JP2005008901A - Method and apparatus for producing glass particulate deposit - Google Patents

Method and apparatus for producing glass particulate deposit Download PDF

Info

Publication number
JP2005008901A
JP2005008901A JP2003170684A JP2003170684A JP2005008901A JP 2005008901 A JP2005008901 A JP 2005008901A JP 2003170684 A JP2003170684 A JP 2003170684A JP 2003170684 A JP2003170684 A JP 2003170684A JP 2005008901 A JP2005008901 A JP 2005008901A
Authority
JP
Japan
Prior art keywords
temperature
raw material
heating
material gas
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003170684A
Other languages
Japanese (ja)
Inventor
Taiichiro Yamashita
泰一郎 山下
Nobuyuki Taira
信行 平
Nobuyuki Hirano
信行 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003170684A priority Critical patent/JP2005008901A/en
Publication of JP2005008901A publication Critical patent/JP2005008901A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/81Constructional details of the feed line, e.g. heating, insulation, material, manifolds, filters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a glass particulate deposit whereby the temperature of a raw material gas inside a feeder line is precisely controlled and stable operation becomes possible over a long period of time, and an apparatus for the same. <P>SOLUTION: In the method for producing the glass particulate deposit, a plurality of temperature-measuring means are installed at several points in a longitudinal direction of the feeder line of the raw material gas to measure temperature. Here, the feeder line is equipped with a heating and heat-retaining means. When the temperature at either of the measuring points drops to the minimum temperature within the heat-retention tolerance, a heating and heat-retaining power of the heating and heat-retaining means is increased. When the temperature reaches the maximum temperature within the heat-retention tolerance, the heating and heat-retaining power is decreased, so that the temperature of the raw material gas inside the feeder line is precisely controlled. The apparatus for producing the glass particulate deposit is also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス原料ガスからガラス微粒子を合成して基材上に堆積させるガラス微粒子堆積体の製造方法及びそのための装置に関する。
【0002】
【従来の技術】
光ファイバ母材やフォトマスク用ガラス母材などのガラス母材の製造工程において、ガラス原料ガスからガラス微粒子を合成して基材上に堆積させる手段を備えたガラス微粒子合成部に、酸素ガスや水素ガスと共にSiCl、GeCl、POClなどの原料ガスを供給してガラス微粒子を合成し、反応容器内で基材上に堆積させてガラス微粒子堆積体を製造する方法がある。
原料ガスからガラス微粒子を合成して基材上に堆積させる方法としては、原料ガスをガラス微粒子合成用バーナに供給してガラス微粒子を合成しガラスロッドの周囲や先端部に堆積させる方法(外付け方、軸付け方)、あるいはガラス管内に原料ガスを供給して加熱し、生成したガラス微粒子をガラス管内壁に堆積させる方法(内付け方)などが知られている。
これらの方法においてSiCl、GeCl、POClなどのガラス原料は、ガラス微粒子合成部とは別に設置されている原料供給部において加熱蒸発あるいは昇華によりガス化し、原料ガスの形でステンレス製などの原料ガス供給配管を経由してガラス微粒子合成部へ供給される。この原料ガス供給配管は設備の条件によっては10m以上にもなる場合があり、原料ガスの凝縮・液化を防ぐために加熱、保温する必要がある。具体的にはSiClは80℃以上、GeClは105℃以上、POClは120℃以上に保持することが必要である。
【0003】
このようなガラス微粒子堆積体の製造技術における原料ガスの供給方法については、定量吐出手段によって液体状の原料を正確に一定量ずつ吐出して蒸発手段側に供給し、この蒸発手段によって液体状の原料を瞬時に蒸発気化し、この蒸発手段に連結された単一の反応部に向けて原料ガスを高精度に供給する装置(例えば、特許文献1参照)、配管の一部又は全部を通電部材で形成し、該配管に直接通電して加熱するようにし、配管の長手方向に複数の温度検出手段を設け、それらの温度信号のいずれか一つ以上に基づいて通電量を制御する方法(例えば、特許文献2参照)などが提案されている。
【0004】
【特許文献1】
特開平3−54130号公報(第2頁左下欄13〜18行など)
【特許文献2】
特開2003−81644号公報
【0005】
【発明が解決しようとする課題】
従来、この原料ガス供給配管の加熱、保温方法としては、図5に示すように例えば原料ガス供給部101とガラス微粒子合成用のバーナ102が設置されている反応容器からなるガラス微粒子合成部103とを接続する供給配管104にテープヒータ105を巻いて加熱し、さらに保温材を巻いて保温したり、あるいは温調ブース内に入れるなどの加熱保温手段が採られており、配管104の途中に熱電対などの温度測定手段を設置し、その温度測定点106からの測定温度(温度信号107)に基づいて温度制御手段108により加熱保温手段(図ではヒータ105)への出力109を制御することによって加熱保温手段の温度を制御している。この方法では温度の測定箇所が通常は1か所であり、特に配管が長くなった場合などには長手方向に温度ムラが生じて、部分的に上記の必要保持温度以下になって原料ガスの凝縮・液化が発生する恐れがあり、これを防ぐためには測定点の設定や管理が難しいという問題があった。
【0006】
また、温度測定手段としては図6に示すように供給配管104の外壁に熱電対110などの温度測定器を接触、固定して配管104の外壁温度あるいは温調ブース内の温度を測定する方法が採られていた。しかし、この方法は配管内のガスの温度を直接測定するものではないため、測定温度と実際のガス温度との間に差が生じて配管内でガスの液化や過昇温が発生する恐れがあった。
本発明はこのような従来技術における問題点を解決し、供給配管内の原料ガスの温度を精密に制御して原料ガスの液化や固化を防止することができ、長期にわたり安定した操業が可能なガラス微粒子堆積体の製造方法、及びそのための装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、原料ガス供給配管の加熱保温手段を制御するための温度を、供給配管の長手方向の複数箇所で測定する方法、配管内のガス温度を直接測定する方法、あるいはその両方で測定することによって、前記課題を解決したもので、次の(1)〜(6)の構成を含むものである。
(1)原料ガス供給部から加熱保温手段が設けられた供給配管を経由して原料ガスをガラス微粒子合成部へ供給してガラス微粒子を合成し、基材上に堆積させてガラス微粒子堆積体を製造する方法において、前記供給配管の長手方向の複数箇所に温度測定手段を設けて温度を測定し、いずれかの測定点の温度が保温許容範囲の最低温度となったときに加熱保温手段の加熱保温力を増加させ、いずれかの測定点の温度が保温許容範囲の最高温度となったときに加熱保温手段の加熱保温力を低下させるように加熱保温手段を制御し、前記供給配管内の原料ガスの温度を精密に制御することを特徴とするガラス微粒子堆積体の製造方法。
(2)原料ガス供給部から加熱保温手段が設けられた供給配管を経由して原料ガスをガラス微粒子合成部へ供給してガラス微粒子を合成し、基材上に堆積させてガラス微粒子堆積体を製造する方法において、前記供給配管内に温度測定手段を設けて原料ガスの温度を測定し、その測定温度に基づいて加熱保温手段を制御し、前記供給配管内の原料ガスの温度を精密に制御することを特徴とするガラス微粒子堆積体の製造方法。
(3)原料ガス供給部から加熱保温手段が設けられた供給配管を経由して原料ガスをガラス微粒子合成部へ供給してガラス微粒子を合成し、基材上に堆積させてガラス微粒子堆積体を製造する方法において、前記供給配管内の長手方向の複数箇所に温度測定手段を設けて原料ガスの温度を測定し、いずれかの測定点の温度が保温許容範囲の最低温度となったときに加熱保温手段の加熱保温力を増加させ、いずれかの測定点の温度が保温許容範囲の最高温度となったときに加熱保温手段の加熱保温力を低下させるように加熱保温手段を制御し、前記供給配管内の原料ガスの温度を精密に制御することを特徴とするガラス微粒子堆積体の製造方法。
【0008】
(4)原料ガス供給部と、供給される原料ガスからガラス微粒子を合成して基材上に堆積させる手段を備えたガラス微粒子合成部と、前記原料ガス供給部とガラス微粒子合成部とを接続する原料ガスの供給配管と、該供給配管を加熱保温する加熱保温手段とを備えたガラス微粒子堆積体の製造装置において、前記供給配管の長手方向の複数箇所の温度測定点の温度を測定する温度測定手段と、各温度測定点からの温度信号を比較演算して温度制御手段へ送る温度信号を選択する演算装置と、該演算装置からの温度信号に基づいていずれかの測定点の温度が保温許容範囲の最低温度となったときに加熱保温手段の加熱保温力を増加させ、いずれかの測定点の温度が保温許容範囲の最高温度となったときに加熱保温手段の加熱保温力を低下させるように加熱保温手段を制御する温度制御手段とが設けられていることを特徴とするガラス微粒子堆積体の製造装置。
(5)原料ガス供給部と、供給される原料ガスからガラス微粒子を合成して基材上に堆積させる手段を備えたガラス微粒子合成部と、前記原料ガス供給部とガラス微粒子合成部とを接続する原料ガスの供給配管と、該供給配管を加熱保温する加熱保温手段とを備えたガラス微粒子堆積体の製造装置において、前記供給配管内に設けられた原料ガスの温度を測定する温度測定手段と、該温度測定手段の測定温度に基づいて加熱保温手段を制御する温度制御手段とが設けられていることを特徴とするガラス微粒子堆積体の製造装置。
(6)原料ガス供給部と、供給される原料ガスからガラス微粒子を合成して基材上に堆積させる手段を備えたガラス微粒子合成部と、前記原料ガス供給部とガラス微粒子合成部とを接続する原料ガスの供給配管と、該供給配管を加熱保温する加熱保温手段とを備えたガラス微粒子堆積体の製造装置において、前記供給配管内の長手方向の複数箇所に設けられた温度測定点の原料ガスの温度を測定する温度測定手段と、各温度測定点からの温度信号を比較演算して温度制御手段へ送る温度信号を選択する演算装置と、該演算装置からの温度信号に基づいていずれかの測定点の温度が保温許容範囲の最低温度となったときに加熱保温手段の加熱保温力を増加させ、いずれかの測定点の温度が保温許容範囲の最高温度となったときに加熱保温手段の加熱保温力を低下させるように加熱保温手段を制御する温度制御手段とが設けられていることを特徴とするガラス微粒子堆積体の製造装置。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の方法を詳細に説明する。
図1は本発明の方法を実施するための装置構成の1例を模式的に示す説明図である。図1の構成において1はSiCl等の原料を蒸発あるいは昇華によって気化させる原料ガス供給部、3はガラス微粒子を合成してガラス微粒子堆積体を製造するガラス微粒子合成用バーナ2を備えた反応容器からなるガラス微粒子合成部、4は原料供給部1からガラス微粒子合成部3へ原料ガスを供給する供給配管、5は供給配管を加熱保温する手段としてのヒータ、6は供給配管4の長手方向の複数箇所に設けられた温度測定点、7は各測定点からの温度信号、8は温度信号7′を受けてヒータ5への出力信号9を制御する温度制御手段、10は複数の温度信号7を比較演算し、温度制御手段へ送る温度信号7′を選択する演算装置である。
【0010】
供給配管4はステンレス鋼などで構成されており、ヒータ5とその外側に保温材(図示省略)が設置されて加熱保温されている。供給配管4には長手方向の複数箇所(図では6か所)に熱電対や測温抵抗体などの温度測定手段を設置して温度測定点6が設けられている。
ヒータ5は1つの温度信号に基づいて制御されるものであるが、本発明においては複数の温度測定点6からの複数の温度信号7を比較演算する演算器10を設け、複数の温度信号7の中で最も低い温度を温度制御手段8への温度信号7′とする。ただし、複数の温度信号7の中で最も高い温度が予め設定した保温許容範囲の上限値に達した場合にはその信号値を優先的に採用し、温度制御手段8への温度信号7′とする。そして、複数の温度信号7の中で最も低い温度が保温許容範囲の下限値に達した時点でヒータ5への通電を開始するか通電量を増やして加熱保温力を増加させ、保温許容範囲の上限値に達したらヒータ5への通電を停止するか通電量を減少させて加熱保温力を低下させる。これによって供給配管の全域においてガス温度の精密な制御が可能となり最高温度及び最低温度を保証することができ、原料ガスの液化や固化、装置の損傷などを防止することができる。なお、全ての測定温度が保温許容範囲内にある場合には予め設定した一定の通電量としておけばよい。この場合、最も低い温度が制御対象である温度信号7′として選択される。
【0011】
複数の温度信号の平均値を求めて、その平均値でヒータの加熱保温力を制御してもよい。複数の温度信号を平均化することで測定値のS/N比を向上させることができる。複数の温度信号の最も低い温度が予め設定した保温許容範囲の下限値を下回らない限り、平均温度によりヒータの加熱保温力を制御すれば、測定値の雑音成分の影響が少なく、安定した温度制御が可能である。
各測定点の温度信号を平均化するときに、重み付けを行ってもよい。その場合、より精度の高い雑音の少ない測定値を得ることが可能となる。例えば、配管の下流側ほど配管の温度を高くする場合は、配管の下流側の測定点の温度信号の重みを増すように重み付けする。あるいは、特に温度制御を細かく行う部分の則定点の重みを増すように重み付けする。
平均温度でヒータの加熱保温力を制御する場合も、複数の温度信号の最も低い温度のモニタを行い、もし、前記最も低い温度が保温許容範囲の下限値を下回ったときは、直ちにヒータの加熱保温力を増加させ、供給配管の最低温度を下限値以上とする。同様に、複数の温度信号の最も高い温度のモニタを行い、もし、前記最も高い温度が保温許容範囲の上限値を上回ったときは、直ちにヒータの加熱を中断し、供給配管の最高温度を上限値以下とする。
【0012】
許容保温温度範囲は原料の種類によって異なり、原料ガスの温度を例えば原料がSiClの場合には80℃以上、GeClの場合には105℃以上、POClは120℃以上に保持することが必要である。本発明の主目的は配管内における原料ガスの液化や固化を防止することにあり、特に低温側を厳密に管理する(最低温度を保証する)必要があるが、許容温度範囲の上限値は設備の構成や材質等により適宜定めればよい。例えば、温度を6℃の幅で管理する場合、下側は1℃、上側は5℃、即ち基準温度から−1〜+5℃の範囲で制御するような形が望ましい。
なお、本発明において、供給配管4を加熱保温する手段が複数のブロックに分割されている場合には、各ブロック毎に複数の温度測定点を設けてそれぞれのブロックの温度を制御するようにすればよい。
温度測定手段が供給配管の外壁に設置されている場合、測定温度と配管内の原料ガスの温度との間にずれがある場合があるので、予めその温度差を見込んだ許容温度範囲を設定するのが望ましい。
【0013】
供給配管4を加熱保温する手段としてはヒータを巻いて、その上に保温材を巻く方法、温度調節された温調ブースで囲む方法、配管自体を通電材料で形成し、保温材を巻いた配管に通電する方法などがあり、通常は複数設けた温度測定点での温度のいずれかが許容保温温度範囲を外れた場合に加熱保温手段への出力の調整を行えばよいが、加熱保温手段を複数、好ましくは温度測定点の数に合わせて分割しておき、各温度測定点での温度に応じて個別に制御するようにすれば、より精密な制御が可能である。
【0014】
図2は本発明の方法を実施するための装置構成の他の1例を模式的に示す説明図である。図2の構成において図1と異なる点は、供給配管4を加熱保温する手段をヒータ5ではなく、通電部材で構成され保温材11が巻かれた供給配管4に通電回路12を接続し、配管自体を発熱させて加熱する方式とした点である。
この例においても、演算装置10により複数の温度測定点6からの複数の温度信号7の中から許容温度範囲を外れた信号を優先的に選んで温度信号7′とし、温度制御手段8を制御することにより、供給配管の全域においてガス温度の精密な制御が可能となり、最高温度及び最低温度を保証することができ、原料ガスの液化や固化、装置の損傷を防止することができる。
【0015】
図3は本発明の方法を実施するための装置構成の他の1例を模式的に示す説明図である。図3の構成において1はSiCl等の原料を気化させる原料ガス供給部、3はガラス微粒子を合成してガラス微粒子堆積体を製造するガラス微粒子合成用バーナ2を備えた反応容器からなるガラス微粒子合成部、4は原料供給部1からガラス微粒子合成部3へ原料ガスを供給する供給配管、5は供給配管を加熱保温する手段としてのヒータ、13は供給配管4の内部に設けられた温度測定点、8は温度測定点13からの温度信号7を受けてヒータ5への出力信号9を制御する温度制御手段である。
供給配管4はステンレス鋼などで構成されており、ヒータ5とその外側に保温材(図示省略)が設置されて加熱保温されている。ヒータ5は温度測定点13からの温度信号7を受けた温度制御手段8の出力信号9によって制御されている。
この例では温度測定点13は供給配管4の内側に設置され、配管内の原料ガスの温度を直接測定できるように構成されている。これによって正確なガスの測定することができるので、原料ガス温度のより精密な制御が可能となり、配管中における原料ガスの液化や固化を防止することができる。
【0016】
図3の温度測定点13の近傍の拡大図の1例を図4(a)に示す。図4(a)の例では温度測定手段である熱電対14を供給配管4の外壁を貫通して挿入し、供給配管4内のガス中に温度測定点13が形成されるようになっている。
配管内に挿入する温度測定手段としては熱電対が一般的である。熱電対を配管内に挿入する場合には、極力ガスの流れが乱されて温度異常点が発生しないようにする必要があるので、管内の流れに淀みが発生しないように極力小さい熱電対を選定するのが好ましい。また、熱は外側から供給されるので温度測定点13は温度の低い管の中心位置に設定する。図4(b)のようにL字型に形成された熱電対を使用し、温度測定点13が配管4の中心部に位置するように設置してもよい。
また、SiClなどの原料ガスは腐食性が強いため、熱電対としては耐腐食性材料を被覆した熱電対(例えばSUSシース熱電対)を使用し、配管内に挿入して溶接し、溶接部15を形成させて密封するのが好ましい。
【0017】
本発明の方法を実施する装置構成の好ましい例としては、図1及び図2に示した構成の温度測定点6を形成する温度測定手段として図3及び図4に示したものを使用し、供給配管の中心部に温度測定点を形成する構成が挙げられる。
以上、ガラス原料ガスをガラス微粒子合成用バーナを備えたガラス微粒子合成部に供給する構成を主体に説明したが、本発明はガラス原料ガスをガラス管内に供給して加熱しガラス微粒子を合成する形式のガラス微粒子合成部に原料ガスを供給する構成にも適用でき、同様の効果を奏することはもちろんである。
【0018】
【発明の効果】
本発明の方法及び装置によれば、原料ガス供給部とガラス微粒子合成部とを接続する供給配管内の原料ガスの温度を精密に制御し、配管内における原料ガスの液化や固化、装置の損傷を防止することができ、ガラス微粒子合成部への原料の安定供給が可能となる。
【図面の簡単な説明】
【図1】本発明の方法を実施するための装置構成の1例を模式的に示す説明図。
【図2】本発明の方法を実施するための装置構成の他の1例を模式的に示す説明図。
【図3】本発明の方法を実施するための装置構成の他の1例を模式的に示す説明図。
【図4】図3の温度測定点13の近傍の拡大図の1例を示す説明図。
【図5】従来技術による装置構成の1例を模式的に示す説明図。
【図6】従来技術における熱電対の設置方式を示す説明図。
【符号の説明】
1 原料ガス供給部 2 ガラス微粒子合成用バーナ
3 ガラス微粒子合成部 4 供給配管 5 ヒータ
6 温度測定点 7 温度信号 8 温度制御手段
9 出力信号 10 演算器 11 保温材 12 通電回路
13 温度測定点 14 熱電対 15 溶接部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a glass fine particle deposit body in which glass fine particles are synthesized from a glass raw material gas and deposited on a substrate and an apparatus therefor.
[0002]
[Prior art]
In the manufacturing process of a glass base material such as an optical fiber base material and a glass base material for a photomask, oxygen gas or There is a method in which a raw material gas such as SiCl 4 , GeCl 4 , or POCl 3 is supplied together with hydrogen gas to synthesize glass fine particles and deposit them on a substrate in a reaction vessel to produce a glass fine particle deposit.
As a method of synthesizing glass particles from source gas and depositing them on a substrate, a method of synthesizing glass particles by supplying source gas to a glass particle synthesis burner and depositing it on the periphery or tip of a glass rod (external method) , A method of attaching a shaft), or a method of supplying a raw material gas into a glass tube and heating it to deposit the generated glass fine particles on the inner wall of the glass tube (internal method).
In these methods, glass raw materials such as SiCl 4 , GeCl 4 , and POCl 3 are gasified by heating evaporation or sublimation in a raw material supply unit installed separately from the glass fine particle synthesis unit, and are made of stainless steel in the form of raw material gas. It is supplied to the glass fine particle synthesis section via the raw material gas supply pipe. This source gas supply pipe may be 10 m or longer depending on the equipment conditions, and it is necessary to heat and keep warm in order to prevent the source gas from condensing and liquefying. Specifically, it is necessary to keep SiCl 4 at 80 ° C. or higher, GeCl 4 at 105 ° C. or higher, and POCl 3 at 120 ° C. or higher.
[0003]
With respect to the method of supplying the raw material gas in the manufacturing technique of such a glass fine particle deposit, the liquid raw material is accurately discharged by a fixed amount by the fixed discharge means and supplied to the evaporation means side. An apparatus for instantly evaporating the raw material and supplying the raw material gas with high precision toward a single reaction unit connected to the evaporating means (see, for example, Patent Document 1). A method of controlling the energization amount based on any one or more of those temperature signals, for example, by forming a plurality of temperature detection means in the longitudinal direction of the piping so that the piping is directly energized and heated. And Patent Document 2) have been proposed.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-54130 (Page 2, lower left column, lines 13-18)
[Patent Document 2]
Japanese Patent Laid-Open No. 2003-81644
[Problems to be solved by the invention]
Conventionally, as a method for heating and keeping the temperature of the raw material gas supply pipe, as shown in FIG. 5, for example, a raw material gas supply unit 101 and a glass fine particle synthesis unit 103 comprising a reaction vessel in which a burner 102 for synthesizing glass fine particles is installed, Heating and heat retention means such as heating the tape heater 105 around the supply pipe 104 connected to the pipe and further heating it with a heat insulating material or placing it in a temperature control booth is provided. A temperature measuring means such as a pair is installed, and an output 109 to the heating and keeping means (heater 105 in the figure) is controlled by the temperature control means 108 based on the measured temperature (temperature signal 107) from the temperature measuring point 106. The temperature of the heating and heat retaining means is controlled. In this method, the temperature is usually measured at one place, and particularly when the piping is long, temperature unevenness occurs in the longitudinal direction, and the temperature of the source gas is partially reduced below the above required holding temperature. Condensation / liquefaction may occur, and in order to prevent this, there is a problem that it is difficult to set and manage measurement points.
[0006]
As a temperature measuring means, as shown in FIG. 6, there is a method of measuring the outer wall temperature of the pipe 104 or the temperature in the temperature control booth by contacting and fixing a temperature measuring device such as a thermocouple 110 to the outer wall of the supply pipe 104. It was taken. However, since this method does not directly measure the temperature of the gas in the pipe, there may be a difference between the measured temperature and the actual gas temperature, which may cause gas liquefaction or overheating in the pipe. there were.
The present invention solves such problems in the prior art and can precisely control the temperature of the raw material gas in the supply pipe to prevent liquefaction and solidification of the raw material gas, enabling stable operation over a long period of time. An object of the present invention is to provide a method for producing a glass particulate deposit and an apparatus therefor.
[0007]
[Means for Solving the Problems]
The present invention measures the temperature for controlling the heating and keeping means of the raw material gas supply pipe at a plurality of locations in the longitudinal direction of the supply pipe, the method of directly measuring the gas temperature in the pipe, or both. By solving this problem, the above-described problems have been solved, and the following configurations (1) to (6) are included.
(1) A raw material gas is supplied from a raw material gas supply unit to a glass fine particle synthesis unit via a supply pipe provided with a heat insulation means to synthesize glass fine particles, and is deposited on a substrate to form a glass fine particle deposit. In the manufacturing method, the temperature is measured by providing temperature measuring means at a plurality of locations in the longitudinal direction of the supply pipe, and the heating and heating means is heated when the temperature at any of the measurement points becomes the minimum temperature within the allowable temperature keeping range. Increase the heat retention power, control the heating heat retention means to reduce the heating heat retention power of the heating heat retention means when the temperature of any measurement point reaches the maximum temperature of the heat retention allowable range, the raw material in the supply pipe A method for producing a glass particulate deposit, characterized by precisely controlling a gas temperature.
(2) The raw material gas is supplied from the raw material gas supply part to the glass fine particle synthesis part via the supply pipe provided with the heat insulation means to synthesize the glass fine particles, and is deposited on the substrate to form the glass fine particle deposit. In the manufacturing method, a temperature measuring means is provided in the supply pipe to measure the temperature of the raw material gas, and the heating and warming means is controlled based on the measured temperature, thereby precisely controlling the temperature of the raw material gas in the supply pipe. A method for producing a glass particulate deposit, characterized by:
(3) The raw material gas is supplied from the raw material gas supply part to the glass fine particle synthesis part via the supply pipe provided with the heat insulation means to synthesize the glass fine particles, and is deposited on the substrate to form the glass fine particle deposit. In the manufacturing method, the temperature of the raw material gas is measured by providing temperature measuring means at a plurality of positions in the longitudinal direction in the supply pipe, and heating is performed when the temperature at any one of the measurement points becomes the lowest temperature within the allowable temperature retention range. The heating and holding means is controlled by increasing the heating and holding power of the heating and holding means so that the heating and holding power of the heating and holding means is reduced when the temperature at any of the measurement points reaches the maximum temperature within the allowable temperature range. A method for producing a glass particulate deposit, wherein the temperature of a raw material gas in a pipe is precisely controlled.
[0008]
(4) Connecting the raw material gas supply unit, a glass fine particle synthesis unit having means for synthesizing glass fine particles from the supplied raw material gas and depositing them on the substrate, and the raw material gas supply unit and the glass fine particle synthesis unit In the apparatus for producing a glass particulate deposit body provided with a raw material gas supply pipe and a heating and keeping means for heating and keeping the supply pipe, a temperature for measuring temperatures at a plurality of temperature measurement points in the longitudinal direction of the supply pipe A measuring device, a computing device that compares and calculates the temperature signal from each temperature measurement point and selects a temperature signal to be sent to the temperature control device, and the temperature at any measurement point is kept warm based on the temperature signal from the computing device Increase the heat insulation power of the heat insulation means when it reaches the minimum allowable temperature range, and decrease the heat insulation power of the heat insulation means when the temperature at any measurement point reaches the maximum allowable temperature range Apparatus for producing glass particles deposit, wherein a temperature control means for controlling the urchin heating heat insulating means is provided.
(5) Connecting the raw material gas supply unit, a glass fine particle synthesis unit having means for synthesizing glass fine particles from the supplied raw material gas and depositing them on the substrate, and the raw material gas supply unit and the glass fine particle synthesis unit In the apparatus for producing a glass particulate deposit comprising a source gas supply pipe for heating and a heat insulation means for heating and keeping the supply pipe, a temperature measuring means for measuring the temperature of the source gas provided in the supply pipe; And a temperature control means for controlling the heating and keeping means based on the measured temperature of the temperature measuring means.
(6) Connecting the raw material gas supply unit, a glass fine particle synthesis unit having means for synthesizing glass fine particles from the supplied raw material gas and depositing them on the substrate, and the raw material gas supply unit and the glass fine particle synthesis unit A raw material for temperature measurement points provided at a plurality of positions in the longitudinal direction in the supply pipe in the apparatus for producing a glass fine particle deposit comprising a supply pipe for source gas to be heated and a heating and keeping means for heating and keeping the supply pipe A temperature measuring means for measuring the temperature of the gas, an arithmetic device for comparing and calculating the temperature signal from each temperature measurement point, and selecting a temperature signal to be sent to the temperature control means, either based on the temperature signal from the arithmetic device When the temperature at the measurement point reaches the lowest temperature within the allowable temperature range, the heating and thermal insulation power of the thermal insulation means is increased. When the temperature at any measurement point reaches the maximum temperature within the allowable temperature range, the thermal insulation means of Apparatus for producing glass particles deposit, wherein a temperature control means for controlling the heating insulation means to reduce heat extra insulation is provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory view schematically showing an example of an apparatus configuration for carrying out the method of the present invention. In the configuration of FIG. 1, 1 is a raw material gas supply unit for vaporizing a raw material such as SiCl 4 by evaporation or sublimation, and 3 is a reaction vessel equipped with a glass fine particle synthesis burner 2 for synthesizing glass fine particles to produce a glass fine particle deposit. 4 is a supply pipe for supplying a raw material gas from the raw material supply unit 1 to the glass fine particle synthesis unit 3, 5 is a heater as a means for heating and keeping the supply pipe, and 6 is a longitudinal direction of the supply pipe 4. Temperature measurement points provided at a plurality of locations, 7 is a temperature signal from each measurement point, 8 is a temperature control means for receiving a temperature signal 7 'and controlling an output signal 9 to the heater 5, and 10 is a plurality of temperature signals 7 Is a calculation device for selecting the temperature signal 7 'to be sent to the temperature control means.
[0010]
The supply pipe 4 is made of stainless steel or the like, and a heat insulating material (not shown) is installed on the outside of the heater 5 and heat-insulated. The supply pipe 4 is provided with temperature measurement points 6 by installing temperature measurement means such as thermocouples or resistance temperature detectors at a plurality of locations in the longitudinal direction (six locations in the figure).
The heater 5 is controlled on the basis of one temperature signal. In the present invention, an arithmetic unit 10 that compares and calculates a plurality of temperature signals 7 from a plurality of temperature measurement points 6 is provided. Is the temperature signal 7 ′ to the temperature control means 8. However, when the highest temperature among the plurality of temperature signals 7 reaches the upper limit value of the preset allowable temperature range, the signal value is preferentially adopted, and the temperature signal 7 'to the temperature control means 8 is used. To do. Then, when the lowest temperature among the plurality of temperature signals 7 reaches the lower limit value of the allowable temperature retention range, energization to the heater 5 is started or the amount of energization is increased to increase the heat insulation power, When the upper limit value is reached, the energization to the heater 5 is stopped or the energization amount is decreased to reduce the heat insulation capacity. As a result, the gas temperature can be precisely controlled in the entire area of the supply pipe, the maximum temperature and the minimum temperature can be guaranteed, and the liquefaction and solidification of the raw material gas, damage to the apparatus, and the like can be prevented. In addition, what is necessary is just to set it as the fixed energization amount set beforehand, when all measured temperature is in the heat retention allowable range. In this case, the lowest temperature is selected as the temperature signal 7 ′ to be controlled.
[0011]
An average value of a plurality of temperature signals may be obtained, and the heat insulation power of the heater may be controlled by the average value. The S / N ratio of the measured value can be improved by averaging a plurality of temperature signals. As long as the lowest temperature of multiple temperature signals does not fall below the lower limit of the preset allowable temperature range, controlling the heater's heating and insulation power based on the average temperature reduces the influence of noise components on the measured value and ensures stable temperature control. Is possible.
Weighting may be performed when the temperature signal at each measurement point is averaged. In that case, it is possible to obtain a more accurate measurement value with less noise. For example, when the temperature of the pipe is increased toward the downstream side of the pipe, weighting is performed so as to increase the weight of the temperature signal at the measurement point on the downstream side of the pipe. Alternatively, weighting is performed so as to increase the weight of the law fixed point particularly in the portion where the temperature control is finely performed.
When controlling the heating and holding power of the heater at the average temperature, the lowest temperature of the plurality of temperature signals is monitored, and if the lowest temperature falls below the lower limit of the allowable temperature holding range, the heating of the heater is immediately performed. Increase the heat retention capacity, and make the minimum temperature of the supply piping above the lower limit. Similarly, the highest temperature of a plurality of temperature signals is monitored, and if the highest temperature exceeds the upper limit of the allowable temperature retention range, the heating of the heater is immediately interrupted and the maximum temperature of the supply pipe is increased to the upper limit. Below the value.
[0012]
The permissible temperature range varies depending on the type of raw material, and the temperature of the raw material gas can be maintained at, for example, 80 ° C. or higher when the raw material is SiCl 4 , 105 ° C. or higher when GeCl 4 is used, and POCl 3 at 120 ° C. or higher. is necessary. The main object of the present invention is to prevent liquefaction and solidification of the raw material gas in the pipe, and it is particularly necessary to strictly control the low temperature side (guarante the minimum temperature), but the upper limit of the allowable temperature range is the equipment What is necessary is just to determine suitably by the structure of this, material, etc. For example, when the temperature is controlled in a range of 6 ° C., the lower side is 1 ° C. and the upper side is 5 ° C., that is, the shape is controlled in the range of −1 to + 5 ° C. from the reference temperature.
In the present invention, when the means for heating and keeping the supply pipe 4 is divided into a plurality of blocks, a plurality of temperature measurement points are provided for each block to control the temperature of each block. That's fine.
If the temperature measuring means is installed on the outer wall of the supply pipe, there may be a difference between the measured temperature and the temperature of the raw material gas in the pipe. Set an allowable temperature range that allows for the temperature difference in advance. Is desirable.
[0013]
As a means for heating and keeping the supply pipe 4 heated, a heater is wound and a heat insulating material is wound thereon, a temperature control booth is surrounded by a temperature control booth, and the pipe itself is formed of a current-carrying material, and the heat insulating material is wound around the pipe In general, it is sufficient to adjust the output to the heating and warming means when any of the temperatures at a plurality of temperature measurement points is outside the allowable warming temperature range. More precise control is possible by dividing the number according to the number of temperature measurement points, preferably according to the number of temperature measurement points, and controlling individually according to the temperature at each temperature measurement point.
[0014]
FIG. 2 is an explanatory view schematically showing another example of the apparatus configuration for carrying out the method of the present invention. 2 is different from FIG. 1 in that the means for heating and keeping the supply pipe 4 is not the heater 5, but the supply circuit 4 is connected to the supply pipe 4 which is made of a current-carrying member and is wrapped with the heat insulating material 11, and is connected to the pipe. The point is that the system itself is heated to generate heat.
Also in this example, a signal out of the allowable temperature range is preferentially selected from the plurality of temperature signals 7 from the plurality of temperature measurement points 6 by the arithmetic device 10 and is used as the temperature signal 7 'to control the temperature control means 8. This makes it possible to precisely control the gas temperature over the entire area of the supply pipe, guarantee the maximum and minimum temperatures, and prevent liquefaction and solidification of the raw material gas and damage to the apparatus.
[0015]
FIG. 3 is an explanatory view schematically showing another example of an apparatus configuration for carrying out the method of the present invention. 3, 1 is a raw material gas supply unit for vaporizing a raw material such as SiCl 4 , 3 is a glass fine particle comprising a reaction vessel equipped with a glass fine particle synthesis burner 2 for synthesizing glass fine particles to produce a glass fine particle deposit. The synthesizing unit 4 is a supply pipe for supplying the raw material gas from the raw material supply unit 1 to the glass particle synthesizing unit 3, 5 is a heater as a means for heating and keeping the supply pipe, and 13 is a temperature measurement provided in the supply pipe 4. Points 8 are temperature control means for receiving the temperature signal 7 from the temperature measurement point 13 and controlling the output signal 9 to the heater 5.
The supply pipe 4 is made of stainless steel or the like, and a heat insulating material (not shown) is installed on the outside of the heater 5 and heat-insulated. The heater 5 is controlled by the output signal 9 of the temperature control means 8 that has received the temperature signal 7 from the temperature measurement point 13.
In this example, the temperature measurement point 13 is installed inside the supply pipe 4, and is configured so that the temperature of the raw material gas in the pipe can be directly measured. This makes it possible to accurately measure the gas, so that the source gas temperature can be controlled more precisely, and liquefaction and solidification of the source gas in the pipe can be prevented.
[0016]
An example of an enlarged view near the temperature measurement point 13 in FIG. 3 is shown in FIG. In the example of FIG. 4A, a thermocouple 14 as temperature measuring means is inserted through the outer wall of the supply pipe 4 so that a temperature measurement point 13 is formed in the gas in the supply pipe 4. .
A thermocouple is generally used as a temperature measuring means inserted into the pipe. When inserting a thermocouple into the pipe, it is necessary to prevent the gas flow from being disturbed as much as possible to prevent temperature abnormalities, so select a thermocouple that is as small as possible so that no stagnation occurs in the pipe flow. It is preferable to do this. Further, since heat is supplied from the outside, the temperature measuring point 13 is set at the center position of the low temperature tube. A thermocouple formed in an L shape as shown in FIG. 4 (b) may be used so that the temperature measurement point 13 is located at the center of the pipe 4.
Moreover, since the raw material gas such as SiCl 4 is highly corrosive, a thermocouple (for example, SUS sheath thermocouple) coated with a corrosion-resistant material is used as the thermocouple, and it is inserted into the pipe and welded. 15 is preferably formed and sealed.
[0017]
As a preferred example of the apparatus configuration for carrying out the method of the present invention, the temperature measuring means shown in FIGS. 3 and 4 is used as the temperature measuring means for forming the temperature measuring point 6 having the configuration shown in FIGS. The structure which forms a temperature measurement point in the center part of piping is mentioned.
As described above, the description has mainly focused on the configuration in which the glass raw material gas is supplied to the glass fine particle synthesizing unit equipped with the glass fine particle synthesizing burner, but the present invention is a method for synthesizing the glass fine particles by supplying the glass raw material gas into the glass tube and heating it. Of course, the present invention can be applied to a configuration in which the raw material gas is supplied to the glass fine particle synthesis portion, and the same effect can be obtained.
[0018]
【The invention's effect】
According to the method and apparatus of the present invention, the temperature of the source gas in the supply pipe connecting the source gas supply unit and the glass fine particle synthesis unit is precisely controlled, and the liquefaction and solidification of the source gas in the pipe is damaged. Therefore, it is possible to stably supply the raw material to the glass fine particle synthesis section.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing an example of an apparatus configuration for carrying out the method of the present invention.
FIG. 2 is an explanatory view schematically showing another example of a device configuration for carrying out the method of the present invention.
FIG. 3 is an explanatory view schematically showing another example of a device configuration for carrying out the method of the present invention.
4 is an explanatory diagram showing an example of an enlarged view in the vicinity of a temperature measurement point 13 in FIG. 3;
FIG. 5 is an explanatory diagram schematically showing an example of a device configuration according to the prior art.
FIG. 6 is an explanatory diagram showing a thermocouple installation method in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw material gas supply part 2 Glass fine particle synthesis burner 3 Glass fine particle synthesis part 4 Supply piping 5 Heater 6 Temperature measurement point 7 Temperature signal 8 Temperature control means 9 Output signal 10 Calculator 11 Heat insulating material 12 Current supply circuit 13 Temperature measurement point 14 Thermoelectric 15 welds

Claims (6)

原料ガス供給部から加熱保温手段が設けられた供給配管を経由して原料ガスをガラス微粒子合成部へ供給してガラス微粒子を合成し、基材上に堆積させてガラス微粒子堆積体を製造する方法において、前記供給配管の長手方向の複数箇所に温度測定手段を設けて温度を測定し、いずれかの測定点の温度が保温許容範囲の最低温度となったときに加熱保温手段の加熱保温力を増加させ、いずれかの測定点の温度が保温許容範囲の最高温度となったときに加熱保温手段の加熱保温力を低下させるように加熱保温手段を制御し、前記供給配管内の原料ガスの温度を精密に制御することを特徴とするガラス微粒子堆積体の製造方法。A method of producing a glass particulate deposit by synthesizing glass particulates by supplying a raw material gas to a glass particulate synthesizing section from a source gas supply section via a supply pipe provided with a heating and heat retaining means. In the above, the temperature is measured by providing temperature measuring means at a plurality of locations in the longitudinal direction of the supply pipe, and when the temperature at any of the measurement points becomes the lowest temperature within the allowable temperature keeping range, Increase the temperature of any of the measurement points, and control the heating and heating means so as to reduce the heating and holding power of the heating and holding means when the temperature reaches the maximum allowable temperature range, and the temperature of the raw material gas in the supply pipe A method for producing a glass particulate deposit, characterized by precisely controlling the temperature. 原料ガス供給部から加熱保温手段が設けられた供給配管を経由して原料ガスをガラス微粒子合成部へ供給してガラス微粒子を合成し、基材上に堆積させてガラス微粒子堆積体を製造する方法において、前記供給配管内に温度測定手段を設けて原料ガスの温度を測定し、その測定温度に基づいて加熱保温手段を制御し、前記供給配管内の原料ガスの温度を精密に制御することを特徴とするガラス微粒子堆積体の製造方法。A method of producing a glass particulate deposit by synthesizing glass particulates by supplying a raw material gas to a glass particulate synthesizing section from a source gas supply section via a supply pipe provided with a heating and heat retaining means. A temperature measuring means is provided in the supply pipe to measure the temperature of the raw material gas, and the heating and heat retaining means is controlled based on the measured temperature to precisely control the temperature of the raw material gas in the supply pipe. A method for producing a glass particulate deposit characterized by the above. 原料ガス供給部から加熱保温手段が設けられた供給配管を経由して原料ガスをガラス微粒子合成部へ供給してガラス微粒子を合成し、基材上に堆積させてガラス微粒子堆積体を製造する方法において、前記供給配管内の長手方向の複数箇所に温度測定手段を設けて原料ガスの温度を測定し、いずれかの測定点の温度が保温許容範囲の最低温度となったときに加熱保温手段の加熱保温力を増加させ、いずれかの測定点の温度が保温許容範囲の最高温度となったときに加熱保温手段の加熱保温力を低下させるように加熱保温手段を制御し、前記供給配管内の原料ガスの温度を精密に制御することを特徴とするガラス微粒子堆積体の製造方法。A method of producing a glass particulate deposit by synthesizing glass particulates by supplying a raw material gas to a glass particulate synthesizing section from a source gas supply section via a supply pipe provided with a heating and heat retaining means. The temperature of the raw material gas is measured by providing temperature measuring means at a plurality of locations in the longitudinal direction in the supply pipe, and when the temperature at any of the measurement points becomes the lowest temperature within the allowable temperature keeping range, The heating and heat retention means are controlled so as to decrease the heating and heat retention power of the heating and heat retaining means when the temperature at any of the measurement points reaches the maximum temperature within the allowable temperature range. A method for producing a glass particulate deposit, wherein the temperature of a source gas is precisely controlled. 原料ガス供給部と、供給される原料ガスからガラス微粒子を合成して基材上に堆積させる手段を備えたガラス微粒子合成部と、前記原料ガス供給部とガラス微粒子合成部とを接続する原料ガスの供給配管と、該供給配管を加熱保温する加熱保温手段とを備えたガラス微粒子堆積体の製造装置において、前記供給配管の長手方向の複数箇所の温度測定点の温度を測定する温度測定手段と、各温度測定点からの温度信号を比較演算して温度制御手段へ送る温度信号を選択する演算装置と、該演算装置からの温度信号に基づいていずれかの測定点の温度が保温許容範囲の最低温度となったときに加熱保温手段の加熱保温力を増加させ、いずれかの測定点の温度が保温許容範囲の最高温度となったときに加熱保温手段の加熱保温力を低下させるように加熱保温手段を制御する温度制御手段とが設けられていることを特徴とするガラス微粒子堆積体の製造装置。A raw material gas supply unit, a glass fine particle synthesis unit comprising means for synthesizing glass fine particles from a supplied raw material gas and depositing them on a substrate, and a raw material gas connecting the raw material gas supply unit and the glass fine particle synthesis unit In the apparatus for producing a glass fine particle deposit body provided with a supply pipe and a heating and keeping means for heating and keeping the supply pipe, a temperature measuring means for measuring temperatures at a plurality of temperature measurement points in the longitudinal direction of the supply pipe; An arithmetic device that compares and calculates the temperature signal from each temperature measurement point and selects a temperature signal to be sent to the temperature control means, and the temperature at any of the measurement points is within the allowable temperature retention range based on the temperature signal from the arithmetic device. Increase the heat insulation power of the heat insulation means when it reaches the minimum temperature, and decrease the heat insulation power of the heat insulation means when the temperature at any measurement point reaches the maximum temperature within the allowable temperature range Apparatus for producing glass particles deposit, wherein a temperature control means for controlling the thermal insulation means. 原料ガス供給部と、供給される原料ガスからガラス微粒子を合成して基材上に堆積させる手段を備えたガラス微粒子合成部と、前記原料ガス供給部とガラス微粒子合成部とを接続する原料ガスの供給配管と、該供給配管を加熱保温する加熱保温手段とを備えたガラス微粒子堆積体の製造装置において、前記供給配管内に設けられた原料ガスの温度を測定する温度測定手段と、該温度測定手段の測定温度に基づいて加熱保温手段を制御する温度制御手段とが設けられていることを特徴とするガラス微粒子堆積体の製造装置。A raw material gas supply unit, a glass fine particle synthesis unit comprising means for synthesizing glass fine particles from a supplied raw material gas and depositing them on a substrate, and a raw material gas connecting the raw material gas supply unit and the glass fine particle synthesis unit In the apparatus for producing a glass particulate deposit comprising a supply pipe and a heating and keeping means for heating and keeping the supply pipe, a temperature measuring means for measuring the temperature of the raw material gas provided in the supply pipe, and the temperature An apparatus for producing a glass particulate deposit, comprising temperature control means for controlling the heating and heat retaining means based on the measurement temperature of the measuring means. 原料ガス供給部と、供給される原料ガスからガラス微粒子を合成して基材上に堆積させる手段を備えたガラス微粒子合成部と、前記原料ガス供給部とガラス微粒子合成部とを接続する原料ガスの供給配管と、該供給配管を加熱保温する加熱保温手段とを備えたガラス微粒子堆積体の製造装置において、前記供給配管内の長手方向の複数箇所に設けられた温度測定点の原料ガスの温度を測定する温度測定手段と、各温度測定点からの温度信号を比較演算して温度制御手段へ送る温度信号を選択する演算装置と、該演算装置からの温度信号に基づいていずれかの測定点の温度が保温許容範囲の最低温度となったときに加熱保温手段の加熱保温力を増加させ、いずれかの測定点の温度が保温許容範囲の最高温度となったときに加熱保温手段の加熱保温力を低下させるように加熱保温手段を制御する温度制御手段とが設けられていることを特徴とするガラス微粒子堆積体の製造装置。A raw material gas supply unit, a glass fine particle synthesis unit comprising means for synthesizing glass fine particles from a supplied raw material gas and depositing them on a substrate, and a raw material gas connecting the raw material gas supply unit and the glass fine particle synthesis unit In the apparatus for producing a glass particulate deposit provided with a supply pipe and a heating and heat retaining means for heating and keeping the supply pipe, the temperature of the raw material gas at the temperature measurement points provided at a plurality of positions in the longitudinal direction in the supply pipe A temperature measurement means for measuring the temperature, a calculation device for comparing and calculating the temperature signal from each temperature measurement point and selecting a temperature signal to be sent to the temperature control means, and any one of the measurement points based on the temperature signal from the calculation device When the temperature of the temperature reaches the lowest temperature within the allowable temperature range, the heating and thermal insulation power of the thermal insulation means is increased, and when the temperature at any measurement point reaches the maximum temperature within the allowable temperature range, Apparatus for producing glass particles deposit, wherein a temperature control means for controlling the heating insulation means to reduce the force is provided.
JP2003170684A 2003-06-16 2003-06-16 Method and apparatus for producing glass particulate deposit Pending JP2005008901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003170684A JP2005008901A (en) 2003-06-16 2003-06-16 Method and apparatus for producing glass particulate deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003170684A JP2005008901A (en) 2003-06-16 2003-06-16 Method and apparatus for producing glass particulate deposit

Publications (1)

Publication Number Publication Date
JP2005008901A true JP2005008901A (en) 2005-01-13

Family

ID=34095417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003170684A Pending JP2005008901A (en) 2003-06-16 2003-06-16 Method and apparatus for producing glass particulate deposit

Country Status (1)

Country Link
JP (1) JP2005008901A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329057A (en) * 2006-06-09 2007-12-20 Mitsubishi Electric Corp Cooking device
WO2012008406A1 (en) * 2010-07-15 2012-01-19 住友電気工業株式会社 Method for producing deposit of fine glass particles, and method for producing glass body
WO2013176048A1 (en) * 2012-05-25 2013-11-28 旭硝子株式会社 Method for feeding raw material and device for feeding raw material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329057A (en) * 2006-06-09 2007-12-20 Mitsubishi Electric Corp Cooking device
WO2012008406A1 (en) * 2010-07-15 2012-01-19 住友電気工業株式会社 Method for producing deposit of fine glass particles, and method for producing glass body
JP2012020905A (en) * 2010-07-15 2012-02-02 Sumitomo Electric Ind Ltd Method for producing deposit of fine glass particles and method for producing glass body
WO2013176048A1 (en) * 2012-05-25 2013-11-28 旭硝子株式会社 Method for feeding raw material and device for feeding raw material

Similar Documents

Publication Publication Date Title
CN106104222B (en) Thermal mass flow meter and the mass flow control appts for using the thermal mass flow meter
EP2113752B1 (en) Thermal type flow meter
JP2008008793A (en) Thermophysical property measuring method and measuring device of high-temperature melt conductive material
JP2005008901A (en) Method and apparatus for producing glass particulate deposit
JP2007225612A (en) Level sensor, its operation method, its manufacturing method, and its usage
CN107557528B (en) A kind of molten steel temperature regulation method and device thereof
CN107340081A (en) Liquid-propellant rocket engine short thermoelectric couple steady state calibration device
CN111273711A (en) Large-caliber high-temperature infrared surface source black body device with double-zone temperature control
CN206920025U (en) A kind of device of on-line real time monitoring molten steel temperature
Dong et al. On the freezing and melting behavior of the eutectic Pt–C
WO2022059513A1 (en) Temperature sensor, and mass flow rate meter and mass flow rate control device that comprise temperature sensor
JPH01267426A (en) Method and apparatus for temperature measurement of molten metal
JP2004069667A (en) Thermal mass flow meter for liquid
JP3744374B2 (en) Heating furnace temperature control method and apparatus
JP2004026596A (en) Fuel reformer
Brillo et al. Thermophysical properties and thermal simulation of Bridgman crystal growth process of Ni–Mn–Ga magnetic shape memory alloys
KR100559440B1 (en) A measurement system and method of fuel gas flowrates in a duct
RU1771872C (en) Device for measurement of hot metal surface heat state
JPH0238932A (en) Continuous temperature measuring method for molten metal
JP4631236B2 (en) Raw material supply method in glass base material manufacturing process
CN106735158A (en) A kind of crystallizer invasive nozzle and its application method
CN207850558U (en) A kind of probe for detecting fused-salt bath fused electrolyte temperature parameter
CN116575124A (en) Growing furnace for indium phosphide production
RU2164008C2 (en) Device measuring gas flow rate
RU1771873C (en) Method for measurement of hot metal surface heat state

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051014

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Effective date: 20070319

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Effective date: 20080424

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Effective date: 20090113

Free format text: JAPANESE INTERMEDIATE CODE: A02