JP2004531899A5 - - Google Patents

Download PDF

Info

Publication number
JP2004531899A5
JP2004531899A5 JP2003507879A JP2003507879A JP2004531899A5 JP 2004531899 A5 JP2004531899 A5 JP 2004531899A5 JP 2003507879 A JP2003507879 A JP 2003507879A JP 2003507879 A JP2003507879 A JP 2003507879A JP 2004531899 A5 JP2004531899 A5 JP 2004531899A5
Authority
JP
Japan
Prior art keywords
conductive material
corner
corners
electrodes
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003507879A
Other languages
Japanese (ja)
Other versions
JP2004531899A (en
Filing date
Publication date
Priority claimed from US09/887,767 external-priority patent/US7094131B2/en
Priority claimed from US09/888,002 external-priority patent/US7160176B2/en
Priority claimed from US09/888,084 external-priority patent/US7112121B2/en
Application filed filed Critical
Priority claimed from PCT/US2002/019496 external-priority patent/WO2003001582A2/en
Publication of JP2004531899A publication Critical patent/JP2004531899A/en
Publication of JP2004531899A5 publication Critical patent/JP2004531899A5/ja
Pending legal-status Critical Current

Links

Claims (51)

ミクロ電子基板を処理する方法において、
ミクロ電子基板の導電物質に隣接して電解流体を配置し、導電物質は第1平面に第1表面、およびこの第1表面に凹部を有しており、凹部は第2平面における第2表面により境界決めされており、導電物質は更に第1表面と第2表面との間に角部を有しており、
第1および第2電極を電解流体に流体連通して位置決めし、電極のうちの少なくとも一方を電位源に結合することによって角部から導電物質の少なくとも一部を除去することを特徴とするミクロ電子基板を処理する方法。
In a method of processing a microelectronic substrate,
An electrolytic fluid is disposed adjacent to the conductive material of the microelectronic substrate, the conductive material having a first surface in the first plane and a recess in the first surface, the recess being defined by the second surface in the second plane. Bounded, the conductive material further has a corner between the first surface and the second surface;
A microelectron comprising: positioning first and second electrodes in fluid communication with an electrolytic fluid; and removing at least a portion of a conductive material from a corner by coupling at least one of the electrodes to a potential source. A method of processing a substrate.
ミクロ電子基板は表面を有しており、凹部は表面に対して概ね横方向に延びており、更に導電物質の少なくとも一部の除去は2つの電極を表面の方に向くように位置決めし、電極のうちの少なくとも一方を電位源に結合し、表面と電極との間に電解質を配置することを含むことを特徴とする請求項1に記載の方法。   The microelectronic substrate has a surface, the recess extends generally transverse to the surface, and removal of at least a portion of the conductive material positions the two electrodes facing the surface, and the electrodes 2. The method of claim 1 including coupling at least one of said to a potential source and disposing an electrolyte between the surface and the electrode. ミクロ電子基板から間隔を隔てた第1および第2電極から電気信号を発信することを更に含み、
前記角部から導電物質の少なくとも一部を除去することは、
導電物質の角部のところで電気信号を受信し、
電気信号を導電物質に通すことにより角部のところの導電物質の少なくとも一部を酸化し、
導電物質の酸化部分を化学エッチング剤にさらすことを含むことを特徴とする請求項1に記載の方法。
Further comprising transmitting electrical signals from the first and second electrodes spaced from the microelectronic substrate ;
Removing at least a portion of the conductive material from the corner,
Receive electrical signals at the corners of conductive materials,
Oxidize at least part of the conductive material at the corners by passing an electrical signal through the conductive material,
The method of claim 1 including exposing the oxidized portion of the conductive material to a chemical etchant.
導電物質の第1表面は概ね非導電性の物質に近接して位置決めされ、概ね非導電性の物質は第1表面と電極のうちの少なくとも一方との間に位置決めされ、角部からの導電物質の少なくとも一部の除去は概ね非導電性の物質と係合された導電物質を除去することを含むことを特徴とする請求項1に記載の方法。   The first surface of the conductive material is positioned in proximity to the generally non-conductive material, the generally non-conductive material is positioned between the first surface and at least one of the electrodes, and the conductive material from the corners The method of claim 1, wherein removing at least a portion of comprises removing a conductive material engaged with a generally non-conductive material. 前記導電物質上に概ね非導電性の層を配置し、
角部から導電物質の少なくとも一部を除去する前に概ね非導電性の層の少なくとも一部を除去して導電物質の角部を露出させることを更に含むことを特徴とする請求項1に記載の方法。
Disposing a generally non-conductive layer on the conductive material;
The method of claim 1, further comprising removing at least a portion of the generally non-conductive layer to expose a corner of the conductive material before removing at least a portion of the conductive material from the corner. the method of.
前記導電物質上に酸化物層を配置し、
前記酸化物層上に窒化物層を配置し、
角部から導電物質を除去する前に窒化物層の少なくとも一部および酸化物層の一部を除去して導電物質の角部を露出させることを更に含むことを特徴とする請求項1に記載の方法。
An oxide layer is disposed on the conductive material;
A nitride layer is disposed on the oxide layer;
The method of claim 1, further comprising removing at least a portion of the nitride layer and a portion of the oxide layer to expose the corners of the conductive material before removing the conductive material from the corners. the method of.
導電物質の除去は導電物質の少なくとも一部をこれに電流を通すことによって酸化し、この部分をエッチング剤にさらすことを含むことを特徴とする請求項1に記載の方法。   The method of claim 1, wherein removing the conductive material comprises oxidizing at least a portion of the conductive material by passing a current through it and exposing the portion to an etchant. 水と塩酸および弗化水素酸のうちの少なくとも一方とを含むように電解流体を選択することを更に含むことを特徴とする請求項1に記載の方法。 The method of claim 1, further comprising selecting the electrolytic fluid to include water and at least one of hydrochloric acid and hydrofluoric acid. 導電物質の少なくとも一部の除去は1ミリアンペア/cm2から500ミリアンペア/cm2までの割合で電流を導電物質に通すことを含むことを特徴とする請求項1に記載の方法。 The method of claim 1, wherein removing at least a portion of the conductive material comprises passing a current through the conductive material at a rate of 1 milliampere / cm 2 to 500 milliamperes / cm 2 . 導電物質の少なくとも一部の除去は15ボルトrmsを導電物質に供給するように電位源を選択することを含むことを特徴とする請求項1に記載の方法。   The method of claim 1, wherein removing at least a portion of the conductive material comprises selecting a potential source to provide 15 volts rms to the conductive material. 導電物質の少なくとも一部の除去は60Hzで変化するように導電物質を通る電流を選択することを含むことを特徴とする請求項1に記載の方法。   The method of claim 1, wherein removing at least a portion of the conductive material includes selecting a current through the conductive material to vary at 60 Hz. 導電物質の少なくとも一部の除去は導電物質を通る電流を交流電流であるように選択することを含むことを特徴とする請求項1に記載の方法。   The method of claim 1, wherein removing at least a portion of the conductive material includes selecting a current through the conductive material to be an alternating current. 水と、塩酸と、弗化水素酸とを500:1:1の比で含むように電解流体を選択することを更に含むことを特徴とする請求項1に記載の方法。 The method of claim 1, further comprising selecting the electrolytic fluid to include water, hydrochloric acid, and hydrofluoric acid in a ratio of 500: 1: 1. ドープされたシリコンを含むように導電物質を選択することを更に含むことを特徴とする請求項1に記載の方法。   The method of claim 1, further comprising selecting a conductive material to include doped silicon. 白金、タンタルおよびグラファイトのうちの少なくとも1つを含むように第1および第2電極の少なくとも一方を選択することを更に含むことを特徴とする請求項1に記載の方法。   The method of claim 1, further comprising selecting at least one of the first and second electrodes to include at least one of platinum, tantalum, and graphite. 第1および第2電極の少なくとも一方をミクロ電子基板から1ミリメートルから2ミリメートルまでの距離を隔てて位置決めすることを更に含むことを特徴とする請求項1に記載の方法。   The method of claim 1, further comprising positioning at least one of the first and second electrodes at a distance of 1 millimeter to 2 millimeters from the microelectronic substrate. 角部から物質を除去した後、絶縁層を凹部の壁部に配置することを更に含むことを特徴とする請求項1に記載の方法。   The method of claim 1, further comprising disposing an insulating layer on the wall of the recess after removing material from the corner. 誘電体を凹部に配置することを更に含むことを特徴とする請求項1に記載の方法。   The method of claim 1, further comprising disposing a dielectric in the recess. 導電物質の少なくとも一部の除去は角部を丸くすることによって導電物質を角部から除去する速度を減じることを含むことを特徴とする請求項1に記載の方法。   The method of claim 1, wherein removing at least a portion of the conductive material includes reducing the rate at which the conductive material is removed from the corners by rounding the corners. ミクロ電子基板を処理する方法において、
ミクロ電子基板の導電物質に隣接して概ね非導電性の物質を配置し、
概ね非導電性の物質を通って導電物質の中へ延びる凹部を形成し、この凹部は導電物質と概ね非導電性の物質との間の界面に少なくとも隣接して角部を構成しており、
角部を電位に露出させることによって角部から導電物質の少なくとも一部を除去して角部を少なくとも部分的に鈍くすることを含むことを特徴とするミクロ電子基板を処理する方法。
In a method of processing a microelectronic substrate,
A non-conductive material is generally placed adjacent to the conductive material of the microelectronic substrate,
Forming a recess extending through the generally nonconductive material into the conductive material, the recess forming a corner at least adjacent to the interface between the conductive material and the generally nonconductive material;
A method of processing a microelectronic substrate comprising exposing at least a portion of a conductive material from a corner by exposing the corner to an electrical potential to at least partially blunt the corner.
導電物質の少なくとも一部の除去はミクロ電子基板に近接し且つそこから間隔を隔てて第1電極および第2電極を位置決めし、これらの電極のうちの少なくとも一方を電位源に結合し、電流を電極のうちの少なくとも一方から角部へ通して角部のところの導電物質を酸化し、角部のところの酸化された導電物質をエッチング剤にさらすことを含むことを特徴とする請求項20に記載の方法。   The removal of at least a portion of the conductive material positions the first and second electrodes proximate to and spaced from the microelectronic substrate, couples at least one of these electrodes to a potential source, and 21. The method of claim 20, comprising oxidizing the conductive material at the corner through at least one of the electrodes through the corner and exposing the oxidized conductive material at the corner to an etchant. The method described. ミクロ電子基板から間隔を隔てた電極から電気信号を発信し、
導電物質の角部のところで電気信号を受信し、
電気信号を導電物質に通すことにより角部のところの導電物質の少なくとも一部を酸化し、
導電物質の酸化された部分を化学エッチング剤にさらすことを更に含むことを特徴とする請求項20に記載の方法。
An electrical signal is transmitted from an electrode spaced from the microelectronic substrate,
Receive electrical signals at the corners of conductive materials,
Oxidize at least part of the conductive material at the corners by passing an electrical signal through the conductive material,
21. The method of claim 20, further comprising exposing the oxidized portion of the conductive material to a chemical etchant.
角部からの導電物質の少なくとも一部の除去は概ね非導電性の物質と係合された導電物質を除去することを含むことを特徴とする請求項20に記載の方法。   21. The method of claim 20, wherein removing at least a portion of the conductive material from the corner includes removing a conductive material engaged with a generally non-conductive material. 角部から導電物質の少なくとも一部を除去する前に概ね非導電性の物質の少なくとも一部を除去して導電物質の角部を露出させることを更に含むことを特徴とする請求項20に記載の方法。   21. The method of claim 20, further comprising removing at least a portion of the generally non-conductive material to expose a corner of the conductive material before removing at least a portion of the conductive material from the corner. the method of. 前記導電物質上に酸化物層を配置し、
前記酸化物層上に窒化物層を配置し、
角部から導電物質の少なくとも一部を除去する前に窒化物層の少なくとも一部および酸化物層の一部を除去して導電物質の角部を露出させることを更に含むことを特徴とする請求項20に記載の方法。
An oxide layer is disposed on the conductive material;
A nitride layer is disposed on the oxide layer;
The method further comprises removing at least a portion of the nitride layer and a portion of the oxide layer to remove a corner of the conductive material before removing at least a portion of the conductive material from the corner. Item 21. The method according to Item 20.
導電物質の除去は導電物質の少なくとも一部をこれに電流を通すことによって酸化し、この部分をエッチング剤にさらすことを含むことを特徴とする請求項20に記載の方法。   21. The method of claim 20, wherein removing the conductive material comprises oxidizing at least a portion of the conductive material by passing a current through it and exposing the portion to an etchant. 導電物質の少なくとも一部の除去は100ミリアンペアの割合で電流を導電物質に通すことを含むことを特徴とする請求項20に記載の方法。   The method of claim 20, wherein removing at least a portion of the conductive material comprises passing a current through the conductive material at a rate of 100 milliamps. 導電物質の少なくとも一部の除去は15ボルトrmsの電位で電流を導電物質の中へ通すことを含むことを特徴とする請求項20に記載の方法。   21. The method of claim 20, wherein removing at least a portion of the conductive material includes passing a current through the conductive material at a potential of 15 volts rms. 導電物質の少なくとも一部の除去は60Hzの周波数で電流を導電物質の中へ通すことを含むことを特徴とする請求項20に記載の方法。   The method of claim 20, wherein removing at least a portion of the conductive material comprises passing a current through the conductive material at a frequency of 60 Hz. 導電物質を通る電流を交流電流であるように選択することを含むことを特徴とする請求項20に記載の方法。   21. The method of claim 20, comprising selecting the current through the conductive material to be an alternating current. ドープされたシリコンを含むように導電物質を選択することを更に含むことを特徴とする請求項20に記載の方法。   21. The method of claim 20, further comprising selecting a conductive material to include doped silicon. 導電物質の少なくとも一部の除去は第1および第2電極を角部と流体連通して位置決めし、電極のうちの少なくとも一方を電位源に結合し、白金、タンタルおよびグラファイトのうちの少なくとも1つを含むように第1および第2電極の少なくとも一方を選択することを更に含むことを特徴とする請求項20に記載の方法。   Removal of at least a portion of the conductive material positions the first and second electrodes in fluid communication with the corners, couples at least one of the electrodes to a potential source, and at least one of platinum, tantalum, and graphite. 21. The method of claim 20, further comprising selecting at least one of the first and second electrodes to include: 角部から物質を除去した後、絶縁層を凹部の壁部に配置することを更に含むことを特徴とする請求項20に記載の方法。   21. The method of claim 20, further comprising disposing an insulating layer on the wall of the recess after removing material from the corner. トランジスタゲートを凹部に配置することを更に含むことを特徴とする請求項20に記載の方法。   21. The method of claim 20, further comprising disposing the transistor gate in the recess. ミクロ電子基板は表面を有しており、凹部は表面に対して概ね横方向に延びており、更に導電物質の少なくとも一部の除去は2つの電極を表面の方に向くように位置決めし、電極のうちの少なくとも一方を電位源に結合し、表面と電極との間に電解質を配置することを含むことを特徴とする請求項20に記載の方法。   The microelectronic substrate has a surface, the recess extends generally transverse to the surface, and removal of at least a portion of the conductive material positions the two electrodes facing the surface, and the electrodes 21. The method of claim 20, comprising coupling at least one of the electrodes to a potential source and placing an electrolyte between the surface and the electrode. 角部を丸くすることによって角部から物質を除去する速度を減じることを更に含むことを特徴とする請求項20に記載の方法。   21. The method of claim 20, further comprising reducing the rate at which material is removed from the corner by rounding the corner. ミクロ電子基板を処理する方法において、
ミクロ電子基板のドープされたシリコン物質上に酸化物層を形成し、
前記酸化物層上に窒化物層を配置し、
窒化物層および酸化物層を通って導電物質の中へ延びる凹部をエッチングし、
凹部に近接した窒化物層および酸化物層の一部を除去して導電物質の角部を露出させ、 導電物質の角部に隣接して電解流体を配置し、
ミクロ電子基板に近接し且つそこから間隔を隔てて第1電極および第2電極を位置決めし、これらの電極のうちの少なくとも一方を電位源に結合することによって角部のところの導電物質の少なくとも一部を酸化し、
酸化された物質をエッチング剤にさらすことによって酸化された物質の少なくとも一部を除去し、
角部を丸くすることによって物質を角部から除去する速度を減じて少なくとも一方の電極から角部までの電流の流れを減少させることを含むことを特徴とするミクロ電子基板を処理する方法。
In a method of processing a microelectronic substrate,
Forming an oxide layer on the doped silicon material of the microelectronic substrate;
A nitride layer is disposed on the oxide layer;
Etching recesses extending through the nitride and oxide layers into the conductive material;
Removing a portion of the nitride and oxide layers adjacent to the recess to expose the corners of the conductive material, and placing the electrolytic fluid adjacent to the corners of the conductive material;
At least one of the conductive materials at the corners is positioned by positioning the first and second electrodes proximate to and spaced from the microelectronic substrate and coupling at least one of these electrodes to a potential source. Oxidize part
Removing at least a portion of the oxidized material by exposing the oxidized material to an etchant;
A method of processing a microelectronic substrate, comprising reducing the current flow from at least one electrode to a corner by reducing the rate at which material is removed from the corner by rounding the corner.
凹部に近接した窒化物層および酸化物層の一部の除去は第1速度で窒化物層から物質を除去し、第2速度で酸化物層から物質を除去することを含み、第1速度は第2速度にほぼ等しいことを特徴とする請求項37に記載の方法。   Removal of a portion of the nitride and oxide layers proximate to the recess includes removing material from the nitride layer at a first rate and removing material from the oxide layer at a second rate, wherein the first rate is 38. The method of claim 37, wherein the method is approximately equal to the second speed. 酸化された物質の少なくとも一部を除去した後、エッチング剤で酸化物層および窒化物層を除去することを更に含むことを特徴とする請求項37に記載の方法。   38. The method of claim 37, further comprising removing the oxide and nitride layers with an etchant after removing at least a portion of the oxidized material. 凹部に近接した窒化物層および酸化物層の一部の除去は窒化物層および酸化物層に隣接してエッチング剤を配置することを含み、エッチング剤は電解流体の化学組成とほぼ同じ化学組成を有していることを特徴とする請求項37に記載の方法。   Removal of a portion of the nitride and oxide layers proximate to the recess includes placing an etchant adjacent to the nitride and oxide layers, the etchant having a chemical composition approximately the same as the chemical composition of the electrolytic fluid. 38. The method of claim 37, comprising: ミクロ電子基板を処理する方法において、
ミクロ電子基板の導電物質に凹部を形成し、この凹部は孔と導電物質の平面との交差点に角部を構成しており、
凹部に導電性ミクロ電子特徴を形成し、
凹部により構成される角部を丸くすることによって導電性ミクロ電子特徴からの電磁放射を制御し、角部を丸くすることは電位源を角部に電気的に結合して導電物質を酸化し、酸化された物質をエッチング剤にさらすことによって角部から酸化された物質を除去することを含むことを特徴とするミクロ電子基板を処理する方法。
In a method of processing a microelectronic substrate,
A recess is formed in the conductive material of the microelectronic substrate, and this recess forms a corner at the intersection of the hole and the plane of the conductive material,
Forming conductive microelectronic features in the recesses,
Controlling electromagnetic radiation from conductive microelectronic features by rounding the corners constituted by the recesses, rounding the corners electrically couples the potential source to the corners to oxidize the conductive material, A method of processing a microelectronic substrate comprising removing oxidized material from a corner by exposing the oxidized material to an etchant.
導電物質における凹部の形成は半導体物質に凹部を形成することを含むことを特徴とする請求項41に記載の方法。   42. The method of claim 41, wherein forming a recess in the conductive material includes forming a recess in the semiconductor material. 角部を丸くすることは第1電極および第2電極をミクロ電子基板に近接して且つそこから間隔を隔てて位置決めし、第1および第2電極のうちの少なくとも一方を電位源に結合し、電流を第1および第2電極のうちの少なくとも一方から電解流体を通して角部まで通して角部のところの導電物質を酸化し、角部のところの酸化された導電物質をエッチング剤にさらすことを含むことを特徴とする請求項41に記載の方法。   Rounding the corners positions the first and second electrodes proximate to and spaced from the microelectronic substrate, coupling at least one of the first and second electrodes to a potential source; Passing an electric current from at least one of the first and second electrodes through the electrolytic fluid to the corners to oxidize the conductive material at the corners and exposing the oxidized conductive material at the corners to the etchant; 42. The method of claim 41, comprising. ミクロ電子基板から間隔を隔てた電極から電気信号を発信し、
導電物質の角部のところで電気信号を受信し、
電気信号を導電物質に通すことによって角部のところの導電物質の少なくとも一部を酸化し、
導電物質の酸化された部分を化学エッチング剤にさらすことを更に含むことを特徴とする請求項41に記載の方法。
An electrical signal is transmitted from an electrode spaced from the microelectronic substrate,
Receive electrical signals at the corners of conductive materials,
Oxidize at least part of the conductive material at the corners by passing an electrical signal through the conductive material,
42. The method of claim 41, further comprising exposing the oxidized portion of the conductive material to a chemical etchant.
導電物質は概ね非導電性の物質に近接して位置決めされ、概ね非導電性の物質は導電物質の平面と少なくとも一方の電極との間に位置決めされ、角部からの導電物質の少なくとも一部の除去は概ね非導電性の物質と係合された導電物質を除去することを含むことを特徴とする請求項41に記載の方法。   The conductive material is positioned in proximity to the generally non-conductive material, the generally non-conductive material is positioned between the plane of the conductive material and at least one of the electrodes, and at least a portion of the conductive material from the corners. 42. The method of claim 41, wherein removing comprises removing conductive material engaged with a generally non-conductive material. 導電物質に非導電層を配置し、
角部から導電物質の少なくとも一部を除去する前に、非導電層の少なくとも一部を除去して導電物質の角部を露出されることを更に含むことを特徴とする請求項41に記載の方法。
Placing a non-conductive layer on conductive material,
42. The method of claim 41, further comprising removing at least a portion of the non-conductive layer to expose a corner of the conductive material before removing at least a portion of the conductive material from the corner. Method.
前記導電物質上に酸化物層を配置し、
前記酸化物層上に窒化物層を配置し、
角部から導電物質の少なくとも一部を除去する前に、窒化物層の少なくとも一部および酸化物層の一部を除去して導電物質の角部を露出させることを更に含むことを特徴とする請求項41に記載の方法。
An oxide layer is disposed on the conductive material;
A nitride layer is disposed on the oxide layer;
The method further includes removing at least a portion of the nitride layer and a portion of the oxide layer to expose a corner portion of the conductive material before removing at least a portion of the conductive material from the corner portion. 42. The method of claim 41.
ドープされたシリコンを含むように導電物質を選択することを更に含むことを特徴とする請求項41に記載の方法。   42. The method of claim 41, further comprising selecting a conductive material to include doped silicon. 角部を丸くした後に絶縁層を凹部の壁部上に配置することを更に含むことを特徴とする請求項41に記載の方法。 42. The method of claim 41, further comprising disposing an insulating layer on the wall of the recess after rounding the corners. トランジスタゲートを凹部に形成することを更に含むことを特徴とする請求項41に記載の方法。   42. The method of claim 41, further comprising forming a transistor gate in the recess. ミクロ電子基板は表面を有しており、凹部は表面に対して概ね横方向に延びており、更に角部を丸くすることは2つの電極を表面の方に向くように位置決めし、電極のうちの少なくとも一方を電位源に結合し、表面と電極との間に電解質を配置することを含むことを特徴とする請求項41に記載の方法。   The microelectronic substrate has a surface, the recesses extend substantially transversely to the surface, and rounding the corners positions the two electrodes facing the surface, 42. The method of claim 41, comprising coupling at least one of the to a potential source and disposing an electrolyte between the surface and the electrode.
JP2003507879A 2001-06-21 2002-06-20 Method and apparatus for electrically, mechanically and / or chemically removing conductive materials from microelectronic substrates Pending JP2004531899A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/887,767 US7094131B2 (en) 2000-08-30 2001-06-21 Microelectronic substrate having conductive material with blunt cornered apertures, and associated methods for removing conductive material
US09/888,002 US7160176B2 (en) 2000-08-30 2001-06-21 Methods and apparatus for electrically and/or chemically-mechanically removing conductive material from a microelectronic substrate
US09/888,084 US7112121B2 (en) 2000-08-30 2001-06-21 Methods and apparatus for electrical, mechanical and/or chemical removal of conductive material from a microelectronic substrate
PCT/US2002/019496 WO2003001582A2 (en) 2001-06-21 2002-06-20 Microelectronic substrate having conductive material with blunt cornered apertures, and associated methods for removing conductive material

Publications (2)

Publication Number Publication Date
JP2004531899A JP2004531899A (en) 2004-10-14
JP2004531899A5 true JP2004531899A5 (en) 2008-08-07

Family

ID=27420529

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003507879A Pending JP2004531899A (en) 2001-06-21 2002-06-20 Method and apparatus for electrically, mechanically and / or chemically removing conductive materials from microelectronic substrates
JP2003507878A Expired - Fee Related JP4446271B2 (en) 2001-06-21 2002-06-20 Method and apparatus for electrically, mechanically and / or chemically removing a conductive material from a microelectronic substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2003507878A Expired - Fee Related JP4446271B2 (en) 2001-06-21 2002-06-20 Method and apparatus for electrically, mechanically and / or chemically removing a conductive material from a microelectronic substrate

Country Status (6)

Country Link
EP (2) EP1399957A2 (en)
JP (2) JP2004531899A (en)
KR (2) KR100663662B1 (en)
CN (1) CN100356523C (en)
AU (1) AU2002316303A1 (en)
WO (2) WO2003001581A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6848970B2 (en) 2002-09-16 2005-02-01 Applied Materials, Inc. Process control in electrochemically assisted planarization
US6837983B2 (en) * 2002-01-22 2005-01-04 Applied Materials, Inc. Endpoint detection for electro chemical mechanical polishing and electropolishing processes
US7842169B2 (en) 2003-03-04 2010-11-30 Applied Materials, Inc. Method and apparatus for local polishing control
US7998335B2 (en) 2005-06-13 2011-08-16 Cabot Microelectronics Corporation Controlled electrochemical polishing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241129A (en) * 1988-03-23 1989-09-26 Toshiba Corp Manufacture of semiconductor device
KR960006714B1 (en) * 1990-05-28 1996-05-22 가부시끼가이샤 도시바 Semiconductor device fabrication process
JPH10189909A (en) * 1996-12-27 1998-07-21 Texas Instr Japan Ltd Dielectric capacitor and dielectric memory and manufacture thereof
US5911619A (en) * 1997-03-26 1999-06-15 International Business Machines Corporation Apparatus for electrochemical mechanical planarization
WO1999026758A1 (en) * 1997-11-25 1999-06-03 John Hopkins University Electrochemical-control of abrasive polishing and machining rates
KR100280107B1 (en) * 1998-05-07 2001-03-02 윤종용 How to form trench isolation
US6143155A (en) * 1998-06-11 2000-11-07 Speedfam Ipec Corp. Method for simultaneous non-contact electrochemical plating and planarizing of semiconductor wafers using a bipiolar electrode assembly
US6121152A (en) * 1998-06-11 2000-09-19 Integrated Process Equipment Corporation Method and apparatus for planarization of metallized semiconductor wafers using a bipolar electrode assembly
JP4513145B2 (en) * 1999-09-07 2010-07-28 ソニー株式会社 Semiconductor device manufacturing method and polishing method
US6797623B2 (en) * 2000-03-09 2004-09-28 Sony Corporation Methods of producing and polishing semiconductor device and polishing apparatus
US6867448B1 (en) * 2000-08-31 2005-03-15 Micron Technology, Inc. Electro-mechanically polished structure
JP2002093761A (en) * 2000-09-19 2002-03-29 Sony Corp Polishing method, polishing system, plating method and plating system
US6736952B2 (en) * 2001-02-12 2004-05-18 Speedfam-Ipec Corporation Method and apparatus for electrochemical planarization of a workpiece

Similar Documents

Publication Publication Date Title
TW200505632A (en) Conductive polishing pad with anode and cathode
JP2002532899A (en) Method of operating high-density plasma etching apparatus to achieve transistor device with less damage
EP1329949A3 (en) Semiconductor device and method of manufacturing semiconductor device
KR970063504A (en) Semiconductor device manufacturing method and manufacturing apparatus
US7094131B2 (en) Microelectronic substrate having conductive material with blunt cornered apertures, and associated methods for removing conductive material
TW200508417A (en) Method for contacting conducting layers overlying magnetoelectronic elements of mram devices
JP4511741B2 (en) Electrochemical etching apparatus and method for etching an etching body
US5232563A (en) Method of cleaning a semiconductor wafer
KR100387274B1 (en) Method of increasing alignment tolerances for interconnect structures
JP2004531899A5 (en)
EP1341218A3 (en) Semiconductor device manufacturing method
JP2006012953A (en) Through electrode, method for forming the same and semiconductor apparatus
KR100287181B1 (en) Semiconductor device having trench isolation region and fabricating method thereof
KR100598477B1 (en) Microelectronic substrate having conductive material with blunt cornered apertures, and associated methods for removing conductive material
US6972455B2 (en) Flash memory structure and manufacturing method thereof
US20090223832A1 (en) Method and Apparatus for Preventing Galvanic Corrosion in Semiconductor Processing
KR20150019232A (en) Ceramic mono block, and process of forming in/out port and coupling pattern on ceramic filter
CN209487515U (en) Power transistor device
EP1447848A3 (en) Semi conductor integrated circuit including anti-fuse and method for manufacturing the same
TW200501321A (en) Method of manufacturing a semiconductor device and semiconductor device obtained by using such a method
KR19990057289A (en) Metal wiring layer formation method of MOS PET transistor
KR100218870B1 (en) Manufacturing method of semiconductor device and silicon substrate cassette for selective etching
JP2004531649A5 (en)
JP2003191132A (en) Electrolytic polishing method and method for manufacturing semiconductor device
KR19990004623A (en) Method for forming conductive wiring in semiconductor device