JP2005008447A - Method of manufacturing aluminum oxynitride sintered compact, aluminum oxynitride sintered compact and semiconductor or liquid crystal manufacturing apparatus member - Google Patents

Method of manufacturing aluminum oxynitride sintered compact, aluminum oxynitride sintered compact and semiconductor or liquid crystal manufacturing apparatus member Download PDF

Info

Publication number
JP2005008447A
JP2005008447A JP2003171824A JP2003171824A JP2005008447A JP 2005008447 A JP2005008447 A JP 2005008447A JP 2003171824 A JP2003171824 A JP 2003171824A JP 2003171824 A JP2003171824 A JP 2003171824A JP 2005008447 A JP2005008447 A JP 2005008447A
Authority
JP
Japan
Prior art keywords
sintered body
aluminum oxynitride
powder
sintered compact
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003171824A
Other languages
Japanese (ja)
Inventor
Yukio Kishi
幸男 岸
Hiromichi Otaki
浩通 大滝
Makoto Sakamaki
誠 酒巻
Noriyasu Hotta
憲康 堀田
Yoshifumi Hosomichi
善文 細道
Reki Yonezawa
歴 米澤
Toshihide Hizuka
俊秀 飛塚
Kunihiro Yanagida
国宏 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2003171824A priority Critical patent/JP2005008447A/en
Publication of JP2005008447A publication Critical patent/JP2005008447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Ceramic Products (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To industrially manufacture an aluminum oxynitride sintered compact sintered at a lower temperature than that of the conventional one and exhibiting excellent corrosion resistance against a halogen-based gas or halogen-based plasma and excellent translucency in a visible and infrared region. <P>SOLUTION: A powdery mixture prepared by mixing aluminum nitride powder having 0.01-3.0 μm average particle diameter and 10-40mol% aluminum oxide powder having 0.01-3.0 μm average particle diameter is molded and fired at 1,700-1,950°C for 0.5-10 hr under a nitrogen atmosphere or vacuum atmosphere to obtain a sintered compact. Boron nitride (BN) powder is applied on the surface of the sintered compact and the sintered compact is further sintered under hot isotropic pressure at 1,700-1,950°C for 0.5-10 hr. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する分野】
本発明はハロゲン系プラズマ環境下での耐食性に優れ、半導体製造装置等の透光性部材等に好適な酸窒化アルミニウム焼結体の製造方法、酸窒化アルミニウム焼結体、およびに酸窒化アルミニウム焼結体からなる半導体または液晶製造装置部材に関する。
【0002】
【従来の技術】
現在、半導体デバイスの急速な高集積化により、その製造工程(エッチング、不純物拡散、イオン注入など)の多重化や、プラズマの高出力化など、半導体製造装置内の環境は年々苛酷なものとなってきている。その中でパターン形成のために行われるドライエッチング工程では、ハロゲンガスがプラズマにより活性化されて使用されるため、ベルジャー、ドーム、サセプター、クランプリング、フォーカスリング等の製造装置部材にはアルミナセラミックスなどの耐食性に優れた材料が用いられてきている。
【0003】
一方、半導体製造装置には、例えばチャンバー内状況確認をするためのビューポート等の透光性が要求される部材が存在するが、アルミナセラミックスは耐食性には優れるものの透光性を示し難く、このような透光性が要求される部材には、これまで石英ガラスが使用されてきた。しかしながら、石英ガラスは上記プラズマ耐食性に劣っており、耐久性を補う観点から厚さ20mm程度の厚いものを用いても未だ耐久時間が不十分であるという問題がある。
【0004】
このため、耐食性に優れた透光性材料が求められている。これに対し、酸窒化アルミニウムが立方晶スピネル構造を示すため、理論的観点から透光性に優れた焼結体が得られることが期待されており、例えば特許文献1,2に透光性酸窒化アルミニウム焼結体が提案されている。また、酸窒化アルミニウムは耐食性にも優れていることから、耐食性に優れた透光性材料として適用可能であると考えられる。
【0005】
【特許文献1】
特開平8−133872号公報
【特許文献2】
特開2002−338359号公報
【0006】
【発明が解決しようとする課題】
ところで、従来、透光性の酸窒化アルミニウムの健全な焼結体を作製する際には、2000℃以上という高温焼結が必要であるとされており、このような高温では炉の劣化が著しく現実的ではない。そのため、より低温で焼結することが求められているが、単に焼結温度を低下させると焼結体の透光性および耐食性が不十分なものとなってしまう。また、従来、焼結体へ不純物が拡散することを防止のための高価なBN坩堝とBN埋没用粉末が必須であり、半導体製造装置や液晶(液晶表示装置)製造装置に用いられる部材等、工業的レベルの製品に適用することが困難である。
【0007】
本願発明はかかる事情に鑑みてなされたものであって、焼結温度が従来よりも低温であり、ハロゲン系ガスやハロゲン系プラズマに対して優れた耐食性を示し、加えて可視・赤外領域での優れた透光性を示す酸窒化アルミニウム焼結体を工業的レベルで製造することができる酸窒化アルミニウム焼結体の製造方法、および酸窒化アルミニウム焼結体、およびそのような酸窒化アルミニウム焼結体を用いた半導体または液晶製造装置部材を提供することを目的とする。
【0008】
【発明を解決するための手段】
本発明者らは、従来よりも低い焼結温度で、かつBN坩堝とBN埋没用粉末を用いずに焼結体への不純物の拡散を防止して工業的レベルで優れた耐食性および透光性を示す酸窒化アルミニウム焼結体を得るべく種々検討を重ねた。
【0009】
その結果、窒化アルミニウム粉末と酸化アルミニウム粉末を一定範囲の微粉末を原料として用い、焼成後、焼結体表面に窒化ホウ素粉末を塗布し、さらに当方加圧焼結を行うという手法により、焼結温度を従来よりも低くして、BN坩堝とBN埋没用粉末を用いることなく、所期の酸窒化アルミニウム焼結体が得られることを見出した。
【0010】
すなわち、本発明は、平均粒径0.01〜3.0μmの窒化アルミニウム粉末と平均粒径0.01〜3.0μmの酸化アルミニウム粉末を、酸化アルミニウム粉末が10〜40mol%の範囲で混合してなる混合粉末を成形し、窒素雰囲気あるいは真空雰囲気中、1700〜1950℃で0.5〜10時間焼成して焼結体とした後、該焼結体表面に窒化ホウ素(BN)粉末を塗布し、さらに1700〜1950℃で0.5〜10時間熱間等方加圧焼結を行うことを特徴とする酸窒化アルミニウム焼結体の製造方法を提供する。
【0011】
また、本発明は、このような製造方法で得られた酸窒化アルミニウム焼結体を提供する。
【0012】
さらに、本発明は、少なくともAl、O、Nを含み、ハロゲン系プラズマ環境下でのエッチング速度が15nm/min以下、可視・赤外領域での透過率が10%以上であることを特徴とする酸窒化アルミニウム焼結体を提供する。
【0013】
さらにまた、これらの酸窒化アルミニウム焼結体からなる半導体または液晶製造装置部材を提供する。
【0014】
なお、本発明において、エッチング速度は、CF+O(20%)の混合ガスをプラズマ化し、その中での焼結体のエッチング速度をいう。
【0015】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明においては、まず、平均粒径0.01〜3.0μmの窒化アルミニウム粉末と平均粒径0.01〜3.0μmの酸化アルミニウム粉末を、酸化アルミニウム粉末が10〜40mol%の範囲で混合してなる混合粉末を用いる。
【0016】
窒化アルミニウム粉末および酸化アルミニウム粉末の平均粒径をいずれも0.01〜3.0μmとしたのは、窒化アルミニウム粉末および酸化アルミニウム粉末の平均粒径が3.0μmを超えると、焼結後に酸窒化アルミニウムの焼結体密度が低下し、透光性およびプラズマ耐食性を低下させてしまい、一方窒化アルミニウム粉末あるいは酸化アルミニウム粉末の粒度が0.01μm未満の場合は、混合時の作業が著しく困難となるため、工業的に不利となるからである。
【0017】
また、酸化アルミニウムの配合量を10〜40mol%としたのは、その配合量が10mol%未満あるいは40mol%を超えた場合、焼結体の結晶相が酸窒化アルミニウムの単一相ではなく、窒化アルミニウムや酸化アルミニウムとの混合相となり、透光性を損なうためである。
【0018】
以上のような混合粉末を成形後、窒素雰囲気あるいは真空雰囲気中、1700〜1950℃で0.5〜10時間焼成して焼結体とした後、該焼結体表面に窒化ホウ素(BN)粉末を塗布し、さらに1700〜1950℃で0.5〜10時間熱間等方加圧焼結(HIP)を行う。
【0019】
成形は、例えば、一軸加圧成形、冷間等方加圧成形(CIP)等、通常この分野で採用されている方法で行うことができる。
【0020】
最初の焼成温度を1700〜1950℃、焼成時間を0.5〜10時間にしたのは、1700℃未満または保持時間が0.5時間に満たない場には焼結体の緻密化が不十分であり、以後の等方加圧焼結の効果を得られず、逆に焼成温度が1950℃を超えたり、保持時間が10時間を超えると、炉の劣化と生産効率の低下を招き好ましくないからである。
【0021】
最初の焼成で得られた一次焼結体の表面にBN粉末を塗布するのは、次の熱間等方加圧焼結の際に一次焼結体に炉内不純物により汚染を防止するためである。BN粉末を塗布する方法は特に限定されないが、スプレーコーティングが好ましい。その他にBNスラリーを塗布し乾燥する方法を用いることもできる。また、この際の塗布厚は0.1μm以上あればよく、より好ましくは1〜100μmである。BN粉末は薄片状の形状を有するため、一次焼結体表面に対し平行に空隙を覆うため、熱間等方加圧焼結の効率を高めることができる。また、このようにBN粉末を塗布することにより、高価なBN製坩堝を使用する必要がないため、工業的に有利であり、加えて、複雑形状品や大型形状品への対応も容易となる。なお、BN塗布膜は、製品化する際には除去される。BN塗布膜は、上記焼成温度では焼結せずに、粉末状で残存しているため、比較的容易に除去することができる。
【0022】
熱間等方加熱焼結(HIP)を行うのは、一次焼結体の相対密度をさらに上昇させて100%に近い相対密度の焼結体とし、透光性およびプラズマ耐食性を十分なものとするためである。熱間等方加圧焼結の条件を1700〜1950℃で0.5〜10時間保持としたのは、焼成温度が1700℃に満たない場合、または保持時間が0.5時間に満たない場合は、焼結体の緻密化が不十分であり、透光性あるいはプラズマ耐食性の低下を招き、逆に焼成温度が1950℃を超えたり、保持時間が10時間を超えると、熱間等方加圧焼成炉の劣化と生産効率の低下を招き好ましくないからである。
【0023】
このようにして、従来よりも低い1950℃以下の焼成にて焼結体を作製可能で、工業上の適用において課題となる高価なBN製坩堝や埋没用粉末を使用することなく、優れたハロゲン系プラズマ耐食性と可視・赤外領域での優れた透過率を示す酸窒化アルミニウム焼結体を得ることができる。具体的には、ハロゲン系プラズマ環境下でのエッチング速度が、15nm/min以下、可視・赤外領域での透過率が10%以上である酸窒化アルミニウム焼結体を得ることができる。
【0024】
本発明の酸窒化アルミニウムはこのような特性を有しているため、例えばプラズマ処理の際のチャンバー内状況を確認するためのビューポート部材等、半導体または液晶製造装置においてプラズマ耐食性や透光性が必要とされる部材に適している。
【0025】
【実施例】
以下、本発明の実施例を比較例と対比しつつ説明する。
【0026】
ここでは、表1に示す実施例1〜11、比較例1〜9に示す条件で酸窒化アルミニウム焼結体を製造し、これら焼結体と、比較のための99.5%酸化アルミニウム焼結体(比較例10)、石英(比較例11)について、透光性とプラズマ耐食性について評価した。
【0027】
酸窒化アルミニウム焼結体の製造においては、まず、表1に示す平均粒径の高純度窒化アルミニウム粉末(純度99.9%)と高純度酸化アルミニウム粉末(純度99.9%)を用い、これらをAlNが表1に示すような割合になるような混合比で秤量し、エタノールを分散媒として20時間の湿式混合を行い、スプレードライヤーにて造粒を行った。得られた顆粒を100MPaの圧力で一軸加圧成形した。これを窒素雰囲気(実施例4のみAr雰囲気)中、昇温速度20℃/minとし表1に示す条件にて焼成し、一次焼結体を得た。この一次焼結体は焼結体の相対密度は、表1に示すように92.3〜98.7%であった。次いで、この一次焼結体表面に窒化ホウ素(BN)をスプレーコートし、表面付近に残存する開空げきを閉空げきにした後、アルゴンガス雰囲気中、昇温速度15℃/minで180MPaの熱間等方圧(HIP)で、表1に示す条件で焼結を行った。これにより、表1に示すような相対密度:94.9〜100%、厚さ:3mmの実施例1〜11、比較例1〜9の酸窒化アルミニウム焼結体が得られた。
【0028】
これら酸窒化アルミニウム焼結体および99.5%酸化アルミニウム焼結体(比較例10)、石英(比較例11)について、可視領域および赤外領域の分光光度計(UV/VIS、FT−IR)により透過率を測定した。
【0029】
また、焼結体の一部を鏡面加工してその一部にSiウェハーにてマスキングを行った試料を作製し、平行平板型のRIEプラズマエッチング装置を用いて、プラズマエッチングを行い、プラズマ耐食性を把握した。使用ガスはCF+O(20%)(流量:50sccm、圧力:50mmTorr)、プラズマ暴露時間は2時間、出力は1000Wである。この試験片のマスキング部とプラズマ暴露部の段差より、エッチングレートを算出し、その値によりプラズマ耐食性を評価した。
【0030】
これら透過率の測定結果およびプラズマ耐食性の評価結果を表1に併記する。表1から明らかなように、本発明の製造方法の条件を満たす実施例1〜11は、エッチング速度が15nm/min以下、可視・赤外領域での透過率が10%以上と良好なプラズマ耐食性および透光性が得られた。特に実施例1、5、7は、可視光領域で41〜45%、赤外領域で73〜77%と理論透過率の80%に近い値が得られた。
【0031】
これに対して、AlNの配合量が本発明の範囲から外れる比較例1,2は、いずれも透光性が十分でなかった。また、一次焼成の焼成温度が1650℃と低い比較例3および一次焼成の際の焼成時間の短い比較例4は、いずれも焼結が十分でなく、透光性およびプラズマ耐食性のいずれも不十分であった。BNスプレーを行わなかった比較例5は、不純物の侵入が抑えられず、透光性が低かった。HIP温度の低い比較例6およびHIP保持温度の短い比較例7についても透光性が低かった。AlN粉末の粒径が大きい比較例8およびAl粉末粒径が大きい比較例9はいずれも焼結が十分ではなく、透光性およびプラズマ耐食性のいずれも不十分であった。また、99.5%酸化アルミニウム焼結体である比較例10はプラズマ耐食性は良好であったが、透光性が不十分であり、石英である比較例11は、透光性は極めて良好であるが、プラズマ耐食性が著しく劣っていた。
【0032】
【表1】

Figure 2005008447
【0033】
【発明の効果】
以上説明したように、本発明によれば、焼結温度が従来よりも低温であり、ハロゲン系ガスやハロゲン系プラズマに対して優れた耐食性を示し、加えて可視・赤外領域での優れた透光性を示す酸窒化アルミニウム焼結体を工業的レベルで製造することができる酸窒化アルミニウム焼結体の製造方法、およびそのような酸窒化アルミニウム焼結体が提供される。また、そのような酸窒化アルミニウム焼結体を用いた半導体または液晶製造装置部材が提供される。[0001]
[Field of the Invention]
The present invention provides a method for producing an aluminum oxynitride sintered body excellent in corrosion resistance under a halogen-based plasma environment and suitable for a translucent member such as a semiconductor manufacturing apparatus, an aluminum oxynitride sintered body, and an aluminum oxynitride sintered body. The present invention relates to a semiconductor or liquid crystal manufacturing apparatus member made of a combined body.
[0002]
[Prior art]
Currently, with rapid integration of semiconductor devices, the environment in semiconductor manufacturing equipment has become harsh year by year, such as the multiplexing of manufacturing processes (etching, impurity diffusion, ion implantation, etc.) and higher plasma output. It is coming. In the dry etching process performed for pattern formation, halogen gas is activated by plasma and used. Therefore, alumina ceramics and the like are used for manufacturing equipment members such as bell jars, domes, susceptors, clamp rings, and focus rings. Materials having excellent corrosion resistance have been used.
[0003]
On the other hand, there are members that require translucency, such as viewports for confirming the conditions in the chamber, for example, but semiconductor ceramics are excellent in corrosion resistance but hardly exhibit translucency. Quartz glass has heretofore been used for members that require such translucency. However, quartz glass is inferior in the above-mentioned plasma corrosion resistance, and there is a problem that the durability time is still insufficient even when a thick glass having a thickness of about 20 mm is used from the viewpoint of supplementing durability.
[0004]
For this reason, a translucent material excellent in corrosion resistance is required. On the other hand, since aluminum oxynitride exhibits a cubic spinel structure, it is expected that a sintered body having excellent translucency can be obtained from a theoretical point of view. An aluminum nitride sintered body has been proposed. Moreover, since aluminum oxynitride is excellent also in corrosion resistance, it is thought that it can be applied as a translucent material excellent in corrosion resistance.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-133872 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-338359
[Problems to be solved by the invention]
By the way, conventionally, when producing a transparent sintered body of translucent aluminum oxynitride, high temperature sintering of 2000 ° C. or higher is necessary, and at such a high temperature, the furnace deteriorates remarkably. Not realistic. Therefore, although it is calculated | required to sinter at lower temperature, if the sintering temperature is simply lowered | hung, the translucency and corrosion resistance of a sintered compact will become inadequate. Conventionally, an expensive BN crucible and BN burying powder for preventing impurities from diffusing into the sintered body are essential, and members used for semiconductor manufacturing equipment and liquid crystal (liquid crystal display) manufacturing equipment, etc. It is difficult to apply to industrial level products.
[0007]
The present invention has been made in view of such circumstances, and has a sintering temperature lower than that of the prior art and exhibits excellent corrosion resistance against halogen-based gases and halogen-based plasmas. In addition, in the visible / infrared region. Aluminum oxynitride sintered body capable of producing an aluminum oxynitride sintered body exhibiting excellent translucency at an industrial level, aluminum oxynitride sintered body, and such aluminum oxynitride sintered body An object of the present invention is to provide a semiconductor or liquid crystal manufacturing apparatus member using the bonded body.
[0008]
[Means for Solving the Invention]
The inventors of the present invention have an excellent corrosion resistance and translucency at an industrial level by preventing diffusion of impurities into a sintered body at a sintering temperature lower than that of the prior art and without using a BN crucible and BN embedding powder. Various studies were repeated to obtain an aluminum oxynitride sintered body exhibiting the following.
[0009]
As a result, aluminum nitride powder and aluminum oxide powder were used as raw materials in a certain range, and after firing, boron nitride powder was applied to the surface of the sintered body, and then pressure sintering was performed. It has been found that the desired aluminum oxynitride sintered body can be obtained without using a BN crucible and BN embedding powder at a lower temperature than before.
[0010]
That is, in the present invention, an aluminum nitride powder having an average particle diameter of 0.01 to 3.0 μm and an aluminum oxide powder having an average particle diameter of 0.01 to 3.0 μm are mixed in a range of 10 to 40 mol% of the aluminum oxide powder. After forming the mixed powder and firing in a nitrogen atmosphere or vacuum atmosphere at 1700-1950 ° C. for 0.5 to 10 hours to form a sintered body, boron nitride (BN) powder is applied to the surface of the sintered body And a method for producing an aluminum oxynitride sintered body characterized by performing hot isostatic pressing at 1700 to 1950 ° C. for 0.5 to 10 hours.
[0011]
Moreover, this invention provides the aluminum oxynitride sintered compact obtained by such a manufacturing method.
[0012]
Furthermore, the present invention is characterized in that it contains at least Al, O, and N, has an etching rate in a halogen-based plasma environment of 15 nm / min or less, and a transmittance in the visible / infrared region of 10% or more. An aluminum oxynitride sintered body is provided.
[0013]
Furthermore, the semiconductor or liquid crystal manufacturing apparatus member which consists of these aluminum oxynitride sintered compacts is provided.
[0014]
In the present invention, the etching rate refers to the etching rate of the sintered body in which a mixed gas of CF 4 + O 2 (20%) is turned into plasma.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, first, an aluminum nitride powder having an average particle size of 0.01 to 3.0 μm and an aluminum oxide powder having an average particle size of 0.01 to 3.0 μm are mixed in a range of 10 to 40 mol% of the aluminum oxide powder. A mixed powder is used.
[0016]
The average particle diameters of the aluminum nitride powder and the aluminum oxide powder were both set to 0.01 to 3.0 μm when the average particle diameter of the aluminum nitride powder and the aluminum oxide powder exceeded 3.0 μm. The density of the sintered body of aluminum is lowered, and the translucency and plasma corrosion resistance are lowered. On the other hand, when the particle size of the aluminum nitride powder or the aluminum oxide powder is less than 0.01 μm, the mixing operation becomes extremely difficult. This is industrially disadvantageous.
[0017]
Moreover, the compounding amount of aluminum oxide is set to 10 to 40 mol% because when the compounding amount is less than 10 mol% or exceeds 40 mol%, the crystal phase of the sintered body is not a single phase of aluminum oxynitride, but is nitrided This is because it becomes a mixed phase with aluminum or aluminum oxide and impairs translucency.
[0018]
After forming the mixed powder as described above, the sintered body is fired at 1700 to 1950 ° C. for 0.5 to 10 hours in a nitrogen atmosphere or a vacuum atmosphere, and then boron nitride (BN) powder is formed on the surface of the sintered body. Then, hot isostatic pressing (HIP) is performed at 1700 to 1950 ° C. for 0.5 to 10 hours.
[0019]
The molding can be performed by a method usually employed in this field, such as uniaxial pressing, cold isostatic pressing (CIP), or the like.
[0020]
The initial firing temperature was 1700-1950 ° C. and the firing time was 0.5-10 hours. The sintered body was not sufficiently densified when the temperature was less than 1700 ° C. or the holding time was less than 0.5 hours. If the sintering temperature exceeds 1950 ° C. or the holding time exceeds 10 hours, the furnace deteriorates and the production efficiency decreases, which is not preferable. Because.
[0021]
The reason why the BN powder is applied to the surface of the primary sintered body obtained by the first firing is to prevent the primary sintered body from being contaminated by impurities in the furnace during the next hot isostatic pressing. is there. The method for applying the BN powder is not particularly limited, but spray coating is preferable. In addition, a method of applying and drying BN slurry can also be used. Moreover, the coating thickness in this case should just be 0.1 micrometer or more, More preferably, it is 1-100 micrometers. Since the BN powder has a flaky shape and covers the void in parallel to the surface of the primary sintered body, the efficiency of hot isostatic pressing can be increased. Also, by applying BN powder in this manner, it is not necessary to use an expensive BN crucible, which is industrially advantageous, and in addition, it is easy to handle complex shapes and large shapes. . The BN coating film is removed when commercialized. Since the BN coating film remains in powder form without being sintered at the firing temperature, it can be removed relatively easily.
[0022]
Hot isothermal heating (HIP) is performed by further increasing the relative density of the primary sintered body to obtain a sintered body having a relative density close to 100% and sufficient translucency and plasma corrosion resistance. It is to do. The condition of hot isostatic pressing at 1700 to 1950 ° C. for 0.5 to 10 hours is that the firing temperature is less than 1700 ° C. or the holding time is less than 0.5 hours However, if the sintered body is insufficiently densified, resulting in a decrease in translucency or plasma corrosion resistance, conversely, if the firing temperature exceeds 1950 ° C. or the holding time exceeds 10 hours, hot isotropy will occur. This is because the pressure firing furnace is deteriorated and production efficiency is lowered, which is not preferable.
[0023]
In this way, a sintered body can be produced by firing at 1950 ° C. or lower, which is lower than the conventional one, and an excellent halogen can be obtained without using an expensive BN crucible or burying powder, which is a problem in industrial applications. It is possible to obtain an aluminum oxynitride sintered body exhibiting plasma plasma corrosion resistance and excellent transmittance in the visible / infrared region. Specifically, an aluminum oxynitride sintered body having an etching rate under a halogen-based plasma environment of 15 nm / min or less and a transmittance in the visible / infrared region of 10% or more can be obtained.
[0024]
Since the aluminum oxynitride of the present invention has such characteristics, it has plasma corrosion resistance and translucency in a semiconductor or liquid crystal manufacturing apparatus such as a viewport member for confirming the situation in the chamber during plasma processing. Suitable for required parts.
[0025]
【Example】
Examples of the present invention will be described below in comparison with comparative examples.
[0026]
Here, aluminum oxynitride sintered bodies were produced under the conditions shown in Examples 1 to 11 and Comparative Examples 1 to 9 shown in Table 1, and these sintered bodies and 99.5% aluminum oxide sintered body for comparison were manufactured. The body (Comparative Example 10) and quartz (Comparative Example 11) were evaluated for translucency and plasma corrosion resistance.
[0027]
In the production of an aluminum oxynitride sintered body, first, a high-purity aluminum nitride powder (purity 99.9%) and a high-purity aluminum oxide powder (purity 99.9%) having an average particle size shown in Table 1 were used. Was weighed at a mixing ratio such that AlN was as shown in Table 1, wet-mixed for 20 hours using ethanol as a dispersion medium, and granulated with a spray dryer. The obtained granule was uniaxially pressed with a pressure of 100 MPa. This was fired in a nitrogen atmosphere (Ar atmosphere only in Example 4) at a rate of temperature increase of 20 ° C./min under the conditions shown in Table 1 to obtain a primary sintered body. As shown in Table 1, the primary sintered body had a relative density of 92.3 to 98.7%. Subsequently, boron nitride (BN) is spray-coated on the surface of the primary sintered body, and the open gap remaining in the vicinity of the surface is closed, and then heated at 180 MPa at a heating rate of 15 ° C./min in an argon gas atmosphere. Sintering was performed under the conditions shown in Table 1 at an isotropic pressure (HIP). As a result, the aluminum oxynitride sintered bodies of Examples 1 to 11 and Comparative Examples 1 to 9 having a relative density of 94.9 to 100% and a thickness of 3 mm as shown in Table 1 were obtained.
[0028]
About these aluminum oxynitride sintered bodies, 99.5% aluminum oxide sintered bodies (Comparative Example 10), and quartz (Comparative Example 11), spectrophotometers in the visible region and infrared region (UV / VIS, FT-IR) The transmittance was measured.
[0029]
Also, a part of the sintered body was mirror-finished and a part of which was masked with a Si wafer to prepare a sample, and plasma etching was performed using a parallel plate type RIE plasma etching apparatus to improve plasma corrosion resistance. I figured it out. The gas used is CF 4 + O 2 (20%) (flow rate: 50 sccm, pressure: 50 mm Torr), the plasma exposure time is 2 hours, and the output is 1000 W. The etching rate was calculated from the level difference between the masking portion and the plasma exposed portion of the test piece, and the plasma corrosion resistance was evaluated based on the calculated etching rate.
[0030]
The measurement results of these transmittances and the evaluation results of the plasma corrosion resistance are also shown in Table 1. As is apparent from Table 1, Examples 1 to 11 that satisfy the conditions of the production method of the present invention have good plasma corrosion resistance with an etching rate of 15 nm / min or less and a transmittance in the visible / infrared region of 10% or more. And translucency was obtained. In particular, Examples 1, 5, and 7 were 41 to 45% in the visible light region and 73 to 77% in the infrared region, and values close to 80% of the theoretical transmittance were obtained.
[0031]
On the other hand, in Comparative Examples 1 and 2 in which the blending amount of AlN is out of the range of the present invention, the translucency is not sufficient. Further, Comparative Example 3 having a low firing temperature of 1650 ° C. and Comparative Example 4 having a short firing time at the time of primary firing are not sufficiently sintered, and both light-transmitting properties and plasma corrosion resistance are insufficient. Met. In Comparative Example 5 in which BN spraying was not performed, the intrusion of impurities was not suppressed, and the translucency was low. Transparency was also low for Comparative Example 6 having a low HIP temperature and Comparative Example 7 having a short HIP holding temperature. In Comparative Example 8 in which the particle size of the AlN powder was large and Comparative Example 9 in which the Al 2 O 3 powder particle size was large, both were not sufficiently sintered, and both the translucency and the plasma corrosion resistance were insufficient. Moreover, although the comparative example 10 which is a 99.5% aluminum oxide sintered body had good plasma corrosion resistance, the translucency was insufficient, and the comparative example 11 made of quartz had very good translucency. However, the plasma corrosion resistance was remarkably inferior.
[0032]
[Table 1]
Figure 2005008447
[0033]
【The invention's effect】
As described above, according to the present invention, the sintering temperature is lower than that of the prior art, and exhibits excellent corrosion resistance against halogen-based gases and halogen-based plasmas, and in addition, excellent in the visible / infrared region. Provided are a method for producing an aluminum oxynitride sintered body capable of producing an aluminum oxynitride sintered body exhibiting translucency on an industrial level, and such an aluminum oxynitride sintered body. Further, a semiconductor or liquid crystal manufacturing apparatus member using such an aluminum oxynitride sintered body is provided.

Claims (4)

平均粒径0.01〜3.0μmの窒化アルミニウム粉末と平均粒径0.01〜3.0μmの酸化アルミニウム粉末を、酸化アルミニウム粉末が10〜40mol%の範囲で混合してなる混合粉末を成形し、窒素雰囲気あるいは真空雰囲気中、1700〜1950℃で0.5〜10時間焼成して焼結体とした後、該焼結体表面に窒化ホウ素(BN)粉末を塗布し、さらに1700〜1950℃で0.5〜10時間熱間等方加圧焼結を行うことを特徴とする酸窒化アルミニウム焼結体の製造方法。A mixed powder is formed by mixing aluminum nitride powder having an average particle size of 0.01 to 3.0 μm and aluminum oxide powder having an average particle size of 0.01 to 3.0 μm in a range of 10 to 40 mol% of the aluminum oxide powder. The sintered body is fired in a nitrogen atmosphere or a vacuum atmosphere at 1700 to 1950 ° C. for 0.5 to 10 hours, and then boron nitride (BN) powder is applied to the surface of the sintered body. A method for producing an aluminum oxynitride sintered body characterized by performing hot isostatic pressing at a temperature of 0.5 to 10 hours. 請求項1に記載の製造方法で得られた酸窒化アルミニウム焼結体。An aluminum oxynitride sintered body obtained by the production method according to claim 1. 少なくともAl、O、Nを含み、ハロゲン系プラズマ環境下でのエッチング速度が15nm/min以下、可視・赤外領域での透過率が10%以上であることを特徴とする酸窒化アルミニウム焼結体。An aluminum oxynitride sintered body comprising at least Al, O, and N, having an etching rate of 15 nm / min or less in a halogen-based plasma environment and a transmittance of 10% or more in the visible / infrared region . 請求項2または請求項3の酸窒化アルミニウム焼結体からなる半導体または液晶製造装置部材。A semiconductor or liquid crystal manufacturing apparatus member comprising the aluminum oxynitride sintered body according to claim 2.
JP2003171824A 2003-06-17 2003-06-17 Method of manufacturing aluminum oxynitride sintered compact, aluminum oxynitride sintered compact and semiconductor or liquid crystal manufacturing apparatus member Pending JP2005008447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171824A JP2005008447A (en) 2003-06-17 2003-06-17 Method of manufacturing aluminum oxynitride sintered compact, aluminum oxynitride sintered compact and semiconductor or liquid crystal manufacturing apparatus member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003171824A JP2005008447A (en) 2003-06-17 2003-06-17 Method of manufacturing aluminum oxynitride sintered compact, aluminum oxynitride sintered compact and semiconductor or liquid crystal manufacturing apparatus member

Publications (1)

Publication Number Publication Date
JP2005008447A true JP2005008447A (en) 2005-01-13

Family

ID=34096161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171824A Pending JP2005008447A (en) 2003-06-17 2003-06-17 Method of manufacturing aluminum oxynitride sintered compact, aluminum oxynitride sintered compact and semiconductor or liquid crystal manufacturing apparatus member

Country Status (1)

Country Link
JP (1) JP2005008447A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113631529A (en) * 2019-03-26 2021-11-09 住友化学株式会社 Method for producing alumina sintered body and alumina sintered body
CN114133252A (en) * 2021-12-21 2022-03-04 厦门钜瓷科技有限公司 AlON transparent ceramic shape-preserving infrared hood and preparation method thereof
CN115028458A (en) * 2022-07-29 2022-09-09 鲁米星特种玻璃科技股份有限公司 Preparation technology of aluminum oxynitride transparent ceramic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113631529A (en) * 2019-03-26 2021-11-09 住友化学株式会社 Method for producing alumina sintered body and alumina sintered body
CN114133252A (en) * 2021-12-21 2022-03-04 厦门钜瓷科技有限公司 AlON transparent ceramic shape-preserving infrared hood and preparation method thereof
CN115028458A (en) * 2022-07-29 2022-09-09 鲁米星特种玻璃科技股份有限公司 Preparation technology of aluminum oxynitride transparent ceramic

Similar Documents

Publication Publication Date Title
JP5127196B2 (en) Plasma-fluorine-alumina ceramic material with low particle generation and manufacturing method
TWI540635B (en) Corrosion resistant member for semiconductor manufacturing apparatus and method for making the same
TWI468365B (en) An aluminum nitride-based composite material, a method for manufacturing the same, and a component for a semiconductor manufacturing apparatus
JP3619330B2 (en) Components for plasma process equipment
KR100204268B1 (en) Aluminium nitride sinter and producing method therefor
JP2000001362A (en) Corrosion resistant ceramic material
JPS6048466B2 (en) Manufacturing method of polycrystalline transparent alumina sintered body
JP7481509B2 (en) Sintered ceramic bodies containing magnesium aluminate spinel
Kim et al. Fabrication and plasma resistance of Y2O3 ceramics
Qin et al. Fabrication and plasma resistance properties of transparent YAG ceramics
KR100494188B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, corrosion resistant members and conductive members
JP2012206913A (en) Magnesium fluoride-sintered body, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP2005008447A (en) Method of manufacturing aluminum oxynitride sintered compact, aluminum oxynitride sintered compact and semiconductor or liquid crystal manufacturing apparatus member
JP4806952B2 (en) Translucent ceramics
JP3420377B2 (en) Method for producing yttrium-aluminum-garnet sintered body
JPH03261648A (en) Sintered material of polycrystalline alumina
JP2004269350A (en) Yttrium oxide (y2o3) sintered compact and method of manufacturing the same
JP2001151559A (en) Corrosion-resistant member
JP2005170728A (en) Yttrium oxide (y2o3) sintered compact and its producing method
JP2005126290A (en) Light-transmitting yttrium oxide sintered compact, method for producing the same, semiconductor or liquid crystal production apparatus member
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP4458692B2 (en) Composite material
JP4544708B2 (en) Plasma-resistant member and method for producing the same
JP2000239065A (en) Light-transmissible corrosionproof material and its production
JP2566737B2 (en) Method for producing translucent aluminum magnesium oxynitride sintered body