JP2004522038A - Screw vacuum pump - Google Patents

Screw vacuum pump Download PDF

Info

Publication number
JP2004522038A
JP2004522038A JP2002572269A JP2002572269A JP2004522038A JP 2004522038 A JP2004522038 A JP 2004522038A JP 2002572269 A JP2002572269 A JP 2002572269A JP 2002572269 A JP2002572269 A JP 2002572269A JP 2004522038 A JP2004522038 A JP 2004522038A
Authority
JP
Japan
Prior art keywords
rotor
flow guide
section
thread
guide member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002572269A
Other languages
Japanese (ja)
Other versions
JP4200007B2 (en
Inventor
ギープマンス ヴォルフガング
トーマス ドライフェルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH filed Critical Leybold Vakuum GmbH
Publication of JP2004522038A publication Critical patent/JP2004522038A/en
Application granted granted Critical
Publication of JP4200007B2 publication Critical patent/JP4200007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/122Arrangements for supercharging the working space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Abstract

本発明は、ねじ真空ポンプであって、それぞれハブ(6,7)及びねじ山(8,9)から成る2つのロータ(4,5)並びにケーシング(2)を備えており、ケーシング内にロータがねじ山を互いにかみ合わせた状態で収容されていて、ケーシングと一緒に吸い込み側に配置された入口横断面(15,16)並びに圧力側に配置された出口横断面(29)を形成し、かつロータ(4,5)の回転運動中に吸い込み側から圧力側へのガスの移送を行うようになっている形式のものにおいて、流入状態及び流出状態を改善するために、ロータ(4,5)が吸い込み側に流れ案内部材(21,22;26,27,28;36,37)を備えており、流れ案内部材が入口横断面(15,16)の上流側に設けられて、入口横断面(15,16)へ移送すべきガスの流入状態を改善するように形成されていることを特徴とする。The present invention is a screw vacuum pump comprising two rotors (4,5) each comprising a hub (6,7) and a thread (8,9) and a casing (2), wherein the rotor is in the casing. Are accommodated with the threads engaged with one another and form together with the casing an inlet cross section (15, 16) arranged on the suction side and an outlet cross section (29) arranged on the pressure side, and In the type in which gas is transferred from the suction side to the pressure side during the rotational movement of the rotor (4, 5), the rotor (4, 5) Is provided with flow guide members (21, 22; 26, 27, 28; 36, 37) on the suction side, the flow guide members being provided upstream of the inlet cross section (15, 16), Transfer to (15,16) Characterized in that it is formed so as to improve the flow conditions of the gas to.

Description

【技術分野】
【0001】
本発明は請求項1の上位概念に記載の形式のねじ真空ポンプに関する。該形式のポンプは国際特許出願WO/00/12900号明細書により公知である。
【背景技術】
【0002】
ねじポンプにおいては、互いにかみ合うねじ山が閉じた容積室を形成し、該容積室がロータの同期回転によって入口から出口へ移送される。入口及び出口は、ロータのねじ山(通常は一条のねじ)がロータ軸線に対して垂直な1つの平面で始まる若しくは終わるように形成されている。ポンプ部材の有効な入口横断面(若しくは出口横断面)がロータのハブ、ケーシング及びねじ山の側方の画成部によって規定された面の合計に相当する。一条のねじポンプにおいては、入口横断面はそれぞれ180°にわたって延びている。
【0003】
図1及び図2に公知技術のロータ入口を示してあり、この場合、ロータが一条のねじ山を備えている。図1及び図2では符号1が概略的に示すねじ真空ポンプを表し、符号2がケーシングを、符号3が入口を、符号4,5がロータを、符号6,7がロータハブを、符号8,9がねじ山を、符号10,11がロータ軸を表している。図2はロータ5の展開図である。
【0004】
両方のねじ山8,9が、ロータ軸10,11に対して垂直に延びる1つの平面14から始まっている。従って各ロータにおいて、所属の構成部分によって形成された入口横断面15,16が180°にわたって延びている。
【特許文献1】国際特許出願WO/00/12900号明細書
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明の課題は、ねじ真空ポンプにおいて流入状態及び流出状態を改善することである。
【課題を解決するための手段】
【0006】
前記課題を解決するために本発明の構成では、ロータが吸い込み側に流れ案内部材を備えており、流れ案内部材が入口横断面の上流側に設けられて、入口横断面へ移送(搬送)すべきガスの流入状態を改善するように形成されている。
【発明の効果】
【0007】
本発明によって流入・ブースターが実現される。入口横断面の前(上流)に流れ案内部材を配置したことによって、ロータによって入口から出口へ移送される容積の充填効率が改善され、その結果、本発明に基づき形成されたポンプは良好な移送特性(搬送特性)、特に改善された吸い込み能力を有している。ロータ出口の領域でも、出口横断面に対応して配置された類似の流れ案内部材が流出状態を改善して、排気システム内の流動損失が減少される。流出側に配置された流れ案内部材によって流動速度及び残留渦が減少させられ、かつ静圧が横断面拡大に伴って付加的に高められ、その結果、後続の排気システム内において転向及び摩擦に起因する流動損失が減少される。排気領域内の対向圧力は常に1バールであるので、このような空気力学的な改善がねじポンプの全運転範囲にわたって有効である。これらの利点のために、短いロータを使用することも可能である。
【0008】
本発明は、ねじ幾何学形状(一条のねじ若しくは多条のねじ、一定なリード若しくは変化するリード、若しくは一定区分と変化区分とを有するリード、円筒形のロータ、段付きのロータ、若しくは円錐形のロータ、単段式のロータ若しくは二段式のロータ、片持ち支承のロータ若しくは両側支承のロータ)に左右されることなく用いられる。
【0009】
本発明の有利な実施態様では、一方のロータのねじ山が、他方のロータの流れ案内部材と協働する領域に切欠きを備えている。これによって、他方のロータの入口横断面の閉鎖が遅らされて確実な充填を達成する。前圧縮若しくは予備圧縮が生じて、これによってポンプの効率が改善され、動力需要が減少される。
【0010】
本発明のさらなる利点が、流れ案内部材を同時に釣り合い質量として用いることにある。ロータのねじ山の端部区分の構造に基づき避けられないアンバランスが、流れ案内部材によって完全に若しくは少なくとも著しく排除される。鋳造によって形成されたロータにおいても微細な釣り合いが必要である。流出側に設けられた流れ案内部材が、ねじロータの微細な釣り合いの際の第2の補償面としても活用され、これによってロータ全体の内部モーメントが減少される。
【0011】
出口側構造はすべてのねじ幾何学形状にとって利用できる。ねじ山の横断面を巻条に沿って減少ることによって、圧力側のロータ端部に肉薄の壁部分を残し、該壁部分が翼構造、即ち流れ案内部材を形成してよい。もちろん付加的な部分を介して出口側輪郭を形成することも可能である。ハブの周囲に適当なスリットを切り、スリット間に残された薄壁部分を適切に曲げて翼を形成し、該翼を素材結合(例えば、溶接、ろう付け、若しくは接着)によって再びハブに固定することも考えられる。出口及び入口のこのような幾何学形状が有利にはねじ山の加工成形に際して直接に形成され、これによって運転にとって頑丈な構造で経済的に達成され、ロータの運転条件に最適に適合される。
【0012】
ねじ山、入口部分及び出口部分を切削によって一体構造で製作するとさらに有利である。従来のねじロータにおいて両方の端部をロータ軸線に垂直に端面研削することによって生じるようなとがった入口縁部及び出口縁部が避けられ、このような縁部は変形若しくは折損を避けるために切り戻されねばならない。一体構造の製作によって連続的な移行部が得られ、このような移行部は端縁部の補強に役立つものである。
【発明を実施するための最良の形態】
【0013】
図3及び図4に示す実施例では、ロータハブ6,7が入口横断面15,16を越えて一倍乃至二倍までのねじ山幅にわたって延長されている。入口横断面15,16の上側を延びる流れ案内部材21,22の支持のために役立ち、かつハブ側の移送スペース・制限部として役立っている。流れ案内部材は、ねじ山8,9の延長部でねじ山幅を減少されている(ほぼ1/3)。図示の一条のねじの場合、各流れ案内部材がロータ全周の半分よりもわずかに短い距離にわたって延びており、従ってロータ全周の半分よりもわずかに大きい距離にわたって開いた部分領域が形成されている。各流れ案内部材はそれぞれ、相対するロータの溝内に接触しないように入り込んでいる。流れ案内部材21,22の先行の縁部のリードが、吸い込み側に向かってわずかに増大している。終端領域が面取りされている。開いた移送容積内に流入するガスが図4に矢印で示してある。
【0014】
ねじ山8,9の端面の、流れ案内部材21,22に続く領域が切欠き23,24を備えている。該切欠きが、移送容積の閉鎖を遅らせて、移送容積の完全な充填を保証するようになっている。
【0015】
各流れ案内部材21,22は隣接区分と一緒に個別の部分として製作されてよく、次いで後からねじ端面に組み付けられる。しかしながら、一体構造の製作が特に有利であり、この場合には、隣接区分及び流れ案内部材がそれも残り材料から、例えばフライス加工によって形成され、残り材料はねじ山の成形(フライス加工、ねじ切り、転造、溝旋削など)に際して残されているものである(図4に破線で示してある)。
【0016】
図5aに示す実施例は図4に示すものに類似するものの、相違点として、ねじ山9の幅及びリードが圧力側(吐出側)に向かって減少している。該実施例において圧力側は図5bに示すように形成されていてよい。ロータハブ7が出口横断面29を越えて圧力側のねじ山幅の約四倍の長さにわたって延長されていて、ねじ山9の翼状の延長部25を支持している。該延長部は、圧力側に向かって強く増大するリード及びねじ山幅でほぼ140°にわたって延びている。
【0017】
図6aに、別の実施例のロータ5のロータ入口部分の展開が示してある。図示してないロータ4は、対応して形成されている。入口横断面16の上流側に、ねじ山9から独立した3つの流れ案内部材26,27,28を設けてある。該流れ案内部材はハブ7に保持されていて、ほぼロータ翼の形状を有しており、該流れ案内部材のリードが、ほぼねじ山9のリードで始まって吸い込み側に向かって増大している。
【0018】
図6b及び図6cはロータ出口部分の2つの実施例を示しており、この場合1つの実施例ではねじ山9が一定のリード及びねじ山幅を有しているのに対して、別の実施例ではねじ山9が減少するリード及びねじ山幅を有している。ハブ7が圧力側で出口横断面29を越えて延長されていて、翼31,32,33;34,35を保持している。該翼はねじ山9から独立していて、圧力側に向かって増大するリードを有している。図6bの実施例では、翼がロータ入口部分の翼26,27,28に対してほぼ対称的に形成されている。図6cの実施例では翼34,35の翼厚さが圧力側に向かって増大している。これらの実施例では、入口側及び出口側の翼が該翼のハブ区分と一緒に有利には、別個に形成された翼リングから成っており、該翼リングがロータへの端面での組み付けによってロータ4,5の構成部分を成している。このような手段は、流入条件並びに流出条件を翼リングの交換によって簡単に顧客の要求に適合させることを可能にする。
【0019】
圧力側の流れ案内部材25(図5b),34(図6c)が比較的大きな体積を有している。これによって、ポンプの流出領域にロータの釣り合いのための十分な質量が得られる。
【0020】
図7aに示す実施例では2つの流れ案内部材36,37を設けてある。流れ案内部材36が、実質的に図3及び図4の実施例と同様に、ねじ山9の延長部を成していて、減少された幅(ここでは約1/5)を有している。翼状の流れ案内部材37の足部が入口横断面16のほぼ中央に位置している。ねじ山9が一定のねじ山幅及びリードを有する実施例においては、ロータ出口部分が対応して(ほぼ対称的に)形成されていてよい。
【0021】
図7bに示す実施例のロータ出口部分においては、ねじ山9のリード及びねじ山幅が圧力側に向かって減少している。ハブ7の出口横断面29を越えて延長された領域で、ねじ山リードが圧力側に向かって強く増大されると共にねじ山幅が引き続き減少されている。
【0022】
図8は、図3及び図4の実施例にほぼ相当する実施例の斜視図である。相違点として、ハブ6,7が流れ案内部材21,22の領域でのみ延長されている。ハブはそれぞれ流れ案内部材21,22の内周縁までしか延びていない。
【0023】
流れ案内部材が、流れ案内部材の構造、配置及び/質量に関連して、ねじロータ4,5のアンバランス(不釣り合い)を取り除くように構成されていると有利である。釣り合い質量を設けたい箇所に、空気力学的に作用する流れ案内部材を配置すると効果的である。これによって、大きなアンバランスが避けられ、かつ費用のかかる釣り合い手段が省略できる。この場合流れ案内部材は、移送すべきガスの流入状態若しくは流出状態を改善するように、即ち流れ案内部材の形状を有するように形成された釣り合い重りと理解することもできる。
【図面の簡単な説明】
【0024】
【図1】従来技術のロータ入口の断面図
【図2】図1のロータ入口の展開図
【図3】本発明の実施例のロータの断面図
【図4】本発明の実施例のロータの展開図
【図5a】本発明の別の実施例のロータ入口の展開図
【図5b】本発明の別の実施例のロータ出口の展開図
【図6a】本発明のさらに別の実施例のロータ入口の展開図
【図6b】本発明のさらに別の実施例のロータ出口の展開図
【図6c】本発明のさらに別の実施例のロータ出口の展開図
【図7a】本発明のさらに別の実施例のロータ入口の展開図
【図7b】本発明のさらに別の実施例のロータ出口の展開図
【図8】本発明のさらに別の実施例のロータの斜視図
【符号の説明】
【0025】
1 ポンプ、 2 ケーシング、 4,5 ロータ、 6,7 ロータハブ、 8,9 ねじ山、 10,11 ロータ軸、 15,16 入口横断面、 21,22 流れ案内部材、 25 延長部、 29 出口横断面、 36,37 流れ案内部材
【Technical field】
[0001]
The invention relates to a screw vacuum pump of the type defined in the preamble of claim 1. A pump of this type is known from International Patent Application WO / 00/12900.
[Background Art]
[0002]
In a screw pump, the threads engaged with each other form a closed volume, which is transferred from the inlet to the outlet by synchronous rotation of the rotor. The inlet and outlet are formed such that the threads (usually a single thread) of the rotor start or end in one plane perpendicular to the rotor axis. The effective inlet cross-section (or outlet cross-section) of the pump member corresponds to the sum of the surfaces defined by the lateral definitions of the hub, casing and threads of the rotor. In a single screw pump, the inlet cross sections each extend over 180 °.
[0003]
1 and 2 show a prior art rotor inlet, in which the rotor has a single thread. 1 and 2, reference numeral 1 denotes a screw vacuum pump schematically shown, reference numeral 2 denotes a casing, reference numeral 3 denotes an inlet, reference numerals 4 and 5 denote rotors, reference numerals 6 and 7 denote a rotor hub, and reference numerals 8 and Reference numeral 9 indicates a thread, and reference numerals 10 and 11 indicate a rotor shaft. FIG. 2 is a development view of the rotor 5.
[0004]
Both threads 8, 9 start from one plane 14, which extends perpendicular to the rotor axes 10, 11. Thus, in each rotor, the inlet cross sections 15, 16 formed by the associated components extend over 180 °.
[Patent Document 1] International Patent Application WO / 00/12900 [Disclosure of the Invention]
[Problems to be solved by the invention]
[0005]
It is an object of the present invention to improve the inflow and outflow conditions in a screw vacuum pump.
[Means for Solving the Problems]
[0006]
In order to solve the above-mentioned problem, in the configuration of the present invention, the rotor is provided with a flow guide member on the suction side, and the flow guide member is provided on the upstream side of the inlet cross section, and is transferred (conveyed) to the inlet cross section. It is formed so as to improve the inflow state of the to-be gas.
【The invention's effect】
[0007]
According to the present invention, an inflow / booster is realized. By arranging the flow guide member upstream (upstream) of the inlet cross section, the filling efficiency of the volume transferred by the rotor from the inlet to the outlet is improved, so that the pump formed according to the invention has a good transfer Properties (transport properties), in particular improved suction capacity. In the area of the rotor outlet, a similar flow guide arranged corresponding to the outlet cross section improves the outflow condition and reduces flow losses in the exhaust system. The flow velocity and residual vortices are reduced by the flow guide located on the outflow side, and the static pressure is additionally increased with increasing cross-section, so that in the subsequent exhaust system due to deflection and friction Flow losses are reduced. Such an aerodynamic improvement is effective over the entire operating range of the screw pump, since the opposing pressure in the exhaust area is always 1 bar. Due to these advantages, it is also possible to use short rotors.
[0008]
The present invention relates to a thread geometry (single or multi-threaded, constant or variable lead, or lead with constant and variable section, cylindrical rotor, stepped rotor, or conical shape). , A single-stage rotor or a two-stage rotor, a cantilevered rotor, or a double-sided rotor.
[0009]
In an advantageous embodiment of the invention, the thread of one rotor is provided with a notch in the region cooperating with the flow guide of the other rotor. This delays the closing of the inlet cross section of the other rotor to achieve a reliable filling. Pre-compression or pre-compression occurs, which improves pump efficiency and reduces power demand.
[0010]
A further advantage of the present invention is that the flow guide member is used simultaneously as a balancing mass. The inevitable imbalance due to the construction of the end sections of the thread of the rotor is completely or at least significantly eliminated by the flow guide. A fine balance is also required in a rotor formed by casting. The flow guide provided on the outlet side is also used as a second compensation surface for fine balancing of the screw rotor, so that the internal moment of the entire rotor is reduced.
[0011]
The outlet side structure is available for all thread geometries. The reduction of the thread cross section along the winding leaves a thin wall at the pressure side rotor end, which may form a wing structure, i.e. a flow guide. Of course, it is also possible to form the outlet profile via additional parts. A suitable slit is formed around the hub, and the thin wall portion left between the slits is appropriately bent to form a wing, and the wing is fixed to the hub again by material bonding (for example, welding, brazing, or bonding). It is also possible to do. Such a geometry of the outlet and the inlet is advantageously formed directly during the machining of the thread, so that it is economically achieved in a robust construction for operation and is optimally adapted to the operating conditions of the rotor.
[0012]
It is further advantageous if the thread, the inlet part and the outlet part are made in one piece by cutting. Sharp inlet and outlet edges, such as would be caused by end grinding both ends of a conventional screw rotor perpendicular to the rotor axis, are avoided, and such edges are cut to avoid deformation or breakage. Must be returned. The construction of the one-piece construction results in a continuous transition, which serves to reinforce the edge.
BEST MODE FOR CARRYING OUT THE INVENTION
[0013]
In the embodiment shown in FIGS. 3 and 4, the rotor hubs 6, 7 extend beyond the entry cross sections 15, 16 over a thread width of one to two times. It serves for supporting the flow guide members 21 and 22 extending above the inlet cross sections 15 and 16 and serves as a transfer space and restriction on the hub side. The flow guide member has a reduced thread width (approximately 1/3) at the extension of the threads 8,9. In the case of the single thread shown, each flow-guiding member extends for a distance slightly less than half of the full circumference of the rotor, thus forming an open partial area for a distance of slightly more than half of the full circumference of the rotor. I have. Each of the flow guide members extends into the grooves of the opposing rotor without contact. The leads of the leading edges of the flow guide members 21, 22 increase slightly towards the suction side. The terminal area is chamfered. The gas flowing into the open transfer volume is indicated by an arrow in FIG.
[0014]
The regions of the end faces of the threads 8, 9 following the flow guide members 21, 22 are provided with notches 23, 24. The notch delays closure of the transfer volume and ensures complete filling of the transfer volume.
[0015]
Each flow guide member 21, 22 may be manufactured as a separate part together with the adjacent section and then later assembled to the screw end face. However, the production of a one-piece structure is particularly advantageous, in which case the adjacent sections and the flow guide members are also formed from the remaining material, for example by milling, the remaining material being formed by thread forming (milling, thread cutting, Rolling, groove turning, etc.) (shown by broken lines in FIG. 4).
[0016]
The embodiment shown in FIG. 5a is similar to that shown in FIG. 4, with the difference that the width of the threads 9 and the leads are reduced towards the pressure side (discharge side). In this embodiment, the pressure side may be formed as shown in FIG. 5b. The rotor hub 7 extends beyond the outlet cross section 29 over a length of about four times the thread width on the pressure side and supports the wing-like extension 25 of the thread 9. The extension extends over approximately 140 ° with the lead and thread width increasing strongly towards the pressure side.
[0017]
FIG. 6 a shows the development of the rotor inlet part of the rotor 5 according to another embodiment. The rotor 4 not shown is formed correspondingly. Upstream of the inlet cross section 16, three flow guide members 26, 27, 28 independent of the thread 9 are provided. The flow-guiding member is carried by the hub 7 and has the general shape of a rotor blade, the leads of the flow-guiding member increasing starting towards the lead of the thread 9 and increasing towards the suction side. .
[0018]
FIGS. 6b and 6c show two embodiments of the rotor outlet part, in which one embodiment has a constant lead and thread width while the thread 9 has a different embodiment. In the example, the thread 9 has a decreasing lead and thread width. The hub 7 extends beyond the outlet cross section 29 on the pressure side and holds the wings 31, 32, 33; The wing is independent of the thread 9 and has leads which increase towards the pressure side. In the embodiment of FIG. 6b, the blades are formed substantially symmetrically with respect to the blades 26, 27, 28 at the rotor inlet. In the embodiment of FIG. 6c, the blade thickness of the blades 34, 35 increases toward the pressure side. In these embodiments, the inlet and outlet wings, together with the hub sections of the wings, advantageously consist of separately formed wing rings, which are mounted on the rotor by end-face assembly. The components of the rotors 4 and 5 are formed. Such measures make it possible to easily adapt the inflow conditions as well as the outflow conditions to customer requirements by replacing the wing ring.
[0019]
The pressure-side flow guide members 25 (FIG. 5b) and 34 (FIG. 6c) have a relatively large volume. This provides sufficient mass in the outlet area of the pump for balancing the rotor.
[0020]
In the embodiment shown in FIG. 7a, two flow guide members 36, 37 are provided. The flow guide member 36 forms an extension of the thread 9 and has a reduced width (here about 1/5), substantially as in the embodiment of FIGS. . The foot of the wing-shaped flow guide member 37 is located approximately at the center of the inlet cross section 16. In embodiments in which the thread 9 has a constant thread width and leads, the rotor outlet part may be correspondingly (substantially symmetrically) formed.
[0021]
At the rotor outlet of the embodiment shown in FIG. 7b, the lead and thread width of the thread 9 decrease towards the pressure side. In the area extending beyond the outlet cross section 29 of the hub 7, the thread lead is strongly increased towards the pressure side and the thread width continues to decrease.
[0022]
FIG. 8 is a perspective view of an embodiment substantially corresponding to the embodiment of FIGS. The difference is that the hubs 6, 7 extend only in the region of the flow guide members 21, 22. The hubs respectively extend only to the inner peripheral edges of the flow guide members 21, 22.
[0023]
Advantageously, the flow-guiding member is configured to remove any imbalance of the screw rotors 4,5 in relation to the structure, arrangement and / or mass of the flow-guiding member. It is advantageous to dispose the aerodynamically acting flow guide at the place where the balancing mass is desired. This avoids large imbalances and eliminates expensive balancing means. In this case, the flow-guiding member can also be understood as a counterweight designed to improve the inflow or outflow of the gas to be transferred, i.e. to have the shape of the flow-guiding member.
[Brief description of the drawings]
[0024]
1 is a sectional view of a rotor inlet according to the prior art; FIG. 2 is a developed view of the rotor inlet of FIG. 1; FIG. 3 is a sectional view of a rotor according to an embodiment of the present invention; FIG. 5a is a developed view of a rotor inlet of another embodiment of the present invention. FIG. 5b is a developed view of a rotor outlet of another embodiment of the present invention. FIG. 6a is a rotor of still another embodiment of the present invention. Fig. 6b is a developed view of a rotor outlet of still another embodiment of the present invention. Fig. 6c is a developed view of a rotor outlet of still another embodiment of the present invention. Fig. 7a is still another embodiment of the present invention. FIG. 7b is a developed view of a rotor outlet of still another embodiment of the present invention. FIG. 8 is a perspective view of a rotor of still another embodiment of the present invention.
[0025]
Reference Signs List 1 pump, 2 casing, 4,5 rotor, 6,7 rotor hub, 8,9 thread, 10,11 rotor shaft, 15,16 inlet cross section, 21,22 flow guide member, 25 extension, 29 outlet cross section , 36,37 Flow guide member

Claims (12)

ねじ真空ポンプであって、それぞれハブ(6,7)及びねじ山(8,9)から成る2つのロータ(4,5)並びにケーシング(2)を備えており、ケーシング内にロータがねじ山を互いにかみ合わせた状態で収容されていて、ケーシングと一緒に吸い込み側に配置された入口横断面(15,16)並びに圧力側に配置された出口横断面(29)を形成し、かつロータ(4,5)の回転運動中に吸い込み側から圧力側へのガスの移送を行うようになっている形式のものにおいて、ロータ(4,5)が吸い込み側に流れ案内部材(21,22;26,27,28;36,37)を備えており、流れ案内部材が入口横断面(15,16)の上流側に設けられて、入口横断面(15,16)へ移送すべきガスの流入状態を改善するように形成されていることを特徴とする、付加的な流れ案内部材を備えたねじ真空ポンプ。A screw vacuum pump, comprising two rotors (4,5) each comprising a hub (6,7) and a thread (8,9) and a casing (2), in which the rotor has threads. They are housed in an interlocking manner and together with the casing form an inlet cross section (15, 16) arranged on the suction side and an outlet cross section (29) arranged on the pressure side, and the rotor (4, 4). In the type in which the transfer of the gas from the suction side to the pressure side is performed during the rotational movement of 5), the rotor (4, 5) has a flow guide member (21, 22; 26, 27) on the suction side. , 28; 36, 37) and a flow guide member is provided upstream of the inlet cross section (15, 16) to improve the inflow of gas to be transferred to the inlet cross section (15, 16). Is formed to Characterized in that, the screw vacuum pump with additional flow guide member. 多条ねじの場合にそれぞれ少なくとも1つのねじ山が流れ案内部材を備えている請求項1記載のポンプ。2. The pump according to claim 1, wherein at least one thread is provided with a flow guide in the case of a multi-start thread. 流れ案内部材が一条ねじの場合に90°乃至180°にわたって延びている請求項1記載のポンプ。2. The pump according to claim 1, wherein the flow guide extends over 90 DEG to 180 DEG in the case of a single thread. 流れ案内部材(21,22)が実質的にねじ山(8,9)の幅の減少された延長部である請求項1から3のいずれか1項記載のポンプ。4. The pump as claimed in claim 1, wherein the flow-guiding members are substantially reduced width extensions of the threads. 各入口横断面の領域に、ねじ山(8,9)から独立した別の少なくとも1つの流れ案内部材を設けてあり、該流れ案内部材が翼の形状を有している請求項1から4のいずれか1項記載のポンプ。5. The method as claimed in claim 1, wherein in the region of each inlet cross-section, at least one further flow guide member independent of the threads (8, 9) is provided, said flow guide member having the shape of a blade. A pump according to any one of the preceding claims. 翼が、圧力側でほぼねじ山(8,9)の方向に延びかつ吸い込み側で急勾配をなすように湾曲されている請求項5記載のポンプ。6. A pump according to claim 5, wherein the vanes extend substantially in the direction of the threads (8, 9) on the pressure side and are steeply curved on the suction side. ねじ山(8,9)の端面の後行の領域に切欠き(23,24)が設けられている請求項1から6のいずれか1項記載のポンプ。7. The pump according to claim 1, wherein a notch (23, 24) is provided in a region following the end face of the thread (8, 9). ロータ出口部分が相応の流れ案内部材を備えている請求項1から7のいずれか1項記載のポンプ。8. The pump according to claim 1, wherein the rotor outlet section is provided with a corresponding flow guide. 流れ案内部材(21,22;26,27,28;31,32,33;34,35;36,37)と該流れ案内部材に所属のハブ区分(6,7)が別個の構成部分としてロータ(4,5)の入口側の端面若しくは出口側の端面に組み付けられている請求項1から8のいずれか1項記載のポンプ。The flow guide members (21, 22; 26, 27, 28; 31, 32, 33; 34, 35; 36, 37) and the hub section (6, 7) belonging to the flow guide members are separate components of the rotor. The pump according to any one of claims 1 to 8, wherein the pump is attached to an end face on the inlet side or an end face on the outlet side of (4, 5). 流れ案内部材が、該流れ案内部材の構造、配置及び/質量に関連して、ロータ(4,5)のアンバランスを少なくともほぼ排除するように構成されている請求項1から9のいずれか1項記載のポンプ。10. The flow guide member according to claim 1, wherein the flow guide member is configured to at least substantially eliminate imbalance of the rotor (4, 5) in relation to the structure, arrangement and / or mass of the flow guide member. The pump according to the item. ねじ真空ポンプであって、それぞれハブ(6,7)及びねじ山(8,9)から成る2つのロータ(4,5)並びにケーシング(2)を備えており、ケーシング内にロータがねじ山を互いにかみ合わせた状態で収容されていて、ケーシングと一緒に吸い込み側に配置された入口横断面(15,16)並びに圧力側に配置された出口横断面(29)を形成し、かつロータ(4,5)の回転運動中に吸い込み側から圧力側へのガスの移送を行うようになっている形式のものにおいて、ロータ(4,5)が圧力側及び/又は吸い込み側に釣り合い重り(21,22;26,27,28;31,32,33;34,35;36,37)を備えており、釣り合い重りが移送すべきガスの流入状態若しくは流出状態を改善するように形成されていることを特徴とするねじ真空ポンプ。A screw vacuum pump, comprising two rotors (4,5) each comprising a hub (6,7) and a thread (8,9) and a casing (2), in which the rotor has threads. They are housed in an interlocking manner and together with the casing form an inlet cross section (15, 16) arranged on the suction side and an outlet cross section (29) arranged on the pressure side, and the rotor (4, 4). 5) In the type in which the transfer of gas from the suction side to the pressure side is performed during the rotational movement of 5), the rotors (4, 5) are balanced on the pressure side and / or the suction side. 26, 27, 28; 31, 32, 33; 34, 35; 36, 37), wherein the counterweight is formed to improve the inflow or outflow of the gas to be transferred. Special Screw vacuum pump to be. 釣り合い重りが、請求項1から10のいずれか1項記載の流れ案内部材の形状を有している請求項11記載のポンプ。A pump according to claim 11, wherein the counterweight has the shape of the flow guide member according to claim 1.
JP2002572269A 2001-03-09 2002-01-09 Screw vacuum pump Expired - Fee Related JP4200007B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10111525A DE10111525A1 (en) 2001-03-09 2001-03-09 Screw vacuum pump with rotor inlet and rotor outlet
PCT/EP2002/000122 WO2002073037A1 (en) 2001-03-09 2002-01-09 Screw vacuum pump comprising additional flow bodies

Publications (2)

Publication Number Publication Date
JP2004522038A true JP2004522038A (en) 2004-07-22
JP4200007B2 JP4200007B2 (en) 2008-12-24

Family

ID=7676962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002572269A Expired - Fee Related JP4200007B2 (en) 2001-03-09 2002-01-09 Screw vacuum pump

Country Status (5)

Country Link
US (1) US20040067149A1 (en)
EP (1) EP1366296B1 (en)
JP (1) JP4200007B2 (en)
DE (2) DE10111525A1 (en)
WO (1) WO2002073037A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018261A1 (en) 2006-08-07 2008-02-14 Seiko Instruments Inc. Method for manufacturing electroformed mold, electroformed mold, and method for manufacturing electroformed parts
DE102010019402A1 (en) * 2010-05-04 2011-11-10 Oerlikon Leybold Vacuum Gmbh Screw vacuum pump
US9057373B2 (en) * 2011-11-22 2015-06-16 Vilter Manufacturing Llc Single screw compressor with high output

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994562A (en) * 1959-02-05 1961-08-01 Warren Pumps Inc Rotary screw pumping of thick fibrous liquid suspensions
DE7611162U1 (en) * 1976-04-09 1978-04-20 Kaeser Kompressoren Gmbh, 8630 Coburg DOUBLE SCREW SCREW COMPRESSOR
JPH02502743A (en) * 1987-12-25 1990-08-30 ショロホフ ヴァレリイ ボリソヴィチ molecular vacuum pump
CA2058325A1 (en) * 1990-12-24 1992-06-25 Mark E. Baran Positive displacement pumps
JPH04370379A (en) * 1991-06-17 1992-12-22 Seiko Seiki Co Ltd Dry vacuum pump
JPH05195957A (en) * 1992-01-23 1993-08-06 Matsushita Electric Ind Co Ltd Vacuum pump
JPH05272478A (en) * 1992-01-31 1993-10-19 Matsushita Electric Ind Co Ltd Vacuum pump
DE4242406C2 (en) * 1992-12-08 2002-10-31 Grasso Gmbh Refrigeration Tech Arrangement in a screw compressor
US5797735A (en) * 1995-04-03 1998-08-25 Tochigi Fuji Sangyo Kabushiki Kaisha Fluid machine having balance correction
CZ289289B6 (en) * 1995-12-11 2001-12-12 Ateliers Busch S. A. Double worm system
DE19632874A1 (en) * 1996-08-16 1998-02-19 Leybold Vakuum Gmbh Friction vacuum pump
DE19745616A1 (en) * 1997-10-10 1999-04-15 Leybold Vakuum Gmbh Cooling system for helical vacuum pump
DE19839501A1 (en) * 1998-08-29 2000-03-02 Leybold Vakuum Gmbh Dry compacting screw pump

Also Published As

Publication number Publication date
JP4200007B2 (en) 2008-12-24
DE10111525A1 (en) 2002-09-12
EP1366296A1 (en) 2003-12-03
WO2002073037A1 (en) 2002-09-19
EP1366296B1 (en) 2006-11-22
US20040067149A1 (en) 2004-04-08
DE50208778D1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
US8672618B2 (en) Multi-vane variable stator unit of a fluid flow machine
US5562405A (en) Multistage axial flow pumps and compressors
RU2586426C2 (en) Stator of axial turbo machine with ailerons in blade roots
US8333559B2 (en) Outlet guide vanes for axial flow fans
EP2960462B1 (en) Turbine wheel for a radial turbine
WO2014038054A1 (en) Diagonal flow turbine
EP0205001A1 (en) Splitter blade arrangement for centrifugal compressors
CN108350895B (en) Connecting thread groove spacer and vacuum pump
CN103717905B (en) Side channel blower having a plurality of feed channels distributed over the circumference
CA2856264A1 (en) Blade for axial compressor rotor
JP3048583B2 (en) Pump stage for high vacuum pump
JP2002130173A (en) Turbine type fuel pump
JP3957761B2 (en) Friction vacuum pump
JP2004522038A (en) Screw vacuum pump
CN209228688U (en) Vane rotor component and centrifugal pump including it
EP4001660A1 (en) Impeller of rotating machine and rotating machine
US11401944B2 (en) Impeller and centrifugal compressor
GB2036870A (en) Regenerative Turbo Machine
JP5232721B2 (en) Centrifugal compressor
CN111630250B (en) Turbine wheel
EP3763924B1 (en) Turbomachine
JPH09125904A (en) Stationary blade of turbine
EP3530957B1 (en) Compressor and turbocharger
JPH03267583A (en) Guide vane of hydraulic turbine
JP2002048083A (en) Multistage slurry pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070711

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071011

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071018

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071109

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071211

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees