JP2004534954A - マルチビュー画像化装置 - Google Patents

マルチビュー画像化装置 Download PDF

Info

Publication number
JP2004534954A
JP2004534954A JP2003512685A JP2003512685A JP2004534954A JP 2004534954 A JP2004534954 A JP 2004534954A JP 2003512685 A JP2003512685 A JP 2003512685A JP 2003512685 A JP2003512685 A JP 2003512685A JP 2004534954 A JP2004534954 A JP 2004534954A
Authority
JP
Japan
Prior art keywords
stage
sample
camera
image
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003512685A
Other languages
English (en)
Inventor
ニルソン・デイビッド
ケーブル・マイケル・ディ.
ライス・ブラッドレー・ダブリュ.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xenogen Corp
Original Assignee
Xenogen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xenogen Corp filed Critical Xenogen Corp
Publication of JP2004534954A publication Critical patent/JP2004534954A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/763Bioluminescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/40Animals

Abstract

【課題】試料の画像を撮るシステムおよび方法を提供する。
【解決手段】試料は、画像化ボックス内のさまざまな位置および角度から試料の画像が撮られることを可能にする可動ステージを備える画像化ボックス内に置かれる。画像はカメラによって撮られ、プロセッサに送られる。画像化ボックス内の1つ以上の視点から得られる構造化光画像は、試料の構造化光表現を構築するのに使用されえる。
【選択図】図2A

Description

【技術分野】
【0001】
本発明は、大きくは画像化システムおよびその使用方法に関する。より具体的には本発明は、複数の視点から画像をキャプチャするのに用いられる画像化システムおよび方法に関する。
【背景技術】
【0002】
画像化のある特別な種類は、低い強度の光(個々の光子のオーダーである)を発光する試料からキャプチャすること、および光子放射データに基づく画像の構築を伴う。この試料中の光源は、関心のある活性の源を視覚的に示す。例えば、特定のインビボ画像化の応用例は、標本の写真式表現上にスーパーインポーズされた、標本の内部からの光子放射の一つ以上の表現の分析を含む。ルミネセンス(発光、luminescence)表現は、対象となる活動が行われている標本の部分を示す。写真的表現は、ユーザに標本の画像的な基準を提供する。
【0003】
インビボ画像化は、試料の画像をカメラを用いてキャプチャすることによって行われる。増倍または冷却電荷結合素子(CCD)カメラは、試料中の低強度発光細胞の所在を検出するのにしばしば用いられる。これらのカメラは、かなり複雑で特殊な冷却を必要とし、試料室の上部の単一の場所に固定される。ユーザは、上方のカメラの視野内の試料室の底部の所定の位置に試料を置く。カメラおよび試料のこの静的な関係によって、画像キャプチャは上からの画像だけに限定される。
【0004】
しばしば、試料の異なる視像をキャプチャすることが望ましい。例えば、哺乳類試料の下側から内部の発光細胞を検出することは、上方カメラによってキャプチャされる前に光が透過しなければならない周りを覆う細胞によって影響されえる。異なる角度からのデータを集めることによって、動物の中の光源の位置および強度についてユーザは、単一の視点だけを用いて可能であるよりもより多くの情報を得ることができる。しかし上方のカメラを用いるとき、異なる視像をキャプチャするために試料を再位置決めするのは非実用的でありえる。
【発明の開示】
【発明が解決しようとする課題】
【0005】
上述のことを鑑みて、試料の姿勢を再位置決めすることなく異なる視点群からの画像群をキャプチャできる改良された画像化システムが非常に望まれる。
【課題を解決するための手段】
【0006】
本発明は、試料の画像をキャプチャするシステムおよび方法に関する。試料は、画像化ボックス内の可動ステージ上に置かれる。可動ステージは、試料の画像、またはその一部がカメラによって画像化ボックス内の異なる視点、角度、および位置から、試料の姿勢を再位置決めすることなくキャプチャされることを可能にする。試料が画像化ボックス内でさまざまに位置付けられながら、光伝送デバイスは、試料から放射または反射された光をカメラに関連付けられた共通な基準線に伝達することによって画像キャプチャを助ける。
【0007】
ある局面において、本発明は、カメラに電気的に結合されるプロセッサを含む。このプロセッサは、可動ステージの制御も行う。ある実施形態においては、透明なステージが用いられることでステージの下の角度からの画像キャプチャを可能にする。
【0008】
他の構成において、画像化システムは、内部空間を閉じる一組の壁を持つ画像化ボックスを備える。画像化システムは、カメラで見るために壁のうちの一つに固定された基準線に対して前記カメラを位置付けるように構成されるカメラマウントおよび光伝送デバイスを備える。画像化システムは、移動機構および内部空間内で前記試料を支持するよう構成されるステージを含む可動ステージ装置をさらに備える。ステージは試料を内部空間内の複数の位置のうちの一つに移動させるよう移動機構に結合される。移動機構および光伝送デバイスは協働して試料から反射または放射された光を固定された基準線に導くことでカメラによって画像をキャプチャする。
【0009】
他の局面において、画像化装置は、試料を受け入れる内部空間を含む画像化ボックスおよび試料を支持するステージを備える。画像化装置は、画像化ボックスに取り付けられ、可動ステージを第1方向に位置付けることができる第1リニアアクチュエータをさらに備える。画像化装置は、第1リニアアクチュエータに取り付けられ、ステージに取り付けられ、可動ステージを第2方向に位置付けることができる第2リニアアクチュエータをさらに備える。第1リニアアクチュエータおよび第2リニアアクチュエータは協働して内部空間内の複数の位置のうちの一つにおいてステージを位置付ける。
【0010】
さらに他の局面において、画像化装置は、ステージに回転可能に結合され、画像化ボックスに回転可能に結合される位置決めアームであって、画像化ボックスに対する位置決めアームの任意の回転位置についてステージが実質的に水平を維持する位置決めアームを備える。画像化装置は、位置決めアームに取り付けられたミラーをさらに備える。ミラーは、試料から出された光を固定された基準線に沿って少なくとも部分的に反射するよう構成される。
【0011】
他の局面において、本発明は、試料を画像化する方法に関する。試料は画像化ボックス内で移動可能なステージによって支持され、画像化ボックスは、試料の画像をキャプチャするよう構成されるカメラに結合される。この方法は、画像化ボックス内の第1位置にステージを動かすことを含む。この方法は、カメラを用いて第1位置からの試料の第1画像をキャプチャすることをさらに含む。この方法は、ステージを画像化ボックス内の第2位置に動かすことをさらに含む。第2位置は、カメラに関連付けられた固定された基準線に対して第1位置とは異なる角度を持つ。この方法は、カメラを用いて第2位置からの試料の第2画像をキャプチャすることをさらに含む。
【0012】
さらに他の局面において、本発明は、カメラで試料の画像をキャプチャする画像化システムと共に用いるステージ装置に関する。画像化システムは、内部空間を規定する一組の壁を持つ画像化ボックス、および固定された基準線に対して前記壁のうちの一つにマウントされたカメラを含む。ステージ装置は、光伝送デバイスおよび移動機構を備える。ステージ装置は、内部空間内で試料を支持するよう構成されるステージであって、ステージは試料を内部空間内の複数位置のうちの一つに移動させるために移動機構に結合される、ステージをさらに備える。移動機構および光伝送デバイスは協働して、ステージ上の試料から反射または放射された光を前記固定された基準線に導くことでカメラによって画像をキャプチャする。
【0013】
本発明のこれらや他の特徴は、本発明の詳細な説明において、以下の図面と共により詳細に以下に説明される。
【発明を実施するための最良の形態】
【0014】
本発明は、添付図面の図において限定としてではなく例示として示され、これらの図中で同様の参照番号は同様の要素を参照する。
【0015】
本発明の以下の詳細な説明において、多くの具体的な実施形態が述べられるが、これは本発明の完全な理解のためである。しかし当業者には明らかなように、本発明はこれらの特定の詳細なしで、または代替要素またはプロセスを用いることによって実施されえる。あるいは、本発明の局面を不必要にぼかさないために、よく知られたプロセス、プロシージャ、要素、および回路は詳細に説明されない。
【0016】
I.画像化システム
【0017】
ある局面において、本発明は大きくは改良された画像化システムに関する。図1Aは、本発明のある実施形態によって写真および発光画像をキャプチャする画像化システム10を示す。システム10は、画像化ボックス12内の画像キャプチャの自動化された制御をユーザに提供する。画像化システム10はまた、構造化光画像をキャプチャおよび構築するのに便利である。
【0018】
画像化システム10は、発光試料を受け入れる画像化ボックス12を備え、このボックス中では低強度の光、例えばルシフェラーゼによる発光が検出される。画像化ボックス12は、ボックスの側面鉛直壁上にある、カメラを取り付けるカメラマウント109を持つハウジング16を含む(図2A〜2C)。画像化ボックス12は、「光が漏れない」ように構成され、すなわち、実質的に全ての外部光は周囲の室内からボックス12へと入射することを阻止される。
【0019】
高感度カメラ、例えば増倍された、または電荷結合素子(CCD)カメラ20が、ハウジングに固定されたカメラマウント109を好ましくは通して画像化ボックス12に取り付けられる。CCDカメラ20は、画像化ボックス12内で、試料の発光および写真(すなわち反射光による画像)の画像をキャプチャすることができる。CCDカメラ20は、低温流体を管路24を介してCCDカメラを通して循環させる冷却装置22のような適切な冷却源によって冷却されてもよい。適切な冷却装置には、ペンシルバニア州アレンタウンのIGC-APD Cryogenics Inc.から入手可能な「CRYOTIGER(登録商標)」コンプレッサがある。液体窒素または固体装置のような他の冷媒もCCDカメラ20を冷却するのに用いられえる。
【0020】
画像処理ユニット26はカメラ20およびコンピュータ28をそれぞれケーブル30および32を通してインタフェースしてもよい。コンピュータ28は任意の適切な種類でありえ、典型的にはプロセッサ、ランダムアクセスメモリ(RAM)および読み出し専用メモリ(ROM)のようなメモリ要素、およびディスクドライブ要素(例えばハードドライブ、CD、フレキシブルディスクドライブなど)を含むハードウェアを含むメインユニット36を備える。コンピュータ28はまたディスプレイ38およびキーボード40およびマウス42のような入力デバイスを含む。コンピュータ28は、ケーブル34を介して画像化ボックス12中のさまざまな要素と通信できる。
【0021】
これら要素の通信および制御を提供するために、コンピュータ28は、画像化ボックス12中の任意のデバイスを制御する出力を提供するように構成された適切な処理ハードウェアおよびソフトウェアを含む。処理ハードウェアおよびソフトウェアは、I/Oカード、画像化システム10の任意の要素を制御する制御ロジック、および画像化システム10のための適切なグラフィックユーザインタフェースを含みえる。コンピュータ28はまた、カメラ20によって得られた情報を処理するための追加の画像化ハードウェア、ソフトウェア、および画像処理ロジックのようなカメラ20のための適切な処理ハードウェアおよびソフトウェアを含む。コンピュータ28によって制御される要素は、カメラ20、カメラ20のフォーカスを担うモータ、試料を支持するステージの位置制御を担う一つ以上のモータ、カメラレンズ、Fストップなどを含みえる。コンピュータ28のロジックは、ソフトウェア、ハードウェアまたはそれらの組み合わせの形をとりえる。コンピュータ28はまた、画像化情報をユーザに提示するためのディスプレイ38と通信する。例として、ディスプレイ38は、ユーザが画像化の結果を視覚化できるようにし、かつ画像化システム10を制御するためのインタフェースとして機能する画像測定グラフィックユーザインタフェース(GUI)を提供するモニタでありえる。
【0022】
処理ハードウェアおよびソフトウェアはまた、ボックス12中に含まれた可動ステージに結合されたモータに制御信号を提供するように構成される適切なプロセッサを含みえる。プロセッサはまた、ステージの移動中にステージが光伝送デバイスに接触することを防ぐように構成されえる。機能を制御するのに加えて、プロセッサはまた、ここに説明されるさまざまな画像処理機能を実行するように応用されてもよい。例えばプロセッサは、内部空間内のステージの一つ以上の位置から得られた2−D構造化光画像を用いて構造化光表現を生成するように構成されえる。
【0023】
画像化システム10は、さまざまな視点およびカメラ20に対する試料の位置から複数の画像をキャプチャするのに適している。これらの画像は、試料の写真的表現上にスーパーインポーズされた試料の内部からの発光(emissions)の一つ以上の表現の分析を含むインビボ画像化の応用例で用いられえる。ある実施形態において、画像化システム10は、ルシフェラーゼ発光細胞(luciferase-expressing cells)からの発光、蛍光分子からの蛍光などの低強度光源の2−Dおよび構造化光画像化のために用いられる。低強度光源は、任意の種類の発光体または試料から放射されえ、これらには例えば、組織培養板、マルチウェル板(96、384、および864ウェル板を含む)、およびルシフェラーゼ発光細胞を持つマウスを含むさまざまな哺乳類の対象物のような、発光分子を含む動物または植物が含まれる。
【0024】
ある実施形態において試料は、発光細胞を含む生物学的試料である。したがって結果として生じる発光画像は、試料そのもの以外の光源を用いることなくキャプチャされえる。試料からの発光は、位置の関数として記録されることで発光画像を作る。そのような複合型の写真/発光画像を発生するアプローチの一つは、Contagらに1997年7月22日に発行された米国特許第5,650,135号に記載されている。この特許の開示内容全体が全ての目的のためにここで参照によって援用される。
【0025】
ある特定の実施形態において2−D発光画像は、ある規定された期間にわたってCCDカメラ20のそれぞれの検出器ピクセルによって受け取られた放射された光子の集積を表現する。換言すれば、発光画像は、個々の検出器ピクセルにおける光子カウントを表現する大きさの値を示しえる。試料が発する放射(例えば光子)の領域は、発光画像に現れる。発光画像は、例えば生体適合性のある実体の存在を示しえる。そのような実体は、分子、巨大分子、細胞、微生物、粒子などでありえる。よってインビボ分析は、哺乳類の対象物中の生体適合性のある実体の位置を検出することを含みえる。あるいは、ライブモードの情報は、時間の経過の中での実体の位置を追跡するのに用いられえる。本発明とともに利用するのに適切なディジタルオーバレイ画像のための分析応用例の他の例については、先に参照によって援用された米国特許第5,650,135号を参照されたい。
【0026】
II.画像化ボックス
【0027】
ある局面において本発明は、さまざまな画像化操作に適切な画像化装置に関する。図1Bは、本発明のある実施形態による図1Aの画像化ボックス12の外部要素を示す。図2A〜Eおよび4A〜Dは、本発明のさまざまな実施形態によるボックス12の内部要素を示す。説明される画像化装置のそれぞれは、ボックス12内の試料の画像をボックスに結合されたカメラを用いてキャプチャすることができる。
【0028】
図1Bに示されるように、画像化ボックス12は開いた位置にあるドア18と共に示され、試料を受け入れるための内部空間44を示す。内部空間44は、対向する側面エンクロージャパネル103aおよび103b(103bは図2Dで見える)、底部にある光を漏らさないパーティション52、背面エンクロージャパネル47、および内部空間44の空間開口部49を規定する前面壁48によって規定される。
【0029】
空間44の下には、光を漏らさないパーティション52によって空間44から遮られたより小さなコンパートメントがあり、その上部表面が空間44の床として働く。ある実施形態においてはこのより小さなコンパートメントは、本体14内に形成された前面開口部55を通して引き出し54をスライド可能に受け入れるように構成されるハウジングスペースを提供する。引き出し54は、コンピュータ28と電気的に通信し、ボックス14のさまざまな要素および機能を制御する電子部品56を格納する。ある特定の実施形態において画像化ボックス12は、鋼のような適切な金属で作られた本体14を有する。
【0030】
ラッチのかかるドア18は、支点の回りに回転可能にボックス本体14にヒンジ46によって取り付けられ、このヒンジによりドア18が図1Aに示される閉じた位置から図1Bに示される開いた位置に移動しえる。開いた位置において、ドア18はユーザが開口部49を通して空間44にアクセスできるようにする。閉じた位置において、ドア18は開口部49を通して空間44にアクセスできないようにする。
【0031】
ここで図2A〜Eを主に参照して、ボックス12のさまざまな内部要素(破線で示される)が本発明のある実施形態に基づいて説明される。図2Aは、外部壁を取り除いたボックス12の要素の上面透視図であり、固定された基準線107の真下のステージ204を示す。図2Bは、外部壁を取り除いたボックス12内の要素の上面透視図であり、固定された基準線107の下の中心からずれたステージ204を示す。図2Cは、外部壁を取り除いたボックス12内の要素の上面透視図であり、固定された基準線107の上の中心からずれたステージ204を示す。図2Dは、ボックス12の内部側面図であり、光伝送デバイス111なしで側壁103bおよびハウジング16を示す。図2Eは光伝送デバイス111なしの側壁103bおよびハウジング16の内部上面透視図である。図2A〜Eは、全てドア18と共に示され、外部壁は図示のために取り除かれている。
【0032】
図2C〜2Eを参照して、カメラ20は、カメラレンズ100がボックス12の側壁103bに形成されたポート101を通して内部空間44を見るように側面ハウジング16にマウントされる。カメラレンズ100は、図1Aのカメラ20に光学的に結合され、Fストップまたはレンズ100の開口を調節し、それによってレンズを通る光の量を変化させるユーザに制御される絞りまたはFストップリング102を含む。Navitar社のF0.95、50mmのTVレンズが、カメラレンズ100として使用するのに適切である。Fストップリング102は、Fストップモータ105によって駆動されるギア104と係合する円周状に配置された歯を含む。Fストップモータ105は、電気的要素56と電気的に通信し、コンピュータ28によって制御される。全体として、モータ105およびコンピュータ28内のプロセッサが協働してレンズ100のFストップの位置決めを行う。
【0033】
フォーカス機構106(図2E)は、そのフォーカスを合わせるためにレンズの往復運動を提供する。フォーカス機構は、レンズ支持体107を含み、これは上部ハウジング16にマウントされた静止部分およびネジ山が切られた内径113を含む可動部分を示す。ボルト108は内径113と係合可能であり、カメラレンズ100をフォーカスが合うように移動させるために、カメラレンズフォーカスモータ114の対応する駆動ホイール112を通して歯の付けられたベルト110によって駆動されるホイールを含む。カメラレンズフォーカスモータ114は、電気要素56と電気的に通信し、図1Aのコンピュータ28に含まれるプロセッサによって制御される。
【0034】
固定された基準線は、カメラレンズ100の場所の直線に沿ってボックス12の内部空間44へつながる固定された領域を表す。よって固定された基準線107は、側壁103bに実質的に垂直な向きに内部空間からカメラレンズ100の中心を通って(図2A〜E)伸びる。この基準線107は簡単のために、移動機構202および光伝送デバイス111がその上でそれらの間で協働して試料から反射または放射された光をカメラレンズ100に向かってレンズ中へと導き、カメラ20によって画像をキャプチャする場所の基準線を提供する静止した軸によって表される。
【0035】
図2Cに示されるように、カメラマウント109は、側壁103bの側面ハウジング16に取り付けられる。カメラマウント109は、空間44内の試料106をカメラ20によって見るためにカメラ20を受け入れ、固定基準線107に対して位置付けるように構成される。カメラ20は試料106の写真の画像(すなわち反射に基づく画像)をキャプチャすることができる一方で、その発光画像をキャプチャできるだけ充分に高感度でもある。カメラ20は、電荷結合素子(CCD)、フォトダイオードアレイ、フォトゲートアレイ、または同様の画像キャプチャデバイスを利用しえる。
【0036】
可動ステージ装置200は、内部空間44内に配置され、移動機構202および発光試料106を支持するステージ204を含む。可動ステージ装置200は、ステージ204(および試料106)を内部空間44内で複数の位置に再位置決めするための動きの2つの自由度が可能である。それらの間の任意の位置が画像キャプチャのために維持されえる。
【0037】
図2A〜Cに示されるように、実施形態中の移動機構202は、互いに実質的に垂直に方向付けられる2つのリニアアクチュエータ206および208を備える。それぞれのリニアアクチュエータ206および208は、ステージ204をそれぞれのアクチュエータに沿って直線的に位置付けることが可能である。リニアアクチュエータ206はステージ204の鉛直の位置付けを行い、リニアアクチュエータ208はステージ204の水平の位置付けを行う。リニアアクチュエータ206は、ボックス12に取り付けられた静止部分およびリニアアクチュエータ208に取り付けられた可動部分を持つ。リニアアクチュエータ208は、リニアアクチュエータ206に取り付けられた比較的静止の部分およびステージ204に取り付けられた可動部分を持つ。移動機構202に用いるのが適切なこのようなリニアアクチュエータの一例は、ニューヨーク州、ポート・ワシントンのThomson Industriesによって製造されるLC−33である。それぞれのリニアアクチュエータ206および208はまた、それらの個々の移動部分に沿った動きを制限するために両端に変位制限デバイスを含む。
【0038】
移動機構202は好ましくは、コンピュータ28に動作可能に結合されてステージ204の位置を制御するために位置フィードバックを与える位置センサ群のセットを含む。この場合、位置センサ群は、一端がステージ204に固定され、もう一端が巻き取りリール212a(図2A)に固定された紐または細い紐144を含む。リール上に巻かれた紐144の量および紐144の全長に基づいて、コンピュータ28はステージ204およびセンサ142の間の紐の長さを決定できる(すなわち長さによって変化する紐の抵抗に基づいてコンピュータ28中のルックアップテーブルを用いて変換を実行する)。他の実施形態において位置センサは、開始鉛直または水平位置において可動ステージ204をインターセプトする内部空間44内に配置されたレーザによって提供される。このレーザは、それから移動ステージ58の位置を共通の鉛直または水平位置にキャリブレートするのに用いられえる。
【0039】
リニアアクチュエータ206および208、位置センサ212、およびコンピュータ28は、内部空間44内のステージ204のための閉ループ位置制御を行うために結合される。より具体的にはユーザは、コンピュータ28を介して、固定基準線107の回りの実質的に円形のパスに沿った一つ以上のステージ204の位置を入力できる。ある実施形態においてユーザは、固定基準線107に対するステージ204の視点角度(viewing angle)を与える。コンピュータ28に含まれるソフトウェアはそれから視点角度を、リニアアクチュエータ206および208のそれぞれを動かす制御信号に変換する。2つのリニアアクチュエータ206および208のそれぞれに含まれるモータはそれからコンピュータ28によって与えられる制御信号を受け取り、ステージ204をそれに従って位置決めする。画像キャプチャ位置群の間のステージ204の動きは、アクチュエータ206および208の同時の動きによって、またはアクチュエータ206および208のそれぞれをステップ的に順次アクティベートすることによって達成される。
【0040】
図2A〜2Cにおいて最もよくわかる光伝送デバイス111は、試料106から反射または放射された光を固定基準線107の向きに沿って導き、カメラ20による画像キャプチャのためにレンズ100に入射させる。光伝送デバイス111は、静止ブラケット119(図2A)を用いてハウジング16にマウントされ、このブラケットは、ミラーアセンブリ120が静止ブラケット119に対して自由に回転できるようにする、静止ブラケット119および可動ブラケット126の間に円周状に配置されたベアリングを含む。ミラーアセンブリ120は、よって回転可能にハウジング16に結合され、固定基準線107の静止軸に同軸状にアラインされた軸の回りに回転する。
【0041】
図2Cを参照して、ミラーアセンブリ120は、ステージ204上の試料106からの光を固定された基準線107に沿った向きに反射する角度の付けられたミラー121を備える。外側壁123は、実質的に円筒状であり、光がステージ204およびミラー121の間を通ることを可能にする開口部122を含む。ミラーアセンブリ120の外側壁123はまた、ステージ204の現在の視点角度と直接に関係しない、内部空間44内に残留する光がレンズ100に到達するのを防ぐ。これは、ステージ204の長さにわたるだけミラー121を充分に長く構成することによって部分的には達成される。ステージが静止軸の周りの円形パスに沿って位置するとき、外側壁123およびミラー121は協働してステージ204の角度が付けられた向きから主に光を集め、この光はレンズ100によって受光されるためにそれから固定基準線107に沿って反射される。
【0042】
図2Fは、光伝送デバイス111を用いたボックス12内での光伝送の簡略化された図を示す。図2Fで示されるように、図2Aに示されるステージ204の位置について、光は試料106から放射され、ミラー121で反射され、固定基準線107に沿って伝送される。
【0043】
ある実施形態において光源は、ミラーアセンブリ120の筒内に設けられ、画像化ボックス12内の試料または標本を照らす。光源は、試料の写真画像をキャプチャするために連続的に照らしても、瞬間的に光ってから発光画像をキャプチャするときには消されてもよい。ある特定の実施形態において光源は、カメラレンズ100の周囲に円周上に配置された低電力のライトの輪を備える。他の実施形態において光源は、白色発光ダイオード(LED)の4つのペアを備え、これらのうちの一つのペアは、カメラレンズ100の周囲の4つの角のそれぞれにマウントされる。LEDを用いる一つの優位性は、そのスペクトル放射が赤外光を含まずに可視光を含みえることである。ワイヤ(不図示)がライトから電子要素56およびコンピュータ28に伸びて、光量がコンピュータ28を通して外部から制御することが可能でありえる。
【0044】
図2Fはまた、構造化光源170の使用を示す。示されるように構造化光源170から放射される構造化光源175は、ミラー173で反射され、部分的に透明なミラー121を通過し、試料106に達する。ある実施形態において、ミラー121の部分的に透明であることは、ハーフミラーまたは部分的に鍍金されたミラーを用いて達成される。他の実施形態において、波長に特定の透明度特性を持つダイクロイックミラーが用いられる。構造化光175はそれからカメラ20によってキャプチャされえる。
【0045】
図2A〜2Eで示される実施形態において光伝送デバイス111は、コンピュータ28を用いてミラーアセンブリ120の制御および固定基準線107に対する位置付けを行う。ミラーアセンブリ120は、ミラーアセンブリモータ128によって駆動されるベルトに係合する(図2E)円周上に配置された歯を可動ブラケット126の内側に含む(歯は不図示)。可動ブラケット126はそれから、モータ128の入力について静止ブラケット119に対して回転運動を提供する。モータ128は電子要素56と電気的に通信し、コンピュータ28によって制御される。モータ128およびコンピュータ28内のプロセッサは併せて協働してミラーアセンブリ120の回転位置を制御する。
【0046】
移動機構202によって提供される2つの自由度の動きは、カメラ20による画像キャプチャのために、ステージ204および試料106が固定基準線107に対して複数の角度で位置することを可能にする。よってコンピュータ28を介したユーザ入力に基づいて、移動機構202および光伝送デバイス111は協働してステージ204上の試料106からの光を固定基準線107およびレンズ100に導くことによって、カメラ20を用いて画像をキャプチャする。円形パスの周りに試料106の全360度の角度の視点を提供するのにくわえて、移動機構202は、固定基準線107に対するステージ204の与えられた角度について画像の深さを変化させることが可能である。併せて移動機構202および光伝送デバイス111は協働して、約7.5cmから約16.5cmの範囲のカメラ20の視野を提供する。ある特定の実施形態において、光伝送デバイス111は協働して、約13cmから約16.5cmの範囲のカメラ20の視野を提供する。上述のユーザが設定する角度位置制御と同様に、ユーザはステージ204の所望の焦点深度および視点角度を入力しえる。コンピュータ28に含まれるソフトウェアおよびリニアアクチュエータ206および208はそれから協働してステージ204を固定基準線107に対して所望の角度および深さに位置付ける。
【0047】
動作中にステージ204およびミラーアセンブリ120が不用意に接触しないように、移動機構202は、衝突防止機構を内蔵してもよい。ある実施形態においてそのような衝突防止機構は、ソフトウェアによるものであり、コンピュータ28内のプロセッサによって制御される。よってステージ204の位置フィードバックおよびミラーアセンブリ120の既知の位置に基づいて、コンピュータ28はステージ204が不用意にミラーアセンブリ120に接触しないようにする制御信号を発生する。これは、図2Cに示されるような位置および180度離れた位置の間のステージ204の移動に有利でありえる。この場合、コンピュータ28のプロセッサは制御信号をリニアアクチュエータ206および208に伝達し、これらアクチュエータがステージ204をミラーアセンブリ120の周りに軌道をもって移動する、例えば、固定基準線107からの最小半径を維持しながら移動する。
【0048】
こんどは図3Aおよび3Bを参照して、本発明のある実施形態によるステージ204の上面図および側面図がそれぞれ示される。
【0049】
ある実施形態において、ステージ204は、ステージ204およびボックス12内の他の要素が不用意に接触することを防止するハードウェアによる衝突防止機構を含む。特定の実施形態において衝突ピン250は、図3Aに示されるようにステージ204のカメラ20に最も近い側面に配置される。衝突ピン250は、ステージ204および要素が空間44内で接触することを防止する。ステージ204と光伝送デバイス111、カメラ20または壁103bとの間の接触を防止するために、金属リング260が静止ブラケット119上に光伝送デバイス111の周りに円周状に配置される。金属衝突ピン250はグラウンドに落とされ、金属リング260は5Vに維持されるので、衝突ピン250および金属リング260の間の予期しない接触は、リミットスイッチとして機能し、ステージ204に接触した旨の電気的通信をコンピュータ28と即時に行う。それからステージ204の動きは停止される。併せて衝突ピン250および金属リング260は、リニアアクチュエータ206および208が動くあいだ、円形の衝突防止境界を光伝送デバイス111の周囲に設定する。
【0050】
他の実施形態において、ステージ204が不用意に空間44内の要素に接触することを防ぐためのソフトウェアによる衝突防止が実現されえる。位置センサ212を用いたステージ204の位置フィードバックおよびミラーアセンブリ120の既知の位置に基づいて、コンピュータ28は、ステージ204がミラーアセンブリ120と重ならないようにし、よって試料106および空間44内の要素の間の不用意な接触のリスクを最小限にする制御信号を作る。
【0051】
図3Aに示されるように、ステージ204は、フレーム252および透明部254を備える。透明部254は、固定基準線107の周りのステージ204の任意の位置について、試料106から放射または反射された光が光伝送デバイス111へと実質的に干渉なしに最小限の歪みで伝わることを可能にする。透明部254は、試料106を支持する透明なワイヤアレイ256を好ましくは備える。特定の実施形態において透明なワイヤアレイ256は、フレーム252の対向するエッジ上の穴258を通して編まれた単一の透明なナイロン糸であり、試料106を支持するために張られた状態に保持される。他の実施形態においてアレイ256は、テニスラケットのメッシュと同様のクロスパターンの格子に似たメッシュである。
【0052】
ボックス12はまた、ボックス12内で試料の画像キャプチャを促進する他の要素を含んでもよい。カメラレンズ100の自動焦点制御に加えシステム10は、カメラ20および固定基準線107に沿った光の通路の間に、マルチフィルタ群118を少なくとも部分的に選択的に提供する自動フィルタ選択デバイス117も含む。フィルタ118のそれぞれは、一つ以上の特定の画像化応用例について画像キャプチャを促進しえる。図2Dに示されるように、光フィルタ選択デバイス117は、その周囲に複数の光学フィルタ群118を備えるように構成された円形フィルタ選択ホイール116を含む。ホイール116は、その中心で回転可能なように、側面ハウジング16に付けられた取り付けブラケット130に装着される。フィルタホイール116は、レンズ100からは中心がずらされて装着されることによって、試料から放射されカメラレンズ100に達する前にミラー121によって反射された光が交差する位置に、個々のフィルタ118がそれぞれ回転できる。フィルタ116は、その周辺のエッジに溝を持ち、この中に歯の付けられたベルト131が噛み合う。歯の付けられたベルト131はまた、フィルタホイールモータ136上のドライブホイール134と係合する。フィルタホイールモータ136は、電気要素56と電気的に通信し、コンピュータ28に含まれるプロセッサによって制御される。フィルタホイール116によって支持される複数の光学フィルタ118は、明るい試料のための中性灰色フィルタ、特定の波長を制限する1つ以上の波長阻止フィルタ、励起光が検出光とは異なる蛍光の応用例のための蛍光フィルタなど、画像キャプチャを促進する任意の幅広い光学フィルタを含みえる。
【0053】
ボックス12内の試料の画像キャプチャを促進するのに用いられる他の要素は、1つ以上の哺乳類試料を麻酔するガスマニホールドを含みえる。ある実施形態においてガスマニホールドは、着脱可能にステージ204に結合され、複数の境界面を含む。それぞれの境界面は、ステージ204上に置かれた哺乳類試料にガスを供給するよう構成される。本発明と共に使用するのに適切な例示的なガスマニホールドは、Nelsonらによる2001年2月21日に出願された共有された同時係属中の米国特許出願第09/795,056号に記載され、その全体が全ての目的のためにここで参照によって援用される。
【0054】
こんどは図3Cを参照して、引き出し54およびその中に収められた電子要素56の上透視図が示される。前述のように、これらの要素はコンピュータ28とインタフェースし、画像化システム10のさまざまなモータおよび他の要素を制御するのに用いられる。3V電源137は引き出し54内のさまざまな能動要素に電力を供給する。モータ制御ボード146は、その上にマウントされた4つのモータコントローラ148、150、152、154を持つ。モータコントローラ148、150、152、154は、Fストップモータ109、レンズフォーカスモータ114、フィルタホイールモータ136、ミラーアセンブリモータ128、およびステージモータ138とそれぞれ通じる。適切な制御ボードは、カリフォルニア州マウンテンビューのTMGによって供給されるTMG制御ボードを含む。それぞれのモータコントローラは、ケーブル34を介してコンピュータ28とインタフェースし、コンピュータ28おいてモータコントローラおよびモータはユーザ入力およびコンピュータ28上で走る適切なソフトウェアによって制御される。引き出し54はまた、データ取り込みボード(DAB)156を収める。引き出し54の正面にはノブ155があり、これは内部の内部空間44の光源と通じ、ユーザが手動で内部空間44内の光強度を制御できるようにする。
【0055】
Fストップモータ109、レンズフォーカスモータ114、ミラーアセンブリモータ128、およびフィルタホイールモータ136はそれぞれ、それらの個別の要素の適切な位置制御が可能なステッピングモータである。例として、日本のShinano Kenshi Co., Ltdによって製造される型番SST 39D 1010(1.8度/ステップ、4.3V、0.85A)がモータ109、114、128および136のいずれに使用するのにも適する。モータのそれぞれは、引き出し54内に収められた1つ以上の電子要素56と電気的に通じる。電子要素56が今度はコンピュータ28と通信して、コンピュータ28でモータ109、114、128および136は適切なソフトウェアおよび/またはユーザ入力によって制御されえる。
【0056】
今度は図4A〜Cを主に参照して、試料306の画像をカメラ20でキャプチャする画像化装置が本発明の他の実施形態によって示される。図4Aは、外壁が取り除かれたボックス12内の要素の上面透視図であり、固定基準線307の直上のステージ304を示す。図4Bは、外壁が取り除かれたボックス12内の要素の上面透視図であり、固定基準線307の下で中心がずらされたステージ304を示す。図4Cは、外壁が取り除かれたボックス12内の要素の上面透視図であり、固定基準線307の上で中心がずらされた可動ステージを示す。
【0057】
ボックス12は、図2C〜2Eについての説明されたのと同様に、側部ハウジング16上にマウントされ、カメラ20に結合されたカメラレンズ100を含む。この基準線107は簡単のために、移動機構202および光伝送デバイス111がその上でそれらの間で協働して試料から反射または放射された光をカメラレンズ100に向かってレンズ中へと導き、カメラ20によって画像をキャプチャする場所の基準線を提供する静止した軸によって表される。
【0058】
可動ステージ装置300は、内部空間44に配置され、移動機構302および発光試料306を支持するステージ304を含む。可動ステージ装置300は、ステージ304(および試料306)を内部空間44内で複数の位置に再位置決めするための動きの2つの自由度が可能である。それらの間の任意の位置が画像キャプチャのために維持されえる。
【0059】
図4A〜Cに示されるように、移動機構302は、側壁103aを通過する主軸320の周りに回転する。主軸320の回転の中心は、固定基準線307の静止軸と同軸上にアラインされる。主軸320および側壁103aの間にはベアリングが含まれ、これにより主軸320が側壁103aに対して自由に回転することが可能になる。主軸320の近位端320aは、ウォームギヤ325に固定され、このギヤは動作可能にモータ324によって駆動される。主軸320の遠位端320bは、位置決めアーム322に固定され、このアームは可動ステージ装置300を支持する。モータ324がウォームギヤ325を回転すると、この回転の動きは、位置決めアーム322および固定基準線307の周りに回転するための可動ステージ装置300に伝えられる。カリフォルニア州のPetalumaのIndustrial Devices Corp.によって提供されるS23Tはモータ324として使用するのに適する。
【0060】
モータ324は、電気的に電気要素56と通じ、コンピュータ28によって制御される。併せてモータ324およびコンピュータ28のプロセッサは、可動ステージ装置300を固定基準線307の周りの円形パスに沿って位置付ける。ボックス12の要素をステージ機構に電気的に結合して、主軸320の回転位置付けに関係なく巻き付きのリスクなしで連続的な電気的通信を維持するためにスリップリング323が提供される。カリフォルニア州のPetalumaのIndustrial Devices Corp.によって提供されるAC4831−18は電気的スリップリング323として使用するのに適する。
【0061】
位置決めアーム322は、ステージ304が回転可能でスライド可能に結合される可動ステージ装置300のための主たる構造支持を提供する。位置決めアーム322が主軸320を介して固定基準線307の周りに回転するとき、ステージ304が空間44の底部に対して実質的に水平を維持するように、ステージ304は位置決めアーム322に結合される。これによりステージ304上で支持される試料306は、ステージ304から落ちることなく複数の位置および角度から見られることが可能となる。主軸320の周りに位置決めアーム322が回転するとき、ステージ304をこの水平位置に維持するために、ステージ304を主支持322に回転可能に結合するベベルギヤ350aおよび350b(図4D)からなるセットが主軸320およびロッド330の間に配置される。よってベベルギヤ350aおよび350bは、回転可能に主軸320をステージ304に結合する。ベベルギヤ350aおよび350bは、主軸320によって提供される回転のために反転ギヤ比1:1でロッド330によって受け取られた回転を反転する。例えば主軸320が時計回りに30度回転すれば、ロッド330は反時計回りに30度、ベベルギヤ350aおよび350bを介して回転し、よってステージ304を水平に維持する。このようにして、図4Bおよび4Cに示されるようにボックス12に対しての位置決めアーム322の任意の回転位置についてステージ304は実質的に水平を維持する。
【0062】
主支持322の中央に取り付けられるのは光伝送デバイス311である。光伝送デバイス311は、主支持322と共に固定基準線307の周りに回転し、カメラ20による画像キャプチャのために、試料106から反射または放射された光を固定基準線307に沿ってレンズ100に導く。光伝送デバイス311は、2つのミラー335および336を含む。それぞれのミラー335および336は、ミラー支持339に取り付けられ、ミラー支持339は位置決めアーム322に固定され、アーム322から垂直に伸びる。ミラー335および336は固定基準線307の周りに位置決めアーム322と共に回転する。それぞれのミラー335および336は、試料306から放射または反射された光を少なくとも部分的には固定基準線307に沿ってレンズ100に向けて反射するように構成される。
【0063】
モータ324を用いた主軸320の周りの回転は、可動ステージ装置300のための第1回転自由度を提供する。可動ステージ装置300はまた第2回転自由度も含む。より具体的には、ステージ304は、ステージ304上の試料306を見る視野を変えるために、ミラー335および336に近づくように、または遠ざかるように直線的に位置決めアーム322に沿って平行移動しえる。ステージ304が位置決めアーム322に沿って直線的に平行移動することを可能にするために、位置決めアーム322は、スライドバー342aおよび342bを受け入れる2つの円筒穴を含むリニアスライド342を含む。スライドマウント346は、ステージ304によってリニアスライド342に固定することを可能にする。スライドマウント346は、ロッド330を介して回転可能にリニアスライド342およびそれらの間に配置されたベアリングに結合される。よってステージ304は、直交するようにスライドマウント346に固定され、スライドマウント346はロッド330を介して回転し、リニアスライド342を介して平行移動する。
【0064】
モータ340は、モータ340およびリニアスライド342に動作可能に結合されたウォームギヤ349を用いて、スライドマウント346をスライドバー342aおよび342bに沿って移動させることが可能である。日本のShinano Kenshi Co., Ltdによって製造されるSSD55D5C0D0がモータ340として使用するのに適する。併せてモータ340およびコンピュータ28内のプロセッサは、ステージ304をミラー335および336に対して位置決めし、ステージ304上の試料306を見る視野を制御するように働く。
【0065】
動作中、可動ステージ装置300および光伝送デバイス311は、以下のように使用されえる。ユーザはコンピュータ28を介して、固定基準線307に対するステージ304の1つ以上の位置または角度を入力する。例えばユーザは、固定基準線307に対するステージ304の2つの視点角度を与えてもよく、これらは共に同じ視野を持つ。第1の視点角度(viewing angle)について、コンピュータ28に含まれるソフトウェアはそれから視点角度をモータ324を制御する制御信号に変換する。モータ324はそれからコンピュータ28によって与えられる制御信号を受け取り、固定基準線307に対して第1角度を持つ第1位置にステージ304を位置決めする。第1視点角度からの画像化が完了した後で、コンピュータ28に含まれるソフトウェアはそれから制御信号をモータ324に送り、モータ324は、固定基準線307に対して第2角度を持つ第2位置にステージ304を再位置決めする。
【0066】
それぞれのミラー335および336は、空間44内の画像化のための異なる視野を与えるように設計される。ステージ304をミラー335および336に近づけて、または遠ざけて移動させる能力と併せて、ミラー335は、約15cmから25cmの範囲の視野を提供する。同様に、ミラー336は、約9cmから11cmの範囲の視野を提供する。
【0067】
図3Aのステージ実施形態と同様に、ステージ304は、試料306から放射または反射された光が、固定基準線307の周りのステージ304の任意の位置について、実質的に干渉なしに最小限の歪みで光伝送デバイス311に伝達されることを可能にする透明部を備える。さらに可動ステージ装置300は、ステージ304およびボックス12内の他の要素が不用意に接触することを防止するハードウェアによる衝突保護装置を含む。例えばスライド342は、ステージ304が位置決めアーム322に沿って望ましくない位置に動くことを防ぐハードストップをそれぞれの端部に持つ。さらに主軸320はまた、ステージ装置300が主軸320の周りに連続的に回転することを防ぐハードストップをその上部中央に持つ。第1の向きから上部中央においてこのハードストップに達すると、上部中央においてハードストップの反対側への動きが、可動ステージ装置を主軸320の周りに反対の向きに360度回転させることによって達成される。
【0068】
III.画像化システムの動作
【0069】
本発明は、幅広い画像化応用例において利用されえる。大きくは本発明は、哺乳類の対象中の発光する実体および生物学的事象を検出、位置決定および追跡する非侵襲性の方法および構成物と共に適用されえる。例えば画像化システム10は、マウスのような生きた動物の体内の発光細胞(例えば、ルシフェラーゼDNA構造と共に変形することによって生物発光がなされるある種のバクテリアまたは腫瘍細胞)の位置を検出するための増倍電荷結合素子(CCD)カメラと共に実現されえる。このような応用例では、生物発光細胞を含む動物はボックス12内のステージ204上に置かれる。カメラ20がそれからアクティベートされて、放射される光子を検出する。光子信号はそれから光子放射の発光画像を構築するのに用いられえる。発光画像は、試料そのものからの発光以外の光源を用いることなく構築される。この発光は、位置の関数として記録され、発光画像を作る。写真画像も同じ試料から撮られて、発光画像の位置の視覚化を助ける。このような複合型写真/発光画像を生成する一つのアプローチは、1997年7月22日にContagらに発行された米国特許第5,650,135号に記載されている。この特許の開示の全体は、以前にここで参照によって援用されている。
【0070】
今度は図5を参照して、プロセスフロー500は、本発明のある実施形態による画像化システム10を用いて写真および発光画像をキャプチャする方法を示す。プロセスフロー500は、発光を画像化されるべき試料または検査対象物を画像化ボックス12内のステージ204上に置くことによって始まる。入力に基づいて、移動機構202は、コンピュータ28によって与えられる制御信号に従ってステージ204を対応する位置に移動させる(504)。光伝送デバイス111はまた、コンピュータ28によって与えられる制御信号に従って再位置決めする。画像化ボックス12および関連する画像要素は、それから試料の写真画像キャプチャのために準備される(506)。準備は、画像化および取り込みソフトウェア(例えば、カリフォルニア州アラメダのXenogen Corporationによって提供される「LivingImage」)をコンピュータ28上に立ち上げること、およびカメラ20を初期化することを含みえる。さらなる準備には、ドア18を閉じること、ソフトウェア中の写真キャプチャオプションをアクティベートすること、カメラ20を試料または動物の特定の深さにフォーカスを合わせること、およびボックス12内でライトを点灯させることが含まれえる。準備にはまた、レンズ100のフォーカスを合わせること、選択的に適切なレンズフィルタ118を位置付けること、Fストップを設定することなどが含まれえる。
【0071】
写真画像がそれからキャプチャされる(508)。ある実施形態においては、試料をリアルタイムで観察するために、試料の写真的画像化のあいだには「ライブモード」が用いられる。ライブモードは、ライブビデオをシミュレーションするのに充分に頻繁に撮られる写真画像群のシーケンスを含む。写真キャプチャが終わると、写真画像データは、画像処理ユニット26および/またはコンピュータシステム28内のプロセッサに転送される(510)。これらは、コンピュータモニタ38上に表示するためにデータを処理するのと共に、写真画像データを操作および格納するのに用いられえる。
【0072】
その後、ステージ204を同じ位置にしたままで、画像化装置10は、発光画像キャプチャのために準備される(512)。この準備には、コンピュータ28を用いた発光露光時間およびビニングレベルの選択、および内部空間44内のライトの消灯が含まれえる。準備が整うと、CCDカメラ20はそれから発光画像を所定の期間にわたってキャプチャ(514)する(数分に至るまで)。発光画像データは、画像処理ユニット26および/またはコンピュータシステム28内のプロセッサに転送される(516)。
【0073】
この時点で、ユーザは発光画像データを、コンピュータディスプレイ38上に表示するために処理するのと共に、操作および格納しえる。この発光画像データの操作には、発光画像を写真画像にオーバレイすること、および2つの画像群を併せて2−Dの「オーバレイ」画像として表示することを含み、典型的には発光データは強度を示すために疑似カラーで示される。このオーバレイ画像はそれからユーザの分析の根拠となりえ、必要に応じて分析および操作されえる。特に分析には、発光表現のある部分内のピクセルにわたって輝度の総和を計算することが含まれえる。ここでの説明は、オーバレイ画像についての単一の発光表現に焦点がおかれているが、プロセスフロー500は複数の発光表現をステージ204の同じ位置から、例えば同時に、または後で撮ってもよい(518)ことに注意されたい。
【0074】
所望であれば、ステージ204はそれから第2の位置に移動されえる(520)。ステージが第2位置にあるとき、試料の1つ以上の写真および/または発光画像が上述のようにキャプチャされえる。それぞれの画像キャプチャが完了すると、コンピュータ28のプロセッサはそれから画像データを受け取る。画像取り込みは、試料の代替の位置および視点から試料の画像をキャプチャすることによってさらに続く。
【0075】
説明されたように、光子放射データは、画像キャプチャ期間の持続するあいだにわたって光子を検出するCCDカメラ20上の特定のピクセルを表現しえる。併せて、試料の構造化光写真表現および試料の発光表現も組み合わされて、構造化光スーパーポジションまたはオーバレイ画像を形成する。画像化装置100は典型的には試料106全体を測定するのに用いられるので、発光表現のデータは典型的には、興味の対象となる1つ以上の別個の発光部分を持つ。
【0076】
ある実施形態において本発明は、画像キャプチャのあいだに構造化光の使用を含む。この場合、画像化装置100は、生物発光源を含む小さな動物の画像群のシーケンスを提供する。この画像群のシーケンスは、異なる視点角度において撮られ、動物内の生物発光源の位置、明るさ、および大きさを再構築するのに必要な情報を提供する。いったん画像がプロセッサ28によって受け取られると、本発明と共に使用するのに適したある適切な再構築アルゴリズム(または反転アルゴリズム)は、拡散光学トモグラフィである。拡散光学トモグラフィを適用するためには、動物の3D表面トポロジを決定し、生物発光放射をこの表面上にマッピングすることが必要である。ある実施形態において、3D表面トポロジは、構造化光投影システムを用いて達成される。
【0077】
構造化光は、表面の法線についてある角度で(例えば約30度で)対象物上に投影される光の一連の線群を用いる。この線群は対象物を通過するときに曲げられ、この線群の曲がりを用いて構造化光投影機170によって照射される全ての位置における表面の高さを決定できる。図2Aに示されるように、構造化光投影機170は、光伝送デバイス111に取り付けられ、光伝送デバイス111と共に回転する。この場合、構造化光投影機170は、スライドが光源によって照射され、それからスライドの画像が動物に投影されるケーラー照明システムからなる。投影角度は、空間解像度を得るために充分な線群の「曲がり」を得るのに充分なだけ大きく、大きな影が存在しないように充分小さい。
【0078】
構造化光の画像がカメラ20で撮られる。2−D構造化光画像がキャプチャされ、記憶された後で、コンピュータ28はそれから構造化光データを処理して構造化光表現を生成する(522)。当業者には理解されるように、構造化光画像から表面を再構築する多くの従来のアルゴリズムが存在する。例えば、画像上の全ての点におけるそれぞれの線の位相のずれは、計算上効率的な2Dフーリエ変換から決定されえる。実際の表面高はそれから、位相マップを「アンラップ(unwrapping)」することによって計算される。
【0079】
それぞれの構造化光画像は、動物のほぼ対向する半面だけについて表面トポロジを提供する。いくつかの視点角度から、例えば約45度おきに画像を撮ることによって、動物の3D表面の全体が、それぞれの視点から得られた部分的な表面の再構築物を併せて「縫い合わせる」ことによって再構築されえる。
【0080】
本発明は、インビボ画像化応用例に便利な可動ステージの文脈で主に説明されてきたが、本発明は他の画像化応用例にも適し、それらに対応して変更できる。さらに、本発明は個別のボックス12および分離されたコンピュータ28について説明されてきたが、本発明のある実施形態は、全ての画像化要素およびコンピュータ処理要素をその中に収めるスタンドアローンキャビネットに関する。さらに本発明は、特定の応用例の要求にふさわしい大きさに変更して構成することが可能である。さまざまな詳細は簡潔さのために省略されてきたが、明らかな設計の代替物も実現されえる。したがって本発明は、例示的であって、限定的ではなく、本発明はここに挙げられた詳細に限定されるべきではなく、添付の特許請求の範囲内で改変されえる。
【図面の簡単な説明】
【0081】
【図1A】本発明のある実施形態によって画像をキャプチャするよう構成される画像化ボックスを含む画像化システムの透視図である。
【図1B】本発明のある実施形態による図1Aの画像化ボックスの構成要素の図である。
【図2A】本発明のある実施形態による、図1Aの外部壁を取り除いたボックスの要素の上面透視図であり、固定された基準線の真下のステージを示す図である。
【図2B】本発明のある実施形態による、図1Aの外部壁を取り除いたボックス内の要素の上面透視図であり、固定された基準線の下の中心からずれたステージを示す図である。
【図2C】本発明のある実施形態による、図1Aの外部壁を取り除いたボックス内の要素の上面透視図であり、固定された基準線の上の中心からずれたステージを示す図である。
【図2D】本発明のある実施形態による、図1Aのボックスの内部側面図であり、側壁およびハウジングを示す図である。
【図2E】本発明のある実施形態による、図1Aの側壁およびハウジングの内部上面透視図である。
【図2F】図1Aのボックスに含まれる光伝送デバイスを用いるボックス内の光伝送の簡略図である。
【図3A】本発明のある実施形態による、図1Aの画像化ボックス内に含まれるステージの上面図である。
【図3B】本発明のある実施形態による、図1Aの画像化ボックス内に含まれるステージの側面図である。
【図3C】本発明のある実施形態による、引き出しおよびその中に収められた電子要素の上面透視図である。
【図4A】本発明の他の実施形態による、外壁が取り除かれたボックス内の要素の上面透視図であり、固定基準線の直上のステージを示す図である。
【図4B】本発明の他の実施形態による、外壁が取り除かれたボックス内の要素の上面透視図であり、固定基準線の下で中心がずらされたステージを示す図である。
【図4C】本発明の他の実施形態による、外壁が取り除かれたボックス内の要素の上面透視図であり、固定基準線の上で中心がずらされた可動ステージを示す図である。
【図4D】本発明の他の実施形態による、図4Aの可動ステージの水平位置を維持するのに用いられるギヤリング機構を示す図である。
【図5】本発明のある実施形態による、図1Aの画像化装置を用いて写真および発光画像をキャプチャする方法を示すプロセスフローの図である。

Claims (37)

  1. 試料の画像をカメラでキャプチャする画像化システムであって、
    内部空間を閉じる一組の壁を持つ画像化ボックス、
    前記カメラで見るために前記壁のうちの一つに固定された基準線に対して前記カメラを位置付けるように構成されるカメラマウント、
    光伝送デバイス、および
    移動機構および前記内部空間内で前記試料を支持するよう構成されるステージを含む可動ステージ装置であって、前記ステージは前記試料を前記内部空間内の複数の位置のうちの一つに移動させるよう前記移動機構に結合され、前記移動機構および前記光伝送デバイスは協働して前記試料から反射または放射された光を前記固定された基準線に導くことで前記カメラによって前記画像をキャプチャする、可動ステージ装置
    を備える画像化システム。
  2. 請求項1に記載のシステムであって、前記光伝送デバイスは、前記試料から出された光を前記固定された基準線に向けて反射するミラーを備えるシステム。
  3. 請求項2に記載のシステムであって、前記固定された基準線は、前記カメラマウントを通り、前記画像化ボックスの鉛直な壁に対して垂直である固定された軸であるシステム。
  4. 請求項3に記載のシステムであって、前記光伝送デバイスは、前記固定された軸について回転するシステム。
  5. 請求項3に記載のシステムであって、前記可動ステージ装置は、前記ステージを前記固定された軸について回転させるシステム。
  6. 請求項5に記載のシステムであって、前記ステージは、前記固定された軸についての回転のあいだ実質的に水平であるシステム。
  7. 請求項5に記載のシステムであって、前記光伝送デバイスは、前記ステージを前記固定された軸について回転させるシステム。
  8. 請求項1に記載のシステムであって、前記カメラマウントは、前記一組の壁のうちの鉛直壁上に配置されるシステム。
  9. 請求項1に記載のシステムであって、前記試料を支持する前記ステージの一部は、透明であるシステム。
  10. 請求項9に記載のシステムであって、前記一部は、透明なワイヤアレイを備えるシステム。
  11. 請求項1に記載のシステムであって、前記可動ステージ装置に結合されたモータに制御信号を提供するよう構成されるプロセッサをさらに備えるシステム。
  12. 請求項11に記載のシステムであって、前記プロセッサは、前記可動ステージ装置の移動中に衝突保護をさらに行うよう構成されるシステム。
  13. 請求項1に記載のシステムであって、前記可動ステージに配置されたハードウェアによる衝突保護機構をさらに含むシステム。
  14. 請求項1に記載のシステムであって、前記試料に構造化光を伝達するよう構成される構造化光源をさらに含むシステム。
  15. 請求項14に記載のシステムであって、前記プロセッサは、前記内部空間内の前記複数位置のうちの一つから得られた構造化光画像を用いて構造化光表現を生成するようさらに構成されるシステム。
  16. 試料の画像をカメラでキャプチャする画像化装置であって、
    前記試料を受け入れる内部空間を含む画像化ボックス、
    前記試料を支持するステージ、
    前記画像化ボックスに取り付けられ、前記可動ステージを第1方向に位置付けることができる第1リニアアクチュエータ、および
    前記第1リニアアクチュエータに取り付けられ、前記ステージに取り付けられ、前記可動ステージを第2方向に位置付けることができる第2リニアアクチュエータ
    を備え、
    前記第1リニアアクチュエータおよび前記第2リニアアクチュエータは協働して前記内部空間内の複数の位置のうちの一つにおいて前記ステージを位置付ける、画像化装置。
  17. 請求項16に記載の装置であって、受光デバイスおよび光伝送デバイスをさらに含み、前記光伝送デバイスは、前記画像化ボックスに結合され、前記試料から出た光を前記受光デバイスの固定された基準線に伝達するよう構成される、装置。
  18. 請求項17に記載の装置であって、前記光伝送デバイスは、前記試料から出た光を前記固定された基準線に向けて反射するミラーを備える装置。
  19. 請求項17に記載の装置であって、前記固定された基準線は、前記画像化ボックスの鉛直な壁に対して垂直である固定された軸である装置。
  20. 請求項19に記載の装置であって、前記受光デバイスは、前記固定された軸について回転する装置。
  21. 請求項16に記載の装置であって、前記第1方向および前記第2方向は直交する装置。
  22. 請求項21に記載の装置であって、前記第1リニアアクチュエータは、前記ステージの鉛直位置決めを行い、前記第2リニアアクチュエータは、前記ステージの水平位置決めを行う装置。
  23. 請求項16に記載の装置であって、画像化ボックスは、カメラを受け入れるよう構成されたカメラマウントを備え、前記カメラは前記内部空間内の前記試料の画像をキャプチャできる、装置。
  24. 試料の画像をカメラでキャプチャする画像化装置であって、
    前記試料を受け入れる内部空間を含む画像化ボックス、
    前記試料を支持するステージ、および
    前記ステージに回転可能に結合され、前記画像化ボックスに回転可能に結合される位置決めアームであって、前記画像化ボックスに対する前記位置決めアームの任意の回転位置について前記ステージが実質的に水平を維持する位置決めアーム、および
    前記試料から出された光を固定された基準線に沿って少なくとも部分的に反射するよう構成される、位置決めアームに取り付けられたミラー
    を備える装置。
  25. 請求項24に記載の装置であって、前記ステージは、前記画像化ボックス内で前記固定された軸について回転する装置。
  26. 請求項24に記載の装置であって、前記位置決めアームは、第1位置および第2位置の間で回転するよう構成され、前記第1および第2位置は、前記固定された軸に対して異なる角度を持つ装置。
  27. 請求項24に記載の装置であって、前記位置決めアームは、前記位置決めアームに対して2つの自由度をさらに含み、前記2つの自由度は前記ミラーに対しての前記ステージの前記位置を適用できる装置。
  28. 請求項24に記載の装置であって、前記ステージの一部は透明である装置。
  29. 試料を画像化する方法であって、前記試料は画像化ボックス内で移動可能なステージによって支持され、前記画像化ボックスは、前記試料の画像をキャプチャするよう構成されるカメラに結合され、前記方法は、
    前記画像化ボックス内の第1位置に前記ステージを動かすこと、
    前記カメラを用いて前記第1位置からの前記試料の第1画像をキャプチャすること、
    前記ステージを前記画像化ボックス内の、前記カメラに関連付けられた固定された基準線に対して前記第1位置とは異なる角度を持つ前記第2位置に動かすこと、および
    前記カメラを用いて前記第2位置からの前記試料の第2画像をキャプチャすること
    を含む方法。
  30. 請求項29に記載の方法であって、前記第1位置から前記試料の第3画像をキャプチャすることをさらに含む方法。
  31. 請求項30に記載の方法であって、前記第1画像は発光データを備え、前記第3画像は写真データを備える方法。
  32. 請求項29に記載の方法であって、前記第1および第2位置は、前記カメラに対して異なる角度を持つ方法。
  33. カメラで試料の画像をキャプチャする画像化システムと共に用いるステージ装置であって、前記画像化システムは、内部空間を規定する一組の壁を持つ画像化ボックス、および固定された基準線に対して前記壁のうちの一つにマウントされたカメラを含み、前記ステージ装置は、
    光伝送デバイス、
    移動機構、および
    前記内部空間内で前記試料を支持するよう構成されるステージであって、前記ステージは前記試料を前記内部空間内の複数位置のうちの一つに移動させるために前記移動機構に結合される、ステージ
    を備え、
    前記移動機構および前記光伝送デバイスは協働して、前記ステージ上の前記試料から反射または放射された光を前記固定された基準線に導くことで前記カメラによって前記画像をキャプチャする装置。
  34. 請求項33に記載の装置であって、前記光伝送デバイスは、前記試料から出た光を前記固定された基準線に向けて反射するミラーを備える装置。
  35. 請求項34に記載の装置であって、前記光伝送デバイスは、前記固定された基準線について回転する装置。
  36. 請求項33に記載の装置であって、前記ステージは、前記複数の位置の全てについて実質的に水平である装置。
  37. 請求項33に記載の装置であって、前記試料を支持する前記ステージの一部は透明である装置。
JP2003512685A 2001-07-13 2002-07-12 マルチビュー画像化装置 Pending JP2004534954A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/905,668 US7113217B2 (en) 2001-07-13 2001-07-13 Multi-view imaging apparatus
PCT/US2002/022162 WO2003006966A1 (en) 2001-07-13 2002-07-12 Multi-view imaging apparatus

Publications (1)

Publication Number Publication Date
JP2004534954A true JP2004534954A (ja) 2004-11-18

Family

ID=25421237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003512685A Pending JP2004534954A (ja) 2001-07-13 2002-07-12 マルチビュー画像化装置

Country Status (9)

Country Link
US (3) US7113217B2 (ja)
EP (1) EP1407251B1 (ja)
JP (1) JP2004534954A (ja)
KR (1) KR20040031773A (ja)
AT (1) ATE557271T1 (ja)
AU (1) AU2002316673B2 (ja)
IL (1) IL159782A0 (ja)
NO (1) NO20040121L (ja)
WO (1) WO2003006966A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008059572A1 (ja) * 2006-11-16 2010-02-25 株式会社島津製作所 生体画像取得装置
JP2014115151A (ja) * 2012-12-07 2014-06-26 Shimadzu Corp 光イメージング装置
JP2017138329A (ja) * 2017-04-07 2017-08-10 株式会社島津製作所 光イメージング装置
JP2017525029A (ja) * 2014-06-27 2017-08-31 華為技術有限公司Huawei Technologies Co.,Ltd. ターゲットオブジェクトのサインデータを取得するための方法、装置、および端末
JP2020529597A (ja) * 2017-07-31 2020-10-08 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. 試料または試料容器の画像化の方法および装置

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614452B1 (en) * 1999-11-15 2003-09-02 Xenogen Corporation Graphical user interface for in-vivo imaging
US7581191B2 (en) * 1999-11-15 2009-08-25 Xenogen Corporation Graphical user interface for 3-D in-vivo imaging
AU2002303819B2 (en) * 2001-05-17 2007-03-01 Xenogen Corporation Method and apparatus for determining target depth, brightness and size within a body region
US7113217B2 (en) * 2001-07-13 2006-09-26 Xenogen Corporation Multi-view imaging apparatus
US7298415B2 (en) * 2001-07-13 2007-11-20 Xenogen Corporation Structured light imaging apparatus
US6965785B2 (en) * 2001-07-17 2005-11-15 Wildseed Ltd. Cooperative wireless luminescent imagery
JP3530907B2 (ja) * 2002-01-31 2004-05-24 ミノルタ株式会社 デジタルカメラ
US7616985B2 (en) * 2002-07-16 2009-11-10 Xenogen Corporation Method and apparatus for 3-D imaging of internal light sources
US7599731B2 (en) * 2002-07-16 2009-10-06 Xenogen Corporation Fluorescent light tomography
US7190991B2 (en) 2003-07-01 2007-03-13 Xenogen Corporation Multi-mode internal imaging
EP2191774A3 (en) * 2004-12-06 2010-06-23 Cambridge Research & Instrumentation, Inc. Systems and methods for in-vivo optical imaging and measurement
FR2882143B1 (fr) * 2005-02-11 2008-03-21 Renault Sas Dispositif d'analyse sensorielle a configuration multiple
EP1715361B1 (en) * 2005-04-19 2015-02-25 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Dual-modality imaging using a PET scanner and an optical detector
US8044996B2 (en) * 2005-05-11 2011-10-25 Xenogen Corporation Surface construction using combined photographic and structured light information
FR2889404B1 (fr) * 2005-08-01 2009-03-27 Commissariat Energie Atomique Source lumineuse a deux longueurs d'onde et de puissance d'eclairement variable et utilisation d'une telle source lumineuse
US8050735B2 (en) * 2005-09-08 2011-11-01 Carestream Health, Inc. Apparatus and method for multi-modal imaging
US8660631B2 (en) * 2005-09-08 2014-02-25 Bruker Biospin Corporation Torsional support apparatus and method for craniocaudal rotation of animals
US20090086908A1 (en) * 2005-09-08 2009-04-02 John William Harder Apparatus and method for multi-modal imaging using nanoparticle multi-modal imaging probes
US20090281383A1 (en) * 2005-09-08 2009-11-12 Rao Papineni Apparatus and method for external fluorescence imaging of internal regions of interest in a small animal using an endoscope for internal illumination
US8041409B2 (en) * 2005-09-08 2011-10-18 Carestream Health, Inc. Method and apparatus for multi-modal imaging
US8203132B2 (en) * 2005-09-08 2012-06-19 Carestream Health, Inc. Apparatus and method for imaging ionizing radiation
US20100220836A1 (en) * 2005-09-08 2010-09-02 Feke Gilbert D Apparatus and method for multi-modal imaging
FR2891924B1 (fr) * 2005-10-10 2007-12-28 Biospace Mesures Dispositif et procede d'imagerie en luminescence
EP1934583A1 (fr) * 2005-10-10 2008-06-25 Biospace Lab Dispositif et procede d'imagerie en luminescence
EP2034890A4 (en) * 2006-06-01 2011-02-16 Gen Hospital Corp IN VIVO OPTICAL IMAGING METHOD COMPRISING THE ANALYSIS OF DYNAMIC IMAGES
FR2902307B1 (fr) * 2006-06-14 2008-08-29 Quidd Sas Dispositif d'imagerie optique
JP4396674B2 (ja) * 2006-08-11 2010-01-13 船井電機株式会社 パノラマ撮像装置
US10775308B2 (en) 2006-08-24 2020-09-15 Xenogen Corporation Apparatus and methods for determining optical tissue properties
US10335038B2 (en) 2006-08-24 2019-07-02 Xenogen Corporation Spectral unmixing for in-vivo imaging
US8220415B2 (en) 2007-09-05 2012-07-17 Li-Cor, Inc. Modular animal imaging apparatus
FR2920874B1 (fr) * 2007-09-10 2010-08-20 Biospace Lab Installation et procede d'imagerie en luminescence
US20120002101A1 (en) * 2008-05-30 2012-01-05 Biospace Lab Light imaging apparatus, system and method
WO2010029547A2 (en) 2008-09-10 2010-03-18 Aspect Magnet Technologies Ltd. A chamber for housing animals during anaesthetic procedures
US9347894B2 (en) 2010-09-01 2016-05-24 Spectral Instruments Imaging, LLC Methods and systems for producing visible light and x-ray image data
EP2612200A4 (en) 2010-09-01 2015-11-25 Spectral Instr Imaging Llc EXPLORATION OF A LIGHT SOURCE ARRANGEMENT
US10292617B2 (en) 2010-09-30 2019-05-21 Aspect Imaging Ltd. Automated tuning and frequency matching with motor movement of RF coil in a magnetic resonance laboratory animal handling system
US9314218B2 (en) 2011-06-20 2016-04-19 Caliper Life Sciences, Inc. Integrated microtomography and optical imaging systems
CN102319058B (zh) * 2011-09-09 2013-03-06 清华大学 一种融合荧光、核素和x光三模态的小动物成像系统
US9080855B2 (en) * 2011-09-23 2015-07-14 Mitutoyo Corporation Method utilizing image correlation to determine position measurements in a machine vision system
WO2013070923A1 (en) * 2011-11-08 2013-05-16 The Trustees Of Columbia University In The City Of New York Tomographic imaging methods, devices, and systems
US8823770B2 (en) 2012-01-26 2014-09-02 Meditory Llc Device and methods for fabricating a two-dimensional image of a three-dimensional object
US10921313B2 (en) * 2012-07-16 2021-02-16 Micobiomed., Ltd Point of care testing assay system using novel microfluidics
CN102961122B (zh) * 2012-10-17 2014-04-16 北京航空航天大学 一种基于旋转镜的全角度荧光分子断层成像装置
CN103645136A (zh) * 2013-11-22 2014-03-19 深圳先进技术研究院 一种提高多光子荧光显微镜成像分辨率的方法及装置
JP6585728B2 (ja) * 2015-02-23 2019-10-02 リ−コール,インコーポレイティド 生検標本蛍光撮像装置および方法
CN107709968A (zh) 2015-06-26 2018-02-16 利康公司 荧光活检样本成像仪及方法
US10595794B2 (en) 2015-07-09 2020-03-24 Auburn University Devices and methods for facilitating imaging of rotating animals, specimens, or imaging phantoms
EP3446098A1 (en) 2016-04-21 2019-02-27 Li-Cor, Inc. Multimodality multi-axis 3-d imaging
WO2017223378A1 (en) 2016-06-23 2017-12-28 Li-Cor, Inc. Complementary color flashing for multichannel image presentation
EP3545488A1 (en) 2016-11-23 2019-10-02 Li-Cor, Inc. Motion-adaptive interactive imaging method
WO2018200261A1 (en) 2017-04-25 2018-11-01 Li-Cor, Inc. Top-down and rotational side view biopsy specimen imager and methods
WO2019027770A1 (en) * 2017-07-31 2019-02-07 Siemens Healthcare Diagnostics Inc. METHODS AND APPARATUS FOR DETERMINING SAMPLE AND / OR SAMPLER CONTAINER CHARACTERISTICS
US11207036B2 (en) * 2017-08-16 2021-12-28 KUB Technologies, Inc. System and method for cabinet x-ray systems with automatic specimen/sample alert
JP7018006B2 (ja) * 2018-09-27 2022-02-09 富士フイルム株式会社 試料撮影装置
US20210048292A1 (en) * 2019-08-12 2021-02-18 STC Rainforest Innovations Autonomous Instrument For Scanning And Determining The Material Surface Roughness
US11686642B2 (en) * 2019-09-10 2023-06-27 Cryo Sentinel Llc Thermal monitoring system for temperature-sensitive storage containers
JP2023504215A (ja) * 2019-11-26 2023-02-01 クラリックス・イメージング・コーポレーション 組織試料の術中体積測定撮像用の改善されたシステムおよび可視化方法
US20220187587A1 (en) * 2020-12-16 2022-06-16 Singular Genomics Systems, Inc. Kinematic imaging system
RU206470U1 (ru) * 2021-02-11 2021-09-13 Акционерное Общество "Наука И Инновации" Устройство с возможностью видеофлуоресцентного и спектроскопического анализа для контроля и оценки распределения фотосенсибилизаторов в биотканях

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772453A (en) * 1985-03-01 1988-09-20 Lisenbee Wayne F Luminiscence measurement arrangement
GB8615749D0 (en) * 1986-06-27 1986-08-06 Univ London Shape sensor
JP2970967B2 (ja) * 1991-11-20 1999-11-02 浜松ホトニクス株式会社 蛍光性プローブ試薬を用いた細胞内イオン濃度測定法
US5414258A (en) * 1993-11-22 1995-05-09 Angstrom Technologies, Inc. Apparatus and method for calibration of fluorescence detectors
US5650135A (en) * 1994-07-01 1997-07-22 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
US6649143B1 (en) * 1994-07-01 2003-11-18 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
JP3378401B2 (ja) * 1994-08-30 2003-02-17 株式会社日立メディコ X線装置
US5672881A (en) * 1994-09-14 1997-09-30 Glyko, Inc. Charge-coupled device imaging apparatus
US5840572A (en) * 1994-10-11 1998-11-24 United States Of America As Represented By The Secretary Of The Navy Bioluminescent bioassay system
US5705807A (en) * 1994-10-24 1998-01-06 Nissan Motor Co., Ltd. Photo detecting apparatus for detecting reflected light from an object and excluding an external light componet from the reflected light
EP0811205B1 (en) * 1994-11-25 2003-09-10 Sophisview Technologies, Ltd System and method for diagnosis of living tissue diseases
JP2675532B2 (ja) * 1994-12-20 1997-11-12 株式会社バイオセンサー研究所 化学発光測定装置
US5636299A (en) * 1994-12-28 1997-06-03 Lockheed Missiles & Space Company, Inc. Hybrid luminescent device and method for imaging penetrating radiation
US5919140A (en) * 1995-02-21 1999-07-06 Massachusetts Institute Of Technology Optical imaging using time gated scattered light
US5738101A (en) * 1996-01-18 1998-04-14 The Regents Of The University Of California Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate
US5867250A (en) * 1996-05-03 1999-02-02 Baron; William S. Apparatus and method for optically mapping front and back surface topographies of an object
US5812310A (en) * 1996-10-16 1998-09-22 Applied Precision, Inc. Orthogonal high accuracy microscope stage
ES2137879B1 (es) * 1997-12-02 2000-08-16 Francisco Soria Melguizo S A Sistema analizador de imagenes producidas por reacciones bacterianas.
US6414713B1 (en) 1997-12-25 2002-07-02 Casio Computer Co., Ltd. Commodity image data processors, recording mediums which contain a commodity image data processing program, and image pickup aiding apparatus
US6364829B1 (en) * 1999-01-26 2002-04-02 Newton Laboratories, Inc. Autofluorescence imaging system for endoscopy
US6057163A (en) * 1998-04-28 2000-05-02 Turner Designs Luminescence and fluorescence quantitation system
US6160618A (en) * 1998-06-19 2000-12-12 Board Of Regents, The University Of Texas System Hyperspectral slide reader
SE9802558D0 (sv) 1998-07-16 1998-07-16 Hanning Instr Ab Device for detection of fluorescent
US6242743B1 (en) * 1998-08-11 2001-06-05 Mosaic Imaging Technology, Inc. Non-orbiting tomographic imaging system
EP1114320A2 (en) 1998-09-18 2001-07-11 Cellomics, Inc. A system for cell-based screening
JP3585753B2 (ja) * 1998-12-15 2004-11-04 富士写真フイルム株式会社 撮影システム
US6191919B1 (en) * 1999-01-06 2001-02-20 Storage Technology Corporation Magnetic transducer with debris guiding channels having non-vertical sloping walls formed in a tape bearing surface
KR20010110420A (ko) 1999-01-26 2001-12-13 추후제출 내시경 진단용 자가 형광 영상화 시스템
JP4245787B2 (ja) 1999-09-29 2009-04-02 富士フイルム株式会社 蛍光画像取得方法および装置
US6775567B2 (en) 2000-02-25 2004-08-10 Xenogen Corporation Imaging apparatus
SE519734C2 (sv) * 2000-07-07 2003-04-01 Axis Ab Bildförändringsanordning för en bildalstrande apparat samt metod och digitalkamera till densamma
US6615063B1 (en) * 2000-11-27 2003-09-02 The General Hospital Corporation Fluorescence-mediated molecular tomography
US6919919B2 (en) * 2002-02-06 2005-07-19 Xenogen Corporation Light calibration device for use in low level light imaging systems
US7113217B2 (en) * 2001-07-13 2006-09-26 Xenogen Corporation Multi-view imaging apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008059572A1 (ja) * 2006-11-16 2010-02-25 株式会社島津製作所 生体画像取得装置
JP2014115151A (ja) * 2012-12-07 2014-06-26 Shimadzu Corp 光イメージング装置
JP2017525029A (ja) * 2014-06-27 2017-08-31 華為技術有限公司Huawei Technologies Co.,Ltd. ターゲットオブジェクトのサインデータを取得するための方法、装置、および端末
US9984461B2 (en) 2014-06-27 2018-05-29 Huawei Technologies Co., Ltd. Method, apparatus, and terminal for obtaining vital sign data of target object
JP2017138329A (ja) * 2017-04-07 2017-08-10 株式会社島津製作所 光イメージング装置
JP2020529597A (ja) * 2017-07-31 2020-10-08 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. 試料または試料容器の画像化の方法および装置

Also Published As

Publication number Publication date
IL159782A0 (en) 2004-06-20
KR20040031773A (ko) 2004-04-13
US20030011701A1 (en) 2003-01-16
US7595838B2 (en) 2009-09-29
US20060250517A1 (en) 2006-11-09
US20060250518A1 (en) 2006-11-09
WO2003006966A1 (en) 2003-01-23
EP1407251B1 (en) 2012-05-09
EP1407251A1 (en) 2004-04-14
US7113217B2 (en) 2006-09-26
ATE557271T1 (de) 2012-05-15
NO20040121L (no) 2004-03-12
US7589786B2 (en) 2009-09-15
AU2002316673B2 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
EP1407251B1 (en) Multi-view imaging apparatus
AU2002316673A1 (en) Multi-view imaging apparatus
US8279334B2 (en) Structured light imaging apparatus
JP4608684B2 (ja) 皮膚疾患の光学診断および治療のための装置および光源システム
KR100382439B1 (ko) 레인지파인더 장치와 카메라
JP6185242B2 (ja) 歯科用コンピュータ断層撮影装置
JP4521587B2 (ja) 照明の均一度を向上させた光学診断装置
US7274771B2 (en) Methods and systems for controlling exposure for medical imaging devices
US20040247076A1 (en) Real-time acquisition of co-registered X-ray and optical images
WO2007005018A1 (en) Projection of subsurface structure onto an object's surface
US20200026316A1 (en) Imaging apparatus, imaging system, and imaging method
US7834989B2 (en) Luminescence imagining installation and method
US20110013008A1 (en) Device for acquiring image of living body
JP2008161508A (ja) 顔撮影装置
CN102551647A (zh) 电子内窥镜系统及其处理器装置、荧光图像的高灵敏度化方法
JP6500642B2 (ja) 撮像装置
JPH0352059Y2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080421

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602