JP2005008410A - Meandering controller and beltlike body cutting device - Google Patents

Meandering controller and beltlike body cutting device Download PDF

Info

Publication number
JP2005008410A
JP2005008410A JP2004152713A JP2004152713A JP2005008410A JP 2005008410 A JP2005008410 A JP 2005008410A JP 2004152713 A JP2004152713 A JP 2004152713A JP 2004152713 A JP2004152713 A JP 2004152713A JP 2005008410 A JP2005008410 A JP 2005008410A
Authority
JP
Japan
Prior art keywords
strip
belt
light
traveling
edge portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004152713A
Other languages
Japanese (ja)
Inventor
Tsutomu Kikuchi
勉 菊池
Sadayuki Koshiro
貞之 小代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004152713A priority Critical patent/JP2005008410A/en
Publication of JP2005008410A publication Critical patent/JP2005008410A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a meandering controller capable of precisely detecting meandering when conveying a beltlike body and precisely controlling meandering of the beltlike body during running and to provide a beltlike body cutting device capable of cutting in such a way that the beltlike body has satisfactory edge straight property. <P>SOLUTION: This meandering controller is provided with a reflection type optical sensor 16 composed of a laser beam source for applying laser beam L for the beltlike body 10 during running while scanning and a light receiving part constituted integrally with the laser beam source so as to receive and detect reflected light R of laser beam. An edge part 2 of the beltlike body is detected based on a detection signal from the light receiving part to correct a running position of the beltlike body based on a detection position of the edge part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、走行中の帯状体の蛇行を制御する蛇行制御装置及び帯状体裁断装置に関するものである。   The present invention relates to a meandering control device and a strip cutting device for controlling meandering of a running strip.

テープ原反等の可撓性のある帯状体(ウェブ)を連続的に走行し、例えば裁断装置まで搬送し複数本に裁断する際に、帯状体を正確な位置にして裁断装置に送り込むために、帯状体が走行中に蛇行したために生じた走行方向と直交する方向でのずれを修正するための装置がEPC(Edge Position Controller)装置として公知である(下記特許文献1、特許文献2参照)。かかるEPC装置では、帯状体の走行中のずれ検出を、光電センサ、エアセンサ、超音波センサ等の各種センサにより帯状体のエッジを検出することで行い、その検出結果に基づいてアクチュエータで搬送ローラ等の位置を調整することにより帯状体の蛇行を制御している。   When a flexible strip (web) such as an original tape is continuously run and transported to a cutting device and cut into multiple pieces, for example, the strip is placed in an accurate position and sent to the cutting device. An apparatus for correcting a deviation in a direction orthogonal to the traveling direction caused by the belt-like meandering during traveling is known as an EPC (Edge Position Controller) device (see Patent Document 1 and Patent Document 2 below). . In such an EPC apparatus, deviation detection during running of the belt-like body is performed by detecting the edge of the belt-like body using various sensors such as a photoelectric sensor, an air sensor, and an ultrasonic sensor, and a transport roller or the like is detected by an actuator based on the detection result. By adjusting the position, the meandering of the belt-like body is controlled.

一方、最近のコンピュータのデータバックアップ等のための磁気テープに対しテープエッジの直進性の要求が厳しくなっており、かかる磁気テープ製造のために磁気テープ原反の帯状体をテープ裁断装置まで搬送し裁断する際に、裁断部における帯状体の蛇行量を高精度に制御する必要がある。この場合、帯状体のずれを検出するために透過型の光センサを用いることで、発光部と受光部との位置調整は容易となるが、磁気テープ原反のエッジのカールや塗布エッジの厚みむらによるエッジ部の延び、乾燥工程・熱処理工程におけるベース変形等の影響があり、磁気テープ原反のエッジを正確に検出することが困難である。   On the other hand, there is a strict requirement for straightness of the tape edge for the recent magnetic tape for data backup of computers, etc., and the strip of the magnetic tape is transported to the tape cutting device for manufacturing such magnetic tape. When cutting, it is necessary to control the meandering amount of the belt-like body at the cutting portion with high accuracy. In this case, by using a transmission type optical sensor to detect the deviation of the belt-shaped body, it becomes easy to adjust the position of the light emitting part and the light receiving part, but the curl of the edge of the magnetic tape and the thickness of the coating edge It is difficult to accurately detect the edge of the original magnetic tape due to the influence of unevenness of the extension of the edge, deformation of the base in the drying process / heat treatment process, and the like.

また、EPC装置において帯状体のエッジ検出のためのセンサとして、直線状光源と1次元イメージセンサとから構成される反射型の光センサを用いることが公知であり(下記特許文献3参照)、かかる反射型の光センサを図8を参照して説明する。   Also, it is known to use a reflection type optical sensor composed of a linear light source and a one-dimensional image sensor as a sensor for detecting the edge of a strip in an EPC apparatus (see Patent Document 3 below). A reflection type optical sensor will be described with reference to FIG.

図8の光センサは、検出ロールRに抱かれた状態のシート1に対し蛍光灯等の直線状光源LLから、シート1の幅方向に長くされた光を照射し、照射面からの反射光を1次元イメージセンサSで受光する。検出ロールRRはシート1の案内用のガイドロールを兼用し、シート幅よりも広幅の黒色ゴムロールを用いている。直線状光源LLから光は、図8に示すように、検出ロールRRの接線に対して斜め方向(入射角θ)から投光され、その照射範囲は図の紙面垂直方向のシート1のエッジ位置を含み、エッジ位置を検出する。1次元イメージセンサSは照射面で反射角θで正反射した反射光を受光できる位置に配置され、1次元イメージセンサSの各フォトダイオードに光が当たると、受光量に応じたパルス列がアナログ信号として出力し、かかる信号に基づいてシート1のエッジ位置を検出するようになっている。   The light sensor of FIG. 8 irradiates the sheet 1 held in the detection roll R with light that is elongated in the width direction of the sheet 1 from a linear light source LL such as a fluorescent lamp, and reflects light from the irradiation surface. Is received by the one-dimensional image sensor S. The detection roll RR also serves as a guide roll for guiding the sheet 1 and uses a black rubber roll wider than the sheet width. As shown in FIG. 8, the light from the linear light source LL is projected from an oblique direction (incident angle θ) with respect to the tangent to the detection roll RR, and the irradiation range is the edge position of the sheet 1 in the direction perpendicular to the drawing sheet. The edge position is detected. The one-dimensional image sensor S is arranged at a position where it can receive reflected light that is regularly reflected at the reflection angle θ on the irradiation surface. When light strikes each photodiode of the one-dimensional image sensor S, a pulse train corresponding to the amount of received light is an analog signal. The edge position of the sheet 1 is detected based on the signal.

ところが、図8のような光センサをEPC装置のエッジの検出センサとして配置する場合、直線状光源LLと1次元イメージセンサSとを入射角と反射角とを同じ角度θになるように設置することは、両角度の微調整が難しいために、困難であり、入射角と反射角とがずれてしまうと、検出精度が低下し、EPC装置を充分に作動させることができなくなる。また、直線状光源LLを蛍光灯で構成するため室内照明である別の蛍光灯等からの外乱光の影響で誤検出のおそれが生じる。
特開平5−139589号公報 特開平8−332440号公報 特開平9−5020号公報
However, when the optical sensor as shown in FIG. 8 is arranged as an edge detection sensor of the EPC apparatus, the linear light source LL and the one-dimensional image sensor S are installed so that the incident angle and the reflection angle are the same angle θ. This is difficult because fine adjustment of both angles is difficult, and if the incident angle and the reflection angle are deviated, the detection accuracy is lowered and the EPC device cannot be fully operated. In addition, since the linear light source LL is composed of a fluorescent lamp, there is a risk of erroneous detection due to the influence of disturbance light from another fluorescent lamp or the like that is indoor lighting.
Japanese Patent Laid-Open No. 5-139589 JP-A-8-332440 Japanese Patent Laid-Open No. 9-5020

本発明は、上述のような従来技術の問題に鑑み、磁気テープ原反のような帯状体を搬送する際の蛇行を精度よく検出し、走行中の帯状体の蛇行を精度よく制御できる蛇行制御装置を提供することを目的とする。また、磁気テープのような帯状体が良好なエッジ直線性を有するように帯状体を裁断することのできる帯状体裁断装置を提供することを目的とする。   In view of the above-described problems of the prior art, the present invention accurately detects meandering when a belt-like body such as a magnetic tape raw material is transported, and can control the meandering of the belt-like body while traveling. An object is to provide an apparatus. It is another object of the present invention to provide a strip cutting apparatus that can cut a strip so that the strip like a magnetic tape has good edge linearity.

上記目的を達成するために、本発明による蛇行制御装置は、走行中の帯状体に対し光ビームを照射する光源と、前記光ビームの反射光を受光し検出する受光部と、前記受光部からの検出信号に基づいて前記帯状体のエッジ部を検出する検出部と、前記エッジ部の検出位置に基づいて前記帯状体の走行位置を修正する修正部と、を備え、前記光源と前記受光部とを一体的に構成したことを特徴とする。   In order to achieve the above object, a meandering control device according to the present invention includes a light source for irradiating a traveling strip with a light beam, a light receiving unit for receiving and detecting reflected light of the light beam, and a light receiving unit. A detection unit that detects an edge portion of the belt-like body based on a detection signal of the light source, and a correction unit that corrects a traveling position of the belt-like body based on a detection position of the edge portion, the light source and the light receiving unit And are configured integrally.

この蛇行制御装置によれば、光源と受光部とを一体的に構成したので、光源と受光部の走行中の帯状体に対する配置位置の調整が容易となり、検出精度の低下を防止できる。このため帯状体を搬送する際の蛇行を精度よく検出し、走行中の帯状体の蛇行を精度よく修正し制御できる。   According to the meandering control device, since the light source and the light receiving unit are integrally formed, adjustment of the arrangement position of the light source and the light receiving unit with respect to the traveling strip is facilitated, and a reduction in detection accuracy can be prevented. For this reason, meandering when the belt-like body is conveyed can be detected with high accuracy, and the meandering of the belt-like body while traveling can be accurately corrected and controlled.

上記蛇行制御装置において、前記光源がLED(発光素子)から構成され、前記受光部がCCDセンサから構成されることが好ましい。   In the meandering control apparatus, it is preferable that the light source is configured by an LED (light emitting element) and the light receiving unit is configured by a CCD sensor.

また、前記光源が半導体レーザから構成され、そのレーザ光を走査しながら前記帯状体に対し照射することが好ましい。即ち、かかる好ましい実施態様に係わる蛇行制御装置は、走行中の帯状体に対しレーザ光を走査しながら照射するレーザ光源と前記レーザ光の反射光を受光し検出するように前記レーザ光源と一体的に構成された受光部とから構成された反射型の光センサと、前記受光部からの検出信号に基づいて前記帯状体のエッジ部を検出する検出部と、前記エッジ部の検出位置に基づいて前記帯状体の走行位置を修正する修正部と、を備える。この蛇行制御装置によれば、レーザ光源と受光部とを一体的に構成したので反射型の光センサの走行中の帯状体に対する配置位置の調整が容易となり、検出精度の低下を防止できるとともに、レーザ光を走査しながら照射するので、外乱光の影響がなく検出精度が向上する。このため帯状体を搬送する際の蛇行を精度よく検出し、走行中の帯状体の蛇行を精度よく修正し制御できる。   Further, it is preferable that the light source is composed of a semiconductor laser, and the belt-like body is irradiated while scanning the laser beam. That is, the meandering control device according to such a preferred embodiment is integrated with the laser light source so as to receive and detect the laser light source that irradiates the traveling belt-like body while scanning the laser light and the reflected light of the laser light. A reflection-type optical sensor configured with a light receiving unit configured in the above, a detection unit that detects an edge portion of the strip based on a detection signal from the light receiving unit, and a detection position of the edge unit A correction unit that corrects the travel position of the belt-like body. According to this meandering control device, since the laser light source and the light receiving unit are integrally configured, it is easy to adjust the arrangement position of the reflective optical sensor with respect to the running belt, and it is possible to prevent a decrease in detection accuracy. Irradiation is performed while scanning with laser light, so that there is no influence of disturbance light and detection accuracy is improved. For this reason, meandering when the belt-like body is conveyed can be detected with high accuracy, and the meandering of the belt-like body while traveling can be accurately corrected and controlled.

上記蛇行制御装置において前記レーザ光の走査速度を前記帯状体の走行速度に基づいて制御することで、エッジ部を走行方向の所定間隔で検出でき、走行中の帯状体の蛇行を精度よく制御できる。   By controlling the scanning speed of the laser beam based on the traveling speed of the strip in the meandering control device, the edge portions can be detected at predetermined intervals in the traveling direction, and the meandering of the traveling strip can be accurately controlled. .

また、前記帯状体の走行方向を変化させるように配置されたガイドロールで前記帯状体のエッジ部に対し前記レーザ光を照射するように前記光センサを配置することで、帯状体がガイドロールで巻き付き抱かれるようにして走行するので、帯状体のエッジのカールや塗布エッジの厚みむら等の影響を排除でき、エッジ部の検出精度が向上する。   Further, by arranging the optical sensor so as to irradiate the edge of the band with the guide roll arranged to change the traveling direction of the band, the band is a guide roll. Since the vehicle travels while being wrapped around, it is possible to eliminate influences such as curling of the edge of the belt-like body and uneven thickness of the coating edge, and the detection accuracy of the edge portion is improved.

また、前記ガイドロールの外周面を前記帯状体の表面に対し反射率が異なるように構成することで、検出信号レベルに差が生じてエッジ部の検出精度が向上する。   Further, by configuring the outer peripheral surface of the guide roll so that the reflectance is different from that of the surface of the belt-like body, a difference in detection signal level occurs and the detection accuracy of the edge portion is improved.

また、前記検出部は前記受光部からの検出信号を微分し微分信号を出力する微分回路を備え、前記帯状体は前記エッジ部に沿って一定幅を有する帯状領域の反射率が他の領域と比べて異なるときに、前記エッジ部と、前記帯状領域と前記他の領域との境界部と、に基づいて出力した前記各微分信号を前記レーザ光の走査方向により区別することで前記エッジ部を検出することが好ましい。帯状体の表面上で反射率が異なる場合に、エッジ部と境界部とからの各微分信号をレーザ光の走査方向により区別できるので、エッジ部を精度よく検出できる。   The detecting unit includes a differentiating circuit that differentiates the detection signal from the light receiving unit and outputs a differential signal, and the band-shaped body has a reflectance of a band-shaped region having a constant width along the edge portion with other regions. When different from each other, the edge portion is differentiated according to the scanning direction of the laser beam by distinguishing each differential signal output based on the edge portion and a boundary portion between the band-like region and the other region. It is preferable to detect. When the reflectivity is different on the surface of the belt-like body, each differential signal from the edge portion and the boundary portion can be distinguished by the scanning direction of the laser beam, so that the edge portion can be detected with high accuracy.

本発明による帯状体裁断装置は、可撓性のある帯状体を走行させる走行部と、前記走行中の帯状体に対しレーザ光を走査しながら照射するレーザ光源と、前記レーザ光の反射光を受光し検出するように前記レーザ光源と一体的に構成された受光部とから構成された反射型の光センサと、前記受光部からの検出信号に基づいて前記帯状体のエッジ部を検出する検出部と、前記エッジ部の検出位置に基づいて前記帯状体の走行位置を修正する修正部と、前記走行されてきた帯状体を走行方向に裁断するための裁断部と、を備えることを特徴とする。   A strip cutting apparatus according to the present invention includes a traveling unit that travels a flexible strip, a laser light source that irradiates the traveling strip with a laser beam, and a reflected light of the laser beam. A reflection-type optical sensor composed of a light receiving unit configured integrally with the laser light source so as to receive and detect the light, and a detection for detecting an edge portion of the strip based on a detection signal from the light receiving unit And a correction unit that corrects the travel position of the strip based on the detected position of the edge portion, and a cutting unit for cutting the strip that has been traveled in the travel direction. To do.

この帯状体裁断装置によれば、レーザ光源と受光部とを一体的に構成したので反射型の光センサの走行中の帯状体に対する配置位置の調整が容易となり、検出精度の低下を防止できるとともに、レーザ光を走査しながら照射するので、外乱光の影響がなく検出精度が向上する。このため、帯状体を搬送する際の蛇行を精度よく検出し、走行中の帯状体の蛇行を精度よく修正し制御できるので、裁断部で帯状体を走行方向に直線性の精度が良好になるにように裁断できる。従って、断裁後の帯状体が良好なエッジ直線性を有する。   According to this strip cutting device, since the laser light source and the light receiving unit are integrally configured, the arrangement position of the reflective optical sensor with respect to the strip during traveling can be easily adjusted, and a decrease in detection accuracy can be prevented. Since the laser beam is irradiated while scanning, the detection accuracy is improved without the influence of disturbance light. For this reason, since the meandering when the belt-like body is conveyed can be accurately detected and the meandering of the belt-like body during traveling can be accurately corrected and controlled, the linearity of the belt-like body in the running direction is improved at the cutting portion. Can be cut as follows. Therefore, the strip after cutting has good edge linearity.

上記帯状体裁断装置において前記レーザ光の走査速度を前記帯状体の走行速度に基づいて制御することで、エッジ部を走行方向の所定間隔で検出でき、走行中の帯状体の蛇行を精度よく制御できる。   By controlling the scanning speed of the laser beam based on the traveling speed of the strip in the strip cutting device, the edge portion can be detected at a predetermined interval in the traveling direction, and the meandering of the strip during traveling is accurately controlled. it can.

また、前記走行部は前記帯状体の走行方向を変化させるように配置されたガイドロールを備え、前記帯状体のエッジ部に対し前記レーザ光を照射するように前記光センサを配置することで、帯状体がガイドロールで巻き付き抱かれるようにして走行するので、帯状体のエッジのカールや塗布エッジの厚みむら等の影響を排除でき、エッジ部の検出精度が向上する。   In addition, the traveling unit includes a guide roll disposed so as to change the traveling direction of the strip, and the optical sensor is disposed so as to irradiate the laser beam to the edge of the strip. Since the belt-like body travels while being wound around the guide roll, it is possible to eliminate the influence of the curl of the edge of the belt-like body, the thickness unevenness of the coating edge, and the like, and the detection accuracy of the edge portion is improved.

また、前記ガイドロールの外周面を前記帯状体の表面に対し反射率が異なるように構成することで、検出信号レベルに差が生じてエッジ部の検出精度が向上する。   Further, by configuring the outer peripheral surface of the guide roll so that the reflectance is different from that of the surface of the belt-like body, a difference in detection signal level occurs and the detection accuracy of the edge portion is improved.

また、前記帯状体が磁気テープ原反であり、磁性膜が全面に形成された塗布領域と、前記エッジ部に沿った一定幅を未塗布にした帯状の未塗布領域と、を備える場合に、前記検出部は前記受光部からの検出信号を微分し微分信号を出力する微分回路を備え、前記エッジ部と、前記未塗布領域と前記塗布領域との境界部と、に基づいて出力した前記各微分信号を前記レーザ光の走査方向により区別することで前記エッジ部を検出することが好ましい。磁気テープ原反の表面上の未塗布領域と塗布領域とで反射率が異なる場合に、エッジ部と境界部とからの各微分信号をレーザ光の走査方向により区別できるので、エッジ部を精度よく検出できる。   Further, in the case where the belt-shaped body is a magnetic tape raw material, and includes a coated region in which a magnetic film is formed on the entire surface and a strip-shaped uncoated region in which a certain width along the edge portion is uncoated, The detection unit includes a differentiating circuit that differentiates a detection signal from the light receiving unit and outputs a differential signal, and outputs each of the edge portions and a boundary portion between the uncoated region and the coated region. Preferably, the edge portion is detected by distinguishing the differential signal according to the scanning direction of the laser beam. When the reflectance is different between the uncoated area and the coated area on the surface of the magnetic tape, each differential signal from the edge and boundary can be distinguished by the scanning direction of the laser beam, so the edge can be accurately It can be detected.

また、前記調整部は前記裁断部の上流側近傍において前記帯状体の走行位置を調整するように構成することにより、走行中の帯状体が蛇行を制御され修正されて得た精度のよい直線性を維持したまま断裁できる。   In addition, the adjustment unit is configured to adjust the traveling position of the strip in the vicinity of the upstream side of the cutting unit, so that the linearity with high accuracy obtained by controlling and correcting the meandering strip during traveling. Can be cut while maintaining

本発明によるもう1つの帯状体裁断装置は、可撓性のある帯状体を走行させる走行部と、前記走行中の帯状体に対し光ビームを照射する光源と、前記光ビームの反射光を受光し検出するように前記光源と一体的に構成された受光部と、前記受光部からの検出信号に基づいて前記帯状体のエッジ部を検出する検出部と、前記エッジ部の検出位置に基づいて前記帯状体の走行位置を修正する修正部と、前記走行されてきた帯状体を走行方向に裁断するための裁断部と、を備えることを特徴とする。   Another strip cutting apparatus according to the present invention includes a traveling unit that travels a flexible strip, a light source that irradiates the traveling strip with a light beam, and a reflected light of the light beam. A light receiving unit configured integrally with the light source so as to detect, a detection unit for detecting an edge portion of the strip based on a detection signal from the light receiving unit, and a detection position of the edge unit It is provided with the correction part which corrects the driving | running | working position of the said strip | belt-shaped body, and the cutting part for cutting the said strip | belt-shaped body which has been traveled in a driving | running | working direction.

この帯状体裁断装置によれば、光源と受光部とを一体的に構成したので、光源と受光部の走行中の帯状体に対する配置位置の調整が容易となり、検出精度の低下を防止できる。このため帯状体を搬送する際の蛇行を精度よく検出し、走行中の帯状体の蛇行を精度よく修正し制御できる。このため、帯状体を搬送する際の蛇行を精度よく検出し、走行中の帯状体の蛇行を精度よく修正し制御できるので、裁断部で帯状体を走行方向に直線性の精度が良好になるにように裁断できる。従って、断裁後の帯状体が良好なエッジ直線性を有する。   According to this strip-shaped body cutting device, since the light source and the light receiving section are integrally formed, the arrangement position of the light source and the light receiving section with respect to the traveling strip can be easily adjusted, and a decrease in detection accuracy can be prevented. For this reason, meandering when the belt-like body is conveyed can be detected with high accuracy, and the meandering of the belt-like body while traveling can be accurately corrected and controlled. For this reason, since the meandering when the belt-like body is conveyed can be accurately detected and the meandering of the belt-like body during traveling can be accurately corrected and controlled, the linearity of the belt-like body in the running direction is improved at the cutting portion. Can be cut as follows. Therefore, the strip after cutting has good edge linearity.

本発明によれば、磁気テープ原反のような帯状体を搬送する際の蛇行を精度よく検出し、走行中の帯状体の蛇行を精度よく制御できる蛇行制御装置を提供できる。また、帯状体が良好なエッジ直線性を有するように帯状体を裁断することのできる帯状体裁断装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the meander control apparatus which can detect the meandering at the time of conveying a strip | belt body like a magnetic tape raw material accurately, and can control the meandering of the strip | belt | belt_body in driving | running | working accurately can be provided. In addition, it is possible to provide a belt-shaped body cutting device that can cut a belt-shaped body so that the belt-shaped body has good edge linearity.

以下、本発明による第1、第2及び第3の実施の形態について図面を用いて説明する。   Hereinafter, first, second and third embodiments of the present invention will be described with reference to the drawings.

〈第1の実施の形態〉   <First Embodiment>

図1は本実施の形態を示す蛇行制御装置全体の概略的構成を示す側面図である。図2は図1の蛇行制御装置の要部を概略的に示す斜視図である。   FIG. 1 is a side view showing a schematic configuration of the entire meandering control apparatus according to the present embodiment. FIG. 2 is a perspective view schematically showing a main part of the meandering control device of FIG.

図1、図2に示すように、蛇行制御装置は、可撓性のあるシート状の帯状体10をロール状に巻回したロール巻回体11から複数のガイドロール12,13,14でガイドしながら帯状体10をモータ等により回転駆動される搬送ローラ対15で更に下流側に搬送するときに、ガイドロール14上で走行する帯状体10のエッジ部2を検出するために帯状体10に向けてレーザ光Lを走査しながら照射しその反射光Rを受光する反射型の光センサ16と、光センサ16によるエッジ部2の検出位置に基づいて帯状体10の蛇行を修正するためにガイドロール14の回転軸14aを回転軸方向H、その反対方向H’に移動させるアクチュエータ17と、を備える。   As shown in FIGS. 1 and 2, the meandering control device guides a flexible sheet-like belt-like body 10 by a plurality of guide rolls 12, 13, 14 from a roll wound body 11 wound in a roll shape. In order to detect the edge portion 2 of the belt-like body 10 traveling on the guide roll 14 when the belt-like body 10 is further conveyed downstream by the conveyance roller pair 15 that is rotationally driven by a motor or the like, the belt-like body 10 is detected. A reflection type optical sensor 16 that irradiates the laser beam L while scanning and receives the reflected light R, and a guide for correcting the meandering of the strip 10 based on the detection position of the edge portion 2 by the optical sensor 16. And an actuator 17 that moves the rotating shaft 14a of the roll 14 in the rotating shaft direction H and in the opposite direction H ′.

図1の光センサ16は、ガイドロール14上の接線に対し直角方向からレーザ光を照射するように配置するが、ガイドロール14上の接線に対し直角方向から若干ずれた斜め上方からレーザ光を照射するように配置することで、必要な反射光を精度よく得ることができる。   The optical sensor 16 shown in FIG. 1 is arranged so as to irradiate laser light from a direction perpendicular to the tangent line on the guide roll 14. Necessary reflected light can be obtained with high accuracy by arranging it to irradiate.

帯状体10のエッジ部2の検出を行うガイドロール14は、上流側のガイドロール13から走行されてきた帯状体10の走行方向を変化させるように配置され、これにより、帯状体10がガイドロール14で巻き付き抱かれるようにして走行するので、エッジ部2がガイドロール14の外周面14bにより密着し、帯状体10のカールや塗布エッジの厚みむら等の影響を排除でき、エッジ部2の検出精度が向上する。なお、帯状体10がガイドロール14で抱かれて巻き付く量は多い方が帯状体10のガイドロール14からの浮きが少なくなり、検出精度が向上し、好ましい。   The guide roll 14 that detects the edge portion 2 of the belt-like body 10 is arranged so as to change the traveling direction of the belt-like body 10 that has traveled from the guide roll 13 on the upstream side. 14, the edge portion 2 is brought into close contact with the outer peripheral surface 14 b of the guide roll 14, and the influence of curling of the band-like body 10 and uneven thickness of the coating edge can be eliminated. Accuracy is improved. In addition, it is preferable that the amount of the belt-like body 10 held by the guide roll 14 to be wound is large, since the float of the belt-like body 10 from the guide roll 14 is reduced, and detection accuracy is improved.

また、ガイドロール14の外周面14bを黒色等にすることで帯状体10の表面と比べて反射率が異なるようにしている。これにより、反射光の光量差により検出信号レベルに差が生じてエッジ部の検出精度が向上する。   Further, the outer peripheral surface 14b of the guide roll 14 is made black or the like, so that the reflectance is different from that of the surface of the strip 10. As a result, a difference occurs in the detection signal level due to the difference in the amount of reflected light, and the edge detection accuracy is improved.

アクチュエータ17は、電動モータや油圧式アクチュエータから構成できるが、油漏洩の可能性のない電動モータが好ましい。   The actuator 17 can be composed of an electric motor or a hydraulic actuator, but an electric motor with no possibility of oil leakage is preferable.

帯状体10は、例えば磁気テープ原反であってよく、図2のように、磁性膜が比較的薄いPETフィルムに塗布されて全面に形成された塗布領域5と、エッジ部2に沿った一定幅を未塗布にしたPETフィルムの帯状の未塗布領域3と、を備え、塗布領域5が未塗布領域3よりも反射率が大きい。   The belt-like body 10 may be, for example, a magnetic tape raw material. As shown in FIG. 2, as shown in FIG. 2, a coating region 5 formed on the entire surface by applying a magnetic film to a relatively thin PET film, and a constant along the edge portion 2. And a strip-shaped uncoated region 3 of the PET film whose width is uncoated, and the coated region 5 has a higher reflectance than the uncoated region 3.

図1,図2の反射型の光センサについて図3を参照して説明する。図3は、図1の光センサのレーザ光源及び走査部の構成を示す平面図(a)及び走査部・受光部を示す側面図(b)である。   1 and 2 will be described with reference to FIG. 3 is a plan view (a) showing the configuration of the laser light source and the scanning unit of the optical sensor of FIG. 1, and a side view (b) showing the scanning unit and the light receiving unit.

反射型の光センサ16は、図3(a)、(b)のように、半導体レーザ21から構成されたレーザ光源と、ポリゴンミラー24及びポリゴンミラー24を回転方向rに回転駆動するモータ27等からレーザ光を偏向し図3(a)のように走査方向Sに走査させるように構成された走査部と、受光部として受光素子が走査方向Sにライン状に配列されたラインCCDセンサ30と、を筐体16a内に備える。半導体レーザ21は、例えば、波長685nmの赤色半導体レーザを使用できるが、これに限定されるものではない。   As shown in FIGS. 3A and 3B, the reflection type optical sensor 16 includes a laser light source composed of a semiconductor laser 21, a polygon mirror 24, a motor 27 that rotates the polygon mirror 24 in the rotation direction r, and the like. And a line CCD sensor 30 in which light receiving elements are arranged in a line in the scanning direction S as a light receiving unit, and a scanning unit configured to deflect the laser light from the scanning direction S as shown in FIG. Are provided in the housing 16a. For example, a red semiconductor laser having a wavelength of 685 nm can be used as the semiconductor laser 21, but is not limited thereto.

光センサ16は、半導体レーザ21から照射されたレーザ光がコリメータレンズ22、シリンドリカルレンズ23、ポリゴンミラー24、fθレンズ25及び折り返しミラー26を介してレーザ光Lがガイドロール14に向け出射するが、このときポリゴンミラー24がモータ27により回転方向rに一定速度で回転することでレーザ光Lが図2のようにガイドロール14の回転軸方向Hに図の左側から右側に向けて走査方向Sに走査されながら出射するように配置される。   In the optical sensor 16, the laser light emitted from the semiconductor laser 21 is emitted toward the guide roll 14 through the collimator lens 22, the cylindrical lens 23, the polygon mirror 24, the fθ lens 25, and the folding mirror 26. At this time, the polygon mirror 24 is rotated at a constant speed in the rotation direction r by the motor 27, so that the laser beam L moves in the scanning direction S from the left side to the right side in the rotation axis direction H of the guide roll 14 as shown in FIG. It arrange | positions so that it may radiate | emit while scanning.

光センサ16では、レーザ光Lがガイドロール14の外周面14bから帯状体10の走行方向Fに対し直交する方向に帯状体10を横切るようにして等速度で移動するように偏向して結像し、外周面14b及び帯状体10からの反射光RがラインCCDセンサ30に入射し、ラインCCDセンサ30から検出信号が出力する。   In the optical sensor 16, the laser light L is deflected so as to move at a constant speed from the outer peripheral surface 14 b of the guide roll 14 in a direction orthogonal to the traveling direction F of the strip 10 and moving at a constant speed. Then, the reflected light R from the outer peripheral surface 14 b and the strip 10 enters the line CCD sensor 30, and a detection signal is output from the line CCD sensor 30.

次に、図1乃至図3の蛇行制御装置の制御系について図4及び図5を参照して説明する。図4は図1乃至図3の蛇行制御装置の制御系を示すブロック図である。図5は図1乃至図4の蛇行制御装置により帯状体のエッジ部及び塗布領域と未塗布領域との境界部を検出したときの生波形と微分波形の例をそれぞれ示す図である。   Next, a control system of the meandering control device shown in FIGS. 1 to 3 will be described with reference to FIGS. FIG. 4 is a block diagram showing a control system of the meandering control apparatus shown in FIGS. FIG. 5 is a diagram showing examples of the raw waveform and the differential waveform when the edge portion of the belt-like body and the boundary portion between the coated region and the uncoated region are detected by the meandering control device of FIGS. 1 to 4.

図4のように、図1乃至図3の蛇行制御装置の制御系は、中央演算処理装置(CPU)等から構成された制御部31と、ラインCCDセンサ30からの検出信号を微分する微分回路32と、ガイドロール14の上流側に配置され走行中の帯状体10の走行速度を検知する速度センサ33と、を備える。   As shown in FIG. 4, the control system of the meandering control device of FIGS. 1 to 3 includes a control unit 31 constituted by a central processing unit (CPU) and the like, and a differentiation circuit that differentiates a detection signal from the line CCD sensor 30. 32 and a speed sensor 33 that is disposed on the upstream side of the guide roll 14 and detects the traveling speed of the traveling strip 10.

図4の制御部31は、微分回路32からの微分信号に基づいて走行方向Fに走行中の帯状体10のエッジ部2を検出し、このエッジ部2の検出位置が図5の基準位置Kに対しずれていたとき、アクチュエータ17を制御し作動させてガイドロール14の回転軸14aを図2の回転軸方向HまたはH’に移動させることで帯状体10の蛇行を修正し帯状体10を基準位置Kのラインに沿って走行させることができる。   4 detects the edge portion 2 of the strip 10 traveling in the traveling direction F based on the differential signal from the differentiation circuit 32, and the detected position of the edge portion 2 is the reference position K in FIG. 2, the actuator 17 is controlled and operated to move the rotation shaft 14 a of the guide roll 14 in the rotation axis direction H or H ′ of FIG. The vehicle can travel along the line of the reference position K.

また、制御部31は、半導体レーザ21とポリゴンミラー用のモータ27とを所定のタイミングで駆動し、一定の時間間隔でレーザ光Lを走査することでエッジ部2の検出を帯状体10の走行中に継続的に実行することができる。   Further, the control unit 31 drives the semiconductor laser 21 and the polygon mirror motor 27 at a predetermined timing, and scans the laser light L at a predetermined time interval to detect the edge 2 and travel the belt-like body 10. Can be run continuously during.

また、制御部31は、ガイドロール14の上流側に配置された速度センサ33で検知した帯状体10の走行速度に基づいてポリゴンミラー用のモータ27の回転速度を制御し、レーザ光の走査速度を帯状体10の走行速度に合わせて変えることができるようになっている。例えば、帯状体10の走行速度が600m/分のとき、レーザ光の走査速度を、300ms/40mmとすることで、帯状体10のエッジ部2の検出を走行方向Fに沿って30mm間隔で行うことができ、走行中の帯状体10の蛇行を精度よく制御できる。   Further, the control unit 31 controls the rotational speed of the polygon mirror motor 27 based on the traveling speed of the belt-like body 10 detected by the speed sensor 33 arranged on the upstream side of the guide roll 14, thereby scanning the laser beam. Can be changed according to the traveling speed of the belt-like body 10. For example, when the traveling speed of the strip 10 is 600 m / min, the scanning speed of the laser beam is set to 300 ms / 40 mm, so that the edge portion 2 of the strip 10 is detected at 30 mm intervals along the traveling direction F. The meandering of the strip 10 during traveling can be controlled with high accuracy.

次に、上述の図1乃至図4の蛇行制御装置の動作について図5を参照して説明する。図1のように搬送ローラ対15で帯状体10を走行させているとき、ガイドロール14において光センサ16からレーザ光Lを所定の走査速度で走査方向Sに走査させながら、その反射光RをラインCCDセンサ30で検出する。   Next, the operation of the meander control apparatus shown in FIGS. 1 to 4 will be described with reference to FIG. As shown in FIG. 1, when the belt-like body 10 is driven by the pair of conveying rollers 15, the reflected light R of the guide roll 14 is reflected while scanning the laser light L from the optical sensor 16 in the scanning direction S at a predetermined scanning speed. Detection is performed by the line CCD sensor 30.

このときのラインCCDセンサ30からの検出信号は、図5の生波形の例で示すように、ガイドロール14の外周面14bからの検出信号A1と、帯状体10の未塗布領域3からの検出信号A3との信号レベル差が比較的小さい。これは、未塗布領域3が透光性のあるPETフィルムであるため、未塗布領域3からの反射光量とガイドロール14の外周面14bからの反射光量との差が微小であるためである。そこで、図5のように、かかる検出信号を微分回路32で微分することで、エッジ部2に対応する検出信号A1とA3との間の変化点を微分信号B1として得る。   The detection signal from the line CCD sensor 30 at this time is detected from the detection signal A1 from the outer peripheral surface 14b of the guide roll 14 and from the uncoated area 3 of the strip 10 as shown in the example of the raw waveform in FIG. The signal level difference with the signal A3 is relatively small. This is because the uncoated area 3 is a translucent PET film, and the difference between the reflected light quantity from the uncoated area 3 and the reflected light quantity from the outer peripheral surface 14b of the guide roll 14 is very small. Therefore, as shown in FIG. 5, the detection signal is differentiated by the differentiation circuit 32, thereby obtaining a change point between the detection signals A1 and A3 corresponding to the edge portion 2 as the differentiation signal B1.

また、図5の生波形の例のように、帯状体10の未塗布領域3からの検出信号A3と、塗布領域5からの検出信号A5との信号レベル差が比較的大きいが、これは、未塗布領域3よりも塗布領域5が反射率が高く、塗布領域5からの反射光量が多いためである。同様に、検出信号を微分回路32で微分することで、境界部4に対応する検出信号A3とA5との間の変化点を微分信号B2として得る。   Further, as in the example of the raw waveform in FIG. 5, the signal level difference between the detection signal A3 from the uncoated region 3 of the strip 10 and the detection signal A5 from the coated region 5 is relatively large. This is because the coated region 5 has a higher reflectance than the uncoated region 3 and the amount of reflected light from the coated region 5 is large. Similarly, by differentiating the detection signal by the differentiating circuit 32, a change point between the detection signals A3 and A5 corresponding to the boundary portion 4 is obtained as the differential signal B2.

以上のようにして得た微分信号B1,B2によりエッジ部2及び境界部4を検出できるが、図4の制御部31は、図5のように走査方向Sにレーザ光が走査され、最初に検出した微分信号B1がエッジ部2に対応することから微分信号B1とB2を区別でき、1個目の微分信号B1の存在によりエッジ部2の位置を検出した、と判断する。このようにして、エッジ部2の位置をレーザ光の走査方向Sを考慮して微分信号により検出することで、精度よく検出することができる。   Although the edge portion 2 and the boundary portion 4 can be detected by the differential signals B1 and B2 obtained as described above, the control unit 31 in FIG. 4 scans the laser beam in the scanning direction S as shown in FIG. Since the detected differential signal B1 corresponds to the edge portion 2, the differential signals B1 and B2 can be distinguished, and it is determined that the position of the edge portion 2 has been detected due to the presence of the first differential signal B1. Thus, the position of the edge portion 2 can be detected with high accuracy by detecting the position of the edge portion 2 with the differential signal in consideration of the scanning direction S of the laser beam.

そして、帯状体10のエッジ部2の検出位置が、例えば図5のように基準位置Kから右側にずれていた場合には、制御部31がアクチュエータ17を制御し、ガイドロール14を回転軸方向H’に移動させることで、帯状体10のエッジ部2の走行方向Fの走行位置を修正し、帯状体10をエッジ部2が基準位置Kのラインに沿って走行するように制御する。   And when the detection position of the edge part 2 of the strip | belt-shaped body 10 has shifted | deviated to the right side from the reference position K like FIG. 5, for example, the control part 31 controls the actuator 17 and the guide roll 14 is made into the rotating shaft direction. By moving to H ′, the traveling position in the traveling direction F of the edge portion 2 of the strip 10 is corrected, and the strip 10 is controlled so that the edge 2 travels along the line of the reference position K.

以上のようにして、本実施の形態の蛇行制御装置によれば、帯状体10を搬送する際の蛇行を精度よく検出し、走行中の帯状体10の蛇行を精度よく修正し制御できる。   As described above, according to the meandering control device of the present embodiment, it is possible to accurately detect the meander when the belt-like body 10 is conveyed, and to accurately correct and control the meandering of the running belt-like body 10.

また、従来の光センサでは光源の入射角と帯状体からの反射角とを同じ角度になるように微調整することは難しく、入射角と反射角とがずれてしまうと、検出精度が低下し、帯状体の蛇行制御の精度が低下してしまうのに対し、本実施の形態の蛇行制御装置によれば、反射型の光センサ16をレーザ光源と受光部とを一体的に構成したので、検出対象の走行中の帯状体10に対する配置位置の調整が容易となり、検出精度の低下を防止できる。   Also, with conventional optical sensors, it is difficult to fine-tune the incident angle of the light source and the reflection angle from the strip to the same angle, and if the incident angle and the reflection angle deviate, the detection accuracy decreases. In contrast, the accuracy of the meandering control of the belt-like body is reduced, whereas according to the meandering control device of the present embodiment, the reflection type optical sensor 16 is configured integrally with the laser light source and the light receiving unit. Adjustment of the arrangement position with respect to the strip 10 during traveling of the detection target is facilitated, and a decrease in detection accuracy can be prevented.

また、従来の直線状光源である蛍光灯等では外乱光の影響で誤検出のおそれが生じたのに対し、本実施の形態の蛇行制御装置によれば、レーザ光を走査しながら照射するので、外乱光の影響がなく検出精度が向上する。   In addition, fluorescent lamps or the like that are conventional linear light sources have a risk of erroneous detection due to the influence of disturbance light, whereas according to the meandering control device of the present embodiment, laser light is irradiated while scanning. In addition, the detection accuracy is improved without the influence of disturbance light.

〈第2の実施の形態〉   <Second Embodiment>

図6は本実施の形態を示す磁気テープ裁断装置全体の概略的構成を示す側面図である。図7は図6の裁断部の正面図である。   FIG. 6 is a side view showing a schematic configuration of the entire magnetic tape cutting apparatus according to the present embodiment. FIG. 7 is a front view of the cutting part of FIG.

図6に示すように、本実施の形態による帯状体裁断装置としての磁気テープ裁断装置は、巻戻しリール51にロール状に巻回された磁気テープ原反であるウェブ50を連続的に引き出して搬送し、テープの裁断部55で複数本の磁気テープ50aに裁断し、裁断した各磁気テープ50aを各ガイドローラ58を介して複数の巻取装置59の各巻取ハブ60に連続的に巻き取るように構成されている。   As shown in FIG. 6, the magnetic tape cutting device as the belt-shaped body cutting device according to the present embodiment continuously pulls out a web 50 that is a magnetic tape original wound around a rewind reel 51 in a roll shape. The tape is cut into a plurality of magnetic tapes 50a by the tape cutting unit 55, and the cut magnetic tapes 50a are continuously wound around the winding hubs 60 of the winding devices 59 via the guide rollers 58. It is configured as follows.

磁気テープ原反(ウェブ)50は、上述の帯状体10と同様に比較的薄いPETフィルム上に磁性層が塗布された塗布部と未塗布の未塗布部を有する。   The magnetic tape original fabric (web) 50 has a coated portion in which a magnetic layer is coated on a relatively thin PET film and an uncoated uncoated portion, as in the case of the above-described belt-shaped body 10.

図6の磁気テープ裁断装置では、巻戻しリール51から巻き戻されるウェブ50が複数のガイドロール52,54及びグランドサクションドラム53を通して裁断部55に搬送されるが、裁断部55の直ぐ上流側のガイドロール54に図1乃至図5の蛇行制御装置が設けられ、ガイドロール54上のウェブ50のエッジ部を検出するように反射型の光センサ16が配置されている。   In the magnetic tape cutting device of FIG. 6, the web 50 rewound from the rewind reel 51 is conveyed to the cutting section 55 through the plurality of guide rolls 52 and 54 and the ground suction drum 53, but immediately upstream of the cutting section 55. The meandering control device shown in FIGS. 1 to 5 is provided on the guide roll 54, and the reflective optical sensor 16 is arranged so as to detect the edge portion of the web 50 on the guide roll 54.

図7のように、裁断部55は、ウェブ50が巻回されるローラ状に構成された複数の回転受刃56aを有する回転受刃部56と、回転受刃部56との間でウェブ50を複数本の磁気テープ50aに裁断する複数の回転刃57aを有する回転刃部57と、を備える。ウェブ50が複数の回転刃57aと複数の回転受刃56aとで裁断されることで複数本の磁気テープ50aに裁断される。   As shown in FIG. 7, the cutting portion 55 includes a web 50 between the rotary blade portion 56 having a plurality of rotary blades 56 a configured in a roller shape around which the web 50 is wound, and the rotary blade portion 56. And a rotary blade portion 57 having a plurality of rotary blades 57a that are cut into a plurality of magnetic tapes 50a. The web 50 is cut into a plurality of magnetic tapes 50a by cutting with the plurality of rotary blades 57a and the plurality of rotary receiving blades 56a.

図6、図7の磁気テープ裁断装置によれば、図1乃至図5と同様の蛇行制御装置を備え、レーザ光源と受光部とを一体的に構成したので反射型の光センサの走行中の磁気テープ原反50に対する配置位置の調整が容易となり、検出精度の低下を防止できるとともに、レーザ光を走査しながら照射するので、外乱光の影響がなく検出精度が向上する。このため、磁気テープ原反を搬送する際の蛇行を精度よく検出し、走行中の磁気テープ原反の蛇行を精度よく修正し制御できる。このため、図6,図7の裁断部55で磁気テープ原反50が蛇行しながら断裁されることはないので、裁断後の各磁気テープ50aにおける直線性の精度が良好になり、各磁気テープ50aが良好なエッジ直線性を有する。   6 and 7 includes the meandering control device similar to that shown in FIGS. 1 to 5, and the laser light source and the light receiving unit are integrated, so that the reflective optical sensor is running. Adjustment of the arrangement position with respect to the original magnetic tape 50 can be facilitated, and a decrease in detection accuracy can be prevented, and since the laser beam is irradiated while scanning, the detection accuracy is improved without being affected by disturbance light. For this reason, meandering at the time of conveying a magnetic tape original fabric can be detected with high accuracy, and the meandering of the magnetic tape original fabric while traveling can be corrected and controlled with high accuracy. For this reason, since the magnetic tape original fabric 50 is not cut while meandering at the cutting portion 55 of FIGS. 6 and 7, the accuracy of linearity in each of the magnetic tapes 50a after cutting becomes good, and each magnetic tape 50a has good edge linearity.

磁気テープ原反を搬送する際の蛇行を精度よく検出できないため裁断後の磁気テープが蛇行してしまい、その低下したエッジ直線性の磁気テープをテープカートリッジに用いると、例えばコンピュータのバックアップ用のテープカートリッジでは磁気テープの直進性が低下し、サーボ信号の書き込み・読み出しが正確に行われなくなるおそれがあったのに対し、本実施の形態の磁気テープ裁断装置によれば、裁断部55で磁気テープ原反50が蛇行しながら断裁されることはないので、裁断後の磁気テープ50aが良好なエッジ直線性を有し、このため、例えばコンピュータのバックアップ用のテープカートリッジにおいて磁気テープの直進性が良好となり、サーボ信号の書き込み・読み出しを正確に行うことができる。   When the magnetic tape is conveyed, the meandering of the tape cannot be detected accurately, and the magnetic tape after cutting is meandered. If the reduced edge linearity magnetic tape is used for a tape cartridge, for example, a computer backup tape In the cartridge, the straightness of the magnetic tape is lowered, and there is a possibility that writing / reading of the servo signal may not be performed accurately. On the other hand, according to the magnetic tape cutting device of this embodiment, the magnetic tape Since the original fabric 50 is not cut while meandering, the cut magnetic tape 50a has a good edge linearity. For this reason, for example, in a tape cartridge for computer backup, the straightness of the magnetic tape is good. Thus, servo signal writing / reading can be performed accurately.

〈第3の実施の形態〉   <Third Embodiment>

図9は本実施の形態を示す蛇行制御装置の要部を概略的に示す平面図である。図9の蛇行制御装置では、一体型のセンサ40が、直線状に延びた発光素子(LED)41と、発光素子41と略平行に直線状に延びたラインCCDセンサ42とを筐体43内に一体的に備えており、図1乃至図5の光センサ16の代わりに配置されている。   FIG. 9 is a plan view schematically showing the main part of the meandering control apparatus showing the present embodiment. In the meandering control device of FIG. 9, the integrated sensor 40 includes a light emitting element (LED) 41 extending linearly and a line CCD sensor 42 extending linearly substantially parallel to the light emitting element 41 in a housing 43. Are arranged in place of the optical sensor 16 of FIGS. 1 to 5.

図9のように、センサ40を発光素子41とラインCCDセンサ42の長手方向の略中央部が帯状体10の未塗布領域3に位置するように配置する。発光素子41からLED光が帯状体10に対し未塗布領域3を略中心として長さ方向分だけ照射される。そして、その反射光がラインCCDセンサ42に入射し、エッジ部2及び境界部4を図5と同様にして微分信号B1,B2により検出できる。この場合、図4の制御部31は、エッジ部2及び境界部4の相対位置は図9のようになっているので、微分信号B1とB2を区別でき、精度よく検出できる。   As shown in FIG. 9, the sensor 40 is arranged so that the substantially central portion of the light emitting element 41 and the line CCD sensor 42 in the longitudinal direction is located in the uncoated region 3 of the strip 10. LED light is emitted from the light emitting element 41 to the strip 10 by the length direction with the uncoated region 3 as a substantial center. Then, the reflected light enters the line CCD sensor 42, and the edge portion 2 and the boundary portion 4 can be detected by the differential signals B1 and B2 in the same manner as in FIG. In this case, since the relative positions of the edge portion 2 and the boundary portion 4 are as shown in FIG. 9, the control unit 31 in FIG. 4 can distinguish the differential signals B1 and B2 and can detect them with high accuracy.

図9の構成によれば、光源にLEDを用いたので、レーザ光源の場合のように照射光を走査させる必要がないにも関わらず、エッジ部2の位置を精度よく検出できる。従って、図1乃至図5の蛇行制御装置と同様の効果を得ることができる。なお、図9の蛇行制御装置を図6の磁気テープ裁断装置などの帯状体裁断装置に適用できる。   According to the configuration of FIG. 9, since the LED is used as the light source, the position of the edge portion 2 can be accurately detected even though it is not necessary to scan the irradiation light as in the case of the laser light source. Therefore, the same effect as that of the meandering control device of FIGS. 1 to 5 can be obtained. Note that the meandering control device of FIG. 9 can be applied to a strip-shaped body cutting device such as the magnetic tape cutting device of FIG.

以上のように本発明を実施の形態により説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。例えば、図1乃至図5の蛇行制御装置を図6のような磁気テープ裁断装置に適用したが、本発明はこれに限定されずに、例えば磁気テープの塗布装置等に好適に適用できることは勿論である。   As described above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the technical idea of the present invention. For example, the meandering control device shown in FIGS. 1 to 5 is applied to a magnetic tape cutting device as shown in FIG. 6. However, the present invention is not limited to this, and can be suitably applied to, for example, a magnetic tape coating device. It is.

また、本発明による帯状体裁断装置を図6のような磁気テープ裁断装置に適用したが、本発明はこれに限定されずに、他の帯状体の裁断に用いることができ、例えば、各種の透明フィルムに各種の塗布物を形成したシート状体の裁断に用いることができる。   Further, although the strip cutting apparatus according to the present invention is applied to the magnetic tape cutting apparatus as shown in FIG. 6, the present invention is not limited to this, and can be used for cutting other strips. It can be used for cutting a sheet-like body in which various coatings are formed on a transparent film.

また、図1,図6において蛇行制御装置は他の位置に適宜配置することができ、また、エッジ部を検出するバックローラとは別の位置で帯状体・ウェブのエッジ部の位置を修正できる。このエッジ部の位置を修正する手段として、図2のような修正部を構成するアクチュエータに限定されず、各種の修正手段を適用できることは勿論である。   1 and 6, the meandering control device can be appropriately disposed at other positions, and the position of the edge of the belt-like body / web can be corrected at a position different from the back roller for detecting the edge. . The means for correcting the position of the edge part is not limited to the actuator constituting the correction part as shown in FIG. 2, and various correction means can of course be applied.

また、図1乃至図4において帯状体10が一定の走行速度で走行するようになっている場合には、レーザ光の走査速度も一定に設定してよく、この場合、図4の速度センサを省略できる。   1 to 4, when the belt-like body 10 travels at a constant traveling speed, the scanning speed of the laser beam may be set constant. In this case, the speed sensor of FIG. Can be omitted.

また、図2においてレーザ光Lを走査方向Sに更に走査して帯状体10のエッジ部2と反対側のエッジ部2’も検出するようにしてもよい。   Further, in FIG. 2, the laser beam L may be further scanned in the scanning direction S to detect the edge portion 2 ′ opposite to the edge portion 2 of the strip 10.

また、図3の光センサ16ではレーザ光源からのレーザ光をポリゴンミラーで走査させているが、他の手段により走査するようにしてもよく、例えば、音響光学偏向素子等によりレーザ光を図3(a)の走査方向Sに走査するようにしてもよい。   3 scans the laser light from the laser light source with the polygon mirror, but it may be scanned by other means. For example, the laser light may be scanned by an acousto-optic deflection element or the like. You may make it scan in the scanning direction S of (a).

第1の実施の形態を示す蛇行制御装置全体の概略的構成を示す側面図である。It is a side view which shows the schematic structure of the whole meander control apparatus which shows 1st Embodiment. 図1の蛇行制御装置の要部を概略的に示す斜視図である。It is a perspective view which shows roughly the principal part of the meandering control apparatus of FIG. 図1、図2の光センサのレーザ光源及び走査部の構成を示す平面図(a)及び光センサの走査部及び受光部を示す側面図(b)である。FIG. 3 is a plan view (a) showing a configuration of a laser light source and a scanning unit of the optical sensor in FIGS. 1 and 2 and a side view (b) showing a scanning unit and a light receiving unit of the optical sensor. 図1乃至図3の蛇行制御装置の制御系を示すブロック図である。It is a block diagram which shows the control system of the meandering control apparatus of FIG. 1 thru | or FIG. 図1乃至図4の蛇行制御装置により帯状体のエッジ部及び塗布領域と未塗布領域との境界部を検出したときの生波形と微分波形の例を帯状体の各部と対応付けてそれぞれ示す図である。FIGS. 1 to 4 are diagrams showing examples of raw waveforms and differential waveforms in association with the respective portions of the band when the edge portion of the band and the boundary between the application region and the non-application region are detected by the meandering control device of FIGS. It is. 第2の実施の形態を示す磁気テープ裁断装置全体の概略的構成を示す側面図である。It is a side view which shows the schematic structure of the whole magnetic tape cutting device which shows 2nd Embodiment. 図6の裁断部の正面図である。It is a front view of the cutting part of FIG. 従来の帯状体のエッジ検出のためのセンサとして直線状光源と1次元イメージセンサとから構成される反射型の光センサを示す正面図である。It is a front view which shows the reflection type optical sensor comprised from a linear light source and a one-dimensional image sensor as a sensor for the edge detection of the conventional strip | belt-shaped body. 第3の実施の形態を示す蛇行制御装置の要部を概略的に示す平面図である。It is a top view which shows roughly the principal part of the meandering control apparatus which shows 3rd Embodiment.

符号の説明Explanation of symbols

14・・・ガイドローラ
14b・・・ガイドローラの外周面
16・・・反射型の光センサ
17・・・アクチュエータ(修正部)
21・・・半導体レーザ(レーザ光源)
30・・・ラインCCDセンサ(受光部)
31・・・制御部
32・・・微分回路
40・・・一体型のセンサ
41・・・発光素子、LED(光源)
42・・・ラインCCDセンサ(受光部)
10・・・帯状体
2・・・エッジ部
3・・・未塗布部
4・・・境界部
5・・・塗布部
50・・・ウェブ(帯状体)、磁気テープ原反
50a・・・磁気テープ
54・・・ガイドローラ
55・・・裁断部
F・・・走行方向
K・・・基準位置
S・・・走査方向
L・・・レーザ光、入射光
R・・・反射光

14 ... guide roller 14b ... outer peripheral surface 16 of guide roller ... reflective optical sensor 17 ... actuator (correction unit)
21 ... Semiconductor laser (laser light source)
30 ... Line CCD sensor (light receiving part)
DESCRIPTION OF SYMBOLS 31 ... Control part 32 ... Differentiation circuit 40 ... Integrated sensor 41 ... Light emitting element, LED (light source)
42 ... Line CCD sensor (light receiving part)
DESCRIPTION OF SYMBOLS 10 ... Strip | belt body 2 ... Edge part 3 ... Unapplied part 4 ... Boundary part 5 ... Application | coating part 50 ... Web (strip | belt-shaped body), magnetic tape original fabric 50a ... Magnetic Tape 54 ... Guide roller 55 ... Cutting part F ... Traveling direction K ... Reference position S ... Scanning direction L ... Laser light, incident light R ... Reflected light

Claims (13)

走行中の帯状体に対し光ビームを照射する光源と、
前記光ビームの反射光を受光し検出する受光部と、
前記受光部からの検出信号に基づいて前記帯状体のエッジ部を検出する検出部と、
前記エッジ部の検出位置に基づいて前記帯状体の走行位置を修正する修正部と、を備え、
前記光源と前記受光部とを一体的に構成したことを特徴とする蛇行制御装置。
A light source that irradiates a light beam to a strip in motion;
A light receiving unit that receives and detects reflected light of the light beam;
A detection unit that detects an edge portion of the strip based on a detection signal from the light receiving unit;
A correction unit that corrects the travel position of the belt-like body based on the detection position of the edge part, and
The meandering control device, wherein the light source and the light receiving unit are integrally configured.
前記光源がLED(発光素子)から構成され、前記受光部がCCDセンサから構成されることを特徴とする請求項1に記載の蛇行制御装置。   2. The meandering control apparatus according to claim 1, wherein the light source is configured by an LED (light emitting element), and the light receiving unit is configured by a CCD sensor. 前記光源が半導体レーザから構成され、そのレーザ光を走査しながら前記帯状体に対し照射することを特徴とする請求項1に記載の蛇行制御装置。   2. The meandering control apparatus according to claim 1, wherein the light source is composed of a semiconductor laser and irradiates the belt-shaped body while scanning the laser beam. 前記帯状体の走行方向を変化させるように配置されたガイドロールで前記帯状体のエッジ部に対し前記光ビームを照射するように前記一体的に構成された光源及び受光部を配置したことを特徴とする請求項1,2または3に記載の蛇行制御装置。   The integrally configured light source and light receiving unit are arranged to irradiate the light beam to the edge part of the band with a guide roll arranged to change the traveling direction of the band. The meandering control apparatus according to claim 1, 2, or 3. 前記ガイドロールの外周面を前記帯状体の表面に対し反射率が異なるように構成したことを特徴とする請求項4に記載の蛇行制御装置。   The meandering control device according to claim 4, wherein an outer peripheral surface of the guide roll is configured to have a reflectance different from that of the surface of the belt-like body. 前記レーザ光の走査速度は前記帯状体の走行速度に基づいて制御されることを特徴とする請求項3に記載の蛇行制御装置。   The meandering control device according to claim 3, wherein the scanning speed of the laser light is controlled based on a traveling speed of the belt-like body. 前記検出部は前記受光部からの検出信号を微分し微分信号を出力する微分回路を備え、
前記帯状体は前記エッジ部に沿って一定幅を有する帯状領域の反射率が他の領域と比べて異なるときに、前記エッジ部と、前記帯状領域と前記他の領域との境界部と、に基づいて出力した前記各微分信号を前記レーザ光の走査方向により区別することで前記エッジ部を検出することを特徴とする請求項3または6に記載の蛇行制御装置。
The detection unit includes a differentiation circuit that differentiates a detection signal from the light receiving unit and outputs a differential signal,
When the reflectance of the band-shaped region having a constant width along the edge portion is different from that of the other regions, the band-shaped body includes the edge portion and a boundary portion between the band-shaped region and the other region. The meandering control device according to claim 3 or 6, wherein the edge portion is detected by distinguishing each differential signal output based on the scanning direction of the laser beam.
可撓性のある帯状体を走行させる走行部と、
前記走行中の帯状体に対しレーザ光を走査しながら照射するレーザ光源と、前記レーザ光の反射光を受光し検出するように前記レーザ光源と一体的に構成された受光部とから構成された反射型の光センサと、
前記受光部からの検出信号に基づいて前記帯状体のエッジ部を検出する検出部と、
前記エッジ部の検出位置に基づいて前記帯状体の走行位置を修正する修正部と、
前記走行されてきた帯状体を走行方向に裁断するための裁断部と、を備えることを特徴とする帯状体裁断装置。
A traveling unit that travels a flexible strip;
A laser light source that irradiates the traveling belt-like body while scanning with laser light, and a light receiving unit that is integrated with the laser light source so as to receive and detect reflected light of the laser light. A reflective optical sensor;
A detection unit that detects an edge portion of the strip based on a detection signal from the light receiving unit;
A correction unit that corrects the traveling position of the belt-like body based on the detection position of the edge part;
A strip cutting device comprising: a cutting unit for cutting the strip that has been traveled in the travel direction.
前記レーザ光の走査速度は前記帯状体の走行速度に基づいて制御されることを特徴とする請求項10に記載の帯状体裁断装置。 The strip cutting apparatus according to claim 10, wherein a scanning speed of the laser beam is controlled based on a traveling speed of the strip. 前記走行部は前記帯状体の走行方向を変化させるように配置されたガイドロールを備え、前記帯状体のエッジ部に対し前記レーザ光を照射するように前記光センサを配置するとともに、前記ガイドロールの外周面を前記帯状体の表面に対し反射率が異なるように構成したことを特徴とする請求項8または9に記載の帯状体裁断装置。 The traveling unit includes a guide roll disposed so as to change a traveling direction of the belt-shaped body, the light sensor is disposed so as to irradiate the laser beam to an edge portion of the belt-shaped body, and the guide roll The belt-shaped body cutting apparatus according to claim 8 or 9, wherein the outer peripheral surface of the belt-shaped body is configured to have a reflectance different from that of the surface of the belt-shaped body. 前記検出部は前記受光部からの検出信号を微分し微分信号を出力する微分回路を備え、
前記帯状体は前記エッジ部に沿って一定幅を有する帯状領域の反射率が他の領域と比べて異なるときに、前記エッジ部と、前記帯状領域と前記他の領域との境界部と、に基づいて出力した前記各微分信号を前記レーザ光の走査方向により区別することで前記エッジ部を検出することを特徴とする請求項8,9または10に記載の帯状体裁断装置。
The detection unit includes a differentiation circuit that differentiates a detection signal from the light receiving unit and outputs a differential signal,
When the reflectance of the band-shaped region having a constant width along the edge portion is different from that of the other regions, the band-shaped body includes the edge portion and a boundary portion between the band-shaped region and the other region. 11. The strip-shaped body cutting device according to claim 8, wherein the edge portion is detected by distinguishing each differential signal output based on the scanning direction of the laser light.
前記調整部は前記裁断部の上流側近傍において前記帯状体の走行位置を調整するように構成したことを特徴とする請求項8乃至11のいずれか1項に記載の帯状体裁断装置。 The strip-shaped body cutting device according to any one of claims 8 to 11, wherein the adjustment section is configured to adjust a traveling position of the strip-shaped body in the vicinity of the upstream side of the cutting section. 可撓性のある帯状体を走行させる走行部と、
前記走行中の帯状体に対し光ビームを照射する光源と、
前記光ビームの反射光を受光し検出するように前記光源と一体的に構成された受光部と、
前記受光部からの検出信号に基づいて前記帯状体のエッジ部を検出する検出部と、
前記エッジ部の検出位置に基づいて前記帯状体の走行位置を修正する修正部と、
前記走行されてきた帯状体を走行方向に裁断するための裁断部と、を備えることを特徴とする帯状体裁断装置。

A traveling unit that travels a flexible strip;
A light source for irradiating the traveling strip with a light beam;
A light receiving unit configured integrally with the light source to receive and detect reflected light of the light beam;
A detection unit that detects an edge portion of the strip based on a detection signal from the light receiving unit;
A correction unit that corrects the traveling position of the belt-like body based on the detection position of the edge part;
A strip cutting device comprising: a cutting unit for cutting the strip that has been traveled in the travel direction.

JP2004152713A 2003-05-27 2004-05-24 Meandering controller and beltlike body cutting device Pending JP2005008410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004152713A JP2005008410A (en) 2003-05-27 2004-05-24 Meandering controller and beltlike body cutting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003148888 2003-05-27
JP2004152713A JP2005008410A (en) 2003-05-27 2004-05-24 Meandering controller and beltlike body cutting device

Publications (1)

Publication Number Publication Date
JP2005008410A true JP2005008410A (en) 2005-01-13

Family

ID=34106668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004152713A Pending JP2005008410A (en) 2003-05-27 2004-05-24 Meandering controller and beltlike body cutting device

Country Status (1)

Country Link
JP (1) JP2005008410A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841694B2 (en) * 2008-04-28 2011-12-21 ゼミスコ インコーポレイテッド Alignment apparatus and method for laminating multiple webs
CN102849501A (en) * 2012-03-30 2013-01-02 吴江华尔美特装饰材料有限公司 Wallpaper conveying deviation-rectifying device
JP2014156637A (en) * 2013-02-18 2014-08-28 Sumitomo Metal Mining Co Ltd Vacuum film deposition apparatus, film deposition method, and production method of long resin film with metal film
CN104181621A (en) * 2013-05-27 2014-12-03 日东电工株式会社 Manufacturing system of optical film roller-shaped object and manufacturing method of optical film roller-shaped object
JP2014228847A (en) * 2013-05-27 2014-12-08 日東電工株式会社 System for manufacturing optical film roll and method for manufacturing optical film roll
JP2014228845A (en) * 2013-05-27 2014-12-08 日東電工株式会社 System for manufacturing optical film roll and method for manufacturing optical film roll
JPWO2013031086A1 (en) * 2011-08-30 2015-03-23 パナソニック株式会社 Tape-shaped optical recording medium mold, tape-shaped optical recording medium and cutting apparatus therefor
JP2016084546A (en) * 2016-02-18 2016-05-19 住友金属鉱山株式会社 Position sensor roll
JP2019117393A (en) * 2019-03-06 2019-07-18 株式会社ニコン Pattern formation device
JP2020101821A (en) * 2020-02-28 2020-07-02 株式会社ニコン Pattern formation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301495A (en) * 1995-05-08 1996-11-19 Nireco Corp Lateral position control device for belt-shaped running object
JPH095020A (en) * 1995-06-16 1997-01-10 Kanegafuchi Chem Ind Co Ltd Meandering correction device and lamination device in combination therewith

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301495A (en) * 1995-05-08 1996-11-19 Nireco Corp Lateral position control device for belt-shaped running object
JPH095020A (en) * 1995-06-16 1997-01-10 Kanegafuchi Chem Ind Co Ltd Meandering correction device and lamination device in combination therewith

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841694B2 (en) * 2008-04-28 2011-12-21 ゼミスコ インコーポレイテッド Alignment apparatus and method for laminating multiple webs
JPWO2013031086A1 (en) * 2011-08-30 2015-03-23 パナソニック株式会社 Tape-shaped optical recording medium mold, tape-shaped optical recording medium and cutting apparatus therefor
CN102849501A (en) * 2012-03-30 2013-01-02 吴江华尔美特装饰材料有限公司 Wallpaper conveying deviation-rectifying device
JP2014156637A (en) * 2013-02-18 2014-08-28 Sumitomo Metal Mining Co Ltd Vacuum film deposition apparatus, film deposition method, and production method of long resin film with metal film
CN104181621A (en) * 2013-05-27 2014-12-03 日东电工株式会社 Manufacturing system of optical film roller-shaped object and manufacturing method of optical film roller-shaped object
JP2014228847A (en) * 2013-05-27 2014-12-08 日東電工株式会社 System for manufacturing optical film roll and method for manufacturing optical film roll
JP2014228848A (en) * 2013-05-27 2014-12-08 日東電工株式会社 System for manufacturing optical film roll and method for manufacturing optical film roll
JP2014228845A (en) * 2013-05-27 2014-12-08 日東電工株式会社 System for manufacturing optical film roll and method for manufacturing optical film roll
JP2016084546A (en) * 2016-02-18 2016-05-19 住友金属鉱山株式会社 Position sensor roll
JP2019117393A (en) * 2019-03-06 2019-07-18 株式会社ニコン Pattern formation device
JP2020101821A (en) * 2020-02-28 2020-07-02 株式会社ニコン Pattern formation device
JP7004016B2 (en) 2020-02-28 2022-01-21 株式会社ニコン Pattern forming device

Similar Documents

Publication Publication Date Title
EP1293457B1 (en) Methods for calibration in friction drive apparatus
JP2005008410A (en) Meandering controller and beltlike body cutting device
KR101713367B1 (en) Exposure apparatus
US20080044211A1 (en) Belt conveying device, image forming apparatus provided therewith and adjustment method of belt skew controller in belt conveyance device
JP5202060B2 (en) Slitter blade height adjusting method and apparatus
KR101781245B1 (en) Film exposure method
EP3982199B1 (en) Calibration system and drawing device
US4881086A (en) Laser recorder with sheet edge detection
JPH0691592A (en) Paper sheet cutting device
JPH05124758A (en) Web meandering correcting device
TWI550367B (en) Film exposure apparatus and film exposure method
US6929210B2 (en) Fiber payout follower
CN111065702A (en) Method and device for producing adhesive tape
US9592684B2 (en) Recording apparatus and recording method
JP5678334B2 (en) Exposure equipment
JPH08301495A (en) Lateral position control device for belt-shaped running object
JP6486252B2 (en) Edge sensor
WO2020100446A1 (en) Calibration system and drawing device
JP2021020751A (en) Medium floating detection sensor and printer including the same
JP3619682B2 (en) Wrinkle detection method and wrinkle detection device for magnetic recording medium
WO2012063633A1 (en) Exposure method and exposure position verification method
EP3645293B1 (en) Tape drive
JPH08233541A (en) Sheet thickness measuring method
JP2002139303A (en) Edge-detecting device for transparent body
JP2019206427A (en) Film transport mechanism, indirect transfer printer, and film transport method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081119