%とすることが好ましい。
【0045】
Mn
Mnは、鋼材の強度を確保するため、0.5%以上添加する。一方、2%を超えると焼入れ性が増大し、溶接性、HAZ靭性を劣化させるため、0.5〜2%とすることが好ましい。
【0046】

Sは、HAZ部で、フェライトの核生成サイトとなるMnSを形成するため、0.001%以上含有させる。一方、0.01%を超えると、母材および溶接部の靭性が低下するため、0.001〜0.01%とすることが好ましい。
【0047】
Ti
Tiは、HAZ部でのγ粒の粗大化を抑制し、フェライトの核生成サイトとなるTiNの形成に必要で、0.005%以上添加する。一方、0.03%を超えて添加すると、母材靭性およびHAZ靭性に有害なTiCが析出し、鋼板の表面疵も多発するため、0.005〜0.03%とすることが好ましい。
【0048】

Bは、フェライトの核生成サイトとなるBNを生成するため、0.001%以上添加する。一方、0.003%を超えて添加するとHAZ靭性が低下するため、0.001〜0.003%とすることが好ましい。
【0049】
sol.Al
sol.Alは、脱酸およびHAZ靭性に有害な固溶Nを低減させ、Al2O3析出物を生成させるため0.04%以上とする。一方、0.08%を超えると、粗大なAl系介在物が生じ靭性が低下するため0.04〜0.08%とすることが好ましい。
【0050】
図2に、HAZのシャルピー衝撃試験結果に及ぼすsol.Al量の影響を示す。供試鋼の成分組成でsol.Al以外の成分は本発明範囲内とし、sol.Alを本発明範囲内の2点、本発明範囲外の2点とした。
【0051】
溶接はエレクトロガスアーク溶接で入熱530kJ/cmで行い、シャルピー衝撃試験は切欠き位置をBond,HAZ+1mm,HAZ+3mm,HAZ+5mmとし、試験温度−40℃とした。
【0052】
尚、HAZ+1mmは切欠位置がBondからHAZ側に1mmの位置での試験結果をあらわす
その結果、本発明鋼ではHAZ全域で優れたシャルピー衝撃値が得られることが確認された。試験結果は3本の平均値を示す。
【0053】
図3は、図2のシャルピー衝撃試験で切欠位置をHAZ+1mmとした場合に得られた個々の衝撃値と平均値を示すもので、sol.Al量が本発明範囲外で低い供試鋼の場合、平均値と乖離した低い衝撃値が得られ、局所脆化による安全性の低下が懸念される試験結果となった。
【0054】
sol.Al量が低い供試鋼の場合、最高加熱温度がボンド部より低いHAZ1mmの位置ではAlNが十分生成せず、Ti,Bと窒化物を形成し切れなかったNが鋼中に固溶し、フェライト地組織の靭性を劣化させたものと思われる。
【0055】

Nは、HAZにおいてsol.AlとAlNを形成しγ粒の粗大化を抑制し、また、フェライトの核生成サイトとなるBN,TiNを生成するため、0.004%以上とする。一方、0.007%を超えるとAlNが形成しても固溶N量が靭性を低下させるようになるため、0.004〜0.007%とすることが好ましい。
【0056】

Oは、鋼中O量で,BN,TiNの析出サイトとなるAl2O3析出物を確保するため0.001%以上とし、一方、靭性劣化をもたらす粗大介在物の生成を防止するため、0.001〜0.005%とすることが好ましい。
【0057】
溶接構造用鋼として、更にその特性を向上させるため、Cu,Ni,Cr,Mo,V,Nbの一種または二種以上を添加する場合は、質量%でCu≦0.5%、Ni≦1.0%、Cr≦0.5%、Mo≦0.5%、V≦0.1%、Nb≦0.03%で添加することが好ましい。
【0058】
尚、本発明において、「残部Feおよび不可避的不純物」とは本発明の作用効果を損なわない範囲で、Pなどの不可避不純物、他の微量元素を含有できることを意味する。
【0059】
本発明鋼を製造する場合は、溶鋼の成分組成を、冷却速度が2℃/s以下のCCT曲線での変態点が670℃以上となるように調整した成分組成とする。溶鋼は常法の鋳造冷却速度で鋳造凝固組織とすることが可能で、所望する特性に応じて常法により圧延、熱処理し、厚鋼板とする。
【0060】
【実施例】表1に示す成分組成の鋼を溶製し、連続鋳造法でスラブとした後、1100〜1250℃に加熱し、TMCPまたはDQ−Tにより板厚50〜70mmの鋼板とした。表1では、鋼の成分組成が好ましい成分範囲に含まれるものを本発明鋼、いずれかの元素が好ましい成分範囲から外れるものを比較鋼と表記している。
【0061】
これらの鋼板について、パラメータ式(式(2))Tの値を求め、母材の機械的性質、エレクトロガスアーク溶接継手のHAZ靭性を調査した。
【0062】
エレクトロガスアーク溶接は板厚を変えて入熱を400〜530kJ/cmとして行い、溶接Bond部の800〜500℃の冷却速度を1℃/s,2℃/sと変化させた。
【0063】
HAZ靭性はシャルピー衝撃試験により、切り欠き位置をBond,BondからHAZ側に1mm,3mm,5mmとし、試験温度ー40℃におけるシャルピー衝撃吸収エネルギーを求めた。
【0064】
試験本数は各切欠き位置で4本とし、個々の値と平均値を求めた。表1に供試鋼の成分組成、パラメータ(2)式によるT値を示す。
【0065】
表2に製造条件、母材の強度、靭性と溶接継手試験結果を示す。No.1〜14は本発明鋼で、母材の引張強度510N/mm2以上、−40℃でのシャルピー衝撃値200J以上であり、Bond部を含む、HAZ全域でー40℃のシャルピー衝撃値(平均値)として100J以上が得られている。
【0066】
また、個々の衝撃値の変動幅も小さく、いずれの鋼においても、平均値の±20%以内であった。
【0067】
一方、No.15から30は比較鋼で、HAZの各位置での衝撃値(平均値)は本発明鋼と比較して劣り、また、個々の値の変動幅は平均値の20%を超え、不安定であった。
【0068】
比較鋼のNo.17,18,21,22,25,30,31はいずれも変態点が670℃以上であるが好ましいとされる成分組成範囲外でありHAZ靭性が本発明鋼に対して劣っていた。
【0069】
その他の比較鋼は変態点が670℃未満であり、更にHAZ靭性が劣っている。
【0070】
No.15から20、22、24、26から30はNが本発明範囲外で、Ti,BおよびNのバランスが悪く、No.16,17,19から21、23、25、27、31はsol.Al量が本発明範囲外で低い。
【0071】
【表1】

Figure 2005008967
【0072】
【表2】
Figure 2005008967
【0073】
【発明の効果】
本発明によれば、入熱量が400kJ/cm以上の超大入熱溶接HAZの広い範囲において、優れた低温靭性が安定して確保できる溶接構造用鋼が得られ、産業上極めて有用である。
【図面の簡単な説明】
【図1】熱膨張曲線における変態点と粒内フェライト析出温度の関係を説明する図。
【図2】大入熱溶接継手HAZ(切欠き位置:Bond,HAZ1mm,3mm,5mm)のシャルピー衝撃試験結果に及ぼすsol.Al量の影響を示す図。
【図3】大入熱溶接継手HAZのシャルピー衝撃試験結果(切欠き位置:HAZ1mm(Bond+1mm))における平均値と個々の衝撃値に及ぼすsol.Al量の影響を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a welded structural steel used for offshore structures, pressure vessels, ships, bridges, buildings, line pipes, and the like, and particularly relates to one having excellent low temperature toughness of high heat input HAZ including a Bond part. 0002
[Prior art]
In recent years, as steel structures such as marine structures, pressure vessels, ships and the like increase in size, steel materials used tend to be thickened. In the case of thick-walled materials, large-scale electrogas welding (EGW), submerged arc welding (SAW), etc. are used to prevent welding at low heat input such as tack welding and improve welding work efficiency. Ensuring the low temperature toughness of the welded part during heat input welding is an issue.
[0003]
Therefore, in the component design of thick-walled materials, in order to prevent low-temperature cracking during small heat input welding, it has been required to reduce Ceq and Pcm and to prevent toughness deterioration of the high heat input HAZ part. Recently, depending on the structure, excellent low temperature toughness at −40 ° C. has been demanded in welds where the amount of heat input has increased much than before, and the difficulty of component design has increased.
[0004]
Various techniques have been proposed for improving the toughness of the high heat input welded HAZ part. However, these techniques mainly have a microstructure in the HAZ part. The pinning action by precipitates and inclusions prevents γ grains from becoming coarse. 2. It is roughly classified into the production of intragranular ferrite with inclusions as precipitation sites to make the particles substantially fine.
[0005]
Patent Document 1 and Patent Document 2 relate to the former, and Patent Document 1 describes that fine TiN is precipitated and suppresses the coarsening of γ crystal grains. Since the portion dissolves, it becomes a coarse structure and the toughness is not improved.
[0006]
Patent Document 2 describes that a large amount of fine Al 2 O 3 precipitates are precipitated and austenite grains are refined, but a large heat input that is maintained at a high temperature for a long time as in electrogas welding. The effect is insufficient in welding.
[0007]
Patent Document 3 and Patent Document 4 relate to the latter, and Patent Document 3 describes that a fine HAZ structure is formed by generating intragranular ferrite using Ti oxide particles as nucleation sites. Since it is finely dispersed inside, it has a special component composition in which Al, which is a strong deoxidizing element, is 0.007% or less, and the steel type knitting becomes complicated in actual production.
[0008]
Patent Document 4 describes that O is made 0.0040% or less and Al, which is a strong deoxidizing element, is made 0.007% or less in order to stably secure Ca oxide. Moreover, precise control is required for the addition of the component elements, and there is a concern that the toughness of the weld metal may be lowered depending on the welding material.
[0009]
Patent documents 5 and 6 are examples of further improving these techniques. Patent Document 5 describes that N is added according to the addition amounts of Ti and B to generate TiN and BN, and the toughness of the bond portion is improved, but excess N is 1000 to 1200 ° C. It becomes a solid solution in the HAZ part and becomes brittle.
[0010]
Patent Document 6 aims to improve the low-temperature toughness of the heat-affected zone of the super-high heat input welding with a heat input of 500 to 1000 kJ / cm, and secures as many TiNs as required for microstructuring that do not melt even in super-high heat input welding. Furthermore, in order to prevent toughness deterioration due to excessive N not fixed in the HAZ, the N content in the steel is defined in relation to the Ti and B contents, and the low temperature toughness in the entire HAZ including the weld bond part is improved as BN. Are listed.
[0011]
[Patent Document 1] Japanese Patent Publication No. 55-26164 [0012]
[Patent Document 2] Japanese Patent No. 2950076 [0013]
[Patent Document 3] Japanese Patent Application Laid-Open No. 61-79745
[Patent Document 4] Japanese Patent Application Laid-Open No. 5-287374
[Patent Document 5] Japanese Patent Laid-Open No. 9-20955
[Patent Document 6] Japanese Patent No. 2931065
[Problems to be solved by the invention]
As described above, when a precipitate is used to refine the high heat input weld HAZ part, the precipitate dissolves and a sufficient pinning effect cannot be obtained, or a special component composition for forming a precipitate, There were restrictions on the base material manufacturing conditions, such as the need for precise deoxidation conditions.
[0018]
For example, in the technique described in Patent Document 6, the cooling rate of the casting solidification process is set to 5 ° C./min or less so that TiN does not melt even with a long high-temperature residence time peculiar to an ultra-high heat input weld having a heat input of 500 to 1000 kJ / cm. In the case where a large amount of steel plate is used for a container ship that is significantly increased in size, it is not preferable from the viewpoint of productivity.
[0019]
Further, in any of the patent documents, it is difficult to say that sufficient study has been made on the fluctuation range of the Charpy impact value, which is undesirable because it causes local embrittlement of the structure and lowers safety.
[0020]
The present invention is excellent in productivity and has a Charpy impact value (vE-40: test temperature −40 ° C.) of at least 100 J or more in the Charpy impact test at each position of the HAZ including the Bond of the high heat input weld. The purpose is to provide steel. The present invention is directed to welding at a cooling rate of 800 to 500 ° C. of the welded bond portion of 2 ° C./s or less.
[0021]
[Means for Solving the Problems]
The inventors of the present invention have studied in detail about the technique described in Patent Document 6. As a result, when the amount of Ti added is kept low in consideration of the surface properties and manufacturability of the steel sheet, the effect of B improving the toughness cannot be stably obtained, and the Charpy impact test at a low temperature such as −40 ° C. However, the fluctuation of the toughness value, which is presumed to be due to the hardenability effect, was observed depending on the notch position.
[0022]
Therefore, the present inventors have investigated the relationship between the hardenability (transformation phenomenon) in the weld heat-affected zone and the effect of improving the toughness by intragranular ferrite using the CCT curves of the base metal for steels of various component compositions. And the formation of intragranular ferrite were observed, and the following findings were obtained.
[0023]
In the weld zone where the cooling rate of the weld bond part is 2 ° C./s or less, a long high-temperature residence time is observed, and a slow cooling state comparable to the cooling process of the base material manufacturing is achieved. The internal ferrite formation and transformation were considered to be in the weld.
[0024]
1. Depending on the component composition, there may be a difference in the amount of intragranular ferrite produced observed at room temperature even when the initiation temperature of intragranular ferrite is the same.
2. A large amount of intragranular ferrite formation is observed, and the steel that is predicted to have good low temperature toughness in the weld zone has a higher transformation point than that of the steel with less intragranular ferrite production.
3. In other words, in order to obtain a microstructure with a large amount of intragranular ferrite produced in a super high heat input weld, a component composition that easily produces intragranular ferrite is selected, and the mutual transformation of the component elements is increased so that the transformation point at the weld is increased. It is effective to define the relationship.
[0025]
In addition, the present inventors have also found that when N content is defined in relation to Ti and B content, low temperature toughness of −40 ° C. is excellent throughout the HAZ even in a high heat input weld zone.
[0026]
The present invention was made by further studying these findings, that is, the present invention
1. A C—Si—Mn—Ti—B welded structural steel that satisfies the following formula (1), wherein the transformation point in the CCT curve with a cooling rate of 2 ° C./s or lower is 670 ° C. or higher. .
0.9 × IN ≦ N ≦ 1.2 × IN (1)
Here, IN = Ti / 3.4 + 1.3B
N, Ti, and B are values in which the content (%) is expressed in ppm.
[0027]
2. C-Si-Mn-Ti-B-based welded structural steel that satisfies the following formulas (1) and (2).
0.9 × IN ≦ N ≦ 1.2 × IN (1)
Here, IN = Ti / 3.4 + 1.3B
N, Ti, and B are values in which the content (%) is expressed in ppm.
T = A + B × [1 + exp {−C (LN (1/2) −D)}] −1 ≧ 670 (2)
Here, A, B, C, and D are values obtained by the following equations.
[0028]
A = 714-451 × [C + Mn / 6 + (Cu + Ni) / 15
+ (Cr + Mo + V) / 5],
B = 102 + 1.8 × √ [X] √ [Y]
C = 2.5 + 0.5 × √ [X] √ [Y]
D = 0.6 + 0.025 × √ [X] √ [Y]
However, [X] is a value obtained by N-Ti / 3.4. When N-Ti / 3.4 is <10, [X] = 0 and N-Ti / 3.4 is> 50. [X] = 50, and when N-Ti / 3.4 is 10 to 50, it is a calculated value.
[Y] is a value defined by the content of boron (B). When the content of boron (B) is> 18, [Y] = 18, and when it is 18 or less, boron (B) Let the content value be [Y]. Here, N, Ti, and B are numerical values in which the content (%) is expressed in ppm.
[0029]
C, Mn, Cu, Ni, Cr, Mo, and V are 0 in terms of the content (%) in the component composition and not added.
[0030]
3. The C-Si-Mn-Ti-B-based welded structural steel is% by mass, C: 0.04 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.5 to 2 %, S: 0.001 to 0.01%, sol. Al: 0.04-0.08%, Ti: 0.005-0.03%, B: 0.001-0.003%, O: 0.001-0.005%, N: 0.004- The steel for welded structures according to 1 or 2, characterized in that the steel is 0.007%, the balance being Fe and inevitable impurities.
[0031]
4). Furthermore, one or two of Cu ≦ 0.5%, Ni ≦ 1.0%, Cr ≦ 0.5%, Mo ≦ 0.5%, V ≦ 0.1%, Nb ≦ 0.03% by mass%. 3. The steel for welded structure according to 3, which contains seeds or more.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
The steel of the present invention is a welded structural steel having a basic component composition of C—Si—Mn—Ti—B, and CCT having a cooling rate of 2 ° C./s or less in order to generate intragranular ferrite in the weld bond part. It is characterized by a component composition having a transformation point of 670 ° C. or higher in a curve.
[0033]
FIG. 1 is a diagram showing the relationship between the precipitation start temperature of intragranular ferrite and the transformation point in the CCT curve when the cooling rate is 2 ° C./s, and schematically shows the measurement result of the transformation point by a thermal dilatometer. . The CCT curve is a CCT curve of the base material, and its cooling rate is 2 ° C./s at 800-500 ° C.
[0034]
The test steel was a welded structural steel having a basic component composition of C-Si-Mn-Ti-B, and two types of steels 1 and 2 with different amounts of Ti and B were used.
[0035]
In the figure, T represents the transformation point at the minimum point on the thermal expansion curve, and A represents the formation start temperature of the grain boundary ferrite. When the thermal expansion curves of Steel 1 and Steel 2 are compared, the formation start temperature A1 of the grain boundary ferrite of Steel 1 is the same as the generation start temperature A2 of the grain boundary ferrite of Steel 2, but shows the minimum point of the thermal expansion curve. There is a difference in temperature.
[0036]
That is, the minimum point T1 of the steel 1 is higher than the minimum point T2 of the steel 2. This is because the precipitation of BN in steel 1 is sufficient, and the formation of intragranular ferrite occurs rapidly after the start of the formation of intergranular ferrite. For this reason, the minimum point of the steel 1 is higher than the minimum point T2 of the steel 2 in which precipitation of BN is insufficient, and is 670 ° C. or higher.
[0037]
When the relationship between the transformation point obtained in the same experiment and the Charpy impact test value was determined for steels with various Ti and B contents, an excellent Charpy impact test value was obtained for the steel having a transformation point of 670 ° C or higher. Was confirmed.
[0038]
Therefore, in the case of a welded structural steel having a basic component composition of C—Si—Mn—Ti—B, the transformation point in the cooling process after welding is 670 ° C. or higher in order to secure intragranular ferrite in the welded bond structure. In other words, it is necessary to adjust the component composition so that 670 ° C. or more is obtained as the transformation point in the CCT curve at the same cooling rate as the welded portion.
[0039]
Furthermore, in this invention steel, in order to reduce the solute N in a welding part, the relationship between Ti, B, and N amount is prescribed | regulated as (1) below.
0.9 × IN ≦ N ≦ 1.2 × IN (where IN = Ti / 3.4 + 1.3B, N, Ti, and B are contents (%) expressed in ppm) (1)
This parameter formula prescribes the N content in relation to Ti and B. By satisfying this parameter formula, most of the contained N becomes TiN, BN, and the solid solution N is reduced. The toughness of the welded portion is improved.
[0040]
In the present invention, when the transformation point T in the CCT curve is defined using the component composition and the cooling rate of the CCT curve, it is defined by the following parameter formula.
T = A + B × [1 + exp {−C (LN (1 / v) −D)}] −1 ≧ 670 (2)
In the steel having the component composition adjusted to satisfy this parameter formula, a structure in which intragranular ferrite is precipitated at the welded bond portion where the cooling rate of 800 to 500 ° C. becomes v ≦ 2 ° C./s is obtained. In this parameter equation, v is a cooling rate (° C./s) of the CCT curve, and A, B, C, and D are values obtained by the following equations.
[0041]
A = 714-451 × [C + Mn / 6 + (Cu + Ni) / 15
+ (Cr + Mo + V) / 5],
B = 102 + 1.8 × √ [X] √ [Y]
C = 2.5 + 0.5 × √ [X] √ [Y]
D = 0.6 + 0.025 × √ [X] √ [Y]
However, [X] is a value obtained by N-Ti / 3.4. When N-Ti / 3.4 is <10, [X] = 0 and N-Ti / 3.4 is> 50. [X] = 50, and when N-Ti / 3.4 is 10 to 50, the value is obtained by calculation.
[Y] is a value defined by the content of boron (B). When the content of boron (B) is> 18, [Y] = 18, and when it is 18 or less, boron (B) Let the content value be [Y]. Here, N, Ti, and B are numerical values in which the content (%) is expressed in ppm. C, Mn, Cu, Ni, Cr, Mo, and V are set to 0 if the content (%) in the component composition is not added.
[0042]
The preferred component composition for the steel of the present invention is as follows, and by designing the component so as to satisfy the above-described parameter formulas (1) and (2) within the component composition range, the steel of the present invention. Is embodied. For example, steel satisfying the formula (1) and obtaining the cooling rate v of 2 ° C./s in the formula (2) has excellent low temperature toughness in the welded HAZ where the cooling rate of the welded bond part is 2 ° C./s or less. It is done.
[0043]
C
C is added to ensure the strength of the steel material. In order to obtain such an effect, 0.04% or more is added. On the other hand, if added over 0.12%, high-carbon island martensite is generated, and the HAZ toughness is reduced. Is preferably added. In addition, when less than 0.04%, in order to ensure strength, a large amount of a hardenability improving element must be added, resulting in an increase in production costs and deterioration of toughness and weldability.
[0044]
Si
Si is added in an amount of 0.01% or more as a deoxidizing material and in order to ensure the strength of the steel material. On the other hand, if added over 0.5%, the formation of high carbon island martensite is facilitated and the HAZ toughness is lowered, so 0.01 to 0.5% is preferable.
[0045]
Mn
Mn is added in an amount of 0.5% or more to ensure the strength of the steel material. On the other hand, if it exceeds 2%, the hardenability is increased and the weldability and HAZ toughness are deteriorated, so 0.5 to 2% is preferable.
[0046]
S
S is contained in the HAZ portion in an amount of 0.001% or more in order to form MnS that becomes a nucleation site of ferrite. On the other hand, if it exceeds 0.01%, the toughness of the base metal and the welded portion is lowered, so 0.001 to 0.01% is preferable.
[0047]
Ti
Ti is necessary for the formation of TiN that suppresses the coarsening of γ grains in the HAZ part and forms nucleation sites of ferrite, and is added in an amount of 0.005% or more. On the other hand, if added over 0.03%, TiC which is harmful to the base metal toughness and HAZ toughness is precipitated and the surface flaws of the steel sheet occur frequently, so 0.005 to 0.03% is preferable.
[0048]
B
B is added in an amount of 0.001% or more in order to generate BN that becomes a nucleation site of ferrite. On the other hand, if added over 0.003%, the HAZ toughness decreases, so 0.001 to 0.003% is preferable.
[0049]
sol. Al
sol. Al is not less than 0.04% in order to reduce solid solution N harmful to deoxidation and HAZ toughness and to generate Al2O3 precipitates. On the other hand, if it exceeds 0.08%, coarse Al-based inclusions are produced and the toughness is lowered, so 0.04 to 0.08% is preferable.
[0050]
FIG. 2 shows the effect of sol. The influence of the amount of Al is shown. The component composition of the test steel is sol. Components other than Al are within the scope of the present invention. Al was defined as two points within the scope of the present invention and two points outside the scope of the present invention.
[0051]
Welding was performed by electrogas arc welding at a heat input of 530 kJ / cm, and in the Charpy impact test, the notch positions were Bond, HAZ + 1 mm, HAZ + 3 mm, HAZ + 5 mm, and the test temperature was −40 ° C.
[0052]
In addition, as for the HAZ + 1 mm, the notch position represents the test result in the position of 1 mm from the bond to the HAZ side. As a result, it was confirmed that the steel of the present invention has an excellent Charpy impact value in the entire HAZ region. A test result shows the average value of three.
[0053]
FIG. 3 shows individual impact values and average values obtained when the notch position is HAZ + 1 mm in the Charpy impact test of FIG. In the case of the test steel having a low Al content outside the range of the present invention, a low impact value deviating from the average value was obtained, and the test result was concerned that the safety could be lowered due to local embrittlement.
[0054]
sol. In the case of a test steel with a low Al amount, AlN is not sufficiently generated at the position of HAZ 1 mm where the maximum heating temperature is lower than that of the bond part, and N that could not completely form Ti, B and nitride is dissolved in the steel, It seems to have deteriorated the toughness of the ferrite texture.
[0055]
N
N is sol. In order to form Al and AlN to suppress the coarsening of γ grains, and to generate BN and TiN which are nucleation sites of ferrite, the content is made 0.004% or more. On the other hand, if it exceeds 0.007%, even if AlN is formed, the amount of solid solution N decreases the toughness, so 0.004 to 0.007% is preferable.
[0056]
O
O is 0.001% or more in order to ensure the Al2O3 precipitates which are the precipitation sites of BN and TiN in the amount of O in the steel, while 0.001 to prevent the formation of coarse inclusions that cause toughness deterioration. It is preferable to set it to -0.005%.
[0057]
As a welded structural steel, in order to further improve its properties, when one or more of Cu, Ni, Cr, Mo, V, and Nb are added, Cu ≦ 0.5% and Ni ≦ 1 in mass%. It is preferable to add at 0.0%, Cr ≦ 0.5%, Mo ≦ 0.5%, V ≦ 0.1%, and Nb ≦ 0.03%.
[0058]
In the present invention, the “remainder Fe and inevitable impurities” means that inevitable impurities such as P and other trace elements can be contained within a range that does not impair the effects of the present invention.
[0059]
When producing the steel of the present invention, the component composition of the molten steel is adjusted so that the transformation point on the CCT curve with a cooling rate of 2 ° C./s or less is 670 ° C. or more. Molten steel can be made into a cast solidified structure at a conventional casting cooling rate, and is rolled and heat-treated according to a desired method to obtain a thick steel plate.
[0060]
EXAMPLE Steels having the composition shown in Table 1 were melted and made into slabs by a continuous casting method, and then heated to 1100 to 1250 ° C. to obtain steel plates having a thickness of 50 to 70 mm by TMCP or DQ-T. In Table 1, steel in which the component composition of steel is included in the preferable component range is described as the steel of the present invention, and any of the elements deviating from the preferable component range is referred to as comparative steel.
[0061]
About these steel plates, the value of parameter formula (Formula (2)) T was calculated | required, and the HAZ toughness of the base material's mechanical property and an electrogas arc welding joint was investigated.
[0062]
Electrogas arc welding was performed by changing the plate thickness and heat input at 400 to 530 kJ / cm, and the cooling rate at 800 to 500 ° C. of the welded bond portion was changed to 1 ° C./s and 2 ° C./s.
[0063]
For HAZ toughness, the Charpy impact absorption energy at a test temperature of −40 ° C. was determined by a Charpy impact test with the notch positions being 1 mm, 3 mm, and 5 mm from Bond and Bond to the HAZ side.
[0064]
The number of tests was four at each notch position, and individual values and average values were obtained. Table 1 shows the component composition of the test steel and the T value according to the parameter (2) equation.
[0065]
Table 2 shows manufacturing conditions, base metal strength, toughness, and welded joint test results. No. 1 to 14 are steels of the present invention, which have a base material tensile strength of 510 N / mm 2 or more, a Charpy impact value at −40 ° C. of 200 J or more, and a Charpy impact value (average value) of −40 ° C. throughout the HAZ including the Bond part. ) 100J or more is obtained.
[0066]
In addition, the fluctuation range of each impact value was small, and in any steel, it was within ± 20% of the average value.
[0067]
On the other hand, no. 15 to 30 are comparative steels, and the impact value (average value) at each position of the HAZ is inferior to that of the steel of the present invention, and the fluctuation range of each value exceeds 20% of the average value and is unstable. there were.
[0068]
No. of comparative steel. Nos. 17, 18, 21, 22, 25, 30, and 31 each have a transformation point of 670 ° C. or higher, but are outside the component composition range considered preferable, and the HAZ toughness was inferior to the steel of the present invention.
[0069]
Other comparative steels have a transformation point of less than 670 ° C. and are inferior in HAZ toughness.
[0070]
No. 15 to 20, 22, 24, and 26 to 30, N is outside the scope of the present invention, and the balance of Ti, B, and N is poor. 16, 17, 19 to 21, 23, 25, 27, 31 are sol. The amount of Al is low outside the scope of the present invention.
[0071]
[Table 1]
Figure 2005008967
[0072]
[Table 2]
Figure 2005008967
[0073]
【The invention's effect】
According to the present invention, a steel for welded structure capable of stably securing excellent low temperature toughness in a wide range of super large heat input welding HAZ having a heat input of 400 kJ / cm or more is obtained, which is extremely useful industrially.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the relationship between a transformation point and an intragranular ferrite precipitation temperature in a thermal expansion curve.
FIG. 2 shows the effect of sol. On the Charpy impact test result of a high heat input welded joint HAZ (notch position: Bond, HAZ 1 mm, 3 mm, 5 mm). The figure which shows the influence of Al amount.
FIG. 3 shows the average value and the effect of sol. On the impact value in the Charpy impact test result (notch position: HAZ 1 mm (Bond + 1 mm)) of the high heat input welded joint HAZ. The figure which shows the influence of Al amount.

Claims (4)

下記(1)式を満足するC−Si−Mn−Ti−B系溶接構造用鋼であって、冷却速度が2℃/s以下のCCT曲線における変態点が670℃以上となる溶接構造用鋼。
0.9×IN≦N≦1.2×IN (1)
ここで、IN=Ti/3.4+1.3B
N,Ti,Bは含有量(%)をppmで表示した数値とする。
A C—Si—Mn—Ti—B welded structural steel that satisfies the following formula (1), wherein the transformation point in the CCT curve with a cooling rate of 2 ° C./s or lower is 670 ° C. or higher. .
0.9 × IN ≦ N ≦ 1.2 × IN (1)
Here, IN = Ti / 3.4 + 1.3B
N, Ti, and B are values in which the content (%) is expressed in ppm.
下記(1)式、(2)式を満足するC−Si−Mn−Ti−B系溶接構造用鋼。
0.9×IN≦N≦1.2×IN (1)
ここで、IN=Ti/3.4+1.3B
N,Ti,Bは含有量(%)をppmで表示した数値とする。
T=A+B×[1+exp{−C(LN(1/2)−D)}]−1 ≧670(2)
ここで、A,B,C,Dは以下の式により求まる値とする。
A=714−451×[C+Mn/6+(Cu+Ni)/15
+(Cr+Mo+V)/5]、
B=102+1.8×√[X]√[Y]
C=2.5+0.5×√[X]√[Y]
D=0.6+0.025×√[X]√[Y]
但し、[X]はN−Ti/3.4で求められる値で、N−Ti/3.4が<10の場合は[X]=0,N−Ti/3.4が>50の場合は[X]=50とし,N−Ti/3.4が10〜50の場合は計算値とする。
[Y]はボロン(B)の含有量により規定される値で、ボロン(B)の含有量が>18となる場合は[Y]=18とし、18以下の場合は、ボロン(B)の含有量の値を[Y]とする。ここで、N,Ti,Bは含有量(%)をppmで表示した数値とする。
C,Mn,Cu,Ni,Cr,Mo,Vは成分組成における含有量(%)で添加されないものは0とする。
C-Si-Mn-Ti-B-based welded structural steel that satisfies the following formulas (1) and (2).
0.9 × IN ≦ N ≦ 1.2 × IN (1)
Here, IN = Ti / 3.4 + 1.3B
N, Ti, and B are values in which the content (%) is expressed in ppm.
T = A + B × [1 + exp {−C (LN (1/2) −D)}] −1 ≧ 670 (2)
Here, A, B, C, and D are values obtained by the following equations.
A = 714-451 × [C + Mn / 6 + (Cu + Ni) / 15
+ (Cr + Mo + V) / 5],
B = 102 + 1.8 × √ [X] √ [Y]
C = 2.5 + 0.5 × √ [X] √ [Y]
D = 0.6 + 0.025 × √ [X] √ [Y]
However, [X] is a value obtained by N-Ti / 3.4. When N-Ti / 3.4 is <10, [X] = 0 and N-Ti / 3.4 is> 50. [X] = 50, and when N-Ti / 3.4 is 10 to 50, it is a calculated value.
[Y] is a value defined by the content of boron (B). When the content of boron (B) is> 18, [Y] = 18, and when it is 18 or less, boron (B) Let the content value be [Y]. Here, N, Ti, and B are numerical values in which the content (%) is expressed in ppm.
C, Mn, Cu, Ni, Cr, Mo, and V are 0 in terms of the content (%) in the component composition and not added.
前記C−Si−Mn−Ti−B系溶接構造用鋼が、質量%で、C:0.04〜0.12%、Si:0.01〜0.5%、Mn:0.5〜2%、S:0.001〜0.01%、sol.Al:0.04〜0.08%、Ti:0.005〜0.03%、B:0.001〜0.003%、O:0.001〜0.005%、N:0.004〜0.007%、残部Feおよび不可避的不純物なる鋼であることを特徴とする請求項1または2記載の溶接構造用鋼。The C-Si-Mn-Ti-B-based welded structural steel is% by mass, C: 0.04 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.5 to 2 %, S: 0.001 to 0.01%, sol. Al: 0.04-0.08%, Ti: 0.005-0.03%, B: 0.001-0.003%, O: 0.001-0.005%, N: 0.004- The steel for welded structures according to claim 1 or 2, characterized in that the steel is 0.007%, the balance being Fe and inevitable impurities. 更に、質量%でCu≦0.5%、Ni≦1.0%、Cr≦0.5%、Mo≦0.5%、V≦0.1%、Nb≦0.03%の一種又は二種以上を含有することを特徴とする請求項3記載の溶接構造用鋼。Further, one or two of Cu ≦ 0.5%, Ni ≦ 1.0%, Cr ≦ 0.5%, Mo ≦ 0.5%, V ≦ 0.1%, Nb ≦ 0.03% by mass%. The welded structural steel according to claim 3, comprising at least a seed.
JP2003175856A 2003-06-20 2003-06-20 Steel for welded structure Pending JP2005008967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175856A JP2005008967A (en) 2003-06-20 2003-06-20 Steel for welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175856A JP2005008967A (en) 2003-06-20 2003-06-20 Steel for welded structure

Publications (1)

Publication Number Publication Date
JP2005008967A true JP2005008967A (en) 2005-01-13

Family

ID=34098886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175856A Pending JP2005008967A (en) 2003-06-20 2003-06-20 Steel for welded structure

Country Status (1)

Country Link
JP (1) JP2005008967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434561C (en) * 2005-07-26 2008-11-19 武汉钢铁(集团)公司 Steel in use for soldering pressure pipe in hydraulic power station under large line energy, and manufacturing method
KR20150057998A (en) 2013-11-19 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434561C (en) * 2005-07-26 2008-11-19 武汉钢铁(集团)公司 Steel in use for soldering pressure pipe in hydraulic power station under large line energy, and manufacturing method
KR20150057998A (en) 2013-11-19 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet

Similar Documents

Publication Publication Date Title
KR101386042B1 (en) Steel material for high heat input welding
JP2008163446A (en) Steel member for high heat input welding
JPWO2010143726A1 (en) Manufacturing method of thick high strength steel plate with excellent heat input heat affected zone toughness, and thick high strength steel plate with high heat input heat affected zone toughness
JP2005320624A (en) Thick high-strength steel plate having excellent low-temperature toughness in weld heat-affected zone effected by large heat input welding
JP2011074403A (en) Steel for high heat input welding
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP2008095152A (en) HIGH TENSILE STRENGTH STEEL SHEET FOR LARGE HEAT INPUT WELDING HAVING REDUCED ACOUSTIC ANISOTROPY, EXCELLENT WELDABILITY AND TENSILE STRENGTH IN &gt;=570 MPa CLASS, AND ITS PRODUCTION METHOD
JP4949210B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
JP2008169429A (en) Steel having excellent ctod in weld heat-affected zone and method for producing the same
JP5966907B2 (en) Steel material for large heat input welding
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP4276574B2 (en) Thick steel plate with excellent toughness of heat affected zone
JP4959402B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP2007262508A (en) Thick steel plate having excellent toughness in high heat input weld heat affected zone
JP2019104955A (en) Carbon steel slab and manufacturing method of the same
JP2005008967A (en) Steel for welded structure
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
JP4673788B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
JP2005256161A (en) THICK HIGH STRENGTH Ni-CONTAINING STEEL HAVING LOW TEMPERATURE TOUGHNESS IN HIGH HEAT INPUT WELD HEAT AFFECTED ZONE
JP2006045585A (en) Steel for welded structure
JP4959401B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP7272471B2 (en) steel plate
JP2006045586A (en) Steel for welded structure having excellent low temperature toughness
JP4505434B2 (en) Thick steel plate with excellent toughness of heat affected zone