JP2008008793A - Thermophysical property measuring method and measuring device of high-temperature melt conductive material - Google Patents

Thermophysical property measuring method and measuring device of high-temperature melt conductive material Download PDF

Info

Publication number
JP2008008793A
JP2008008793A JP2006180330A JP2006180330A JP2008008793A JP 2008008793 A JP2008008793 A JP 2008008793A JP 2006180330 A JP2006180330 A JP 2006180330A JP 2006180330 A JP2006180330 A JP 2006180330A JP 2008008793 A JP2008008793 A JP 2008008793A
Authority
JP
Japan
Prior art keywords
temperature
conductive material
laser
temperature melt
melt conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006180330A
Other languages
Japanese (ja)
Other versions
JP4857422B2 (en
Inventor
Hiroyuki Fukuyama
博之 福山
Hidekazu Obata
秀和 小畠
Satoshi Awaji
智 淡路
Takao Tsukada
隆夫 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Osaka University NUC
Osaka Prefecture University
Original Assignee
Tohoku University NUC
Osaka University NUC
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Osaka University NUC, Osaka Prefecture University filed Critical Tohoku University NUC
Priority to JP2006180330A priority Critical patent/JP4857422B2/en
Publication of JP2008008793A publication Critical patent/JP2008008793A/en
Application granted granted Critical
Publication of JP4857422B2 publication Critical patent/JP4857422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure directly and accurately a thermal conductivity κ and an emissivity ε of a high-temperature melt conductive material. <P>SOLUTION: In thermophysical property measurement using a high frequency coil having a space for fusing the high-temperature melt conductive material as a liquid drop at a center part and performing electromagnetic floating thereof, a laser heating means for applying heat energy from an upper part in a modulation mode, a means for applying a static magnetic field for suppressing rocking of the fused material and suppressing convection inside the material, and a means for measuring the temperature of the fused material from a lower part, a relation between an angular frequency of laser periodic heating acquired by measurement and a phase difference is fitted based on a nonlinear least-squares method by a numerical analysis result of a mathematical expression derived from an unsteady state heat conduction equation, to thereby acquire the thermal conductivity κ and the emissivity ε which are parameters. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属融体や半導体融体の高温融体導電材料の熱物性(半球全放射率・熱伝導率)の計測に関するものである。   The present invention relates to the measurement of thermal properties (hemispherical total emissivity and thermal conductivity) of high-temperature melt conductive materials such as metal melts and semiconductor melts.

シリコン単結晶などの結晶成長、タービンブレードなどに用いられる耐熱合金の鋳造、自動車や構造材料の溶接などの分野では、迅速さと精緻さが要求され、従来からの勘や経験による対応だけでは国際競争に対処できなくなってきている。特に、高品質を要求されるIT分野や航空宇宙分野においては、コンピュータシミュレーション解析による製品開発が必須になってきている。
このようなシミュレーション解析で用いる材料の融体(液体状態)及び結晶(固体状態)の高精度な熱物性値が産業界から強く要望されている。ところが、例えばシリコンの様な半導体材料やニッケル基合金の様な超高温耐熱材料が液体となっている状態(高温融体)は化学的に極めて活性で、その熱物性値は測定自体が困難であり、これまで用いられている熱物性値については、信頼に足る値が得られているとは言い難い。
In fields such as crystal growth of silicon single crystals, casting of heat-resistant alloys used for turbine blades, welding of automobiles and structural materials, etc., speed and precision are required, and international competition is based on conventional intuition and experience alone. It has become impossible to deal with. In particular, in the IT field and aerospace field where high quality is required, product development by computer simulation analysis has become essential.
There is a strong demand from the industry for highly accurate thermophysical values of the melt (liquid state) and crystals (solid state) of materials used in such simulation analysis. However, for example, a semiconductor material such as silicon or an ultra-high temperature heat resistant material such as a nickel-based alloy is in a liquid state (high temperature melt) is chemically extremely active, and its thermophysical value is difficult to measure. There is no reliable value for thermophysical values used so far.

従来の熱物性の測定について概略的に以下に記述する。物質が固体状態にある場合の熱物性値は比較的測定が容易である。例えば比熱に関しては、交流カロリメトリー法と呼ばれる方法で測定ができる。交流カロリメトリー法とは、試料に対して交流振動を伴う加熱を行い、温度応答の振幅(一定温度からの温度の変化量)によって測定する方法である。固体の比熱測定はこの方法で測定が可能であるが、溶融状態にある試料については、融液を保持する容器などへの熱伝導が起こるために、交流カロリメトリー法は適用できない。
そのため融体を対象とした比熱の測定には、溶けた試料を油などの間接媒体の中に滴下し、その間接媒体の温度上昇から求める方法が用いられている。この方法では、落下中の温度降下、間接媒体との反応、及びそれに起因する間接媒体のコンタミネーション、間接的な測定によることからの精度の低さが問題となっている。
The conventional measurement of thermophysical properties is schematically described below. The thermophysical value when the substance is in a solid state is relatively easy to measure. For example, the specific heat can be measured by a method called an alternating current calorimetry method. The AC calorimetry method is a method in which a sample is heated with AC vibration and measured by the amplitude of the temperature response (the amount of change in temperature from a certain temperature). The specific heat of a solid can be measured by this method. However, the AC calorimetry method cannot be applied to a sample in a molten state because heat conduction to a container holding the melt occurs.
Therefore, a method for obtaining a specific heat from a melt by dropping a melted sample into an indirect medium such as oil and determining the temperature of the indirect medium is used. In this method, there is a problem of low accuracy due to temperature drop during the fall, reaction with the indirect medium, contamination of the indirect medium resulting therefrom, and indirect measurement.

上記のような高温で溶融状態にある被測定物の熱物性値を正確に測定する目的で、各種の浮遊方法(電磁浮遊、静電浮遊、ガス浮遊、音波浮遊等)を用いて、試料を非接触に保持する技術を用いることが考えられている。試料を浮遊させることにより、熱物性値の測定を行う際に、試料を容器壁面からの汚染を防ぐことや、容器からの計測ノイズを除去することが期待される。ところが浮遊法を併用して行われたほとんどの熱物性測定において、精度ある実測値は存在していない。
例えば、シリコンの熱伝導率の測定では、上記方法では、シリコン融液に表面張力分布起因のマランゴニ対流や密度の不均一に起因する自然対流に加えて、電磁浮遊の場合には電磁力による非常に速度の速い対流が発生し真の熱伝導率は得られていない。
In order to accurately measure the thermophysical value of the object being measured at a high temperature as described above, various floating methods (electromagnetic floating, electrostatic floating, gas floating, sonic floating, etc.) It is considered to use a technique for keeping the contactless. By measuring the thermophysical value by suspending the sample, it is expected to prevent the sample from being contaminated from the wall surface of the container and to remove measurement noise from the container. However, in most thermophysical properties measurements that are carried out in combination with the floating method, there are no accurate measured values.
For example, in the measurement of the thermal conductivity of silicon, in the above method, in addition to Marangoni convection due to surface tension distribution and natural convection due to non-uniform density in the silicon melt, Fast convection occurs and true thermal conductivity is not obtained.

WunderlichとFecht(非特許文献1)は、電磁浮遊した高温融体に交流カロリメトリーを行い、定圧モル熱容量及び半球全放射率を測定する方法を確立し、過冷却領域まで含めたこれらの熱物性を測定している。彼らの方法によると、原理的には被測定試料の熱伝導率も測定できるが、通常は、液滴試料に密度差による自然対流及び表面張力差によるマランゴニ対流が存在するため、測定される熱伝導率はそれらの影響を受けた見掛けの値となり、真の熱伝導率は測定できない。非特許文献2、非特許文献3においては、静磁場中における電磁浮遊による融液試料の熱伝導率の測定を行っているが、温度分布の電磁撹拌による対流の影響を考慮していないことと、熱伝導率の算出の方法が不明である。   Wunderlich and Fecht (Non-Patent Document 1) established a method to measure constant-pressure molar heat capacity and hemispherical total emissivity by performing AC calorimetry on electromagnetically suspended high-temperature melts. Measuring. According to their method, in principle, the thermal conductivity of the sample to be measured can also be measured, but usually the droplet sample has natural convection due to density difference and Marangoni convection due to surface tension difference, so the measured heat Conductivity is an apparent value affected by them, and true thermal conductivity cannot be measured. In Non-Patent Document 2 and Non-Patent Document 3, the thermal conductivity of the melt sample is measured by electromagnetic levitation in a static magnetic field, but the influence of convection due to electromagnetic stirring of the temperature distribution is not considered. The method of calculating thermal conductivity is unknown.

また熱伝導率の測定の従来の技術としては、棒状の試料の一端を加熱して、加熱点から離れた点において、熱伝導による温度上昇を測定する方法が一般的である。融体の熱伝導率の測定は、融液を保持する容器などへの熱拡散が起こるために難しいことは、比熱の測定と同様である。
前述のように融体を浮遊させた状態にして熱伝導率を測定する方法も考えられるが、比熱の測定と同様に、種々の対流を抑制する手段が講じられねばならない。例えば、密度差に起因する自然対流を抑制するためには、ロケットや落下塔のような微小重力環境の利用が考えられる。しかしながら、現在、十分な実験時間を確保できる微小重力環境下で実験する機会はほとんどない。
In addition, as a conventional technique for measuring thermal conductivity, a method of heating one end of a rod-shaped sample and measuring a temperature rise due to thermal conduction at a point away from the heating point is common. The measurement of the thermal conductivity of the melt is difficult because the thermal diffusion to the container or the like holding the melt occurs, similar to the specific heat measurement.
As described above, a method of measuring the thermal conductivity in a state where the melt is suspended is also conceivable. However, as with the specific heat measurement, various means for suppressing convection must be taken. For example, in order to suppress the natural convection due to the density difference, it is conceivable to use a microgravity environment such as a rocket or a fall tower. However, there are currently few opportunities to conduct experiments in a microgravity environment that can ensure sufficient experiment time.

レーザーによる瞬間的な試料加熱に対応する温度変化から熱拡散率を測定して、熱伝導率を導出する方法がある(レーザーフラッシュ法)。熱伝導率と熱拡散率の関係式は以下のように表され、この式から熱伝導率が導出される。
κ= cp a ρ
ここで、κ:熱伝導率(W m-1K-1)、a:熱拡散率 (m2s-1)、cp:質量熱容量 (J kg-1K-1)、ρ:密度 (kg m-3)である。この方法は測定時間が短いため対流が発生する前に測定を終えることができると言われている。しかしながら、上記のように熱伝導率に換算する場合には、他で測定された熱容量や密度のデータを必要とする(非特許文献4)。
非定常熱線法は、直接熱伝導率を求めることができる。測定原理は、試料中に設置した加熱細線に定電流を流し、加熱細線の温度上昇の時間変化から熱伝導率を決定するものである。しかしながら、非定常熱線法を金属融体に適用する場合には、細線に絶縁皮膜を施さねばならず、その絶縁皮膜の影響を評価しなければならない(非特許文献5)。
There is a method of deriving thermal conductivity by measuring thermal diffusivity from temperature change corresponding to instantaneous sample heating by laser (laser flash method). The relational expression between the thermal conductivity and the thermal diffusivity is expressed as follows, and the thermal conductivity is derived from this formula.
κ = c p a ρ
Where κ: thermal conductivity (W m −1 K −1 ), a: thermal diffusivity (m 2 s −1 ), c p : mass heat capacity (J kg −1 K −1 ), ρ: density ( kg m -3 ). Since this method has a short measurement time, it is said that the measurement can be completed before convection occurs. However, when converting into heat conductivity as mentioned above, the data of the heat capacity and density measured by others are required (nonpatent literature 4).
The unsteady hot wire method can directly determine the thermal conductivity. The measurement principle is that a constant current is passed through a heating wire installed in the sample, and the thermal conductivity is determined from the change over time of the temperature rise of the heating wire. However, when the unsteady hot wire method is applied to a metal melt, an insulating film must be applied to the thin wire, and the influence of the insulating film must be evaluated (Non-Patent Document 5).

その他、電気抵抗率からWiedemann-Franz則を用いて熱伝導率を推定する方法がある。Wiedemann-Franz則は以下の式で表される。
κ=LT /ρE
ここでL:ローレンツ数(2.45×10-8 WΩK-2)、T:温度(K)、ρE:電気抵抗率(mΩ)である。Wiedemann-Franz則は、電気的過程における緩和時間と熱的過程における緩和時間が等しいという仮定に基づいており、この法則が成立するか否かは、実測をもって確認しなければならない。特に、合金系やシリコンのような半導体融液に対しては注意が必要である。この算出法は別の物性値からの推定によるもので、直接熱伝導率を測定するものではない。
Another method is to estimate the thermal conductivity from the electrical resistivity using the Wiedemann-Franz rule. The Wiedemann-Franz rule is expressed by the following equation.
κ = LT / ρE
Here, L: Lorentz number (2.45 × 10 −8 WΩK −2 ), T: temperature (K), and ρE: electrical resistivity (mΩ). The Wiedemann-Franz law is based on the assumption that the relaxation time in the electrical process is equal to the relaxation time in the thermal process, and whether or not this law holds must be confirmed by measurement. In particular, caution is required for semiconductor melts such as alloys and silicon. This calculation method is based on estimation from other physical property values, and does not directly measure thermal conductivity.

次に放射率については、赤外光の計測などにより放射率を測定する手法が一般的に用いられている。しかし、高温の物質の放射率測定においては、被測定物以外の周囲の材料なども高温の状態にあるため、それらからの熱放射がノイズとなり、正確な物性値の測定はできない。特に被測定物が高温で溶融状態にあるときは、必ずそれを保持する容器などと接しているために、融体の熱放射率の測定が困難であることは、前記二つの熱物性値の測定と同様である。   Next, with respect to emissivity, a technique of measuring emissivity by measuring infrared light or the like is generally used. However, when measuring the emissivity of a high-temperature substance, the surrounding materials other than the object to be measured are also in a high-temperature state, so that the heat radiation from them becomes noise, and accurate physical property values cannot be measured. In particular, when the object to be measured is in a molten state at a high temperature, it is always in contact with a container or the like that holds the object, so that it is difficult to measure the thermal emissivity of the melt. It is the same as the measurement.

電磁浮遊法は浮遊技術の一種で、試料の周りに配置した高周波コイルにより、導電性の試料に誘導電流を発生させ、交流磁場との相互作用によるローレンツ力を用いて試料を浮遊させる方法である。高温融体を非接触に保持できるため、各種の熱物性測定や過冷却実験などに用いられる。例えば、電磁浮遊法によって浮遊させた金属融体には、マランゴニ対流や自然対流に加えて、電磁力による対流が発生しているため、このままでは、熱伝導率の測定は不可能である。このような状態の金属融体に、さらに外部から強い静磁場(数テスラ程度)を印加すると、金属融体と静磁場の相互作用により、ローレンツ力が、融液の重心の移動や融液中の対流を抑制する方向に働く。すなわち、強い静磁場中では、液体の流れは強く抑制され、熱的には固体と同じように振る舞う。Yasudaら(非特許文献6)は、電磁浮遊液滴に静磁場を重畳するとローレンツ力により、液滴の振動や表面の対流が抑制され、剛体球が回転するように液滴が振る舞うことを報告した。   The electromagnetic levitation method is a type of levitation technique, in which an induction current is generated in a conductive sample by a high-frequency coil placed around the sample, and the sample is floated using Lorentz force due to interaction with an alternating magnetic field. . Since the high-temperature melt can be held in a non-contact manner, it is used for various thermophysical properties measurements and supercooling experiments. For example, in the metal melt suspended by the electromagnetic levitation method, in addition to Marangoni convection and natural convection, convection due to electromagnetic force is generated, and therefore, thermal conductivity cannot be measured as it is. When a strong static magnetic field (approx. Several Tesla) is applied to the metal melt in this state from the outside, Lorentz force is caused by the interaction between the metal melt and the static magnetic field to move the center of gravity of the melt or in the melt. It works in the direction of suppressing convection. That is, in a strong static magnetic field, the flow of liquid is strongly suppressed and behaves in the same way as a solid in terms of heat. Yasuda et al. (Non-Patent Document 6) report that when a static magnetic field is superimposed on an electromagnetic floating droplet, the droplet's vibration and surface convection are suppressed by the Lorentz force, and the droplet behaves like a hard sphere rotates. did.

次に発明者らは、これまでは間接的にしか計測できなかった溶融状態の材料の熱伝導率及び放射率の測定に関して、これを直接的に計測できる方法を公表した。
すなわち、高温融体導電材料を中心部にて溶融させ電磁浮遊させる空間を有する高周波コイルと、材料の上部より材料に対して変調モードで熱エネルギーを加えるレーザー装置と、溶融した材料の揺動を抑えるとともに溶融材料内部の対流を抑制するための静磁場を与える磁石装置と、下部より溶融した材料の温度を計測する放射温度計とを用いた高温溶融導電材料の熱物性測定方法において、
レーザーで材料上部から加熱し、材料下部の温度を測定するための、液滴の重心を原点とする球座標系における非定常熱伝導方程式を、
1)系は軸対称である。
2)周期加熱の温度振幅の範囲で熱物性値は一定である。
3)入射レーザー光は液滴表面でその物質の吸収率に応じて吸収され、透過しない。
4)入射レーザー光の強度分布はガウス分布にしたがう。
5)液滴表面からの放熱は、輻射のみである。
6)平均温度上昇及び温度の振幅は、初期温度に比べて小さい。
の1)〜6)の条件で解いて得た、
交流定常状態での温度応答の振幅ΔTAC、レーザー加熱からの温度応答の遅れ(位相差φs)、放射による外部熱緩和時間τ、熱伝導による内部熱緩和時間τに関する以下の式(8)〜(11)を用意するステップ1、
Next, the inventors have published a method that can directly measure the thermal conductivity and emissivity of a molten material that could only be measured indirectly.
That is, a high-frequency coil having a space in which a high-temperature melt conductive material is melted at the center and electromagnetically suspended, a laser device that applies thermal energy to the material in a modulation mode from the top of the material, and oscillation of the molten material In the thermophysical property measurement method of a high-temperature molten conductive material using a magnet device that provides a static magnetic field to suppress and suppress convection inside the molten material, and a radiation thermometer that measures the temperature of the material melted from the bottom,
The unsteady heat conduction equation in a spherical coordinate system with the center of gravity of the droplet as the origin, for measuring the temperature of the lower part of the material by laser heating from the upper part of the material,
1) The system is axisymmetric.
2) The thermophysical property value is constant within the range of the temperature amplitude of periodic heating.
3) The incident laser light is absorbed on the surface of the droplet according to the absorption rate of the substance and does not pass through.
4) The intensity distribution of incident laser light follows a Gaussian distribution.
5) Heat radiation from the droplet surface is only radiation.
6) The average temperature rise and temperature amplitude are small compared to the initial temperature.
Obtained under the conditions of 1) to 6)
Temperature response amplitude ΔT AC in AC steady state, temperature response delay from laser heating (phase difference φ s ), external thermal relaxation time τ 1 due to radiation, internal thermal relaxation time τ 2 due to heat conduction Step 1 for preparing 8) to (11),

(ここでε:分光放射率、ω:レーザー周期加熱の角周波数、P:レーザー強度の振幅、C:定圧熱容量、ε:半球全放射率、R:溶融液滴半径、T:初期温度、κ:熱伝導率、σSB:ボルツマン定数である。)
溶融した材料にレーザー周期加熱により融液を加熱し、交流定常状態での温度応答の振幅ΔTAC、レーザー加熱からの温度応答の遅れ(位相差φs)を計測した後、レーザー周期加熱を停止し、融液の放射冷却曲線を計測するステップ2、
測定したωに対する温度応答の振幅ΔTACと角周波数との積ΔTAC*ωの最大値を与えるωの数値を決定し(8)式より融液の定圧熱容量Cを算出するステップ3、
ステップ3で計測した融液の放射冷却曲線に対して、放射冷却中の温度T(t=t)と放射による外部熱緩和時間τとの次の関係式
(t=t)=T+ΔTDCexp(−t/τ) (12)
(ここでT:周期加熱前の初期温度、ΔTDC:周期加熱時に上昇した平均温度、t:時間である。)
とを、フィッティングさせることによりτを得て、式(10)より半球全放射率εを算出するステップ4、
ステップ1で計測した位相差φsの値と、ステップ4で得られたτの値を代入した式(9)をフィッティングさせることによりτを得、ステップ3で得られた定圧熱容量Cを用いて式(11)より熱伝導率κを算出するステップ5、
を含む高温融体導電材料の熱物性測定方法をすでに提案している(非特許文献7)。
R. K. Wunderlich and H. -J. Fecht, Meas. Sci. Technol., 16 (2005), 402-416. 大西史倫、Space Utiliz. Res. 21(2005),p39 大西史倫、第26回日本熱物性シンポジウム講演論文集 475ページ 講演番号C314 T. Nishi, A. Ikari, H. Shibata and H. Ohta, Materials. Trans., 44 (2003), 2369-2374. E. Yamasue, M. Susa, H. Fukuyama, and K. Nagata, J. Crys. Growth, 234 (2002), 121-131. H. Yasuda, I. Ohnaka, R. Ishii, S. Fujita and Y. Tamura: ISIJ Int., 45, No. 7(2005), 991-996. H. Kobatake, H. Fukuyama, I. Minato, T. Nakamura and S. Awaji: The 26th Japan Symposium on Thermophysical Properties,2005,Tsukuba C309 460-462.
(Where ε s : spectral emissivity, ω: angular frequency of laser periodic heating, P 0 : laser intensity amplitude, C p : constant pressure heat capacity, ε: hemispherical total emissivity, R: molten droplet radius, T 0 : (Initial temperature, κ: thermal conductivity, σ SB : Boltzmann constant)
The melt is heated by laser periodic heating of the molten material, and after measuring the temperature response amplitude ΔT AC in the steady state of AC and the temperature response delay (phase difference φ s ) from laser heating, the laser periodic heating is stopped. Step 2 for measuring the radiation cooling curve of the melt,
Step 3 for determining the numerical value of ω that gives the maximum value of the product ΔT AC * ω of the temperature response amplitude ΔT AC and angular frequency of the measured ω, and calculating the constant pressure heat capacity C p of the melt from the equation (8),
For the radiative cooling curve of the melt measured in step 3, the following relational expression T (t = t) = T 0 between the temperature T (t = t) during radiative cooling and the external thermal relaxation time τ 1 due to radiation + ΔT DC exp (−t / τ 1 ) (12)
(Here, T 0 is the initial temperature before cyclic heating, ΔT DC is the average temperature increased during cyclic heating, and t is time.)
To obtain τ 1 by fitting and calculating the hemispherical total emissivity ε from equation (10),
By fitting the value of the phase difference φ s measured in step 1 and the equation (9) in which the value of τ 1 obtained in step 4 is substituted, τ 2 is obtained, and the constant pressure heat capacity C p obtained in step 3 is obtained. Step 5 for calculating the thermal conductivity κ from the equation (11) using
A method for measuring the thermal properties of a high-temperature melt conductive material containing benzene has already been proposed (Non-Patent Document 7).
RK Wunderlich and H.-J. Fecht, Meas. Sci. Technol., 16 (2005), 402-416. Satoshi Onishi, Space Utilization Res. 21 (2005), p39 Onishi Shimonori, Proceedings of the 26th Japan Thermophysical Symposium, 475 pages, lecture number C314 T. Nishi, A. Ikari, H. Shibata and H. Ohta, Materials. Trans., 44 (2003), 2369-2374. E. Yamasue, M. Susa, H. Fukuyama, and K. Nagata, J. Crys. Growth, 234 (2002), 121-131. H. Yasuda, I. Ohnaka, R. Ishii, S. Fujita and Y. Tamura: ISIJ Int., 45, No. 7 (2005), 991-996. H. Kobatake, H. Fukuyama, I. Minato, T. Nakamura and S. Awaji: The 26th Japan Symposium on Thermophysical Properties, 2005, Tsukuba C309 460-462.

上記の高温融体導電材料の熱物性測定方法は、これまで間接的にしか計測できなかった溶融状態の材料の熱伝導率及び放射率の測定に関して、これを直接的に計測できる方法としては評価されるものではあるが、上記の高温融体導電材料の熱物性測定方法は、試料内部の熱伝導によるサーマルコンダクタンスの過程として、球体の中心から外部への熱伝導緩和過程を前提とするものであったため、現実の測定方法と相違する結果となっていた。そこで本発明は、レーザー加熱による熱物性値測定法を忠実に表現する熱伝導の基礎式を導き、これにより高温融体導電材料の真の熱物性を直接的に測定することを課題とする。   The above-mentioned thermophysical property measurement method for high-temperature melt conductive materials is evaluated as a method that can directly measure the thermal conductivity and emissivity of molten materials that could only be measured indirectly. However, the above-described method for measuring the thermal properties of a high-temperature melt conductive material is based on the premise of a thermal conduction relaxation process from the center of the sphere to the outside as a process of thermal conductance due to thermal conduction inside the sample. Therefore, the result was different from the actual measurement method. In view of this, an object of the present invention is to derive a basic equation of heat conduction that faithfully expresses a thermophysical property measurement method by laser heating, and thereby directly measures the true thermophysical property of a high-temperature melt conductive material.

上記の課題を解決するための手段は、次のとおりである。
1.高温融体導電材料を中心部にて液滴として溶融させて電磁浮遊させる空間を有する高周波コイルと、高温融体導電材料の上部より変調モードで熱エネルギーを加えるレーザー加熱手段と、溶融した高温融体導電材料の揺動を抑えるとともに高温融体導電材料の上下方向の対流を抑制するための静磁場を与える手段と、下部より溶融した高温融体導電材料の温度を計測する手段とを用いた高温融体導電材料の熱物性測定方法において、次の第1〜第3のステップにより高温融体導電材料の熱伝導率κ及び半球全放射率εを決定することを特徴とする高温融体導電材料の熱物性測定方法。
交流定常状態での温度応答の振幅(交流成分)ΔTAC、熱伝導率κ、半球全放射率ε、レーザー加熱からの温度応答の遅れである位相差φに関する以下の偏微分方程式(1)(2)、そのレーザー照射部の境界条件式(3)(4)、そのレーザー非照射部の境界条件式(5)(6)及びその位相差の定義式(7)を用意する第1のステップ、
Means for solving the above-described problems are as follows.
1. A high-frequency coil having a space in which high-temperature melt conductive material is melted as droplets at the center and electromagnetically suspended, laser heating means for applying thermal energy in a modulation mode from above the high-temperature melt conductive material, and molten high-temperature melt A means for applying a static magnetic field for suppressing fluctuation of the body conductive material and suppressing vertical convection of the high temperature melt conductive material and a means for measuring the temperature of the high temperature melt conductive material melted from the lower part were used. In the method for measuring thermophysical properties of a high-temperature melt conductive material, the thermal conductivity κ and the hemispherical total emissivity ε of the high-temperature melt conductive material are determined by the following first to third steps. Method for measuring thermophysical properties of materials.
Temperature response amplitude (AC component) ΔT AC , thermal conductivity κ, hemispherical total emissivity ε, phase difference φ s which is a delay in temperature response from laser heating, partial differential equation (1) (2) First boundary condition equations (3) and (4) for the laser irradiation part, boundary condition expressions (5) and (6) for the laser non-irradiation part, and a phase difference defining expression (7) are prepared. Step,

ここで、
:定圧質量熱容量(比熱)[J/kg.K]
elaser:レーザーの入射方向を示す単位ベクトル
κ:熱伝導率[W/m.K]
n:液滴表面の法線方向の距離[m]
n:液滴表面の法線方向単位ベクトル
:レーザーパワー[W]
s:液滴表面の半径方向距離[m]
r: 球座標の半径方向の距離[m]
rlaser:レーザービームのe-2半径[m]
T:温度[K]
:初期温度[K]
ρ:密度[kg/m3]
σSB:ステファン・ボルツマン定数[W/m2K4]
θ:球座標の極角[rad]
α:吸収率
ε: 半球全放射率
φ: 位相差[rad]
ω:レーザー周期加熱の角周波数[rad/s]
ΔTAC in:温度の振幅ΔTACのレーザーと同一の位相(in-phase)成分
ΔTAC out:温度の振幅ΔTACのレーザーからπ/2ずれている位相(out-of-phase )成分
averageΔTAC in:放射温度計の測定面積におけるΔTAC inの平均値
averageΔTAC out:放射温度計の測定面積におけるΔTAC outの平均値
である。
here,
c p : constant pressure mass heat capacity (specific heat) [J / kg.K]
e laser : Unit vector κ: thermal conductivity [W / mK] indicating the incident direction of laser
n: Distance in the normal direction of the droplet surface [m]
n: Normal unit vector P 0 of the droplet surface: Laser power [W]
R s : radial distance of the droplet surface [m]
r: Radial distance in spherical coordinates [m]
r laser : e- 2 radius of laser beam [m]
T: Temperature [K]
T 0 : Initial temperature [K]
ρ: Density [kg / m 3 ]
σ SB : Stefan-Boltzmann constant [W / m 2 K 4 ]
θ: Polar angle in spherical coordinates [rad]
α: Absorption rate ε: Hemisphere total emissivity φ s : Phase difference [rad]
ω: Angular frequency of laser periodic heating [rad / s]
[Delta] T AC in: temperature of the amplitude [Delta] T AC of the laser and the same phase (in-phase) component [Delta] T AC out: amplitude [Delta] T from the AC laser [pi / 2 deviation has phase (out-of-phase) temperature component
averageΔT AC in : average value of ΔT AC in the measurement area of the radiation thermometer
averageΔT AC out: the average value of [Delta] T AC out in the measurement area of the radiation thermometer.

溶融した高温融体導電材料にレーザー周期加熱により融液を加熱し、定常状態での温度応答の振幅(交流成分)ΔTAC、レーザー加熱からの温度応答の遅れ(位相差φ)を、レーザー周期加熱の角周波数ωについて測定する第2のステップ、
及び上記第2のステップで測定された位相差φのω依存性を、上記式(1)〜(7)の数値解析結果で非線形最小二乗法に基づきフィッティングすることにより、パラメータである熱伝導率κ及び半球全放射率εを得る第3のステップ。
The melt is heated to the molten high-temperature melt conductive material by laser periodic heating, the temperature response amplitude (AC component) ΔT AC in the steady state, the temperature response delay (phase difference φ s ) from the laser heating, and the laser A second step for measuring the angular frequency ω of the periodic heating;
Further, by fitting the ω dependence of the phase difference φ s measured in the second step based on the nonlinear analysis method of the numerical expressions (1) to (7) above, the heat conduction that is a parameter Third step to obtain the rate κ and the hemispherical total emissivity ε.

2.上記第2のステップと第3のステップとの間に、レーザーの変調周波数ωに対するΔTACとωとの積の極大値から、融液の定圧熱容量Cを求めるステップを含む高温融体導電材料の熱物性測定方法。
3.上記高温融体導電材料は、シリコンである高温融体導電材料の熱物性測定方法。
4.高温融体導電材料内部の対流を抑制するための上記静磁場は、2T以上である高温融体導電材料の熱物性測定方法。
2. A high-temperature melt conductive material including a step of obtaining a constant pressure heat capacity C p of the melt from a maximum value of a product of ΔT AC and ω with respect to the laser modulation frequency ω between the second step and the third step. Thermophysical property measurement method.
3. The high temperature melt conductive material is a method for measuring a thermal property of a high temperature melt conductive material which is silicon.
4). The said static magnetic field for suppressing the convection inside a high temperature melt conductive material is a thermophysical property measuring method of a high temperature melt conductive material which is 2T or more.

5.上記1から4のいずれかの高温融体導電材料の熱物性測定方法に使用される熱物性測定装置であって、高温融体導電材料を中心部にて溶融させ電磁浮遊させる空間を有する高周波コイルと、上部より高温融体導電材料に変調モードで熱エネルギーを加えるレーザー装置と、溶融した高温融体導電材料の揺動を抑えるとともに高温融体導電材料における上下方向の対流を抑制するための静磁場を与える磁石装置と、下部より溶融した高温融体導電材料の温度を計測する放射温度計とを備えた高温融体導電材料の熱物性測定装置。
6.上記レーザー装置は、半導体レーザー装置であり、上記放射温度計は、2色放射温度計である高温融体導電材料の熱物性測定装置。
5. A thermophysical property measuring apparatus used for the thermophysical property measuring method of any one of the high temperature melt conductive materials according to any one of 1 to 4 above, wherein the high frequency coil has a space in which the high temperature melt conductive material is melted at the center and electromagnetically suspended. A laser device that applies thermal energy to the high-temperature melt conductive material from the top in a modulation mode; and a static device for suppressing fluctuation of the molten high-temperature melt conductive material and suppressing vertical convection in the high-temperature melt conductive material. A thermophysical property measuring device for a high-temperature melt conductive material, comprising: a magnet device that applies a magnetic field; and a radiation thermometer that measures the temperature of the high-temperature melt conductive material melted from below.
6). The laser device is a semiconductor laser device, and the radiation thermometer is a two-color radiation thermometer.

本発明によれば、いままできわめて困難であった、高温融体の熱物性測定を直接的にかつ正確に測定できる、画期的な方法を開発したことになる。この発明により、例えばシリコンの結晶成長や太陽電池用シリコンの凝固過程の数値シミュレーションに必要な、熱物性値が精度よく測定できるようになることからこれらプロセスの改良が行われ、結果として、品質の向上、省エネルギー、コスト削減に役立つ。また、この測定方法は他の金属にも適用できるため、超耐熱合金などの精密鋳造ならびに自動車や構造材料の精密溶接などの数値シミュレーションに必要な熱物性値を提供することもできる。したがって、鋳造や溶接の迅速化、高精度化、高信頼性化を可能とする。   According to the present invention, an epoch-making method capable of directly and accurately measuring the thermophysical property measurement of a high-temperature melt, which has been extremely difficult until now, has been developed. According to the present invention, for example, it is possible to accurately measure thermophysical values necessary for numerical simulation of silicon crystal growth and solidification process of silicon for solar cells. Helps improve, save energy and reduce costs. Moreover, since this measuring method can be applied to other metals, it can also provide thermophysical values necessary for numerical simulation such as precision casting of super heat-resistant alloys and the like and precision welding of automobiles and structural materials. Therefore, it is possible to speed up casting, welding, high accuracy, and high reliability.

(測定原理)
本発明に係る、静磁場印加電磁浮遊交流カロリメトリーの測定原理図を図1に示す。
高温融体導電材料を中心部にて液滴として溶融させて電磁浮遊させる空間を有する高周波コイルと、高温融体導電材料の上部より変調モードP0(1+cosωt)で熱エネルギーを加えるレーザー加熱手段と、溶融した高温融体導電材料の揺動を抑えるとともに高温融体導電材料内部の対流を抑制するための静磁場を与える超伝導磁石のような手段と、下部より溶融した高温融体導電材料の温度を計測する手段とを用いた、レーザー照射交流カロリメトリー法により、高温融体導電材料の熱物性である熱伝導率κ及び半球全放射率εを直接的に測定するものである。
以下高温融体導電材料としてシリコンを例示して、本発明を詳細に説明する。
(Measurement principle)
FIG. 1 shows a measurement principle diagram of static magnetic field application electromagnetic floating AC calorimetry according to the present invention.
A high-frequency coil having a space in which a high-temperature melt conductive material is melted as droplets at the center and electromagnetically suspended; laser heating means for applying thermal energy from the upper portion of the high-temperature melt conductive material in a modulation mode P0 (1 + cosωt); Means such as a superconducting magnet that provides a static magnetic field to suppress oscillation of the molten high-temperature melt conductive material and suppress convection inside the high-temperature melt conductive material, and the temperature of the high-temperature melt conductive material melted from below The thermal conductivity κ and the hemispherical total emissivity ε, which are thermophysical properties of the high-temperature melt conductive material, are directly measured by a laser irradiation alternating current calorimetry method using a means for measuring the temperature.
Hereinafter, the present invention will be described in detail by exemplifying silicon as a high-temperature melt conductive material.

(測定装置)
図2に測定装置の概略図を示す。本発明では、試料の浮遊及び加熱に電磁浮遊炉を用いた。電磁浮遊炉は、コイル、高周波電源、真空チャンバー、制御盤、冷却水循環装置からなる。コイルは、重力に抗して上向きの力で試料を浮遊させる浮遊コイル、上部から試料を下向きの力で安定化させる安定化コイルから構成されている。コイルに電力を供給する高周波電源は、トランジスタインバータ方式であり、出力電力は15kW、200kHzである。真空チャンバーは、ロータリーポンプを介してターボ分子ポンプに接続されており、2つの真空ポンプを併用することにより10-4 Paオーダーまで減圧することができる。試料温度は、試料の浮遊位置に依存するため、高周波電源の出力電力を調整することで温度の調節を行うことができる。半導体CWレーザー(140W、808nm)を利用して試料の周期加熱を行う。
(measuring device)
FIG. 2 shows a schematic diagram of the measuring apparatus. In the present invention, an electromagnetic levitation furnace is used for floating and heating the sample. The electromagnetic levitation furnace consists of a coil, a high frequency power supply, a vacuum chamber, a control panel, and a cooling water circulation device. The coil is composed of a floating coil that floats the sample with an upward force against gravity and a stabilization coil that stabilizes the sample with a downward force from above. The high-frequency power source that supplies power to the coil is a transistor inverter type, and the output power is 15 kW and 200 kHz. The vacuum chamber is connected to a turbo molecular pump via a rotary pump, and can be depressurized to the order of 10 −4 Pa by using two vacuum pumps in combination. Since the sample temperature depends on the floating position of the sample, the temperature can be adjusted by adjusting the output power of the high-frequency power source. The sample is periodically heated using a semiconductor CW laser (140 W, 808 nm).

試料には、約0.8gになるように立方体状に切り出した高純度単結晶シリコンを用いた。石英製のロッドで高周波コイルの中心に試料を保持し、チャンバー内を高純度Arガス(99.9999%)で置換した後、ターボ分子ポンプで10-3〜10-2 Paオーダーまで減圧した。半導体レーザーを用いてシリコンを予熱してから、超伝導マグネット中に設置された高周波コイル内で試料を浮遊溶融させた。静磁場(0.5〜4T)を印加し、高周波電流を調節することにより、溶融シリコンの位置及び温度を制御した。溶融シリコンの半径は4mmである。
試料垂直上方から半導体CWレーザーを照射することにより周期加熱を行った。ファンクションジェネレータを用いてレーザー出力の周期変調を行った。試料表面におけるレーザー照射径は直径4mmである。試料の温度応答は、試料下部から2色放射温度計(λ=0.9μm、1.35μm)を用いて測定した。試料からの放射光のみを選択的に通過させるために、試料下方約610mmの位置に、直径6mmの孔を有する高さ60mmの絞りを設置した。
As the sample, high-purity single crystal silicon cut into a cubic shape so as to be about 0.8 g was used. The sample was held at the center of the high-frequency coil with a quartz rod, the inside of the chamber was replaced with high-purity Ar gas (99.9999%), and then the pressure was reduced to the order of 10 −3 to 10 −2 Pa with a turbo molecular pump. After preheating the silicon using a semiconductor laser, the sample was floated and melted in a high-frequency coil installed in a superconducting magnet. The position and temperature of the molten silicon were controlled by applying a static magnetic field (0.5 to 4 T) and adjusting the high frequency current. The radius of molten silicon is 4 mm.
Periodic heating was performed by irradiating a semiconductor CW laser from above the sample. Periodic modulation of laser output was performed using a function generator. The laser irradiation diameter on the sample surface is 4 mm in diameter. The temperature response of the sample was measured from the bottom of the sample using a two-color radiation thermometer (λ = 0.9 μm, 1.35 μm). In order to selectively pass only the radiated light from the sample, a diaphragm having a height of 60 mm and a hole having a diameter of 6 mm was installed at a position of about 610 mm below the sample.

(非定常熱伝導方程式から関係式の導出)
レーザーで上部から加熱し、下部から測定するための、液滴の重心を原点とする球座標系における非定常熱伝導方程式を後述する1)〜6)の仮定のもとで簡略化することにより、定常状態での温度応答の振幅ΔTAC、熱伝導率κ、半球全放射率ε、レーザー加熱からの温度応答の遅れ:位相差φsに関する以下の、偏微分方程式(1)(2)、そのレーザー照射部の境界条件式(3)(4)、そのレーザー非照射部の境界条件式(5)(6)及びその位相差の定義式(7)を得た。
(Derivation of relational expression from unsteady heat conduction equation)
By simplifying the unsteady heat conduction equation in the spherical coordinate system with the origin at the center of gravity of the droplet for heating from the top and measuring from the bottom with a laser under the assumptions of 1) to 6) described later , Temperature response amplitude ΔT AC in steady state, thermal conductivity κ, hemispherical total emissivity ε, temperature response delay from laser heating: partial differential equations (1), (2) below for phase difference φ s , Boundary condition equations (3) and (4) for the laser irradiated portion, boundary condition equations (5) and (6) for the laser non-irradiated portion, and a definition equation (7) for the phase difference were obtained.

ここで、
:定圧質量熱容量(比熱)[J/kg.K]
elaser:レーザーの入射方向を示す単位ベクトル
κ:熱伝導率[W/m.K]
n:液滴表面の法線方向の距離[m]
n:液滴表面の法線方向単位ベクトル
:レーザーパワー[W]
s:液滴表面の半径方向距離[m]
r: 球座標の半径方向の距離[m]
rlaser:レーザービームのe-2半径[m]
T:温度[K]
:初期温度[K]
ρ:密度[kg/m3]
σSB:ステファン・ボルツマン定数[W/m2K4]
θ:球座標の極角[rad]
α:吸収率
ε: 半球全放射率
φ: 位相差[rad]
ω:レーザー周期加熱の角周波数[rad/s]
ΔTAC in:温度の振幅ΔTACのレーザーと同一の位相(in-phase)成分
ΔTAC out:温度の振幅ΔTACのレーザーからπ/2ずれている位相(out-of-phase )成分
averageΔTAC in:放射温度計の測定面積におけるΔTAC inの平均値
averageΔTAC out:放射温度計の測定面積におけるΔTAC outの平均値
である。
here,
c p : constant pressure mass heat capacity (specific heat) [J / kg.K]
e laser : Unit vector κ: thermal conductivity [W / mK] indicating the incident direction of laser
n: Distance in the normal direction of the droplet surface [m]
n: Normal unit vector P 0 of the droplet surface: Laser power [W]
R s : radial distance of the droplet surface [m]
r: Radial distance in spherical coordinates [m]
r laser : e- 2 radius of laser beam [m]
T: Temperature [K]
T 0 : Initial temperature [K]
ρ: Density [kg / m 3 ]
σ SB : Stefan-Boltzmann constant [W / m 2 K 4 ]
θ: Polar angle in spherical coordinates [rad]
α: Absorption rate ε: Hemisphere total emissivity φ s : Phase difference [rad]
ω: Angular frequency of laser periodic heating [rad / s]
[Delta] T AC in: temperature of the amplitude [Delta] T AC of the laser and the same phase (in-phase) component [Delta] T AC out: amplitude [Delta] T from the AC laser [pi / 2 deviation has phase (out-of-phase) temperature component
averageΔT AC in : average value of ΔT AC in the measurement area of the radiation thermometer
averageΔT AC out: the average value of [Delta] T AC out in the measurement area of the radiation thermometer.

上記各式は、それぞれ次の(a)〜(c)において得られる。
(a) 数値シミュレーションにおける仮定
1)系は軸対称である。
2)周期加熱の温度振幅の範囲で熱物性値は一定である。
3)入射レーザー光は液滴表面でその物質の放射率に応じて吸収され、透過しない。
4)入射レーザー光の強度分布はガウス分布にしたがう。
5)液滴表面からの放熱は、輻射のみである。
6)平均温度上昇(直流成分)ΔTDC及び温度の振幅(交流成分)ΔTACは初期温度Tに比べ小さい( ΔTDC << T0、ΔTAC<< T0 )。
The above equations are obtained in the following (a) to (c), respectively.
(A) Assumption in numerical simulation 1) The system is axisymmetric.
2) The thermophysical property value is constant within the range of the temperature amplitude of periodic heating.
3) The incident laser light is absorbed on the surface of the droplet according to the emissivity of the substance and does not pass through.
4) The intensity distribution of incident laser light follows a Gaussian distribution.
5) Heat radiation from the droplet surface is only radiation.
6) Average temperature rise (DC component) ΔT DC and temperature amplitude (AC component) ΔT AC are smaller than the initial temperature T 0 (ΔT DC << T 0 , ΔT AC << T 0 ).

(b) 基礎式及び境界条件
上記の仮定の下で、原点を液滴の重心とする球座標系(図3参照)における非定常熱伝導方程式は以下のように与えられる。
(B) Basic Expression and Boundary Conditions Under the above assumption, the unsteady heat conduction equation in a spherical coordinate system (see FIG. 3) with the origin as the center of gravity of the droplet is given as follows.

ここで、ρ[kg/m3]は密度、cp [J/kg.K]は定圧質量熱容量(比熱)、T [K]は温度、t [s]は時間、κ [W/m.K]は熱伝導率、r [m]及びθ[rad]は、球座標の半径方向の距離及び極角である。
境界条件は次式により与えられる。
液滴表面(レーザーにより加熱されている部分):
Where ρ [kg / m 3 ] is density, c p [J / kg.K] is constant pressure mass heat capacity (specific heat), T [K] is temperature, t [s] is time, κ [W / mK] Is the thermal conductivity, r [m] and θ [rad] are the radial distance and polar angle in spherical coordinates.
The boundary condition is given by
Droplet surface (part heated by laser):

液滴表面(レーザーにより加熱されていない部分): Droplet surface (not heated by laser):

対称軸: Axis of symmetry:

ここで、T[K]は周囲温度、σSB [W/m2.K4]はステファン・ボルツマン定数、ε[-]は半球全放射率、α[-]は吸収率、I0 [W/m2]は中心軸上のレーザー強度、Rs [m]は液滴表面の半径方向距離、rlaser [m]はレーザービーム半径、nは液滴表面の法線方向単位ベクトル、elaserはレーザーの入射方向を示す単位ベクトルであり、本解析対象の場合elaser=cosθer-sinθeθで与えられる。また、I0はいわゆるレーザー強度P [W]と以下の関係にある。 Where T [K] is the ambient temperature, σ SB [W / m 2 .K 4 ] is the Stefan-Boltzmann constant, ε [-] is the hemispherical total emissivity, α [-] is the absorptance, and I 0 [ W / m 2 ] is the laser intensity on the central axis, R s [m] is the radial distance of the droplet surface, r laser [m] is the laser beam radius, n is the normal unit vector of the droplet surface, e laser is a unit vector indicating the direction of incidence of the laser is given in the case of the analyzed e laser = cosθe r -sinθe θ. Further, I 0 has the following relationship with the so-called laser intensity P [W].

ここで、ω [rad/s]は、レーザー周期加熱の角周波数である。
また、初期条件は、
T=T (18)
となる。
Here, ω [rad / s] is an angular frequency of laser periodic heating.
The initial condition is
T = T 0 (18)
It becomes.

(c) モデルの簡略化
温度Tを以下のように直流成分ΔTDCと交流成分ΔTACに分けて考える。
T(r、θ、t)= T0+ΔTDC(r、θ、t)+ΔTAC(r、θ、t) (19)
いま、交流成分を以下のように書き換える。
T(r、θ、t)= T0+ΔTDC(r、θ、t)+ΔTAC in(r、θ)cosωt+ΔTAC out(r、θ)sinωt
(20)
ここで、ΔTAC in及びΔTAC outは、それぞれΔTACのレーザーと同一の位相、in-phase 及びレーザーからπ/2ずれている位相、out-of-phase 成分である。
式(19)を式(13)に代入すると、
(C) Model simplification The temperature T is divided into a direct current component ΔT DC and an alternating current component ΔT AC as follows.
T (r, θ, t) = T 0 + ΔT DC (r, θ, t) + ΔT AC (r, θ, t) (19)
Now, the AC component is rewritten as follows.
T (r, θ, t) = T 0 + ΔT DC (r, θ, t) + ΔT AC in (r, θ) cosωt + ΔT AC out (r, θ) sinωt
(20)
Here, ΔT AC in and ΔT AC out are the same phase, in-phase and phase shifted by π / 2 from the laser of ΔT AC , and an out-of-phase component, respectively.
Substituting equation (19) into equation (13),

となり、さらに、 And then

のように直流成分と交流成分に関する偏微分方程式に分けることができる。ここで、式(23)に式(20)を適用すると、 Thus, it can be divided into partial differential equations relating to the DC component and the AC component. Here, when equation (20) is applied to equation (23),

となるから、cosωtとsinωtに関して整理すると、ΔTAC in及びΔTAC outに関する以下の偏微分方程式を得ることができる。 Therefore, when cosωt and sinωt are arranged, the following partial differential equations regarding ΔT AC in and ΔT AC out can be obtained.

次に、境界条件を考える。式(14)に式(19)を代入すると、 Next, consider boundary conditions. Substituting equation (19) into equation (14),

が得られる。ここで、 Is obtained. here,

であり、(a)の仮定6)に基づき高次の項を無視すると、式(27)は And ignoring higher order terms based on Assumption 6) of (a), Equation (27) becomes

となる。式(29)に式(20)を代入すると、 It becomes. Substituting equation (20) into equation (29),

となる。ここで、ΔTACのcosωtとsinωtに関して整理すると、 It becomes. Here, when cosωt and sinωt of ΔT AC are arranged,

が得られる。式(15)、 (16)の境界条件も同様に扱うと、 Is obtained. If the boundary conditions of equations (15) and (16) are handled in the same way,

式(22)、 (25)、 (26)を境界条件式(31)から(36)のもとで解くと、
ΔTAC in及びΔTAC outが得られる。
以上の結果を用いて、測定結果に相当する位相差φsは次式により得られる。
Solving equations (22), (25), and (26) under boundary condition equations (31) to (36),
ΔT AC in and ΔT AC out are obtained.
Using the above result, the phase difference φs corresponding to the measurement result is obtained by the following equation.

ここで、 here,

であり、Spyrometerは放射温度計のスポットの無次元面積である。 S pyrometer is the dimensionless area of the spot of the radiation thermometer.

なお式(22)、 (25)、 (26)を境界条件式(31)から(36)のもとで解いて、 ΔTAC in及びΔTAC outを得るためには、以下の(d)無次元化及び(e)離散化の手段を用いることによって導出が実現できる。
(d) 無次元化
長さ,温度及び熱伝導度の代表値として、それぞれ液滴の球相当半径R[m],初期温度T0 [K]及びκref [W/m.K]を用い、式(25)、 (26)を無次元化すると次式が得られる。
In order to obtain ΔT AC in and ΔT AC out by solving equations (22), (25), and (26) under boundary condition equations (31) to (36), the following (d) Derivation can be realized by using means of dimensioning and (e) discretization.
(D) Non-dimensionalization As representative values of length, temperature and thermal conductivity, the sphere equivalent radius R [m], initial temperature T 0 [K] and κ ref [W / mK] of the droplet are used, respectively. When (25) and (26) are made dimensionless, the following equation is obtained.

ここで、上付き*は無次元の値を示す.
境界条件は次式のようになる.
液滴表面(レーザーにより加熱されている部分):
Here, the superscript * indicates a dimensionless value.
The boundary condition is as follows.
Droplet surface (part heated by laser):

液滴表面(レーザーにより加熱されていない部分): Droplet surface (not heated by laser):

対称軸: Axis of symmetry:

ここで、Ra*(=4σSBεRT0 3ref)はラディエーション数である。また、無次元レーザー強度P0 *は 2αP0/(πT0κrefR)、無次元周波数ω*はωR2ρcprefで定義される。 Here, Ra * (= 4σ SB εRT 0 3 / κ ref ) is the number of radiations. Further, dimensionless laser intensity P 0 * is 2αP 0 / (πT 0 κ ref R), non-dimensional frequency omega * is defined by ωR 2 ρc p / κ ref.

(e) 離散化
ここでは、基礎式及び境界条件式(40)から(47)をGalerkin有限要素法により離散化する。ただし、上付き添え字*は省略した。式(40)のGalerkin有限要素方程式は、重み関数をφiとすると、次式により与えられる。
(E) Discretization Here, the basic equation and the boundary condition equations (40) to (47) are discretized by the Galerkin finite element method. However, the superscript * is omitted. The Galerkin finite element equation of Equation (40) is given by the following equation, where φ i is the weight function.

部分積分を適用すると, Applying partial integration,

ここで、nr及びnθは法線方向単位ベクトルnの各成分であり、上式の最終項は境界での表面積分項を示す。例えば,液滴表面(レーザー照射部)においては、式(42)より、 Here, n r and n θ are each component of the normal direction unit vector n, and the final term of the above formula represents the surface integral term at the boundary. For example, on the droplet surface (laser irradiation part), from the equation (42),

であるから、式(50)は以下のようになる。 Therefore, the equation (50) is as follows.

ここで、 here,

である。同様に、式(41)を離散化すると、 It is. Similarly, when equation (41) is discretized,

となる。
式(52)、 (54)を解くに当たり、対象領域(0≦r≦r(θ),0≦θ≦π)を有限個の9節点四角形要素に分割し、各要素内でΔTAC in及びΔTAC outを以下のように近似する。
It becomes.
In solving the equations (52) and (54), the target region (0 ≦ r ≦ r (θ), 0 ≦ θ ≦ π) is divided into a finite number of nine-node quadrangular elements, and ΔT AC in and Approximate ΔT AC out as follows.

ここで、φiは双2次の内挿関数である。式(55-1,2)を式(52)及び(54)に代入すると、最終的に以下の代数方程式が得られる。 Here, φ i is a biquadratic interpolation function. Substituting the equations (55-1, 2) into the equations (52) and (54), the following algebraic equations are finally obtained.

式(56)、 (57)を直説法で解くことにより、各節点でのΔTAC,j in及びΔTAC,j outが求まる。 By solving the equations (56) and (57) by the direct method, ΔT AC, j in and ΔT AC, j out at each node can be obtained.

(測定データの取得)
図2に示す測定装置において、レーザーによる周期加熱が始まると、試料温度は徐々に上昇し、定常状態に達する。定常状態においてレーザーの周波数を変化させ、連続で測定を行った。測定は、初期温度To、静磁場及びレーザーの周期加熱の角周波数ωを以下の範囲で変化させて必要なデータを取得した。
初期温度T:1700<T<2050K
静磁場:0〜4T
角周波数ω:0<ω<2rad/s
(Acquisition of measurement data)
In the measurement apparatus shown in FIG. 2, when the periodic heating by the laser starts, the sample temperature gradually increases and reaches a steady state. Measurement was performed continuously by changing the laser frequency in a steady state. In the measurement, necessary data was acquired by changing the initial temperature To, the static magnetic field, and the angular frequency ω of the periodic heating of the laser within the following ranges.
Initial temperature T 0 : 1700 <T 0 <2050K
Static magnetic field: 0-4T
Angular frequency ω: 0 <ω <2 rad / s

角周波数ωを0.1256rad/s(0.02Hz)とした場合の交流定常状態の典型的な温度応答を図4に示す。レーザーの周期加熱の角周波数ωを変化させて測定することにより、位相差φs及び温度振幅ΔTACの角周波数ω依存性が計測される。 FIG. 4 shows a typical temperature response in an AC steady state when the angular frequency ω is 0.1256 rad / s (0.02 Hz). By measuring by changing the angular frequency ω of the periodic heating of the laser, the angular frequency ω dependence of the phase difference φs and the temperature amplitude [Delta] T AC is measured.

(熱伝導率・半球全放射率の算出)
位相差φsの空間分布は、ΔTAC,j in及びΔTAC,j outを用いて式(7)より得られるので、測定により得られた角周波数ωと位相差φsとの関係(図5参照)を、上記式(1)〜(7)の数値解析結果で非線形最小二乗法に基づきフィッティングすることにより、パラメータである熱伝導率κ及び放射率εが得られる。フィッティングは自作のプログラムを用いて行った。また、計算には、市販のコンピュータが制限なく使える。
(Calculation of thermal conductivity and hemispherical total emissivity)
Since the spatial distribution of the phase difference φs is obtained from Equation (7) using ΔT AC, j in and ΔT AC, j out , the relationship between the angular frequency ω obtained by measurement and the phase difference φs (see FIG. 5). ) With the numerical analysis results of the above formulas (1) to (7) based on the nonlinear least square method, the parameters of thermal conductivity κ and emissivity ε are obtained. Fitting was performed using a self-made program. In addition, a commercially available computer can be used without limitation for the calculation.

なお上記熱伝導率κ及び放射率εの算出に必要な融液の定圧熱容量Cの数値は、既存の数値を採用してもいいが、段落0013でも紹介した非特許文献7により公知の方法により熱伝導率κ及び放射率εの算出に先だって測定値より算出することができる。すなわち測定したωに対する温度応答の振幅ΔTACと角周波数ωとの積の最大値を与えるωの数値を決定し、(8)式より融液の定圧熱容量Cを算出することができる。この場合には、融液状態のシリコンの定圧熱容量C、熱伝導率κ及び放射率εといった熱物性値について全て直接計測が可能となる利点がある。 Note numerical constant pressure heat capacity C p of the melt required for the calculation of the thermal conductivity κ and emissivity ε is good to adopt the existing numeric but, a known method by Non-Patent Document 7 was also introduced paragraph 0013 Thus, the heat conductivity κ and emissivity ε can be calculated from the measured values prior to calculation. That is, the numerical value of ω that gives the maximum value of the product of the temperature response amplitude ΔT AC and the angular frequency ω with respect to the measured ω is determined, and the constant pressure heat capacity C p of the melt can be calculated from the equation (8). In this case, there is an advantage that all the thermophysical values such as the constant pressure heat capacity C p , the thermal conductivity κ, and the emissivity ε of silicon in the melt state can be directly measured.

(半球全放射率の算出結果)
本測定で得られた溶融シリコンの半球全放射率の数値を図6に示す。静磁場の強さを1T〜4T及び温度を1750〜1930Kの範囲で測定された数値が示されている。静磁場による半球全放射率に対する影響は認められない。測定された数値の平均をとることにより、シリコンの半球全放射率として0.25が得られた。なお半球全放射率については文献値も少なく、図中に示すように融点近傍の値が一つある程度である。
(Calculation result of hemispherical total emissivity)
The numerical value of the hemispherical total emissivity of the molten silicon obtained by this measurement is shown in FIG. The numerical values measured in the range of 1T to 4T for the strength of the static magnetic field and 1750 to 1930K for the temperature are shown. There is no effect on the total emissivity of the hemisphere by the static magnetic field. By taking the average of the measured values, 0.25 was obtained as the total emissivity of the hemisphere of silicon. There are few literature values for the total emissivity of the hemisphere, and there is a certain value near the melting point as shown in the figure.

(熱伝導率の算出結果)
次に本測定で得られた溶融シリコンの熱伝導率の数値を図7に示す。静磁場の強さを0.5T〜4T及び温度を1750〜2050Kの範囲で測定された数値が示されている。静磁場の強さを変えて測定を行った結果、磁場を大きくすると見かけ上、熱伝導率の値は徐々に小さくなっているのが分かる。そして2T以上では有意の差違は認められない。これは2T以上では、静磁場の流動抑制効果により、溶融シリコン中の対流が抑制されたためと考えられる。
参考までに図7中に既往の測定値(Cusack〜Yamasue)を図示する。既往の測定値は、1800Kより低い温度範囲の測定値に限られている。
(Calculation result of thermal conductivity)
Next, the numerical value of the thermal conductivity of the molten silicon obtained by this measurement is shown in FIG. The numerical values measured in the range of 0.5 T to 4 T for the strength of the static magnetic field and 1750 to 2050 K for the temperature are shown. As a result of measuring by changing the strength of the static magnetic field, it can be seen that when the magnetic field is increased, the value of the thermal conductivity gradually decreases. And at 2T or more, no significant difference is recognized. This is considered to be because convection in the molten silicon was suppressed by the effect of suppressing the flow of the static magnetic field at 2T or more.
For reference, the past measured values (Cusack to Yamasue) are shown in FIG. Past measured values are limited to measured values in a temperature range lower than 1800K.

本測定とは別に、図8に静磁場の有無によるシリコン液滴の表面挙動の違いを示す。図8は、静磁場の有無(0T及び3T)によるシリコン液滴表面の流れの違いについて観察した結果(Side view)をコマ送りで示したものである。同図において、どちらも直径10mmのシリコン球を用いて、浮遊溶解し、リカレッセンスが始まった直後の画像で、白く見える部分は、凝固したシリコンである。このような島状のシリコン結晶は、シリコン融液表面において、トレーサーの役割を果たしており、矢印に示すシリコン結晶の移動距離から、水平横方向及び垂直縦方向の速度を算出した。
図8より、静磁場強度が3Tの場合では、垂直縦方向の動きはかなり抑制され、試料の垂直軸を回転軸とする回転運動をしていることが分かる。この傾向は2T以上の静磁場でみられることが確認されている。
このようなことから、磁場強度2〜4Tの熱伝導率の値を平均して、シリコンの熱伝導率として62Wm−1−1を得た。
Apart from this measurement, FIG. 8 shows the difference in the surface behavior of silicon droplets depending on the presence or absence of a static magnetic field. FIG. 8 shows the result (Side view) of the observation of the difference in the flow of the silicon droplet surface depending on the presence / absence of a static magnetic field (0T and 3T) by frame advance. In the same figure, both of the images immediately after the start of recurrence after floating and dissolving using a silicon sphere having a diameter of 10 mm are solidified silicon. Such island-shaped silicon crystals play a role of a tracer on the surface of the silicon melt, and the horizontal and vertical longitudinal velocities were calculated from the movement distance of the silicon crystals indicated by arrows.
From FIG. 8, it can be seen that when the static magnetic field strength is 3T, the movement in the vertical and vertical direction is considerably suppressed, and the rotation is performed with the vertical axis of the sample as the rotation axis. It has been confirmed that this tendency is observed in a static magnetic field of 2T or more.
For this reason, 62 Wm −1 K −1 was obtained as the thermal conductivity of silicon by averaging the thermal conductivity values of magnetic field strengths of 2 to 4T.

なお本測定においては、高温融体導電材料としてシリコンを用いたが、ニッケル、白金等の金属であってもよい。すなわち高周波コイル中で溶融・浮遊させるためのローレンツ力が働く程度の導電性を持った高温融体となるような材料であれば、本発明は適用可能である。
また本発明の熱物性測定方法は、任意形状の液滴に適用可能である。すなわち測定される高温融体導電材料が、重力その他の影響によってその形状が理想的な真球形状でなく、例えば上下方向に歪んだ形状をとっても適用できるものである。
In this measurement, silicon was used as the high-temperature melt conductive material, but metals such as nickel and platinum may be used. In other words, the present invention can be applied to any material that can be a high-temperature melt having conductivity that allows Lorentz force to melt and float in a high-frequency coil.
Moreover, the thermophysical property measuring method of the present invention can be applied to droplets having an arbitrary shape. That is, the high-temperature melt conductive material to be measured can be applied to a shape that is not ideally spherical due to gravity or other influences, but is distorted in the vertical direction, for example.

静磁場印加電磁浮遊交流カロリメトリーの測定原理図である。It is a measurement principle figure of a static magnetic field application electromagnetic floating alternating current calorimetry. 静磁場印加電磁浮遊交流カロリメトリー装置の概略図である。It is the schematic of a static magnetic field application electromagnetic floating alternating current calorimetry apparatus. 球座標系を表す図である。It is a figure showing a spherical coordinate system. 溶融シリコンのレーザー照射(0.02Hz)による温度応答図である。It is a temperature response figure by laser irradiation (0.02Hz) of molten silicon. 角周波数ωと位相差φsとの関係を示す図である。It is a figure which shows the relationship between angular frequency (omega) and phase difference (phi) s. 溶融シリコンの半球全放射率の測定値を示す図である。It is a figure which shows the measured value of the hemispherical total emissivity of molten silicon. 溶融シリコンの熱伝導率の測定値を示す図である。It is a figure which shows the measured value of the heat conductivity of molten silicon. 静磁場の有無によるシリコン液滴の表面挙動の違いを示す図である。It is a figure which shows the difference in the surface behavior of the silicon droplet by the presence or absence of a static magnetic field.

Claims (6)

高温融体導電材料を中心部にて液滴として溶融させて電磁浮遊させる空間を有する高周波コイルと、高温融体導電材料の上部より変調モードで熱エネルギーを加えるレーザー加熱手段と、溶融した高温融体導電材料の揺動を抑えるとともに高温融体導電材料内部の対流を抑制するための静磁場を与える手段と、下部より溶融した高温融体導電材料の温度を計測する手段とを用いた高温融体導電材料の熱物性測定方法において、次の第1〜第3のステップにより高温融体導電材料の熱伝導率κ及び半球全放射率εを決定することを特徴とする高温融体導電材料の熱物性測定方法。
交流定常状態での温度応答の振幅(交流成分)ΔTAC、熱伝導率κ、半球全放射率ε、レーザー加熱からの温度応答の遅れである位相差φに関する以下の偏微分方程式(1)(2)、そのレーザー照射部の境界条件式(3)(4)、そのレーザー非照射部の境界条件式(5)(6)及びその位相差の定義式(7)を用意する第1のステップ、
ここで、
:定圧質量熱容量(比熱)[J/kg.K]
elaser:レーザーの入射方向を示す単位ベクトル
κ:熱伝導率[W/m.K]
n:液滴表面の法線方向の距離[m]
n:液滴表面の法線方向単位ベクトル
:レーザーパワー[W]
s:液滴表面の半径方向距離[m]
r: 球座標の半径方向の距離[m]
rlaser:レーザービームのe-2半径[m]
T:温度[K]
:初期温度[K]
ρ:密度[kg/m3]
σSB:ステファン・ボルツマン定数[W/m2K4]
θ:球座標の極角[rad]
α:吸収率
ε: 半球全放射率
φ: 位相差[rad]
ω:レーザー周期加熱の角周波数[rad/s]
ΔTAC in:温度の振幅ΔTACのレーザーと同一の位相(in-phase)成分
ΔTAC out:温度の振幅ΔTACのレーザーからπ/2ずれている位相(out-of-phase) 成分
averageΔTAC in:放射温度計の測定面積におけるΔTAC inの平均値
averageΔTAC out:放射温度計の測定面積におけるΔTAC outの平均値
である。
溶融した高温融体導電材料にレーザー周期加熱により融液を加熱し、定常状態での温度応答の振幅(交流成分)ΔTAC、レーザー加熱からの温度応答の遅れ(位相差φ)を、レーザー周期加熱の角周波数ωについて測定する第2のステップ、
及び上記第2のステップで測定された位相差φのω依存性を、上記式(1)〜(7)の数値解析結果で非線形最小二乗法に基づきフィッティングすることにより、パラメータである熱伝導率κ及び半球全放射率εを得る第3のステップ。
A high-frequency coil having a space in which high-temperature melt conductive material is melted as droplets at the center and electromagnetically suspended, laser heating means for applying thermal energy in a modulation mode from above the high-temperature melt conductive material, and molten high-temperature melt High temperature fusion using means for applying a static magnetic field to suppress oscillation of the body conductive material and to suppress convection inside the high temperature melt conductive material, and means for measuring the temperature of the high temperature melt conductive material melted from below. In the method for measuring thermophysical properties of a body conductive material, the thermal conductivity κ and the hemispherical total emissivity ε of the high temperature melt conductive material are determined by the following first to third steps. Thermophysical property measurement method.
Temperature response amplitude (AC component) ΔT AC , thermal conductivity κ, hemispherical total emissivity ε, phase difference φ s which is a delay in temperature response from laser heating, partial differential equation (1) (2) First boundary condition equations (3) and (4) for the laser irradiation part, boundary condition expressions (5) and (6) for the laser non-irradiation part, and a phase difference defining expression (7) are prepared. Step,
here,
c p : constant pressure mass heat capacity (specific heat) [J / kg.K]
e laser : Unit vector κ: thermal conductivity [W / mK] indicating the incident direction of laser
n: Distance in the normal direction of the droplet surface [m]
n: Normal unit vector P 0 of the droplet surface: Laser power [W]
R s : radial distance of the droplet surface [m]
r: Radial distance in spherical coordinates [m]
r laser : e- 2 radius of laser beam [m]
T: Temperature [K]
T 0 : Initial temperature [K]
ρ: Density [kg / m 3 ]
σ SB : Stefan-Boltzmann constant [W / m 2 K 4 ]
θ: Polar angle in spherical coordinates [rad]
α: Absorption rate ε: Hemisphere total emissivity φ s : Phase difference [rad]
ω: Angular frequency of laser periodic heating [rad / s]
[Delta] T AC in: temperature of the amplitude [Delta] T AC of the laser and the same phase (in-phase) component [Delta] T AC out: amplitude [Delta] T from the AC laser [pi / 2 deviation has phase (out-of-phase) temperature component
averageΔT AC in : average value of ΔT AC in the measurement area of the radiation thermometer
averageΔT AC out: the average value of [Delta] T AC out in the measurement area of the radiation thermometer.
The melt is heated to the molten high-temperature melt conductive material by laser periodic heating, the temperature response amplitude (AC component) ΔT AC in the steady state, the temperature response delay (phase difference φ s ) from the laser heating, and the laser A second step for measuring the angular frequency ω of the periodic heating;
Further, by fitting the ω dependence of the phase difference φ s measured in the second step based on the nonlinear analysis method of the numerical expressions (1) to (7) above, the heat conduction that is a parameter Third step to obtain the rate κ and the hemispherical total emissivity ε.
上記第2のステップと第3のステップとの間に、ωに対するΔTACとωとの積の極大値から、融液の定圧熱容量Cを求めるステップを含む請求項1に記載の高温融体導電材料の熱物性測定方法。 The high-temperature melt according to claim 1, further comprising a step of obtaining a constant pressure heat capacity C p of the melt from a maximum value of a product of ΔT AC and ω with respect to ω between the second step and the third step. A method for measuring the thermal properties of conductive materials. 上記高温融体導電材料は、シリコンである請求項1又は2に記載の高温融体導電材料の熱物性測定方法。   The method for measuring thermal properties of a high-temperature melt conductive material according to claim 1 or 2, wherein the high-temperature melt conductive material is silicon. 高温融体導電材料内部の対流を抑制するための上記静磁場は、2T以上である請求項1から3のいずれか1項に記載の高温融体導電材料の熱物性測定方法。   The method for measuring a thermal property of a high-temperature melt conductive material according to any one of claims 1 to 3, wherein the static magnetic field for suppressing convection inside the high-temperature melt conductive material is 2T or more. 請求項1から4のいずれか1項に記載の高温融体導電材料の熱物性測定方法に使用される熱物性測定装置であって、高温融体導電材料を中心部にて溶融させ電磁浮遊させる空間を有する高周波コイルと、上部より高温融体導電材料に変調モードで熱エネルギーを加えるレーザー装置と、溶融した高温融体導電材料の揺動を抑えるとともに高温融体導電材料内部の対流を抑制するための静磁場を与える磁石装置と、下部より溶融した高温融体導電材料の温度を計測する放射温度計とを備えた高温融体導電材料の熱物性測定装置。   It is a thermophysical property measuring apparatus used for the thermophysical property measuring method of the high-temperature melt conductive material according to any one of claims 1 to 4, wherein the high-temperature melt conductive material is melted in the center and electromagnetically suspended. A high-frequency coil having a space, a laser device that applies thermal energy to the high-temperature melt conductive material from the top in a modulation mode, and suppressing fluctuations in the molten high-temperature melt conductive material and suppressing convection inside the high-temperature melt conductive material A thermophysical property measuring device for a high-temperature melt conductive material, comprising: a magnet device for applying a static magnetic field for the measurement; and a radiation thermometer for measuring the temperature of the high-temperature melt conductive material melted from below. 上記レーザー装置は、半導体レーザー装置であり、上記放射温度計は、2色放射温度計である請求項5に記載の高温融体導電材料の熱物性測定装置。   6. The thermophysical property measuring apparatus for a high-temperature melt conductive material according to claim 5, wherein the laser device is a semiconductor laser device, and the radiation thermometer is a two-color radiation thermometer.
JP2006180330A 2006-06-29 2006-06-29 Method and apparatus for measuring thermal properties of high-temperature melt conductive material Active JP4857422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180330A JP4857422B2 (en) 2006-06-29 2006-06-29 Method and apparatus for measuring thermal properties of high-temperature melt conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180330A JP4857422B2 (en) 2006-06-29 2006-06-29 Method and apparatus for measuring thermal properties of high-temperature melt conductive material

Publications (2)

Publication Number Publication Date
JP2008008793A true JP2008008793A (en) 2008-01-17
JP4857422B2 JP4857422B2 (en) 2012-01-18

Family

ID=39067131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180330A Active JP4857422B2 (en) 2006-06-29 2006-06-29 Method and apparatus for measuring thermal properties of high-temperature melt conductive material

Country Status (1)

Country Link
JP (1) JP4857422B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528978A (en) * 2013-11-01 2014-01-22 哈尔滨工业大学 Method for measuring thermophysical parameters of translucent material with transient photothermal signals generated by heating pulse lasers
WO2015045869A1 (en) * 2013-09-25 2015-04-02 株式会社堀場製作所 Analysis device and analysis method
CN104914125A (en) * 2015-07-03 2015-09-16 青岛沃富地源热泵工程有限公司 Rock soil thermophysical property tester remote monitoring system
CN107092754A (en) * 2017-04-25 2017-08-25 哈尔滨理工大学 A kind of alloy grain tissue values Forecasting Methodology
CN109100387A (en) * 2018-08-01 2018-12-28 四川大学 A method of heat flow density when measurement high energy beam impact plane
CN109471053A (en) * 2018-10-18 2019-03-15 电子科技大学 A kind of dielectric property iteration imaging method based on double constraints
CN112630261A (en) * 2020-12-11 2021-04-09 武汉大学 Measuring device and measuring method for multiple thermophysical parameters of material
CN116140593A (en) * 2023-02-10 2023-05-23 西北工业大学 Control method for solidification condition of electrostatic suspension alloy melt

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6160200B2 (en) 2013-04-18 2017-07-12 株式会社ジェイテクト Optical nondestructive inspection apparatus and optical nondestructive inspection method
JP6123460B2 (en) 2013-04-26 2017-05-10 株式会社ジェイテクト Optical nondestructive inspection apparatus and optical nondestructive inspection method
JP6232734B2 (en) 2013-04-26 2017-11-22 株式会社ジェイテクト Optical nondestructive inspection apparatus and optical nondestructive inspection method
JP6255713B2 (en) 2013-05-14 2018-01-10 株式会社ジェイテクト Optical nondestructive inspection method and optical nondestructive inspection apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129851A (en) * 1997-07-11 1999-02-02 Bull-Mu 21:Kk Production of accessories and accessories obtained with this method
JP2001064100A (en) * 1999-08-27 2001-03-13 Japan Science & Technology Corp Floating melting utilizing pseudo micro-gravity field by magnetic force
JP2003106975A (en) * 2001-09-28 2003-04-09 Taihei Matsumoto Thermal property measuring method and measuring device using the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129851A (en) * 1997-07-11 1999-02-02 Bull-Mu 21:Kk Production of accessories and accessories obtained with this method
JP2001064100A (en) * 1999-08-27 2001-03-13 Japan Science & Technology Corp Floating melting utilizing pseudo micro-gravity field by magnetic force
JP2003106975A (en) * 2001-09-28 2003-04-09 Taihei Matsumoto Thermal property measuring method and measuring device using the method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045869A1 (en) * 2013-09-25 2015-04-02 株式会社堀場製作所 Analysis device and analysis method
JPWO2015045869A1 (en) * 2013-09-25 2017-03-09 株式会社堀場製作所 Analysis apparatus and analysis method
US9606090B2 (en) 2013-09-25 2017-03-28 Horiba, Ltd. Analysis device with simultaneous induction and laser heating and analysis method therewith
CN103528978A (en) * 2013-11-01 2014-01-22 哈尔滨工业大学 Method for measuring thermophysical parameters of translucent material with transient photothermal signals generated by heating pulse lasers
CN103528978B (en) * 2013-11-01 2016-04-20 哈尔滨工业大学 The transient state Photothermal Signals utilizing pulsed laser heating to produce measures the method for trnaslucent materials thermal physical property parameter
CN104914125A (en) * 2015-07-03 2015-09-16 青岛沃富地源热泵工程有限公司 Rock soil thermophysical property tester remote monitoring system
CN107092754A (en) * 2017-04-25 2017-08-25 哈尔滨理工大学 A kind of alloy grain tissue values Forecasting Methodology
CN109100387A (en) * 2018-08-01 2018-12-28 四川大学 A method of heat flow density when measurement high energy beam impact plane
CN109100387B (en) * 2018-08-01 2021-04-20 四川大学 Method for measuring heat flux density when high-energy beam impacts plane
CN109471053A (en) * 2018-10-18 2019-03-15 电子科技大学 A kind of dielectric property iteration imaging method based on double constraints
CN112630261A (en) * 2020-12-11 2021-04-09 武汉大学 Measuring device and measuring method for multiple thermophysical parameters of material
CN116140593A (en) * 2023-02-10 2023-05-23 西北工业大学 Control method for solidification condition of electrostatic suspension alloy melt
CN116140593B (en) * 2023-02-10 2023-08-18 西北工业大学 Control method for solidification condition of electrostatic suspension alloy melt

Also Published As

Publication number Publication date
JP4857422B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4857422B2 (en) Method and apparatus for measuring thermal properties of high-temperature melt conductive material
Tsukada et al. Determination of thermal conductivity and emissivity of electromagnetically levitated high-temperature droplet based on the periodic laser-heating method: Theory
Riley et al. Instability of thermocapillary–buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities
Nakamura et al. Temperature fluctuations of the Marangoni flow in a liquid bridge of molten silicon under microgravity on board the TR-IA-4 rocket
Xu et al. An experimental study of thermally induced convection of molten gallium in magnetic fields
Kobatake et al. Noncontact modulated laser calorimetry in a dc magnetic field for stable and supercooled liquid silicon
Gao et al. Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts
Dadzis et al. Model experiments and numerical simulations for directional solidification of multicrystalline silicon in a traveling magnetic field
Coleman et al. Sensitivity of thermal predictions to uncertain surface tension data in laser additive manufacturing
Fukuyama et al. Development of modulated laser calorimetry using a solid platinum sphere as a reference
Perminov et al. Mathematical model of the processes of heat and mass transfer and diffusion of the magnetic field in an induction furnace
Baba et al. Thermal conductivity measurement of molten copper using an electromagnetic levitator superimposed with a static magnetic field
Wang et al. Thermal conductivity of the ternary eutectic LiNO3–NaNO3–KNO3 salt mixture in the solid state using a simple inverse method
Woodside et al. Arc distribution during the vacuum arc remelting of Ti-6Al-4V
Schweizer et al. Experimental study of bubble behavior and local heat flux in pool boiling under variable gravitational conditions
Tsukada et al. Effect of static magnetic field on a thermal conductivity measurement of a molten droplet using an electromagnetic levitation technique
Kobatake et al. Noncontact modulated laser calorimetry of liquid silicon in a static magnetic field
Inatomi et al. Density and thermal conductivity measurements for silicon melt by electromagnetic levitation under a static magnetic field
Alam et al. Radiation based calibration of thin film gauge for transient measurement
Gorbunov et al. Physical modelling of the melt flow during large-diameter silicon single crystal growth
Joung et al. Determination of the liquidus temperature of tin using the heat pulse-based melting and comparison with traditional methods
Fukuyama et al. Noncontact modulated laser calorimetry for liquid austenitic stainless steel in dc magnetic field
Pan et al. Magnetic field effects on g-jitter induced flow and solute transport
Lee et al. Containerless materials processing for materials science on earth and in space
Brillo et al. Thermophysical properties and thermal simulation of Bridgman crystal growth process of Ni–Mn–Ga magnetic shape memory alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A711 Notification of change in applicant

Effective date: 20110829

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110829

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150