JP2005003540A - 光電式リニアエンコーダの検査方法 - Google Patents

光電式リニアエンコーダの検査方法 Download PDF

Info

Publication number
JP2005003540A
JP2005003540A JP2003167972A JP2003167972A JP2005003540A JP 2005003540 A JP2005003540 A JP 2005003540A JP 2003167972 A JP2003167972 A JP 2003167972A JP 2003167972 A JP2003167972 A JP 2003167972A JP 2005003540 A JP2005003540 A JP 2005003540A
Authority
JP
Japan
Prior art keywords
light receiving
cylindrical
cylindrical scale
scale
linear encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003167972A
Other languages
English (en)
Inventor
Keitaro Yamashita
惠太郎 山下
Koji Hisakawa
浩司 久川
Kazuo Nishida
一男 西田
Kazumi Yashiki
和美 屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003167972A priority Critical patent/JP2005003540A/ja
Publication of JP2005003540A publication Critical patent/JP2005003540A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Transform (AREA)

Abstract

【課題】測定を速やかに行なうことができ、かつ測定誤差を低減させることが可能な光電式リニアエンコーダの検査方法を提供する。
【解決手段】円筒型スケール12の回転に伴い、円筒型スケール12の側壁12aのスリット12bが発光素子21と各受光素子22a、22b間を通過する度に、発光素子21からの光が各受光素子22a、22bに入射して、A相信号がパルス状に1回変化する。同様に、円筒型スケール12の側壁12aの各スリット12bが発光素子21と各受光素子22c、22d間を通過する度に、発光素子21からの光が各受光素子22c、22cに入射して、B相信号がパルス状に1回変化する。円筒型スケール12の円筒中心から見た単位角度当たりの各スリット12bの個数が予め分かっているので、A相信号及びB相信号のパルス数を検出すれば、円筒型スケール12の回転位置を求めることができる。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、光電式リニアエンコーダの検査方法に関する。
【0002】
【従来の技術】
この種の光電式リニアエンコーダは、相互に対向配置された発光素子及び受光素子を備えており、発光素子と受光素子間に、複数のスリットを有するスケールを挿入して移動させ、受光素子の受光出力に基づいて、スケールの位置を測定するというものである。
【0003】
通常、光電式リニアエンコーダは、高い測定精度を要求されるため、その電気特性を検査される。例えば、図6に示す様に光電式リニアエンコーダ101の発光素子と受光素子間にリニアスケール102を挿入した状態で、リニアスケール102を往復移動させつつ、受光素子の受光出力を検出し、光電式リニアエンコーダの電気特性を検査していた。
【0004】
また、図7に示す様に光電式リニアエンコーダ101の発光素子と受光素子間にエンドレスのベルトスケール103を挿入した状態で、ベルトスケール103を回転移動させつつ、受光素子の受光出力を検出し、光電式リニアエンコーダの電気特性を検査していた。
【0005】
尚、スケールの検査方法は、例えば特許文献1や特許文献2等に開示されている。
【0006】
【特許文献1】
特開2002−323349号公報
【特許文献2】
特開2003−75198号公報
【0007】
【発明が解決しようとする課題】
しかしながら、図6の検査方法では、リニアスケール102を往復移動させるため、リニアスケール102の移動方向を切り替えねばならず、この切り替えに際しては、リニアスケール102が加減速されて、受光素子の受光出力の周期や位相が乱れることから、測定を中断する必要があり、これが測定の妨げとなった。
【0008】
また、図7の検査方法では、発光素子と受光素子間の光軸方向にベルトスケール103が振動するため、受光素子の受光出力に誤差が生じてしまい、測定誤差が大きくなった。
【0009】
更に、図6及び図7の検査方法のいずれにおいても、スケールそのものの誤差を考慮しておらず、スケールの誤差による測定への影響を低減するまでには至らなかった。
【0010】
そこで、本発明は、上記従来の問題点に鑑みてなされたものであり、測定を速やかに行なうことができ、かつ測定誤差を低減させることが可能な光電式リニアエンコーダの検査方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明は、相互に対向配置された発光素子及び受光素子を備える光電式リニアエンコーダの検査方法において、複数のスリットを円筒型スケールの側壁周りに配列して設け、円筒型スケールの側壁を発光素子と受光素子間に挿入した状態で、円筒型スケールを回転させて、受光素子の受光出力を検出している。
【0012】
この様な構成の本発明によれば、円筒型スケールの側壁を発光素子と受光素子間に挿入した状態で、円筒型スケールを回転させて、受光素子の受光出力を検出している。これにより、光電式リニアエンコーダが検査される。ここで、円筒型スケールを一方向に回転させ続ければ、検査を継続することができる。このため、従来のリニアスケールの様に、移動方向を切り替える必要がなく、測定が中断することもない。また、円筒型スケールに十分な剛性を持たせれば、従来のベルトスケールの様に円筒型スケールが振動することはなく、測定誤差が大きくなることもない。
【0013】
また、本発明においては、円筒型スケールをモータにより回転させている。そして、円筒型スケールの円筒中心を該円筒型スケールの回転軸からずらした状態で、円筒型スケールを回転させて、受光素子の受光出力を検出している。
【0014】
この様に円筒型スケールの円筒中心を該円筒型スケールの回転軸からずらした状態で、円筒型スケールを回転させると、円筒型スケールがぶれて、発光素子と受光素子間で円筒型スケールが変位する。このため、意図的に、発光素子と受光素子間で円筒型スケールを変位させて、その影響を測定することができる。
【0015】
更に、本発明においては、円筒型スケールの円筒中心を該円筒型スケールの回転軸に一致させた状態で、円筒型スケールの回転軸を発光素子並びに受光素子側又は反対側に移動させてずらしつつ、円筒型スケールを回転させて、受光素子の受光出力を検出している。
【0016】
この様に円筒型スケールの回転軸そのものを移動させてずらしても、発光素子と受光素子間で円筒型スケールが変位するので、その影響を測定することができる。
【0017】
また、本発明においては、円筒型スケールの原点に位置するスリットの幅を他の各スリットの幅とは異ならせ、全てのスリットの幅の誤差及びピッチの誤差を予め測定しておき、全てのスリットの幅の誤差及びピッチの誤差に基づいて、受光素子の出力を補正している。
【0018】
この様に円筒型スケールの原点に位置するスリットの幅を他の各スリットの幅とは異ならせておけば、受光素子の受光出力に基づいて、各スリットのうちから原点に位置するスリットを特定することができ、各スリットに対応する受光素子のそれぞれの受光出力と予め測定された全てのスリットの幅の誤差及びピッチの誤差とを対応付けることができる。そして、各スリットに対応する受光素子のそれぞれの受光出力を全てのスリットの幅の誤差及びピッチの誤差により補正することができる。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を添付図面を参照して詳細に説明する。
【0020】
図1(a)及び(b)は、本発明の検査方法の一実施形態を適用した装置を示す正面図及び側面図である。本実施形態の装置では、光学式リニアエンコーダ11と、円筒型スケール12と、円筒型スケール12を回転させるモータ13と、ロータリーエンコーダ14と、モータ13の回転軸とロータリーエンコーダ14の回転軸14a間を接続するカップリング15とを備えている。
【0021】
光学式リニアエンコーダ11は、例えば図2に示す様に発光素子21と4つの受光素子22a、22b、22c、22dを対向配置したものであり、発光素子21からの光を受光した各受光素子22a、22bの出力差をA相信号として出力し、発光素子21からの光を受光した各受光素子22c、22dの出力差をB相信号として出力している。
【0022】
円筒型スケール12は、高剛性の材質から形成されており、その側壁12a周りに複数のスリット12bを並設したものである。円筒型スケール12の曲率は、光学式リニアエンコーダ11の検出精度から見て、円筒型スケール12を平面とみなせる程度に抑えられている。各スリット12bのピッチは、円筒型スケール12により検出される回転位置の分解能に対応している。モータ13は、その回転軸を円筒形スケール12の底板12cに接続され、円筒型スケール12を回転させる。
【0023】
ロータリーエンコーダ14は、モータ13の回転軸並びに円筒型スケール12と共に回転し、モータ13の回転軸並びに円筒型スケール12の回転位置、回転速度、及び回転方向を検出する。ロータリーエンコーダ14により検出される回転位置の分解能は、円筒型スケール12により検出される回転位置の分解能よりも十分に高精度に設定されている。
【0024】
さて、円筒型スケール12の側壁12aは、光学式リニアエンコーダ11の発光素子21と各受光素子22a〜22d間に挿入される。そして、発光素子21を発光させた状態で、円筒型スケール12をモータ13により回転させつつ、各受光素子22a、22bの出力差であるA相信号、及び各受光素子22c、22dの出力差であるB相信号を取り出す。
【0025】
円筒型スケール12の回転に伴い、円筒型スケール12の側壁12aのスリット12bが発光素子21と各受光素子22a、22b間を通過する度に、発光素子21からの光が各受光素子22a、22bに入射して、A相信号がパルス状に1回変化する。同様に、円筒型スケール12の側壁12aの各スリット12bが発光素子21と各受光素子22c、22d間を通過する度に、発光素子21からの光が各受光素子22c、22cに入射して、B相信号がパルス状に1回変化する。そして、各受光素子22a、22bと各受光素子22c、22c間の位置が異なることから、A相信号とB相信号間に位相ずれが発生する。
【0026】
円筒型スケール12の円筒中心から見た単位角度当たりの各スリット12bの個数が予め分かっており、スリット12bが発光素子21と各受光素子22a、22b間を通過する度に、A相信号及びB相信号がパルス状に1回変化するので、A相信号及びB相信号のパルス数を検出すれば、円筒型スケール12の回転位置を求めることができる。また、A相信号とB相信号の周波数を検出すれば、円筒型スケール12の回転速度を求めることができる。更に、A相信号とB相信号のいずれの位相が進んでいるかにより、円筒型スケール12の回転方向を求めることができる。
【0027】
こうして光学式リニアエンコーダ11のA相信号及びB相信号に基づいて求めた円筒型スケール12の回転位置、回転速度、及び回転方向と、より高精度のロータリーエンコーダ14により検出された円筒型スケール12の回転位置、回転速度、及び回転方向とを比較して、光学式リニアエンコーダ11による回転位置、回転速度、及び回転方向の検出精度を検査する。
【0028】
また、次の様な手順で光学式リニアエンコーダ11の検出精度を検査することも可能である。
【0029】
例えば、図3(a)に示す様に円筒型スケール12の円筒中心12oをモータ13の回転軸中心13oから光学式リニアエンコーダ11側へと僅かな距離dだけずらし、光学式リニアエンコーダ11の各受光素子22a〜22dと円筒型スケール12の側壁12b間の離間距離が最大値h1になったときの光学式リニアエンコーダ11による検出結果とロータリーエンコーダ14による検出結果とを求め、これらの検出結果を比較する。引き続いて、図3(b)に示す様に円筒型スケール12の円筒中心12oを反時計周りに90度だけ回転させ、各受光素子22a〜22dと円筒型スケール12の側壁12b間の離間距離が平均値h2になったときの光学式リニアエンコーダ11による検出結果とロータリーエンコーダ14による検出結果とを求め、これらの検出結果を比較する。更に、図3(c)に示す様に円筒型スケール12の円筒中心12oを反時計周りに90度だけ回転させ、各受光素子22a〜22dと円筒型スケール12の側壁12b間の離間距離が最小値h3になったときの光学式リニアエンコーダ11による検出結果とロータリーエンコーダ14による検出結果とを求め、これらの検出結果を比較する。
【0030】
そして、図3(a)、(b)、及び(c)の状態でのそれぞれの比較に基づいて、各受光素子22a〜22dと円筒型スケール12の側壁12b間の離間距離に対する光学式リニアエンコーダ11の検出精度の変化を検査する。
【0031】
あるいは、図4(a)に示す様に円筒型スケール12の円筒中心12oをモータ13の回転軸中心13oに一致させた状態で、図4(b)に示す様に円筒型スケール12の円筒中心12oを光学式リニアエンコーダ11側へと段階的にずらして行き、各受光素子22a〜22dと円筒型スケール12の側壁12b間の離間距離が最大値h1になったときの光学式リニアエンコーダ11による検出結果とロータリーエンコーダ14による検出結果を比較し、該離間距離が平均値h2になったときの光学式リニアエンコーダ11による検出結果とロータリーエンコーダ14による検出結果を比較し、該離間距離が最小値h3になったときの光学式リニアエンコーダ11による検出結果とロータリーエンコーダ14による検出結果を比較し、これらの比較に基づいて、光学式リニアエンコーダ11の検出精度の変化を検査する。
【0032】
次に、円筒型スケール12の各スリット12bの寸法誤差を原因とするA相信号及びB相信号の誤差を補正するための手順を述べる。
【0033】
まず、図5(a)に示す様に円筒型スケール12の各スリットを12b0、12b1、12b2、…、12bn、…、12bmとし、該各スリット12b0〜12bmの実際の幅をPH0、PH1、PH2、…、PHn、…、PHmとし、該各スリット12b0〜12bmの実際のピッチをP0、P1、P2、…、Pn、…、Pmとする。
【0034】
スリット12b0は、円筒型スケール12の原点の位置を示しており、その幅及びピッチが他の各スリット12b1〜12bmの幅及びピッチよりも広く設定される。また、他の各スリット12b1〜12bmの幅及びピッチは、それぞれの一定値PH及びPに設定される。
【0035】
ところが、各スリット12b0〜12bmは、エッチング等により形成されているため、エッチングむら等を原因とする寸法誤差を含む。
【0036】
そこで、工具顕微鏡等を用いて、各スリット12b0〜12bmの幅PH0〜PHmの誤差ΔPH0〜ΔPHm及びピッチP0〜Pmの誤差ΔP0〜ΔPmを測定して、各誤差ΔPH0〜ΔPHm及び各誤差ΔP0〜ΔPmをメモリ等に記憶させる。
【0037】
スリット12bnの実際の幅PHnは、設計上の一定幅PHと、誤差ΔPHnとの和で表される(PHn=PH+ΔPHn)。また、各スリット12bn、12b(n+1)間の実際のピッチPnは、設計上の一定ピッチPと、誤差ΔPnとの和で表される(Pn=P+ΔPn)。
【0038】
一方、各スリット12b0〜12bmの実際の幅及び実際のピッチは、光学式リニアエンコーダ11からのA相信号及びB相信号のパルス幅及び周期に反映される。
【0039】
図5(b)に示すA相信号においては、各スリット12b0〜12bmの実際の幅PH0〜PHmに対応するそれぞれのパルス幅をTAH0〜TAHmで表し、また各スリット12b0〜12bmの実際のピッチP0〜Pmに対応するそれぞれの周期をTA0〜TAmで表している。
【0040】
また、図5(c)に示すB相信号においては、各スリット12b0〜12bmの実際の幅PH0〜PHmに対応するそれぞれのパルス幅をTBH0〜TBHmで表し、また各スリット12b0〜12bmの実際のピッチP0〜Pmに対応するそれぞれの周期をTB0〜TBmで表している。
【0041】
更に、光学式リニアエンコーダ11によりスリット12bnを検出したときのA相信号とB相信号の位相差をθ1n、θ2n、θ3n、θ4nで表している。
【0042】
尚、光学式リニアエンコーダ11からのA相信号及びB相信号のパルス幅及び周期は、ロータリーエンコーダ14から出力されるパルスの計数値に対応している。従って、ロータリーエンコーダ14から出力されるパルスの幅は、光学式リニアエンコーダ11からのA相信号及びB相信号のパルス幅及び周期よりも十分に短くなければならない。
【0043】
また、A相信号及びB相信号のパルス幅及び周期をロータリーエンコーダ14から出力されるパルスの計数値として求め、これにより円筒型スケール12の回転むら等の影響を排除している。
【0044】
ここで、先に述べた様にスリット12bnの実際の幅PHnは、設計上の一定幅PHと、誤差ΔPHnとの和で表される(PHn=PH+ΔPHn)。また、各スリット12bn、12b(n+1)間の実際のピッチPnは、設計上の一定ピッチPと、誤差ΔPnとの和で表される(Pn=P+ΔPn)。
【0045】
従って、A相信号において、スリット12bnの設計上の一定幅PHに対応するパルス幅をtHAnとすると、tHAnは次式(1)で表される。
【0046】
tHAn=TAHn×(PH/(PH+ΔPHn) …(1)
また、A相信号において、各スリット12bn、12b(n+1)間の設計上の一定ピッチPに対応するパルス幅をtAnとすると、tAnは次式(2)で表される。
tAn=TAn×(P/(P+ΔPn) …(2)
すなわち、上記各式(1)及び(2)により、各スリット12bの寸法誤差を原因とするA相信号の誤差が補正される。
【0047】
同様に、B相信号において、スリット12bnの設計上の一定幅PHに対応するパルス幅をtHBnとすると、tHBnは次式(3)で表される。
【0048】
tHBn=TBHn×(PH/(PH+ΔPHn) …(3)
また、B相信号において、各スリット12bn、12b(n+1)間の設計上の一定ピッチPに対応するパルス幅をtBnとすると、tBnは次式(4)で表される。
tBn=TBn×(P/(P+ΔPn) …(4)
すなわち、上記各式(3)及び(4)により、各スリット12bの寸法誤差を原因とするB相信号の誤差が補正される。
【0049】
尚、本発明は、上記実施形態に限定されるものではなく、多様に変形することができる。例えば、光学式リニアエンコーダ11として、発光素子及び受光素子の個数や配置が異なる他の構成のものを適用しても良い。また、円筒型スケール12の側壁に形成される各スリットを複数列設けたり、各スリットの構成を変更したりしても良い。更に、ロータリーエンコーダの代わりに、他の種類の回転位置検出装置を適用しても構わない。
【0050】
【発明の効果】
以上説明した様に本発明によれば、円筒型スケールの側壁を発光素子と受光素子間に挿入した状態で、円筒型スケールを回転させて、受光素子の受光出力を検出している。これにより、光電式リニアエンコーダが検査される。ここで、円筒型スケールを一方向に回転させ続ければ、検査を継続することができる。このため、従来のリニアスケールの様に、移動方向を切り替える必要がなく、測定が中断することもない。また、円筒型スケールに十分な剛性を持たせれば、従来のベルトスケールの様に円筒型スケールが振動することはなく、測定誤差が大きくなることもない。
【図面の簡単な説明】
【図1】(a)及び(b)は、本発明の検査方法の一実施形態を適用した装置を示す正面図及び側面図である。
【図2】図1の装置における光学式リニアエンコーダを示すブロック図である。
【図3】(a)は図1の装置における円筒型スケールの円筒中心を回転軸中心からずらした状態を示す図であり、(b)は該円筒型スケールを90度回転だけ回転させた状態を示す図であり、(c)は該円筒型スケールを90度回転だけ更に回転させた状態を示す図である。
【図4】(a)は図1の装置における円筒型スケールの円筒中心を回転軸中心に一致させた状態を示す図であり、(b)は円筒型スケールの円筒中心を光学式リニアエンコーダ側にずらした状態を示す図である。
【図5】(a)は図1の装置における円筒型スケールを展開して示す図であり、(b)及び(c)は図1の装置における光学式リニアエンコーダからのA相信号及びB相信号を示すタイミンチャートである。
【図6】従来の検査方法の一例を示す斜視図である。
【図7】従来の検査方法の他の例を示す斜視図である。
【符号の説明】
11 光学式リニアエンコーダ
12 円筒型スケール
13 モータ
14 ロータリーエンコーダ
15 カップリング
21 発光素子
22a〜22d 受光素子

Claims (5)

  1. 相互に対向配置された発光素子及び受光素子を備える光電式リニアエンコーダの検査方法において、
    複数のスリットを円筒型スケールの側壁周りに配列して設け、円筒型スケールの側壁を発光素子と受光素子間に挿入した状態で、円筒型スケールを回転させて、受光素子の受光出力を検出することを特徴とする光電式リニアエンコーダの検査方法。
  2. 円筒型スケールをモータにより回転させることを特徴とする請求項1に記載の光電式リニアエンコーダの検査方法。
  3. 円筒型スケールの円筒中心を該円筒型スケールの回転軸からずらした状態で、円筒型スケールを回転させて、受光素子の受光出力を検出することを特徴とする請求項1に記載の光電式リニアエンコーダの検査方法。
  4. 円筒型スケールの円筒中心を該円筒型スケールの回転軸に一致させた状態で、円筒型スケールの回転軸を発光素子並びに受光素子側又は反対側に移動させてずらしつつ、円筒型スケールを回転させて、受光素子の受光出力を検出することを特徴とする請求項1に記載の光電式リニアエンコーダの検査方法。
  5. 円筒型スケールの原点に位置するスリットの幅を他の各スリットの幅とは異ならせ、全てのスリットの幅の誤差及びピッチの誤差を予め測定しておき、全てのスリットの幅の誤差及びピッチの誤差に基づいて、受光素子の出力を補正することを特徴とする請求項1に記載の光電式リニアエンコーダの検査方法。
JP2003167972A 2003-06-12 2003-06-12 光電式リニアエンコーダの検査方法 Pending JP2005003540A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167972A JP2005003540A (ja) 2003-06-12 2003-06-12 光電式リニアエンコーダの検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167972A JP2005003540A (ja) 2003-06-12 2003-06-12 光電式リニアエンコーダの検査方法

Publications (1)

Publication Number Publication Date
JP2005003540A true JP2005003540A (ja) 2005-01-06

Family

ID=34093615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167972A Pending JP2005003540A (ja) 2003-06-12 2003-06-12 光電式リニアエンコーダの検査方法

Country Status (1)

Country Link
JP (1) JP2005003540A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195331A (ja) * 2005-01-17 2006-07-27 Matsushita Electric Ind Co Ltd 撮影レンズ
JP2008032611A (ja) * 2006-07-31 2008-02-14 Sharp Corp 光電式エンコーダ検査装置
JP2017502264A (ja) * 2013-11-21 2017-01-19 エコバクス ロボティクス カンパニー リミテッドEcovacs Robotics Co.,Ltd. レーザー距離測定センサーおよびその距離測定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195331A (ja) * 2005-01-17 2006-07-27 Matsushita Electric Ind Co Ltd 撮影レンズ
JP2008032611A (ja) * 2006-07-31 2008-02-14 Sharp Corp 光電式エンコーダ検査装置
JP2017502264A (ja) * 2013-11-21 2017-01-19 エコバクス ロボティクス カンパニー リミテッドEcovacs Robotics Co.,Ltd. レーザー距離測定センサーおよびその距離測定方法

Similar Documents

Publication Publication Date Title
EP2848898B1 (en) Encoder and apparatus using encoder
US6215119B1 (en) Dual sensor encoder to counter eccentricity errors
CN108027259B (zh) 绝对式编码器
EP2778623B1 (en) Position detection apparatus, lens apparatus, image pickup system, and machine tool apparatus
US10540559B2 (en) Position detection apparatus, lens apparatus, image pickup system, machine tool apparatus, position detection method, and non-transitory computer-readable storage medium which are capable of detecting abnormality
CN102879023B (zh) 位置检测装置
US9417101B2 (en) Optical encoder with a scale that has fine and coarse pitch patterns
JP4951884B2 (ja) エンコーダ装置
EP2662668B1 (en) Scale, vernier encoder and apparatus using the same
JPH1114550A (ja) 撮像方法及び装置
US8912929B2 (en) Correction value derivation apparatus, displacement amount derivation apparatus, control apparatus, and correction value derivation method
KR20050006288A (ko) 웨이퍼 프리얼라인먼트 장치 및 방법
WO2006006532A1 (ja) エンコーダ
JP2008096205A (ja) エンコーダ及びエンコーダ用受光装置
US20150130931A1 (en) Position detecting apparatus, and lens apparatus and image pickup apparatus including the position detecting apparatus
US7469839B2 (en) Reflective optical encoder
JP2005003540A (ja) 光電式リニアエンコーダの検査方法
JPH09145408A (ja) エンコーダ装置
US10393550B2 (en) Encoder and apparatus having the same
US7552873B2 (en) Transmissive optical encoder
JP7271066B2 (ja) 光学式測定装置
JPH11108697A (ja) 光学式位置検出装置の検出器配置構造
KR100926616B1 (ko) 투과성 광 인코더 및 방법
JPH09210639A (ja) 外径測定装置
JP2002350752A (ja) 走査光学系の走査ビーム測定評価方法及び測定評価装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Effective date: 20070831

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20081028

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A02