JP2004514868A - Refrigeration or heat pump system using heat removal at supercritical pressure - Google Patents

Refrigeration or heat pump system using heat removal at supercritical pressure Download PDF

Info

Publication number
JP2004514868A
JP2004514868A JP2002544591A JP2002544591A JP2004514868A JP 2004514868 A JP2004514868 A JP 2004514868A JP 2002544591 A JP2002544591 A JP 2002544591A JP 2002544591 A JP2002544591 A JP 2002544591A JP 2004514868 A JP2004514868 A JP 2004514868A
Authority
JP
Japan
Prior art keywords
heat
air flow
conduit
heat exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002544591A
Other languages
Japanese (ja)
Inventor
アフレクト、コーレ
ブレーデセン、アルネ
ハフネル、アルミン
ネクソー、ペッテル
ペッテルセン、ヨスタイン
レクスタド、ホヴァルド
シャウゲン、ガイル
ヴィスト、シヴェルト
ザケリ、ゴーラム・レーザ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinvent AS
Original Assignee
Sinvent AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinvent AS filed Critical Sinvent AS
Publication of JP2004514868A publication Critical patent/JP2004514868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

閉回路で接続され、超臨界蒸気圧縮サイクルにおいて動作する、蒸発器(23)、圧縮器(20)、空冷式熱除去熱交換器(21)、および膨張装置(22)含む冷凍またはヒートポンプシステム。熱除去熱交換器(21)は、空気の自然な上昇循環/対流により冷却される。好ましい実施形態において、熱除去熱交換器(21)は、空気流コンジットすなわちシェル(11)に組み込まれて、煙突効果を得ることにより、自然空気循環を高める。A refrigeration or heat pump system including an evaporator (23), a compressor (20), an air-cooled heat removal heat exchanger (21), and an expansion device (22) connected in a closed circuit and operating in a supercritical vapor compression cycle. The heat removal heat exchanger (21) is cooled by the natural upward circulation / convection of air. In a preferred embodiment, the heat removal heat exchanger (21) is incorporated into the airflow conduit or shell (11) to enhance the natural air circulation by obtaining a chimney effect.

Description

【0001】
[発明の分野]
本発明は、冷凍またはヒートポンプシステムに関し、特に、いずれの場合も冷媒として二酸化炭素を用いる、食品または飲料の冷却または凍結のための小売および/または貯蔵キャビネット用の冷凍システム、あるいは建物の暖房用のヒートポンプに関する。
【0002】
[従来技術の説明]
冷却または凍結キャビネット用の冷凍システムは通常、蒸気圧縮サイクルにおいて蒸発および凝縮により作用する冷媒を有する。冷媒は、その臨界温度が必要な熱除去(凝縮)温度を十分に下回るように選択される。空冷システムにおいて効果的な凝縮を達成するためには、比較的大きな空気流量が必要であり、凝縮器およびエアフローシステムのために広い空間が必要である。凝縮器中で空気を循環させるために、ほとんどのシステムにおいてファンが必要である。この解決策の1つの問題は、ファンのために比較的大きな電力が必要であること、ならびにファンおよびそのエアフローシステムのためにさらなる空間が必要であることである。強制空気流ならびにファンおよびそのモータにより騒音問題が生じる可能性もあり、ファンの取り付けはシステムに対する付加費用および複雑性をもたらす。
【0003】
室内空気に熱を供給する住宅用および軽商業用ヒートポンプは通常、凝縮器中で強制空気循環を行う室内ユニットを有する。これもまた、空気循環ファンすなわちブロアが必要であるが、これはさらなる電力消費および騒音をもたらす。さらに、大きな空気流量および/または高速の気流によるドラフトによって室温よりわずかに高いだけの温度がもたらされることにより、温熱快適性が低下する可能性がある。大きな空気流が必要であるため、室内ユニットの設計は大容量を必要とし、これは魅力的な製品設計のためのオプションを減らす。
【0004】
現在の冷凍またはヒートポンプシステムの冷媒は、オゾン層破壊特性および/または人為的気候変動への寄与により望ましくないフルオロカーボンベースの化学薬品であるか、または安全上の問題により異議を唱えられている可燃性炭化水素ベースの流体である。
【0005】
超臨界(trans critical)システムでは、熱は、超臨界的に加圧された冷媒の温度を低下させることにより除去されるが、従来のシステムにおけるような一定温度での凝縮によっては除去されない。超臨界圧冷媒は、熱交換器を通って流れる際に熱を放出し、その温度が低下する(温度移行)。理想的には、冷媒および空気流の向流により、冷媒温度は空気入口の温度に近づく。
【0006】
冷媒からの温度移行熱除去を伴う状況では、空気流量が低下し、空気出口の温度は凝縮器での状況と比較して上昇し得る。凝縮器では、空気出口の温度は、凝縮器の温度を必ず下回らねばならない。超臨界システムでは、高い気温および低下した空気流量は、熱交換器中での空気流の自然対流に有益であり、騒音を低減し、ヒートポンプの用途における温熱快適性に関して有利でもあろう。
【0007】
[発明の概要]
したがって、上記の問題および欠点に鑑みて、システムにおいて安全でかつ環境に優しい冷媒を用いた冷凍システムであって、ファンの電力を必要としない、または高負荷状況において微量のファン電力しか用いない、小型の自然空気循環熱除去システムを有する冷凍システムを提供することが、本発明の目的である。
【0008】
これらの目的を果たすために、本発明は、不燃性であり、無毒であり、かつ環境に優しい流体二酸化炭素(CO)を冷媒として用いるシステムを説明する。
【0009】
本発明は、併記の独立請求項1で定義されるように、空気の自然な上昇循環/対流により冷却される熱除去熱交換器中での温度移行により、冷媒が超臨界圧で熱を除去することを特徴とする。
【0010】
本発明の好ましい実施形態は、従属請求項2〜8においてさらに定義される。
【0011】
COの特別な熱力学的特性を利用すること、およびシステムを適切に設計することにより、上述のように、空気の自然対流と空気流量の大幅な低下とにより、特別な空気循環ファンを必要とせずに、熱除去が生じ得る。
【0012】
本発明を、一例として、図面を参照して以下でさらに説明する。
【0013】
[好ましい実施形態の詳細な説明]
図1〜図6を参照して、本発明の実施形態を以下の本文において詳細に説明する。
【0014】
図1は、圧縮器20、空冷式熱除去ユニット21、膨張装置22、および蒸発器23を含む蒸気圧縮システムの一例を示す。これらの構成要素は閉回路で接続され、閉回路は、超臨界蒸気圧縮サイクルにおいて、すなわち、高圧側の超臨界圧で動作する。熱除去熱交換器21は、空気の自然な上昇循環/対流によって冷却される。
【0015】
図2は、空気流コンジット、すなわち空気流外側シェルすなわちジャケット11および熱交換器の管10を有する熱除去ユニットの断面図を示す。この管は、シェル11内にそれぞれ互いの上に一直線に配置される。空気はシステムの下端の入口iから入り、頂部の出口oから出る。空気循環は、空気が熱交換器の管により加熱されると自然対流により達成される。圧縮器からの高温の冷媒は、熱交換器の冷媒入口12を通って入り、熱交換器を通って流れながら空気へ熱を除去し、それによって効率的な煙突効果が達成される。冷却された冷媒は熱交換器から出口13を通って出る。空気流量をさらに増大させるために、熱交換器の上方に縦幅を追加したコンジット11aを加えて、煙突効果を増大させてもよい。空気流を高めるために、合流および分岐するノズル断面を有する「煙突」すなわちスタックを形成することもできる。
【0016】
図3の断面図により示されるように、伝熱管10は、流れコンジット内に千鳥状に配置して、表面を増大させて伝熱を向上させることもできる。
【0017】
図4は、折返し管10に基づいた空気流コンジット11および熱交換器を有する、自然空気循環熱除去ユニットの側面図を示す。空気循環および熱交換器の効率を最大にするためには、冷媒は、空気に対して略向流方向に流れるべきである。図に示すように、頂部の冷媒入口12および底部の出口13により、2つの異なる空気流および冷媒流の間の所望の関係が達成される。
【0018】
別の可能な実施形態を図5に示す。ここで、空気流コンジット11は円形の断面を有し、伝熱管10は、空気流コンジット11内部に螺旋状に形成される。空気流に関して空気コンジット11の断面を最適化するために、コンジットに円形内管を挿入し、挿入された管が端部で閉じられることにより、伝熱管を収容するアニュラス(annulus)を確立してもよい。
【0019】
図6により示されるように、伝熱管は、プレート状のシェルすなわちコンジット11の一体部分を形成し、すなわち、コンジットすなわちシェルに組み込まれて、空気流に面する伝熱表面を増大するようにしてもよい。必要な場合、コンジットの高さに沿った熱伝導が、プレートにスロット、スプリット、またはルーバ14を有することにより低減または排除され得る。シェルプレートまたはコンジットは平面を有することができ、または表面が、自然対流の空気流を高める垂直のフィンあるいは開いているかまたは閉じているダクト状の構造からなることができる。
【0020】
併記の特許請求の範囲で定義される本発明は、図面に示し上記で説明する例に限定されず、したがって、上記の実施形態の全てにおいて、コンジットすなわちシェルの1つまたはいくつかの壁は、伝熱表面としても適用することができる。さらに、伝熱管は図面において円形の断面を有して示されるが、フラット管、楕円形管、多孔管、およびより複雑な形状を含む、任意の管形状を用いることができる。さらに、冷媒管は空気流コンジット材料に組み入れて、放射により伝熱を高めることもできる一体型の熱除去および空気コンジットユニットをもたらすこともできる。ワイヤ、フィン、スタッド等を含む、伝熱管のいくつかの強化および外面の拡大もまた可能である。プレートフィンが延出した表面を有するMulti Port Extruded(MPE)熱交換器を用いる例を図7に示す。この表面では、高温の冷媒は、頂部から入り、このような場合に理想的である完全な向流熱交換プロセスでの空気の自然な上昇循環/向流により冷却された後に、底部から出る。
【0021】
図8は、冷蔵庫または同様の装置において用いられる、請求項5に記載の実施形態の例を示す。熱交換器10は底部コンパートメント内に配置され、自然空気流/循環を高めるために、冷蔵庫の裏側にある空気流コンジット11aにより空気流シェルすなわちジャケット11が伸長されている。
【図面の簡単な説明】
【図1】
閉回路で接続された圧縮器、自然空気循環による空冷式熱除去ユニット、膨張装置、および蒸発器を含む超臨界蒸気圧縮システムを示す図である。
【図2】
本発明による空気流コンジットおよびインライン配置の円形管に基づいた熱除去熱交換器を含む、自然空気循環による熱除去ユニットの断面図である。
【図3】
本発明の第2の実施形態による、空気流コンジットおよび千鳥配置の円形管に基づいた熱除去熱交換器を含む、自然空気循環による熱除去ユニットの断面図である。
【図4】
本発明の第3の実施形態による、空気流コンジットおよび折返し管に基づいた熱除去熱交換器を有する、自然空気循環による熱除去ユニットの側面図である。
【図5】
本発明の第4の実施形態による、空気流コンジットおよび螺旋形状に形成された熱除去熱交換器を有する熱除去ユニットの断面図である。
【図6】
本発明の第5の実施形態による、管がプレートに取り付けられて空気側の伝熱表面を増大させる熱除去ユニットを示す図である。
【図7】
片側または両側にプレートフィンが延出した表面を有するMulti Port Extruded(MPE)熱交換器を用いる、自然空気循環による完全に向流の熱除去ユニットを示す図である。
【図8】
冷蔵庫または同様の装置において用いられる、請求項5に記載の実施形態の例を示す図である。
[0001]
[Field of the Invention]
The present invention relates to refrigeration or heat pump systems, in particular refrigeration systems for retail and / or storage cabinets for the cooling or freezing of foods or beverages, or in each case using carbon dioxide as refrigerant, or for heating buildings. Related to heat pump.
[0002]
[Description of Prior Art]
Refrigeration systems for refrigeration or freezing cabinets typically have a refrigerant that works by evaporation and condensation in a vapor compression cycle. The refrigerant is selected such that its critical temperature is well below the required heat removal (condensation) temperature. Achieving effective condensation in an air-cooled system requires a relatively large air flow and a large space for the condenser and the airflow system. Most systems require a fan to circulate air in the condenser. One problem with this solution is that relatively high power is required for the fan, and additional space is required for the fan and its airflow system. Noise problems can also be caused by forced air flow and the fan and its motor, and the installation of the fan adds cost and complexity to the system.
[0003]
Residential and light commercial heat pumps that supply heat to room air typically have indoor units that provide forced air circulation in a condenser. This also requires an air circulation fan or blower, which results in additional power consumption and noise. Furthermore, thermal comfort may be reduced by the fact that drafts due to high airflow and / or high velocity airflows result in temperatures only slightly above room temperature. Due to the need for large airflows, indoor unit designs require large volumes, which reduces options for attractive product designs.
[0004]
Refrigerants in current refrigeration or heat pump systems are either fluorocarbon-based chemicals that are undesirable due to their ozone depleting properties and / or contributions to anthropogenic climate change, or combustibles that are being challenged due to safety concerns It is a hydrocarbon-based fluid.
[0005]
In supercritical systems, heat is removed by reducing the temperature of the supercritically pressurized refrigerant, but not by condensation at a constant temperature as in conventional systems. The supercritical pressure refrigerant releases heat as it flows through the heat exchanger, reducing its temperature (temperature transition). Ideally, due to the countercurrent of the refrigerant and the air flow, the refrigerant temperature approaches the temperature at the air inlet.
[0006]
In situations involving temperature transfer heat removal from the refrigerant, the air flow rate will decrease and the temperature at the air outlet may increase as compared to the situation at the condenser. In a condenser, the temperature of the air outlet must always be lower than the temperature of the condenser. In supercritical systems, high air temperatures and reduced airflows may benefit the natural convection of the airflow in the heat exchanger, reduce noise and may be advantageous with respect to thermal comfort in heat pump applications.
[0007]
[Summary of the Invention]
Therefore, in view of the above problems and disadvantages, a refrigeration system that uses safe and environmentally friendly refrigerant in the system, does not require fan power, or uses only a small amount of fan power in high load situations, It is an object of the present invention to provide a refrigeration system having a small natural air circulation heat removal system.
[0008]
To this end, the present invention describes a system that uses non-flammable, non-toxic, and environmentally friendly fluid carbon dioxide (CO 2 ) as a refrigerant.
[0009]
The present invention provides for a refrigerant to remove heat at supercritical pressure by means of a temperature transition in a heat removal heat exchanger cooled by natural upward circulation / convection of air, as defined in the independent claim 1 attached hereto. It is characterized by doing.
[0010]
Preferred embodiments of the invention are further defined in dependent claims 2-8.
[0011]
By utilizing the special thermodynamic properties of CO 2 and properly designing the system, as described above, a special air circulation fan is required due to the natural convection of the air and a significant reduction in air flow Without heat removal can occur.
[0012]
The invention is further described below, by way of example, with reference to the drawings.
[0013]
[Detailed description of preferred embodiments]
Embodiments of the present invention will be described in detail in the following text with reference to FIGS.
[0014]
FIG. 1 shows an example of a vapor compression system including a compressor 20, an air-cooled heat removal unit 21, an expansion device 22, and an evaporator 23. These components are connected in a closed circuit, which operates in a supercritical vapor compression cycle, ie at supercritical pressure on the high side. The heat removal heat exchanger 21 is cooled by the natural upward circulation / convection of air.
[0015]
FIG. 2 shows a cross-sectional view of a heat removal unit having an airflow conduit or airflow outer shell or jacket 11 and a heat exchanger tube 10. The tubes are arranged in a straight line on top of each other in the shell 11. Air enters at inlet i at the lower end of the system and exits at o at the top. Air circulation is achieved by natural convection as the air is heated by the tubes of the heat exchanger. Hot refrigerant from the compressor enters through the refrigerant inlet 12 of the heat exchanger and removes heat to the air as it flows through the heat exchanger, thereby achieving an efficient chimney effect. The cooled refrigerant exits the heat exchanger through outlet 13. In order to further increase the air flow rate, a conduit 11a having an additional vertical width may be added above the heat exchanger to increase the chimney effect. To enhance airflow, a "chimney" or stack with converging and diverging nozzle cross-sections can also be formed.
[0016]
As shown by the cross-sectional view of FIG. 3, the heat transfer tubes 10 may be arranged in a staggered manner in the flow conduit to increase the surface and improve heat transfer.
[0017]
FIG. 4 shows a side view of a natural air circulation heat removal unit having an air flow conduit 11 based on a folded tube 10 and a heat exchanger. To maximize the efficiency of the air circulation and heat exchanger, the refrigerant should flow in a generally countercurrent direction to the air. As shown, a top refrigerant inlet 12 and a bottom outlet 13 achieve the desired relationship between the two different air and refrigerant flows.
[0018]
Another possible embodiment is shown in FIG. Here, the air flow conduit 11 has a circular cross section, and the heat transfer tube 10 is formed in a spiral shape inside the air flow conduit 11. In order to optimize the cross section of the air conduit 11 with respect to the air flow, a circular inner tube is inserted into the conduit and the inserted tube is closed at the end to establish an annulus containing the heat transfer tubes. Is also good.
[0019]
As shown by FIG. 6, the heat transfer tubes form an integral part of the plate-like shell or conduit 11, i.e., incorporated into the conduit or shell to increase the heat transfer surface facing the air flow. Is also good. If necessary, heat transfer along the conduit height may be reduced or eliminated by having slots, splits, or louvers 14 in the plate. The shell plate or conduit can have a flat surface, or the surface can consist of vertical fins or open or closed duct-like structures that enhance natural convection airflow.
[0020]
The invention, as defined in the appended claims, is not limited to the examples shown in the drawings and described above, and therefore, in all of the above embodiments, one or several walls of the conduit, or shell, It can also be applied as a heat transfer surface. Further, while the heat transfer tubes are shown with a circular cross-section in the figures, any tube shape can be used, including flat tubes, elliptical tubes, perforated tubes, and more complex shapes. In addition, refrigerant tubes can be incorporated into the airflow conduit material to provide an integrated heat removal and air conduit unit that can also enhance heat transfer by radiation. Some enhancements and outer surface enlargements of the heat transfer tubes, including wires, fins, studs, etc. are also possible. An example using a Multi Port Extruded (MPE) heat exchanger having a surface with extended plate fins is shown in FIG. At this surface, the hot refrigerant enters at the top and exits at the bottom after being cooled by the natural ascending / counterflow of air in a complete countercurrent heat exchange process, which is ideal in such cases.
[0021]
FIG. 8 shows an example of an embodiment according to claim 5 for use in a refrigerator or similar device. The heat exchanger 10 is located in the bottom compartment, and the airflow shell or jacket 11 is extended by an airflow conduit 11a on the back of the refrigerator to enhance natural airflow / circulation.
[Brief description of the drawings]
FIG.
FIG. 1 shows a supercritical vapor compression system including a compressor connected in a closed circuit, an air-cooled heat removal unit with natural air circulation, an expansion device, and an evaporator.
FIG. 2
1 is a cross-sectional view of a heat removal unit with natural air circulation, including a heat removal heat exchanger based on an air flow conduit and an in-line circular tube according to the present invention.
FIG. 3
FIG. 6 is a cross-sectional view of a natural air circulation heat removal unit including a heat removal heat exchanger based on an airflow conduit and a staggered circular tube according to a second embodiment of the present invention.
FIG. 4
FIG. 9 is a side view of a natural air circulation heat removal unit having a heat removal heat exchanger based on an airflow conduit and a return tube according to a third embodiment of the present invention.
FIG. 5
FIG. 11 is a cross-sectional view of a heat removal unit having an air flow conduit and a heat removal heat exchanger formed in a spiral shape according to a fourth embodiment of the present invention.
FIG. 6
FIG. 11 shows a heat removal unit according to a fifth embodiment of the present invention, in which tubes are attached to a plate to increase the air-side heat transfer surface.
FIG. 7
FIG. 2 shows a fully countercurrent heat removal unit with natural air circulation using a Multi Port Extruded (MPE) heat exchanger having a surface with plate fins extending on one or both sides.
FIG. 8
FIG. 6 shows an example of an embodiment according to claim 5 for use in a refrigerator or similar device.

Claims (9)

蒸気圧縮サイクルにおいて動作する閉回路で接続される以下の各構成要素、蒸発器(23)、圧縮器(20)、空冷式熱除去熱交換器(21)、および膨張装置(22)のうちの少なくとも1つを含む冷凍またはヒートポンプシステムであって、
冷媒が、空気の自然な上昇循環/対流により冷却される前記熱除去熱交換器(21)中での温度移行により、超臨界圧で熱を除去することを特徴とする、冷凍またはヒートポンプシステム。
Of the following components, evaporator (23), compressor (20), air-cooled heat removal heat exchanger (21), and expansion device (22) connected in a closed circuit operating in the vapor compression cycle A refrigeration or heat pump system including at least one,
A refrigeration or heat pump system, characterized in that the refrigerant removes heat at supercritical pressure by means of a temperature transition in said heat removal heat exchanger (21), which is cooled by natural upward circulation / convection of air.
前記熱除去熱交換器(21)は、空気流コンジットすなわちシェル(11)に組み込まれて、自然空気循環を高めることを特徴とする、請求項1に記載のシステム。The system of claim 1, wherein the heat removal heat exchanger (21) is incorporated into an air flow conduit or shell (11) to enhance natural air circulation. 前記空気流コンジット(11)は、略垂直方向に上方に伸長することを特徴とする、請求項1および2に記載のシステム。The system according to claims 1 and 2, characterized in that the air flow conduit (11) extends upward in a substantially vertical direction. 前記熱除去熱交換器(21)の冷媒管すなわちコンジット(10)を通る冷媒流が、概ね頂部の入口(12)から底部の出口(13)に向けて通過することを特徴とする、請求項1〜3に記載のシステム。The refrigerant flow passing through a refrigerant tube or conduit (10) of the heat removal heat exchanger (21) passes generally from a top inlet (12) to a bottom outlet (13). A system according to any one of claims 1 to 3. 付加的な空気流コンジット(11a)が、空気流量を増大させるために、前記熱除去熱交換器(21)の頂部に取り付けられることを特徴とする、請求項1〜4の1つまたは複数に記載のシステム。5. One or more of the preceding claims, characterized in that an additional air flow conduit (11a) is mounted on top of the heat removal heat exchanger (21) for increasing the air flow. The described system. 付加的な空気流ノズル配列が、空気流量を増大させるために、前記熱除去熱交換器(21)の頂部に取り付けられることを特徴とする、請求項1〜5の1つまたは複数に記載のシステム。6. The arrangement according to claim 1, wherein an additional array of air flow nozzles is mounted on top of the heat removal heat exchanger to increase the air flow. system. 前記空気流コンジットすなわちシェル(11)は、伝熱表面として全体的または部分的に用いられ、それによって、前記冷媒管すなわちコンジット(10)は、前記コンジットすなわちシェル(11)の一体部分を形成することを特徴とする、請求項1〜6の1つまたは複数に記載のシステム。The airflow conduit or shell (11) is used in whole or in part as a heat transfer surface, whereby the refrigerant tube or conduit (10) forms an integral part of the conduit or shell (11). A system according to one or more of the preceding claims, characterized in that: 高負荷状況での空気流を高めるために、ファンが、前記空気流コンジット(11)の前、後、または内部に取り付けられることを特徴とする、請求項1〜7の1つまたは複数に記載のシステム。8. The air flow conduit according to one or more of the preceding claims, characterized in that a fan is mounted before, after or inside the air flow conduit (11) to increase the air flow in high load situations. System. 二酸化炭素が冷媒として用いられることを特徴とする、請求項1〜8の1つまたは複数に記載のシステム。The system according to one or more of the preceding claims, characterized in that carbon dioxide is used as refrigerant.
JP2002544591A 2000-11-24 2001-11-16 Refrigeration or heat pump system using heat removal at supercritical pressure Pending JP2004514868A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20005974A NO20005974D0 (en) 2000-11-24 2000-11-24 Cooling or heat pump system with heat release when temperature changes
PCT/NO2001/000454 WO2002042695A1 (en) 2000-11-24 2001-11-16 Refrigerating or heat pump system with heat rejection at supercritical pressure

Publications (1)

Publication Number Publication Date
JP2004514868A true JP2004514868A (en) 2004-05-20

Family

ID=19911836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002544591A Pending JP2004514868A (en) 2000-11-24 2001-11-16 Refrigeration or heat pump system using heat removal at supercritical pressure

Country Status (10)

Country Link
US (1) US20040069013A1 (en)
EP (1) EP1340027A1 (en)
JP (1) JP2004514868A (en)
KR (1) KR20030065524A (en)
CN (1) CN1250927C (en)
AU (1) AU2002215268A1 (en)
CA (1) CA2429857A1 (en)
NO (1) NO20005974D0 (en)
TW (1) TW528843B (en)
WO (1) WO2002042695A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101468912B1 (en) * 2007-05-22 2014-12-04 인스티튜트 퓌어 루프트- 운트 캘테테크닉 게마인뉘트치게 게엠베하 Rear wall condenser for domestic refrigerators and freezers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005106404A (en) 2003-09-30 2005-04-21 Sanyo Electric Co Ltd Heating/cooling system
JP2005156093A (en) * 2003-11-28 2005-06-16 Daikin Ind Ltd Air conditioner
AU2005327835A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation CO2-refrigeration device with heat reclaim
US8925336B2 (en) * 2008-04-19 2015-01-06 Carrier Corporation Refrigerant system performance enhancement by subcooling at intermediate temperatures
DE102010043243A1 (en) * 2010-11-03 2012-05-03 BSH Bosch und Siemens Hausgeräte GmbH heat exchangers
JP5349655B1 (en) * 2012-06-25 2013-11-20 株式会社 エコファクトリー Air conditioner room unit
CN105737458A (en) * 2016-03-14 2016-07-06 深圳智焓热传科技有限公司 Natural cooling heat exchanger and heat exchange units thereof
EP3686535B1 (en) * 2019-01-22 2024-03-06 Hitachi Energy Ltd Condenser

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1769119A (en) * 1928-01-06 1930-07-01 Chicago Pneumatic Tool Co Condensing system
US2189494A (en) * 1932-11-26 1940-02-06 Gen Motors Corp Refrigerating apparatus
US2105751A (en) * 1936-05-28 1938-01-18 Crosley Radio Corp Condenser device for refrigerators
GB540937A (en) * 1939-08-03 1941-11-06 Nils Erland Af Kleen Improvements in or relating to air cooled condensing systems for refrigerators
US2292033A (en) * 1941-08-01 1942-08-04 Gen Electric Refrigerant condenser and method of forming same
US2344145A (en) * 1943-04-29 1944-03-14 Gen Motors Corp Refrigerating apparatus
US2478617A (en) * 1948-03-18 1949-08-09 Pierce John B Foundation Air conditioning system
US2865182A (en) * 1956-09-21 1958-12-23 Temprite Products Corp Self-contained water cooler of the bubbler type
US3595029A (en) * 1969-09-08 1971-07-27 Heatransfer Corp Air conditioning for volkswagen-type automobiles
US4972683A (en) * 1989-09-01 1990-11-27 Blackstone Corporation Condenser with receiver/subcooler
CA2049081C (en) * 1990-08-16 1995-03-14 Klaus Erdmann Cooling apparatus
FR2704939B1 (en) * 1993-05-06 1995-06-23 Valeo Thermique Habitacle Refrigerant circuit with improved efficiency.
JP3312067B2 (en) * 1993-09-21 2002-08-05 ホシザキ電機株式会社 Cooling system
IT1284421B1 (en) * 1995-11-13 1998-05-21 Bundy S P A COIL HEAT EXCHANGER, IN PARTICULAR CONDENSER FOR REFRIGERATING CIRCUITS.
JPH11211250A (en) * 1998-01-21 1999-08-06 Denso Corp Supercritical freezing cycle
JP4075129B2 (en) * 1998-04-16 2008-04-16 株式会社豊田自動織機 Control method of cooling device
DE19830757A1 (en) * 1998-07-09 2000-01-13 Behr Gmbh & Co Air conditioning system especially for a motor vehicle
JP2000055488A (en) * 1998-08-05 2000-02-25 Sanden Corp Refrigerating device
DE19918617C2 (en) * 1999-04-23 2002-01-17 Valeo Klimatechnik Gmbh Gas cooler for a supercritical CO¶2¶ high pressure refrigerant circuit of an automotive air conditioning system
JP4016544B2 (en) * 1999-09-29 2007-12-05 株式会社デンソー Radiator for supercritical vapor compression refrigeration cycle
US6591618B1 (en) * 2002-08-12 2003-07-15 Praxair Technology, Inc. Supercritical refrigeration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101468912B1 (en) * 2007-05-22 2014-12-04 인스티튜트 퓌어 루프트- 운트 캘테테크닉 게마인뉘트치게 게엠베하 Rear wall condenser for domestic refrigerators and freezers

Also Published As

Publication number Publication date
WO2002042695A1 (en) 2002-05-30
US20040069013A1 (en) 2004-04-15
CN1250927C (en) 2006-04-12
EP1340027A1 (en) 2003-09-03
AU2002215268A1 (en) 2002-06-03
CA2429857A1 (en) 2002-05-30
CN1476524A (en) 2004-02-18
TW528843B (en) 2003-04-21
NO20005974D0 (en) 2000-11-24
KR20030065524A (en) 2003-08-06

Similar Documents

Publication Publication Date Title
US7386989B2 (en) Air conditioner
EP1628081B1 (en) Indoor unit of air conditioner
CN101210748A (en) Air-conditioner hot-water composite machine
US5402656A (en) Spread serpentine refrigerator evaporator
JP6888102B2 (en) Heat exchanger unit and refrigeration cycle equipment
JP2004514868A (en) Refrigeration or heat pump system using heat removal at supercritical pressure
CN210688558U (en) Ultra-thin heat pump type air conditioning system
JP4130636B2 (en) Refrigerator built-in showcase
JPH11337104A (en) Air conditioner
JP4423321B2 (en) Refrigerator built-in showcase
JP2003214723A (en) Air conditioner
JP3724011B2 (en) Air conditioner
JP2018115809A (en) Air conditioner
KR100625751B1 (en) Air-conditioner for cooling and heating
CN214949401U (en) Indoor machine of air conditioner
JPH1089803A (en) Air conditioner
JP2011247501A (en) Cold air circulation type showcase
KR100244320B1 (en) Refrigerant pass line structure of indoor unit for aircoditioner
JP3596513B2 (en) Air conditioner
KR100244323B1 (en) Refrigerant passline structure of indoor unit fir airconditioner
JP3170547B2 (en) Air conditioner
KR200385569Y1 (en) Condenser for water cooled air conditioner with high thermal efficiency
CN113531894A (en) Heat pump air-conditioning type water heater
JPH11230690A (en) Heat exchanger
CN103238035A (en) Heat exchanger arrangement and heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070214

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703