JP2003106975A - Thermal property measuring method and measuring device using the method - Google Patents

Thermal property measuring method and measuring device using the method

Info

Publication number
JP2003106975A
JP2003106975A JP2001302957A JP2001302957A JP2003106975A JP 2003106975 A JP2003106975 A JP 2003106975A JP 2001302957 A JP2001302957 A JP 2001302957A JP 2001302957 A JP2001302957 A JP 2001302957A JP 2003106975 A JP2003106975 A JP 2003106975A
Authority
JP
Japan
Prior art keywords
droplet
hollow tube
droplets
end side
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001302957A
Other languages
Japanese (ja)
Inventor
Taihei Matsumoto
大平 松本
Hidetoshi Fujii
英俊 藤井
Masayoshi Kamai
正善 釜井
Toyomasa Nakano
豊将 中野
Kiyoshi Noshiro
清 野城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001302957A priority Critical patent/JP2003106975A/en
Publication of JP2003106975A publication Critical patent/JP2003106975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve measurement accuracy by accurately measuring a diametral change of a droplet and easily measure it in a short time without degrading the measurement accuracy in a measuring method for surface tension or the like using a suspended droplet vibrating method. SOLUTION: A laser beam L is irradiated from a one end side of a hollow tube 2, the droplet d of a specimen is suspended in the hollow tube 2, the diametral change of the droplet d is measured from a shadow of the droplet d by the laser beam L, and at least one of surface tension, density or a viscosity coefficient of the specimen is measured. It is favorable to measure the diametral change of the droplet d in a free falling state from a perspective of improving the measurement accuracy by conglobating the droplet d.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、浮遊液滴振動法を
用いて表面張力や密度、粘性率を測定する方法お及びそ
の方法を用いた測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring surface tension, density and viscosity using a floating droplet vibration method and a measuring device using the method.

【0002】[0002]

【従来の技術】電子部品のマイクロ接合といった産業プ
ロセスの最適化を行うには融液の熱物性値が不可欠であ
る。これまで表面張力や密度の熱物性測定には静滴法が
一般的に用いられてきた。この方法は基板上に液滴を載
せて、その液滴の輪郭の曲率変化から表面張力などを求
める方法である。この方法によれば融点の低い材料の場
合には±5%以下程度のバラツキで熱物性を測定できる
が、融点の高い材料の場合には基板と液滴との反応が無
視できない程度に進み液滴が汚染されてしまうため、純
度の高い材料の熱物性が測定できないという問題があっ
た。
2. Description of the Related Art Thermophysical property values of a melt are indispensable for optimizing industrial processes such as micro joining of electronic parts. Until now, the sessile drop method has been generally used to measure the thermophysical properties of surface tension and density. This method is a method in which a droplet is placed on a substrate and the surface tension or the like is obtained from the change in curvature of the contour of the droplet. According to this method, the thermophysical property can be measured with a variation of about ± 5% or less in the case of a material having a low melting point, but in the case of a material having a high melting point, the reaction between the substrate and the liquid droplets proceeds to such an extent that it cannot be ignored. Since the droplets are contaminated, there is a problem that the thermophysical properties of highly pure materials cannot be measured.

【0003】このため近年、電磁力や静電力などによっ
て液滴を浮かせて自由振動をさせ、その振動周波数から
表面張力などの熱物性を測定する浮遊液滴振動法が注目
されつつある。この方法によれば液滴が基板に接触する
ことがないため、純度の高い状態で材料の熱特性が測定
できる。
Therefore, in recent years, a floating droplet vibration method has attracted attention, in which a droplet is floated by electromagnetic force or electrostatic force to freely vibrate, and thermophysical properties such as surface tension are measured from its vibration frequency. According to this method, since the droplet does not come into contact with the substrate, the thermal characteristics of the material can be measured in a highly pure state.

【0004】[0004]

【発明が解決しようとする課題】しかしこの方法による
従来の測定では液滴の径変化を、高速度ビデオカメラで
撮影して測定したり、あるいはフォトダイオードを用い
て測定したりしていたため、測定速度が充分には速くな
く、満足できる測定精度が得られていなかった。
However, in the conventional measurement by this method, the diameter change of the droplet is measured by photographing with a high-speed video camera or by using a photodiode. The speed was not fast enough and satisfactory measurement accuracy was not obtained.

【0005】またもう一つの問題として、重力下で測定
した場合には、重力の影響で液滴が球形にならないため
測定精度が落ちるという問題があった。この問題を解決
するためには無重力状態で測定を行えばよい。すなわち
液滴を自由落下させてその間の振動数を測定すればよ
い。なお、自由落下している間も液滴は微小ながら重力
の影響を受けるので、この自由落下している間を「微小
重力環境」と以下記すことがある。本発明者等はこのよ
うな着想に基づき地下無重力実験センターの施設を使用
して種々の実験を行い、微少重力環境では表面張力や粘
性率を高精度で測定できることを明らかにしてきたが、
前記施設を使った実験では装置ごと自由落下させるの
で、その準備に多大な時間と労力が必要であり、また高
額な費用が必要であった。
Another problem is that when the measurement is performed under gravity, the accuracy of measurement is lowered because the droplet does not become spherical due to the influence of gravity. In order to solve this problem, the measurement should be performed in a weightless state. That is, the liquid droplets may be allowed to fall freely and the frequency of vibration during that period may be measured. Since the droplets are minutely affected by gravity even during the free fall, this free fall may be referred to as “microgravity environment” below. Based on such an idea, the present inventors have conducted various experiments using the facilities of the underground gravityless experimental center, and have clarified that surface tension and viscosity can be measured with high accuracy in a microgravity environment.
In the experiment using the above facility, each device was allowed to fall freely, so that preparation required a great deal of time and labor, and also required a high cost.

【0006】本発明はこのような従来の問題に鑑みてな
されたものであり、浮遊液滴振動法を用いた、液滴の表
面張力などの熱物性測定方法において、液滴の径変化を
正確に測定し測定精度を向上させることをその目的とす
るものである。
The present invention has been made in view of such a conventional problem, and in a method of measuring thermophysical properties such as surface tension of a droplet using a floating droplet vibration method, it is possible to accurately measure a change in droplet diameter. The purpose is to improve the accuracy of the measurement.

【0007】また本発明の目的は、測定精度を低下させ
ることなく短時間でしかも簡便に熱物性を測定できる方
法及び装置を提供することをその目的とするものであ
る。
Another object of the present invention is to provide a method and an apparatus capable of easily measuring thermophysical properties in a short time without lowering measurement accuracy.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
第1の発明に係る熱物性測定方法では、中空管の一方端
側からレーザ光を照射するとともに、液滴化した被検物
質を前記中空管内に浮遊させた状態にして、前記中空管
の他方端側に設けたラインセンサで、液滴の径変化をレ
ーザ光による液滴の影から測定し、被験物質の表面張
力、密度、粘性率の少なくとも1つを測定する構成とし
た。なお、本発明において浮遊させた状態とは、液滴が
何らの支持体もなく浮かんでいる状態を意味し、液滴が
静的に浮遊している状態のみならず、動的に浮遊してい
る状態(自由落下している状態)をも含む。
In order to achieve the above object, in the thermophysical property measuring method according to the first invention, a laser beam is irradiated from one end side of the hollow tube, and the test substance in the form of droplets is collected. In a state of being suspended in the hollow tube, with a line sensor provided on the other end side of the hollow tube, the diameter change of the droplet is measured from the shadow of the droplet by laser light, and the surface tension and density of the test substance are measured. The configuration is such that at least one of the viscosity is measured. The floating state in the present invention means a state in which the liquid droplet is floating without any support, and the liquid droplet is not only statically floating but also dynamically floating. Including the state (free fall).

【0009】ここで、液滴を球形化して測定精度を上げ
る観点から、前記浮遊させた状態として液滴を自由落下
させた状態を採用するのが推奨される。
Here, from the viewpoint of making the droplets spherical and improving the measurement accuracy, it is recommended to adopt a state in which the droplets fall freely as the suspended state.

【0010】また第2の発明に係る熱物性測定方法で
は、中空管の一方端側からレーザ光を照射するととも
に、前記中空管内を液滴化した被検物質を自由落下さ
せ、前記中空管の他方端側でレーザ光による液滴の影か
ら液滴の径変化を測定し、被験物質の表面張力、密度、
粘性率の少なくとも1つを測定する構成とした。
In the thermophysical property measuring method according to the second aspect of the present invention, laser light is irradiated from one end of the hollow tube, and the test substance that has turned into liquid droplets in the hollow tube is allowed to fall freely, whereby the hollow tube At the other end of the tube, measure the diameter change of the droplet from the shadow of the droplet by laser light, the surface tension of the test substance, the density,
It was configured to measure at least one of the viscosity.

【0011】そしてまた本発明に係る熱物性測定装置で
は、中空管と、この中空管の一方端側に設けたレーザ光
照射手段と、前記中空管内に液滴化した被検物質を浮遊
させる浮遊手段と、前記中空管の他方端側に設けた、レ
ーザ光による液滴の影を検知する検知手段と備え、浮遊
している間の液滴の径変化から被験物質の表面張力、密
度、粘性率の少なくとも1つを測定する構成とした。
Further, in the thermophysical property measuring apparatus according to the present invention, a hollow tube, a laser beam irradiating means provided at one end of the hollow tube, and a test substance suspended in the hollow tube are suspended. Floating means for, and provided on the other end side of the hollow tube, a detecting means for detecting the shadow of the droplet by the laser light, the surface tension of the test substance from the diameter change of the droplet while floating, The configuration is such that at least one of the density and the viscosity is measured.

【0012】ここで、測定精度を向上させる観点から、
浮遊手段としては液滴を自由落下させる手段が望まし
く、また検知手段としてはラインセンサが望ましい。
From the viewpoint of improving the measurement accuracy,
As the floating means, a means for allowing the liquid droplets to fall freely is desirable, and as the detection means, a line sensor is desirable.

【0013】[0013]

【発明の実施の形態】本発明者等は、浮遊液滴振動法に
よる表面張力などの熱物性測定の精度を向上させるべく
鋭意検討を重ねた結果、レーザ光とラインセンサを用い
ることにより測定速度を速くできること、また液滴を自
由落下させることにより測定精度を低下させずに短時間
で簡便に測定でき、さらには装置の小型化が図れること
を見出し本発明をなすに至った。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have made earnest studies to improve the accuracy of thermophysical property measurement such as surface tension by a floating droplet vibration method, and as a result, use a laser beam and a line sensor to measure the measurement speed. The inventors of the present invention have found that the measurement speed can be increased, the droplets can be freely dropped, and measurement can be performed easily in a short time without lowering the measurement accuracy, and the apparatus can be downsized.

【0014】まず、第1の発明に係る測定方法について
説明する。この発明に係る測定方法の大きな特徴は、中
空管内に浮遊させた状態の液滴に一方端側からレーザ光
を照射し、このレーザ光による液滴の影を他方端側に設
けたラインセンサで測定して、液滴の径変化から振動周
波数、体積、振幅減衰率を測定し、そしてこれらを下記
理論式に導入して表面張力や密度、粘性率を算出するこ
とにある。なお、表面張力については重力影響下で測定
した場合には液滴が球形にならないため補正式が必要で
ある。
First, the measuring method according to the first invention will be described. A major feature of the measuring method according to the present invention is a line sensor in which a droplet in a state of being suspended in a hollow tube is irradiated with laser light from one end side, and a shadow of the droplet by the laser light is provided on the other end side. This is to measure the vibration frequency, volume, and amplitude attenuation rate from the change in the diameter of the droplet, and to introduce these into the following theoretical formula to calculate the surface tension, density, and viscosity. It should be noted that the surface tension requires a correction formula because the droplet does not become spherical when measured under the influence of gravity.

【0015】 表面張力 γ=3/8×π×M×ν2 ・・・(1) (M:質量,ν:振動周波数) 密度 ρ=M/V ・・・(2) (M:質量,V:体積) 粘性率 η=3/(20π)×(1/τ)×(M/R)・・・(3) (1/τ:対数減衰率,M:質量,R:液滴半径)Surface tension γ = 3/8 × π × M × ν 2 (1) (M: mass, ν: vibration frequency) Density ρ = M / V (2) (M: mass, V: volume) viscosity η = 3 / (20π) × (1 / τ) × (M / R) (3) (1 / τ: logarithmic attenuation rate, M: mass, R: droplet radius)

【0016】浮遊させた液滴の径変化を、従来は高速度
ビデオカメラで撮影して解析・測定していた。このよう
なビデオカメラでの撮影では高速度にしてもせいぜい2
00〜2,000コマ/sec程度であり、例えば液滴
が1〜2mm程度の場合には、1,000Hz振動する
が(液滴径が小さいほど振動数は多くなる)、前記撮影
ではこの振動を正しく測定できなかった。これに対し
て、本発明の測定方法では、レーザ光による液滴の影を
他方端側に設けたラインセンサで測定するので、70,
000〜80,000コマ/secの情報を得ることが
でき、1,000Hzの液滴振動でも充分に測定するこ
とができる。
Conventionally, a change in diameter of a suspended liquid droplet has been conventionally photographed by a high-speed video camera for analysis and measurement. When shooting with such a video camera, even at high speeds, at most 2
The frequency is about 0.00 to 2,000 frames / sec. For example, when the droplet is about 1 to 2 mm, it vibrates at 1,000 Hz (the smaller the droplet diameter, the higher the frequency). Could not be measured correctly. On the other hand, in the measuring method of the present invention, since the shadow of the liquid drop due to the laser light is measured by the line sensor provided on the other end side, 70,
Information of 000 to 80,000 frames / sec can be obtained and sufficient measurement can be performed even with a droplet vibration of 1,000 Hz.

【0017】図1に、この測定方法を用いた測定装置の
一例を示す。図1の装置では、石英やアルミナなどで形
成された中空管2の下端に、He−Neレーザ装置(レ
ーザ照射手段)1を配設し、レーザ装置1から出射した
直径1mm程度のレーザ光Lをビームエキスパンダ42
で直径3〜8mmに拡大した後、プリズム43により中
空管2の下端開口部からに軸方向に平行に入射させる。
一方、中空管2内には滴出装置41で液滴化された直径
1〜2mm程度の液滴(ここでは純水)dを静的に浮遊
させている。具体的には、重力下では先端が針状の一対
の支持具Sで液滴dを支持し、装置全体を自由落下させ
た状態、すなわち微小重力環境下になった後支持具Sを
液滴dから外すことにより液滴を浮遊させている。この
ようにこの装置では装置全体を自由落下させて測定して
いるので、液滴を静的に浮遊させる手段を特に用いてい
ないが、装置を静置した状態で液滴を静的に浮遊させる
には電磁力や静電力、音波などの従来公知の浮遊手段が
必要となる。
FIG. 1 shows an example of a measuring apparatus using this measuring method. In the apparatus of FIG. 1, a He—Ne laser device (laser irradiation means) 1 is arranged at the lower end of a hollow tube 2 made of quartz or alumina, and laser light emitted from the laser device 1 having a diameter of about 1 mm is used. L is the beam expander 42
After expanding the diameter to 3 to 8 mm, the prism 43 allows the light to enter the hollow tube 2 from the opening at the lower end in parallel to the axial direction.
On the other hand, in the hollow tube 2, a droplet (here, pure water) d having a diameter of about 1 to 2 mm, which is formed by the dropping device 41, is statically suspended. Specifically, under gravity, the pair of supports S having needle-like tips support the droplet d, and the entire apparatus is allowed to fall freely, that is, after the microgravity environment is reached, the support S drops. The droplet is floated by removing it from d. As described above, in this device, since the whole device is freely dropped and measured, a device for statically suspending the liquid droplet is not particularly used, but the liquid droplet is statically suspended while the device is left stationary. For this purpose, conventionally known floating means such as electromagnetic force, electrostatic force and sound wave are required.

【0018】そして、中空管2の上端開口部に設けたプ
リズム44により、中空管2から出てきたレーザ光Lを
略垂直に屈折させてビームエキスパンダ45に入射させ
る。ここでレーザ光Lの直径をさらに大きくし、そして
スリット46を通してレーザ光Lの断面を四角形とした
後、シリンドリカルレンズ47によりレーザ光Lをライ
ン状に集光させてラインセンサ(検知手段)3で検知さ
せる。
Then, the prism 44 provided at the upper end opening of the hollow tube 2 refracts the laser light L emitted from the hollow tube 2 substantially vertically and makes it enter the beam expander 45. Here, the diameter of the laser light L is further increased, and the cross section of the laser light L is made into a quadrangle through the slit 46, and then the laser light L is condensed in a line by the cylindrical lens 47, and the line sensor (detection means) 3 is used. Let it be detected.

【0019】このような装置において、中空管2の下端
開口部から入射した、中空管軸方向に平行なレーザ光L
が、浮遊している液滴dに衝突すると、その部分だけレ
ーザ光が遮られ影となってラインセンサ3で検知され
る。ラインセンサ3における検知の模式図を図2に示
す。図2から明らかなように、中空管2の半径方向のど
の位置に液滴dが存在してもラインセンサ3でその最大
径を検知することができる。また、レーザ光Lを用いて
いるので液滴dが中空管2の管軸方向に移動しても正し
くその最大径を検知できる。
In such an apparatus, a laser beam L incident from the lower end opening of the hollow tube 2 and parallel to the axial direction of the hollow tube
However, when it collides with the floating droplet d, the laser beam is blocked only in that portion and a shadow is detected by the line sensor 3. A schematic diagram of detection by the line sensor 3 is shown in FIG. As is apparent from FIG. 2, the line sensor 3 can detect the maximum diameter of the droplet d at any position in the radial direction of the hollow tube 2. Further, since the laser beam L is used, even if the droplet d moves in the tube axis direction of the hollow tube 2, its maximum diameter can be correctly detected.

【0020】ここで、液滴の最大径の測定誤差を0.1
%以下とするには、ラインセンサにおいて1,000画
素以上に液滴の影がまたがっている必要がある。このた
めには2048画素のラインセンサを用いなけばならな
い。また液滴の読み取り誤差を0.1%以下とするに
は、位相の読み取り誤差を±2.5°以下とする必要が
ある。換言すれば、液滴の表面振動の1振幅の間に71
回以上記録する必要がある。したがって、周波数1,0
00Hz程度の液滴表面振動を前記誤差内で測定するた
めには、71,000コマ/sec以上の記録ができる
ラインセンサを用いなければならない。このような性能
のラインセンサとしては例えばDALSA社製の「CT
−F3−2048W」(2048画素、83,000コ
マ/sec)などが挙げられる。
Here, the measurement error of the maximum diameter of the droplet is set to 0.1.
In order to reduce the percentage to less than 100%, it is necessary for the line sensor to have shadows of droplets of 1,000 pixels or more. For this purpose, a 2048-pixel line sensor must be used. Further, in order to reduce the reading error of the droplet to 0.1% or less, the reading error of the phase needs to be ± 2.5 ° or less. In other words, during one amplitude of the surface vibration of the droplet, 71
Need to record more than once. Therefore, the frequency 1,0
In order to measure the surface vibration of the liquid droplets at about 00 Hz within the above error, a line sensor capable of recording at 71,000 frames / sec or more must be used. As a line sensor having such performance, for example, "CT manufactured by DALSA Co., Ltd.
-F3-2048W "(2048 pixels, 83,000 frames / sec) and the like.

【0021】また、図1の測定装置では1つのラインセ
ンサしか用いていないが、測定精度を一層上げるため
に、2つ以上のラインセンサを用い、レーザ光を分光し
てそれぞれラインセンサに入射するようにしてももちろ
ん構わない。
Further, the measuring apparatus of FIG. 1 uses only one line sensor, but in order to further improve the measurement accuracy, two or more line sensors are used, and the laser light is spectrally incident on each line sensor. Of course it does not matter if you do so.

【0022】次に、前記測定装置で得られたデータから
熱物性値を算出する方法例を説明する。図3に、縦軸を
液滴の直径とし横軸を時間として、ラインセンサで検知
した液滴の直径の経時変化を示す。この図から液滴の振
動周波数および振幅の変化を算出することができる。図
3のデータから求めた、測定開始から各時間間隔ごとの
振動周波数分布を図4に示す。は0〜0.28sec
間の振動周波数分布曲線、は0.07〜0.35se
c間の振動周波数分布曲線を示し、、、・・・と符
号が大きくなるほど測定開始から時間を経た振動周波数
分布曲線となる。この図によれば、測定開始後の〜
の振動周波数分布曲線では、表面振動が2つの方向(図
の「L=2」)以外に3つの方向および4つの方向(図
の「L=3」,「L=4」)の所にもピークが認められ
る。したがってこのようなノイズの影響をなくすには、
測定開始から所定時間経過後のデータを用いて熱物性値
を算出するのが望ましい。
Next, an example of a method for calculating the thermophysical property value from the data obtained by the measuring device will be described. FIG. 3 shows the change over time in the diameter of the droplet detected by the line sensor, with the vertical axis representing the droplet diameter and the horizontal axis representing the time. From this figure, changes in the vibration frequency and amplitude of the droplet can be calculated. FIG. 4 shows the vibration frequency distribution obtained from the data of FIG. 3 at each time interval from the start of measurement. Is 0 to 0.28 sec
Vibration frequency distribution curve between is 0.07 to 0.35se
The vibration frequency distribution curve between c is shown, and the larger the sign is, the more the vibration frequency distribution curve becomes after the start of measurement. According to this figure, after the start of measurement ~
In the vibration frequency distribution curve of, the surface vibration is not only in two directions (“L = 2” in the figure) but also in three directions and four directions (“L = 3” and “L = 4” in the figure). A peak is observed. Therefore, to eliminate the effects of such noise,
It is desirable to calculate the thermophysical property value using the data after a predetermined time has elapsed from the start of measurement.

【0023】図5は、図3のデータから求めた、液滴表
面振動の振幅の経時変化を示す図である。この図から、
時間とともに表面振動の振幅が減衰しているのがわか
る。このデータから近似曲線の式を算出すると次のよう
になる。
FIG. 5 is a diagram showing the time-dependent change in the amplitude of the droplet surface vibration, which is obtained from the data of FIG. From this figure,
It can be seen that the surface vibration amplitude attenuates with time. The formula of the approximation curve is calculated from this data as follows.

【0024】 y=0.364exp(−1.7394x)[0024] y = 0.364exp (-1.7394x)

【0025】上記式のべき数(−1.7394)が対数
減衰率(1/τ)に相当する。これを前記式(3)に代
入して粘性率を算出すると0.92×10-3Pa・sと
なり、既知の純水の粘性率(0.924×10-3Pa・
s)とほぼ一致していた。ここでは例として粘性率を求
めたが、図3のデータから液滴の振動周波数及び直径を
求めて、前記式(1)及び(2)に代入すれば液滴の表
面張力および密度が算出できることは言うまでもない。
The exponent (-1.7394) in the above equation corresponds to the logarithmic decay rate (1 / τ). Substituting this into the equation (3) to calculate the viscosity yields 0.92 × 10 −3 Pa · s, which is the known viscosity of pure water (0.924 × 10 −3 Pa · s).
s) was almost the same. Here, the viscosity coefficient is obtained as an example, but the surface tension and density of the droplet can be calculated by obtaining the vibration frequency and diameter of the droplet from the data of FIG. 3 and substituting them into the above equations (1) and (2). Needless to say.

【0026】なお、図1の装置では装置全体を自由落下
させることによって液滴を球形状で静的に浮遊させてい
るが、装置全体を自由落下させるには大規模な落下装置
を使用しなければならず、測定に多くの時間と労力、そ
して費用が必要となる。そこで図1の装置において、装
置を静置した状態で液滴を自由落下させて球形状の液滴
を形成するのが好ましい。もちろん、図1の装置おいて
電磁力や静電力、音波などの従来公知の浮遊手段を用い
て、液滴を静的に浮遊させてもよいが、この場合には液
滴が球形にならないため表面張力を式(1)から算出す
るには補正式が必要である。また、図1の装置では中空
管の上端にラインセンサ、下端にレーザ装置を配設して
いるが、この配設位置を反対にしても構わない。また浮
遊手段を用いて液滴を浮遊させる場合には、中空管を鉛
直方向に配置する必要はなく、例えば水平方向に配置し
ても構わない。
In the apparatus shown in FIG. 1, the liquid droplets are statically suspended in a spherical shape by free-falling the entire apparatus, but a large-scale drop device must be used for free-falling the entire apparatus. This requires a lot of time, labor, and cost for measurement. Therefore, in the apparatus of FIG. 1, it is preferable that the droplets are allowed to freely fall while the apparatus is stationary to form spherical droplets. Of course, in the apparatus of FIG. 1, the droplet may be statically suspended by using a conventionally known floating means such as electromagnetic force, electrostatic force, or sound wave, but in this case, the droplet does not become spherical. A correction formula is required to calculate the surface tension from the formula (1). Further, in the apparatus of FIG. 1, the line sensor is provided at the upper end of the hollow tube and the laser device is provided at the lower end, but the arrangement positions may be reversed. Further, when the droplets are floated by using the floating means, it is not necessary to dispose the hollow tubes in the vertical direction, and for example, they may be arranged in the horizontal direction.

【0027】次に、第2の発明に係る熱物性測定方法に
ついて説明する。この発明に係る測定方法の大きな特徴
は、液滴化した被検物質を自由落下させることにより液
滴の球形化を図ると同時に、液滴の落下により生じる液
滴径の見かけ上の変化を、平行光線であるレーザ光を用
いて防いだことにある。この方法によれば、微小重量環
境下で球形化した液滴の径変化を精度よく測定できるの
で、熱物性の測定精度が向上する。また、液滴を自由落
下させるので、装置ごと自由落下させていた従来の測定
に比べて短時間で簡便に熱物性を測定できる。また測定
設備の小型化が図れる。
Next, the thermophysical property measuring method according to the second invention will be described. The major feature of the measuring method according to the present invention is to make the droplets to be spherical by free-falling the droplet-shaped test substance, and at the same time, to make apparent changes in the droplet diameter caused by the droplets falling, This is because it was prevented by using parallel laser light. According to this method, it is possible to accurately measure the diameter change of the spherical droplets in a microgravity environment, so that the measurement accuracy of thermophysical properties is improved. Moreover, since the liquid droplets are allowed to fall freely, the thermophysical properties can be easily measured in a shorter time than the conventional measurement in which the apparatus is allowed to fall freely. In addition, the measurement equipment can be downsized.

【0028】第1の発明に係る測定方法と基本構成は共
通するが、本発明の測定方法では液滴の径変化を検知す
る手段としてラインセンサの他、高速度ビデオカメラな
ど従来公知の検知手段を用いても構わない点が第1の発
明に係る測定方法と相違する。ただし、装置の小型化を
図り汎用性をもたせるためには、液滴に落下距離をでき
るだけ短くする必要がある。このため、例えば落下距離
を1.5m程度とした場合には、落下時間は約0.55
secとなり、この短時間の間に熱物性値を精度よく算
出するのに必要なデータを得るためには、液滴径を小さ
くして振動周波数を1000Hz以上にしなければなら
ない。このような小さな液滴径の高い振動周波数を精度
よく測定するには、検知手段としてラインセンサを用い
るのが望ましく、第1の発明で例示したものがここでも
好適に使用できる。
Although the measuring method according to the first aspect of the present invention has the same basic structure, the measuring method of the present invention is not limited to a line sensor as a means for detecting a change in the diameter of a droplet, and a conventionally known detecting means such as a high speed video camera. Is different from the measuring method according to the first invention. However, in order to reduce the size of the device and provide versatility, it is necessary to make the drop distance of the droplet as short as possible. Therefore, if the fall distance is about 1.5 m, the fall time is about 0.55.
In order to obtain the data necessary for accurately calculating the thermophysical property value in this short time, it is necessary to reduce the droplet diameter and set the vibration frequency to 1000 Hz or higher. In order to accurately measure such a high vibration frequency of a small droplet diameter, it is desirable to use a line sensor as the detection means, and the one exemplified in the first invention can be suitably used here.

【0029】図6に、本発明に係る測定方法を用いた測
定装置の一例を示す。図6の測定装置は、図1の測定装
置と基本的構成について一部共通するのでその部分につ
いての説明は省略することにし、異なる構成についての
み以下説明する。まず一つの異なる構成は、図6の測定
装置では中空管2の上部に被検物質を加熱溶融して液滴
とし浮遊させる高周波(1.2MHz程度)の電磁浮遊
装置(浮遊手段)5を配設すると共に、被検物質によっ
ては電磁浮遊装置5だけでは加熱量が不足する場合があ
り得るので、加熱溶融を補助するための赤外線導入加熱
装置6をさらに配設していることである。また、図6の
装置では、ハーフミラー48を用いてレーザ光Lを2つ
に分光して2つラインセンサ(検知手段)3a,3bで
直交する2方向の液滴径を検知している。これは測定精
度を向上させる目的からであり、1つあるいは3つ以上
であってももちろん構わない。
FIG. 6 shows an example of a measuring apparatus using the measuring method according to the present invention. The measuring apparatus shown in FIG. 6 has a part of the basic configuration common to that of the measuring apparatus shown in FIG. First, one different configuration is that in the measuring device of FIG. Depending on the substance to be inspected, the electromagnetic levitation device 5 may be insufficient in heating amount depending on the substance to be inspected. Therefore, the infrared introducing and heating device 6 is additionally provided for assisting heating and melting. Further, in the apparatus of FIG. 6, the laser beam L is split into two using the half mirror 48, and the two line sensors (detection means) 3a and 3b detect the droplet diameters in two directions orthogonal to each other. This is for the purpose of improving the measurement accuracy, and one or three or more may be used.

【0030】次に、このような測定装置における具体的
測定方法を説明する。中空管2を真空にした後、電磁浮
遊装置5で被検物質を加熱溶融して液滴dとする。この
とき液滴表面のクリーニング効果が付加的に得られる。
そして、電磁浮遊装置5の電源を切ることにより、形成
した液滴dを中空管2内を自由落下させる。自由落下し
ている間は微小重力環境下であるため液滴dは球形とな
る。この間の液滴dの径変化を、レーザ光Lによる液滴
dの影をラインセンサ3a,3bで検知する。そして得
られた液滴径の変化から液滴の振動周波数や体積、振幅
の減衰率を前記と同様にして求め、式(1)〜(3)に
代入して各熱物性値を算出すれはよい。
Next, a specific measuring method in such a measuring device will be described. After the hollow tube 2 is evacuated, the test substance is heated and melted by the electromagnetic levitation device 5 to form droplets d. At this time, the effect of cleaning the surface of the droplet is additionally obtained.
Then, by turning off the power of the electromagnetic levitation device 5, the formed droplet d is allowed to fall freely inside the hollow tube 2. The droplet d is spherical because it is in a microgravity environment during free fall. The change in diameter of the liquid droplet d during this time is detected by the line sensors 3a and 3b as the shadow of the liquid droplet d caused by the laser light L. Then, the vibration frequency, the volume, and the damping rate of the amplitude of the droplet are obtained from the obtained change of the droplet diameter in the same manner as described above, and are substituted into the equations (1) to (3) to calculate each thermophysical property value. Good.

【0031】[0031]

【発明の効果】第1の発明に係る測定方法では、中空管
内に浮遊させた状態の液滴にレーザ光を照射し、このレ
ーザ光による液滴の影をラインセンサで測定して、液滴
の径変化から熱物性値を算出するので、短時間の測定で
精度よく熱物性値が求められる。
In the measuring method according to the first aspect of the present invention, a laser beam is irradiated onto a liquid droplet suspended in a hollow tube, and the shadow of the liquid laser beam is measured by a line sensor to obtain the liquid droplet. Since the thermophysical property value is calculated from the change in diameter, the thermophysical property value can be obtained with high accuracy by measuring in a short time.

【0032】ここで、前記の液滴を浮遊させた状態が自
由落下させた状態であれば、液滴が球形となるので一層
高い精度で熱物性値が求められる。
If the floating state of the droplets is the state of free fall, the droplets will be spherical and the thermophysical property value can be obtained with higher accuracy.

【0033】第2の発明に係る測定方法では、中空管内
を液滴を自由落下させて、その間の液滴の径変化をレー
ザ光による液滴の影によって測定して熱物性値を算出す
るので、熱物性値を高い精度で測定できる。また従来の
測定に比べて短時間でしかも簡便に熱物性値を測定でき
る。また測定設備の小型化が図れる。
In the measuring method according to the second aspect of the invention, the thermophysical property value is calculated by allowing the droplet to freely fall in the hollow tube and measuring the change in diameter of the droplet during that time by the shadow of the droplet due to the laser light. The thermophysical property value can be measured with high accuracy. In addition, thermophysical property values can be measured in a shorter time and more easily than conventional measurements. In addition, the measurement equipment can be downsized.

【0034】本発明の測定装置では、中空管内に浮遊さ
せた状態の液滴にレーザ光を照射し、このレーザ光によ
る液滴の影を検知手段で測定して、液滴の径変化から熱
物性値を算出するので高い精度で熱物性値が求められ
る。
In the measuring apparatus of the present invention, the droplets suspended in the hollow tube are irradiated with the laser beam, and the shadow of the droplets by the laser beam is measured by the detecting means to detect the change in the diameter of the droplets from the heat. Since the physical property values are calculated, the thermophysical property values can be obtained with high accuracy.

【0035】ここで、自由落下させた状態の液滴の径変
化を測定する、あるいは検知手段としてラインセンサを
用いると、一層高い精度で熱物性値が求められる。
Here, if the diameter change of the liquid drop in the free-fall state is measured, or if a line sensor is used as the detection means, the thermophysical property value can be obtained with higher accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1の発明に係る測定方法を用いた測定装置
の一例を示す概説図である。
FIG. 1 is a schematic diagram showing an example of a measuring apparatus using a measuring method according to a first invention.

【図2】 レーザ光による液滴の影をラインセンサで検
知する説明図である。
FIG. 2 is an explanatory diagram in which a line sensor detects a shadow of a droplet caused by laser light.

【図3】 液滴の径変化の一例を示す図である。FIG. 3 is a diagram showing an example of a change in droplet diameter.

【図4】 図3のデータから算出した液滴の振動周波数
分布図である。
FIG. 4 is a vibration frequency distribution chart of droplets calculated from the data of FIG.

【図5】 図3のデータから算出した液滴の振動振幅の
経時変化を示す図である。
5 is a diagram showing a change over time in the vibration amplitude of a droplet calculated from the data of FIG.

【図6】 第2の発明に係る測定方法を用いた測定装置
の一例を示す概説図である。
FIG. 6 is a schematic view showing an example of a measuring device using the measuring method according to the second invention.

【符号の説明】[Explanation of symbols]

1 レーザ装置(レーザ照射手段) 2 中空管 3 ラインセンサ(検知手段) 5 電磁浮遊装置(浮遊手段) d 液滴 L レーザ光 1 Laser device (laser irradiation means) 2 hollow tubes 3 line sensor (detection means) 5 Electromagnetic levitation device (floating means) d droplet L laser light

フロントページの続き (71)出願人 501382052 野城 清 大阪府茨木市美穂ヶ丘11−1 大阪大学接 合科学研究所内 (72)発明者 松本 大平 大阪府茨木市美穂ヶ丘11−1 大阪大学接 合科学研究所内 (72)発明者 藤井 英俊 大阪府茨木市美穂ヶ丘11−1 大阪大学接 合科学研究所内 (72)発明者 釜井 正善 大阪府茨木市美穂ヶ丘11−1 大阪大学接 合科学研究所内 (72)発明者 中野 豊将 兵庫県加古川市平岡町一色西2丁目303− 15 (72)発明者 野城 清 大阪府茨木市美穂ヶ丘11−1 大阪大学接 合科学研究所内Continued front page    (71) Applicant 501382052             Kiyoshi Nojo             11-1 Mihogaoka, Ibaraki City, Osaka Prefecture             Within the Institute of Advanced Science (72) Inventor Daihei Matsumoto             11-1 Mihogaoka, Ibaraki City, Osaka Prefecture             Within the Institute of Advanced Science (72) Inventor Hidetoshi Fujii             11-1 Mihogaoka, Ibaraki City, Osaka Prefecture             Within the Institute of Advanced Science (72) Inventor Masayoshi Kamai             11-1 Mihogaoka, Ibaraki City, Osaka Prefecture             Within the Institute of Advanced Science (72) Inventor Toyomasa Nakano             2-303, Isshiki Nishi, Hiraoka Town, Kakogawa City, Hyogo Prefecture             15 (72) Inventor Kiyoshi Nogi             11-1 Mihogaoka, Ibaraki City, Osaka Prefecture             Within the Institute of Advanced Science

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 中空管の一方端側からレーザ光を照射す
るとともに、液滴化した被検物質を前記中空管内に浮遊
させた状態にして、前記中空管の他方端側に設けたライ
ンセンサで、液滴の径変化をレーザ光による液滴の影か
ら測定し、被験物質の表面張力、密度、粘性率の少なく
とも1つを測定することを特徴とする熱物性測定方法。
1. A laser beam is irradiated from one end side of the hollow tube, and the test substance in the form of droplets is provided on the other end side of the hollow tube in a state of being suspended in the hollow tube. A thermophysical property measuring method, characterized in that a line sensor measures a diameter change of a droplet from a shadow of the droplet caused by laser light, and measures at least one of surface tension, density, and viscosity of a test substance.
【請求項2】 前記浮遊させた状態が液滴を自由落下さ
せた状態である請求項1記載の熱物性測定方法。
2. The thermophysical property measuring method according to claim 1, wherein the suspended state is a state in which a liquid droplet is allowed to fall freely.
【請求項3】 中空管の一方端側からレーザ光を照射す
るとともに、前記中空管内を液滴化した被検物質を自由
落下させ、前記中空管の他方端側でレーザ光による液滴
の影から液滴の径変化を測定し、被験物質の表面張力、
密度、粘性率の少なくとも1つを測定することを特徴と
する熱物性測定方法。
3. A laser beam is radiated from one end side of the hollow tube, and a test substance that has been made into droplets inside the hollow tube is allowed to fall freely, and a droplet of the laser beam is emitted at the other end side of the hollow tube. Measure the diameter change of the droplet from the shadow of the, the surface tension of the test substance,
A method for measuring thermophysical properties, which comprises measuring at least one of density and viscosity.
【請求項4】 中空管と、この中空管の一方端側に設け
たレーザ光照射手段と、前記中空管内に液滴化した被検
物質を浮遊させる浮遊手段と、前記中空管の他方端側に
設けた、レーザ光による液滴の影を検知する検知手段と
備え、浮遊している間の液滴の径変化から被験物質の表
面張力、密度、粘性率の少なくとも1つを測定すること
を特徴とする熱物性測定装置。
4. A hollow tube, a laser beam irradiating means provided on one end side of the hollow tube, a floating means for suspending a test substance in the form of droplets in the hollow tube, and a hollow tube for the hollow tube. Equipped with a detection means provided on the other end side for detecting the shadow of the droplet due to laser light, and measuring at least one of the surface tension, density, and viscosity of the test substance from the diameter change of the droplet while floating A thermophysical property measuring device characterized by:
【請求項5】 前記浮遊手段が液滴を自由落下させる手
段である請求項4記載の熱物性測定装置。
5. The thermophysical property measuring device according to claim 4, wherein the floating means is means for allowing the liquid droplets to fall freely.
【請求項6】 前記検知手段がラインセンサである請求
項4又は5記載の熱物性測定装置。
6. The thermophysical property measuring device according to claim 4, wherein the detecting means is a line sensor.
JP2001302957A 2001-09-28 2001-09-28 Thermal property measuring method and measuring device using the method Pending JP2003106975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302957A JP2003106975A (en) 2001-09-28 2001-09-28 Thermal property measuring method and measuring device using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302957A JP2003106975A (en) 2001-09-28 2001-09-28 Thermal property measuring method and measuring device using the method

Publications (1)

Publication Number Publication Date
JP2003106975A true JP2003106975A (en) 2003-04-09

Family

ID=19123113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302957A Pending JP2003106975A (en) 2001-09-28 2001-09-28 Thermal property measuring method and measuring device using the method

Country Status (1)

Country Link
JP (1) JP2003106975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008793A (en) * 2006-06-29 2008-01-17 Tohoku Univ Thermophysical property measuring method and measuring device of high-temperature melt conductive material
CN109991131A (en) * 2019-03-12 2019-07-09 华中科技大学 Surface tension constant determines model and method and method for surface tension measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008793A (en) * 2006-06-29 2008-01-17 Tohoku Univ Thermophysical property measuring method and measuring device of high-temperature melt conductive material
CN109991131A (en) * 2019-03-12 2019-07-09 华中科技大学 Surface tension constant determines model and method and method for surface tension measurement

Similar Documents

Publication Publication Date Title
JPS5934138A (en) Method of detecting thermal wave by laser probe
CN105865979B (en) A kind of apparatus and method measuring microlayer model electrowetting
JP4670000B2 (en) Nondestructive inspection device for balls
Leifer et al. Three-dimensional acceleration measurement using videogrammetry tracking data
Prokhorov Acoustics of oscillating bubbles when a drop hits the water surface
JP2003106975A (en) Thermal property measuring method and measuring device using the method
Song et al. Laser-scanning Doppler photoacoustic microscopy based on temporal correlation
WO1997027472A1 (en) Measuring the thermal conductivity of thin films
Potter Boundary-layer transition on supersonic cones in an aeroballistic range
Petrie et al. Does the Euler Disk slip during its motion?
JP4511695B2 (en) Flaw detection method and apparatus
JPH07318476A (en) Particulate analyzer
CN107543824A (en) The detection means and its detection method of planar optical elements beauty defects
US3504552A (en) Particle contact counter and method
JPS61502563A (en) Eddy current flaw detection method and device
CN109946188A (en) Flaky material is detected by the device and method of metal melt flow thermal shock resistance properties
CN108917624A (en) For the Calculation Method of Deflection of interior engine surface heat insulation layer Thickness sensitivity, device and heat insulation layer thickness detecting method, system
Roos et al. Comparison of hot-film probe and optical techniques for sensing shock motion
Severn et al. A simple extension of Rüchardt’s method for measuring the ratio of specific heats of air using microcomputer-based laboratory sensors
RU2692116C1 (en) Method of determining throwing object speed
RU2543707C1 (en) Gravitational constant measurement method
JPH0126017B2 (en)
Yokota et al. 3P1-1 Direct Observation of Microdroplets Penetrating Porous Substrate
RU2820761C1 (en) Method and device for determining heat conductivity of core sample
JP2003294608A (en) Particle adherence measuring apparatus