JP4016544B2 - Radiator for supercritical vapor compression refrigeration cycle - Google Patents

Radiator for supercritical vapor compression refrigeration cycle Download PDF

Info

Publication number
JP4016544B2
JP4016544B2 JP27693499A JP27693499A JP4016544B2 JP 4016544 B2 JP4016544 B2 JP 4016544B2 JP 27693499 A JP27693499 A JP 27693499A JP 27693499 A JP27693499 A JP 27693499A JP 4016544 B2 JP4016544 B2 JP 4016544B2
Authority
JP
Japan
Prior art keywords
refrigerant
radiator
lower side
tube
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27693499A
Other languages
Japanese (ja)
Other versions
JP2001099522A (en
Inventor
泰孝 黒田
義貴 戸松
伸治 梯
素弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP27693499A priority Critical patent/JP4016544B2/en
Priority to DE10043439A priority patent/DE10043439A1/en
Publication of JP2001099522A publication Critical patent/JP2001099522A/en
Priority to US10/280,961 priority patent/US20030062152A1/en
Application granted granted Critical
Publication of JP4016544B2 publication Critical patent/JP4016544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geometry (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高圧側(吐出側)の冷媒圧力が冷媒の臨界圧力以上となる超臨界蒸気圧縮式冷凍サイクル(以下、超臨界サイクルと呼ぶ。)に適用される放熱器(ガスクーラ)に関するものである。
【0002】
【従来の技術】
フロンを冷媒とする蒸気圧縮式冷凍サイクル(以下、未臨界サイクルと呼ぶ。)では、高圧側の圧力は冷媒の臨界圧力未満であるので、凝縮器内では温度が略一定の状態で気相冷媒から液相冷媒に相変化(凝縮)していく。
【0003】
このため、凝縮器の冷媒流入口側から冷媒流出口側に向けて冷媒が進むに連れて、冷媒密度が大きくなるので、一般的に、冷媒流入口を冷媒流出口より上方側に形成していた。
【0004】
【発明が解決しようとする課題】
ところで、車両用空調装置においては、一般的に、凝縮器や放熱器等の冷却用熱交換器は、温度の低い冷却風を容易に取り込むことができるように、車両前方側に搭載されている。
【0005】
そこで、発明者等は、車両停止時における空調装置の冷房能力を向上させるべく、凝縮器や放熱器等の冷却用熱交換器に流入する冷却風の温度を測定したところ、冷却用熱交換器の下方側に流入する冷却風の温度が冷却用熱交換器の上方側に流入する冷却風の温度より高いことを発見した。
【0006】
つまり、車両停止時においては、図10に示すように、地面から熱(地熱)の放射及びエンジンルームから排出される熱風の回り込みがあるため、冷却用熱交換器200の下方側に流入する冷却風が加熱され、冷却用熱交換器の下方側に流入する冷却風の温度が冷却用熱交換器の上方側に流入する冷却風の温度より高くなってしまう。
【0007】
因みに、発明者等の試験検討によると、外気温度が40℃の場合には、下方側には約55℃の冷却風が流入し、一方、上方側には約45℃の冷却風が流入することを確認しており、この例から明らかなように、冷却用熱交換器の上方側と下方側とでは、大きな温度差がある。
【0008】
本発明は、上記点に鑑み、超臨界サイクルの放熱器において、冷媒の冷却効率を向上させることを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、高圧側の圧力が冷媒の臨界圧力以上となる超臨界蒸気圧縮機式冷凍サイクルに適用され、圧縮機(100)から吐出する高圧の冷媒を冷却する放熱器(200)の車両搭載構造であって、放熱器(200)には、冷媒が流入する冷媒流入口(240)と、熱交換を終えた冷媒が流出する冷媒流出口(230)とが形成され、放熱器(200)は、冷媒流出口(230)が冷媒流入口(240)より上方側に位置するように車両に搭載され、冷媒流入口(230)から放熱器(200)内に流入した冷媒は、凝縮することなく、その温度を低下させながら放熱器(200)内を下方側から上方側に向かって流通した後に、冷媒流出口(230)から流出することを特徴とする。
【0010】
これにより、流入する冷却風の温度は、前述のごとく、放熱器(200)下方側の方が上方側より高いが、温度が高い冷媒が放熱器(200)の下方側から流入するので、冷却風の温度が高くても、冷媒と冷却風との間で十分な温度差を確保することができ、冷媒の冷却効率を向上させることができる。
【0017】
請求項に記載の発明では、放熱器(200)は、上下方向に複数本並んだ状態で各々が水平方向に延び、かつ、冷媒が流通するチューブ(210)と、チューブ(210)の長手方向両端側に配設され、複数本のチューブ(210)と連通するヘッダタンク(220)とを有し、ヘッダタンク(220)内の空間が複数の空間に仕切られていることによって、冷媒が放熱器(200)内を蛇行しながら下方側から上方側に向かって流通することを特徴とする。
【0018】
請求項3に記載の発明では、放熱器(200)は、水平方向に複数本並んだ状態で各々が上下方向に延び、かつ、冷媒が流通するチューブ(210)と、チューブ(210)の長手方向両端側に配設され、複数本のチューブ(210)と連通するヘッダタンク(220)とを有し、冷媒が放熱器(200)内を下側から上側に向かって流通することを特徴とする。
【0019】
請求項に記載の発明では、放熱器(200)は、冷媒流入口(230)から冷媒流出口(240)に至る1本または複数本のチューブ(210)を有し、1本または複数本のチューブ(210)は、蛇行しながら下方側から上方側に向かって延びていることを特徴とする。
【0021】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0022】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る超臨界サイクル用の放熱器を車両用空調装置に適用したものであって、図1は、超臨界冷凍サイクル(車両用空調装置)の車両搭載状態を示す模式図であり、図2は本実施形態に係る放熱器を車両前面側から見た正面図である。
【0023】
図1中、100は車両走行用エンジン(図示せず。)から駆動力を得て、冷媒(本実施形態では、二酸化炭素)を吸入圧縮する圧縮機であり、200は圧縮機100から吐出される高圧の冷媒と空気(冷却風)と熱交換して冷媒を冷却する放熱器である。なお、放熱器200の詳細は、後述する。
【0024】
300は放熱器200から流出する冷媒を減圧するとともに、放熱器200出口側の冷媒温度に基づいて、超臨界サイクルの成績係数(COP)が最大となるように放熱器200出口側の冷媒温度を制御する圧力制御弁である。なお、この圧力制御弁300は、特願平8−33962号に記載されたものと同等の機能を有するものであるので、本明細書では、詳細説明を省略する。
【0025】
400は圧力制御弁300にて減圧された冷媒を蒸発させて冷凍能力(冷房能力)を発揮する蒸発器であり、500は蒸発器400から流出する冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を圧縮機100の吸入側に流出させるとともに、超臨界サイクル中の余剰冷媒を蓄えるアキュムレータ(気液分離手段)である。
【0026】
次に、図2を例に本実施形態に係る放熱器200について述べる。
【0027】
210は、上下方向に複数本並んだ状態でその各々が水平方向に延びるとともに、冷媒が流通する多数本のチューブであり、このチューブ210には、図3に示すように、押し出し加工又は引き抜き加工により内部に冷媒が流通する冷媒通路211が複数本形成されている。そして、チューブ210及びチューブ210間に配設された波状のフィン212により、冷媒を冷却する熱交換コア213が構成されている。
【0028】
また、チューブ210の長手方向両端側には、多数本のチューブ210に連通するヘッダタンク220が配設されており、このヘッダタンク220内の空間は、仕切り板(セパレータ)221に複数の空間に仕切られている。
【0029】
そして、ヘッダタンク220(放熱器200)の下方側には、圧縮機100から吐出した冷媒が流入する冷媒流入口230が形成され、一方、ヘッダタンク220(放熱器200)の上方側には、熱交換を終えた冷媒が流出する冷媒流出口240が形成されている。このため、放熱器200内を流通する冷媒は、図2の矢印で示すように、放熱器200内を蛇行しながら下方側から上方側に向かって流通する。
【0030】
次に、本実施形態の特徴を述べる。
【0031】
本実施形態では、ヘッダタンク220(放熱器200)の下方側に冷媒流入口230が形成され、ヘッダタンク220(放熱器200)の上方側に冷媒流出口240が形成されているので、車両搭載状態において、放熱器200の冷媒流出口230は、冷媒流入口240より上方側に位置していることとなる。
【0032】
一方、超臨界サイクルでは、高圧側(放熱器200内)の冷媒は、凝縮(相変化)することなく、その温度を低下させながら冷媒流入口230側から冷媒流出口240側に向けて流通するので、冷媒流入口230側の冷媒温度の方が冷媒流出口240側の冷媒温度より高くなる。
【0033】
ここで、流入する冷却風の温度は、前述のごとく、放熱器200下方側の方が上方側より高いが、本実施形態では、温度が高い冷媒が放熱器200の下方側から流入するので、冷却風の温度が高くても、冷媒と冷却風との間で十分な温度差を確保することができる。
【0034】
したがって、超臨界サイクルの放熱器200において、冷媒の冷却効率を向上させることができるので、空調装置(超臨界サイクル)の冷房能力(冷凍能力)を向上させることができる。
【0035】
因みに、図4の実線A−B−C−Dは本実施形態に係る超臨界サイクル挙動を示す線図であり、図4の破線E−F−G−Hは冷媒を上方側から下方側に流通させた場合の超臨界サイクルの挙動を示す線図である。この図からも明らかなように、本実施形態によれば、冷凍能力(C−D間のエンタルピ差)が従来の超臨界サイクルの冷凍能力(G−H間のエンタルピ差)に比べて、(約18%)増大していることが判る。
【0036】
なお、本実施形態は、図2に示すような放熱器200に限定されるものではなく、図5に示すように、仕切り板(セパレータ)221の枚数を減らして放熱器200内における冷媒のターン数を減らしてもよい。
【0037】
また、当然ながら、図2に示す放熱器200に対して、仕切り板221を増やしてターン数を増やしてもよい。
【0038】
(第2実施形態)
第1実施形態では、チューブ210が水平方向に延びるように配設されていたが、本実施形態は、図6に示すように、チューブ210の長手方向を上下方向に一致させた状態で、冷媒を下側から上側に向けて流通させるように構成しものである。
【0039】
(第3実施形態)
本実施形態は、図7、8に示すように、ヘッダタンク220を廃止してチューブ210自体を蛇行させて熱交換コア213を構成したものである。因みに、図7は1本のチューブ210を冷媒流入口230から冷媒流出口240まで蛇行させたものであり、図8は複数本(本実施形態では、2本)のチューブ210を冷媒流入口230から冷媒流出口240まで蛇行させたものである。
【0040】
参考例
第1実施形態では、冷媒が重力に逆らって下方側から上方側に向けて流通するので、冷媒の流通性が悪化し、ヘッダタンク220から各チューブ210に冷媒を分配する分配性が悪化する可能性がある。
【0041】
そこで、本参考例では、図9に示すように、冷媒流入口230を放熱器200(ヘッダタンク220)の上方側に設け、冷媒流出口240を放熱器200(ヘッダタンク220)の下方側に設けることにより、冷媒を上方側から下方側に向けて流通させるとともに、複数本のチューブ210のうち上方側に存在するチューブの通路断面積(冷媒通路211の径寸法)を下方側に存在するチューブの断面積(冷媒通路211の径寸法)より大きくしたものである。
【0042】
これにより、冷却風の温度が低い放熱器200の上方側に、多くの冷媒を流通させることができるとともに、空調風と冷媒との温度差を大きくすることができるので、超臨界サイクルの放熱器200において、冷媒の冷却効率を向上させつつ、冷媒の分配性を向上させることができる。
【0043】
なお、本参考例は、複数本のチューブ210のうち上方側に存在するチューブの通路断面積を下方側に存在するチューブの断面積より大きくするものであるので、複数本のチューブ210のうち上方側に存在するチューブにおける冷媒通路211の数を下方側に存在するチューブにおける冷媒通路211の数より多くしてよい。
【0044】
(その他の実施形態)
上述の実施形態では、二酸化炭素を冷媒とする超臨界サイクルであったが、例えば、エチレン、エタン、酸化窒素等の超臨界域で使用する冷媒であっても本発明を適用することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態に係る放熱器を搭載した車両の模式図である。
【図2】 本発明の第1実施形態に係る放熱器の正面図である。
【図3】 本発明の第1実施形態に係る放熱器のチューブの断面図である。
【図4】 二酸化炭素のp−h線図である。
【図5】 本発明の第1実施形態に係る放熱器の変形例を示す正面図である。
【図6】 本発明の第2実施形態に係る放熱器の正面図である。
【図7】 本発明の第3実施形態に係る放熱器の正面図である。
【図8】 本発明の第3実施形態に係る放熱器の変形例を示す正面図である。
【図9】 参考例に係る放熱器の正面図である。
【図10】 従来の技術の問題点を説明するための説明図である。
【符号の説明】
200…放熱器、210…チューブ、220…ヘッダタンク、
230…冷媒流入口、240…冷媒流出口。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiator (gas cooler) applied to a supercritical vapor compression refrigeration cycle (hereinafter referred to as a supercritical cycle) in which the refrigerant pressure on the high pressure side (discharge side) is equal to or higher than the critical pressure of the refrigerant. is there.
[0002]
[Prior art]
In a vapor compression refrigeration cycle using chlorofluorocarbon as a refrigerant (hereinafter referred to as a subcritical cycle), the pressure on the high pressure side is less than the critical pressure of the refrigerant. Phase change (condensation) from liquid to refrigerant.
[0003]
For this reason, since the refrigerant density increases as the refrigerant advances from the refrigerant inlet side to the refrigerant outlet side of the condenser, the refrigerant inlet is generally formed above the refrigerant outlet. It was.
[0004]
[Problems to be solved by the invention]
By the way, in a vehicle air conditioner, generally, a heat exchanger for cooling such as a condenser or a radiator is mounted on the front side of the vehicle so that cooling air having a low temperature can be easily taken in. .
[0005]
Therefore, the inventors measured the temperature of the cooling air flowing into the cooling heat exchanger such as a condenser or a radiator to improve the cooling capacity of the air conditioner when the vehicle is stopped. It was discovered that the temperature of the cooling air flowing into the lower side of the cooling air is higher than the temperature of the cooling air flowing into the upper side of the cooling heat exchanger.
[0006]
That is, when the vehicle is stopped, as shown in FIG. 10, there is radiation of heat (geothermal heat) from the ground and hot air discharged from the engine room, so cooling that flows into the lower side of the cooling heat exchanger 200 is performed. The wind is heated, and the temperature of the cooling air flowing into the lower side of the cooling heat exchanger becomes higher than the temperature of the cooling air flowing into the upper side of the cooling heat exchanger.
[0007]
Incidentally, according to examinations by the inventors, when the outside air temperature is 40 ° C., about 55 ° C. cooling air flows into the lower side, while about 45 ° C. cooling air flows into the upper side. As is clear from this example, there is a large temperature difference between the upper side and the lower side of the cooling heat exchanger.
[0008]
In view of the above points, an object of the present invention is to improve the cooling efficiency of a refrigerant in a supercritical cycle radiator.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is applied to a supercritical vapor compressor refrigeration cycle in which the pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. It is a vehicle mounting structure of the heat radiator (200) which cools the high pressure refrigerant | coolant discharged from, Comprising: In the heat radiator (200), the refrigerant | coolant inflow port (240) into which a refrigerant | coolant flows in, and the refrigerant | coolant after heat exchange flow And the radiator (200) is mounted on the vehicle so that the refrigerant outlet (230) is positioned above the refrigerant inlet (240), and the refrigerant inlet (230) The refrigerant flowing into the radiator (200) from the inside of the radiator (200) flows through the radiator (200) from the lower side to the upper side while reducing its temperature without condensing, and then the refrigerant outlet (230) characterized in that it flows out from the
[0010]
As a result, as described above, the temperature of the cooling air flowing in is lower on the lower side of the radiator (200) than on the upper side, but the refrigerant having a higher temperature flows in from the lower side of the radiator (200). Even if the temperature of the wind is high, a sufficient temperature difference can be ensured between the refrigerant and the cooling air, and the cooling efficiency of the refrigerant can be improved.
[0017]
In the invention according to claim 2 , the radiator (200) includes a tube (210) in which a plurality of radiators (200) are arranged in the vertical direction, each extending in the horizontal direction, and a refrigerant flowing therethrough, and the longitudinal length of the tube (210). The header tank (220) that is disposed on both ends in the direction and communicates with the plurality of tubes (210), and the space in the header tank (220) is partitioned into a plurality of spaces. It circulates from the lower side to the upper side while meandering in the radiator (200) .
[0018]
In the invention according to claim 3, the radiator (200) includes a tube (210) in which a plurality of radiators (200) are arranged in the horizontal direction and extend in the vertical direction, and a refrigerant flows therethrough, and the length of the tube (210). It has header tanks (220) that are arranged on both ends in the direction and communicate with a plurality of tubes (210), and the refrigerant circulates in the radiator (200) from the lower side to the upper side. To do.
[0019]
In the invention according to claim 4 , the radiator (200) has one or a plurality of tubes (210) extending from the refrigerant inlet (230) to the refrigerant outlet (240). The tube (210) extends from the lower side toward the upper side while meandering .
[0021]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
In this embodiment, a radiator for a supercritical cycle according to the present invention is applied to a vehicle air conditioner, and FIG. 1 is a schematic diagram showing a vehicle-mounted state of a supercritical refrigeration cycle (vehicle air conditioner). FIG. 2 is a front view of the radiator according to the present embodiment as viewed from the front side of the vehicle.
[0023]
In FIG. 1, reference numeral 100 denotes a compressor that obtains driving force from a vehicle travel engine (not shown) and sucks and compresses refrigerant (in this embodiment, carbon dioxide), and 200 is discharged from the compressor 100. This is a heat radiator that cools the refrigerant by exchanging heat with the high-pressure refrigerant and air (cooling air). Details of the radiator 200 will be described later.
[0024]
300 depressurizes the refrigerant flowing out of the radiator 200 and, based on the refrigerant temperature on the outlet side of the radiator 200, the refrigerant temperature on the outlet side of the radiator 200 so that the coefficient of performance (COP) of the supercritical cycle is maximized. It is a pressure control valve to control. Since the pressure control valve 300 has a function equivalent to that described in Japanese Patent Application No. 8-33962, detailed description is omitted in this specification.
[0025]
Reference numeral 400 denotes an evaporator that evaporates the refrigerant depressurized by the pressure control valve 300 to exert a refrigerating capacity (cooling capacity), and 500 denotes a refrigerant that flows out of the evaporator 400 into a gas phase refrigerant and a liquid phase refrigerant. Thus, the gas-phase refrigerant is allowed to flow out to the suction side of the compressor 100, and at the same time, an accumulator (gas-liquid separation means) that stores excess refrigerant in the supercritical cycle.
[0026]
Next, the radiator 200 according to this embodiment will be described with reference to FIG.
[0027]
A plurality of tubes 210 are arranged in a row in the vertical direction, each of which extends in the horizontal direction and through which a refrigerant flows. The tubes 210 are extruded or drawn as shown in FIG. As a result, a plurality of refrigerant passages 211 through which the refrigerant flows are formed. And the heat exchange core 213 which cools a refrigerant | coolant is comprised by the wavy fin 212 arrange | positioned between the tube 210 and the tube 210. FIG.
[0028]
In addition, a header tank 220 communicating with a large number of tubes 210 is disposed on both ends in the longitudinal direction of the tube 210, and a space in the header tank 220 is divided into a plurality of spaces by a partition plate (separator) 221. It is partitioned.
[0029]
A refrigerant inlet 230 into which the refrigerant discharged from the compressor 100 flows is formed on the lower side of the header tank 220 (heat radiator 200). On the other hand, on the upper side of the header tank 220 (heat radiator 200), A refrigerant outlet 240 is formed through which the refrigerant after heat exchange flows out. For this reason, the refrigerant | coolant which distribute | circulates the inside of the heat radiator 200 distribute | circulates from the downward side to the upper side, meandering in the heat radiator 200, as shown by the arrow of FIG.
[0030]
Next, features of the present embodiment will be described.
[0031]
In this embodiment, the refrigerant inlet 230 is formed on the lower side of the header tank 220 (heat radiator 200), and the refrigerant outlet 240 is formed on the upper side of the header tank 220 (heat radiator 200). In the state, the refrigerant outlet 230 of the radiator 200 is located above the refrigerant inlet 240.
[0032]
On the other hand, in the supercritical cycle, the refrigerant on the high pressure side (in the radiator 200) flows from the refrigerant inlet 230 side toward the refrigerant outlet 240 side while reducing its temperature without condensing (phase change). Therefore, the refrigerant temperature on the refrigerant inlet 230 side becomes higher than the refrigerant temperature on the refrigerant outlet 240 side.
[0033]
Here, as described above, the temperature of the cooling air flowing in is lower on the lower side of the radiator 200 than on the upper side, but in this embodiment, the refrigerant having a higher temperature flows from the lower side of the radiator 200. Even if the temperature of the cooling air is high, a sufficient temperature difference can be ensured between the refrigerant and the cooling air.
[0034]
Therefore, since the cooling efficiency of the refrigerant can be improved in the radiator 200 of the supercritical cycle, the cooling capacity (refrigeration capacity) of the air conditioner (supercritical cycle) can be improved.
[0035]
Incidentally, the solid line A-B-C-D in FIG. 4 is a diagram showing the supercritical cycle behavior according to the present embodiment, and the broken line E-F-G-H in FIG. 4 shows the refrigerant from the upper side to the lower side. It is a diagram which shows the behavior of the supercritical cycle at the time of distribute | circulating. As is clear from this figure, according to the present embodiment, the refrigerating capacity (the enthalpy difference between CD) is higher than the refrigerating capacity of the conventional supercritical cycle (the enthalpy difference between GH) ( It can be seen that it has increased by about 18%.
[0036]
Note that the present embodiment is not limited to the radiator 200 as shown in FIG. 2, and as shown in FIG. 5, the number of the partition plates (separators) 221 is reduced to turn the refrigerant in the radiator 200. The number may be reduced.
[0037]
Naturally, the number of turns may be increased by increasing the number of partition plates 221 with respect to the radiator 200 shown in FIG.
[0038]
(Second Embodiment)
In the first embodiment, the tube 210 is disposed so as to extend in the horizontal direction. However, in the present embodiment, as shown in FIG. Is distributed from the lower side toward the upper side.
[0039]
(Third embodiment)
In this embodiment, as shown in FIGS. 7 and 8, the header tank 220 is eliminated and the tube 210 itself is meandered to constitute a heat exchange core 213. Incidentally, FIG. 7 shows one tube 210 meandering from the refrigerant inlet 230 to the refrigerant outlet 240, and FIG. 8 shows a plurality (two in this embodiment) of the tubes 210 in the refrigerant inlet 230. To the refrigerant outlet 240.
[0040]
( Reference example )
In the first embodiment, since the refrigerant flows from the lower side toward the upper side against gravity, the flowability of the refrigerant deteriorates, and the distribution property of distributing the refrigerant from the header tank 220 to each tube 210 may deteriorate. There is sex.
[0041]
Therefore, in this reference example , as shown in FIG. 9, the refrigerant inlet 230 is provided on the upper side of the radiator 200 (header tank 220), and the refrigerant outlet 240 is provided on the lower side of the radiator 200 (header tank 220). By providing the refrigerant, the refrigerant flows from the upper side toward the lower side, and the tube cross-sectional area (diameter dimension of the refrigerant passage 211) of the tube existing on the upper side among the plurality of tubes 210 is present on the lower side. Is larger than the cross-sectional area (diameter dimension of the refrigerant passage 211).
[0042]
Thereby, while being able to distribute | circulate many refrigerant | coolants to the upper side of the heat radiator 200 with the low temperature of cooling air, and the temperature difference between an air conditioning wind and a refrigerant | coolant can be enlarged, the heat radiator of a supercritical cycle In 200, it is possible to improve the refrigerant distribution efficiency while improving the cooling efficiency of the refrigerant.
[0043]
In this reference example , the cross-sectional area of the tube existing on the upper side of the plurality of tubes 210 is made larger than the cross-sectional area of the tube existing on the lower side. The number of refrigerant passages 211 in the tubes existing on the side may be larger than the number of refrigerant passages 211 in the tubes existing on the lower side.
[0044]
(Other embodiments)
In the above-described embodiment, the supercritical cycle using carbon dioxide as a refrigerant is used. However, for example, the present invention can also be applied to a refrigerant used in a supercritical region such as ethylene, ethane, and nitrogen oxide.
[Brief description of the drawings]
FIG. 1 is a schematic view of a vehicle equipped with a radiator according to a first embodiment of the present invention.
FIG. 2 is a front view of the radiator according to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view of the tube of the radiator according to the first embodiment of the present invention.
FIG. 4 is a ph diagram of carbon dioxide.
FIG. 5 is a front view showing a modification of the radiator according to the first embodiment of the present invention.
FIG. 6 is a front view of a radiator according to a second embodiment of the present invention.
FIG. 7 is a front view of a radiator according to a third embodiment of the present invention.
FIG. 8 is a front view showing a modification of the radiator according to the third embodiment of the present invention.
FIG. 9 is a front view of a radiator according to a reference example .
FIG. 10 is an explanatory diagram for explaining a problem of a conventional technique.
[Explanation of symbols]
200 ... radiator, 210 ... tube, 220 ... header tank,
230 ... refrigerant inlet, 240 ... refrigerant outlet.

Claims (4)

高圧側の圧力が冷媒の臨界圧力以上となる超臨界蒸気圧縮機式冷凍サイクルに適用され、圧縮機(100)から吐出する高圧の冷媒を冷却する放熱器(200)の車両搭載構造であって、
前記放熱器(200)には、冷媒が流入する冷媒流入口(240)と、熱交換を終えた冷媒が流出する冷媒流出口(230)とが形成され、
前記放熱器(200)は、前記冷媒流出口(230)が前記冷媒流入口(240)より上方側に位置するように車両に搭載され
前記冷媒流入口(230)から前記放熱器(200)内に流入した冷媒は、凝縮することなく、その温度を低下させながら前記放熱器(200)内を下方側から上方側に向かって流通した後に、前記冷媒流出口(230)から流出することを特徴とする放熱器の車両搭載構造。
A vehicle-mounted structure of a radiator (200) that is applied to a supercritical vapor compressor refrigeration cycle in which the pressure on the high-pressure side is equal to or higher than the critical pressure of the refrigerant and cools the high-pressure refrigerant discharged from the compressor (100). ,
The radiator (200) is formed with a refrigerant inlet (240) into which refrigerant flows in and a refrigerant outlet (230) through which the refrigerant after heat exchange flows out,
The radiator (200) is mounted on a vehicle such that the refrigerant outlet (230) is positioned above the refrigerant inlet (240) ,
The refrigerant flowing into the radiator (200) from the refrigerant inlet (230) circulated from the lower side to the upper side while reducing the temperature without condensing. A structure for mounting a radiator on a vehicle, which flows out from the refrigerant outlet (230) later .
前記放熱器(200)は、上下方向に複数本並んだ状態で各々が水平方向に延び、かつ、冷媒が流通するチューブ(210)と、The radiator (200) includes a tube (210) in which a plurality of the radiators (200) are arranged in the vertical direction, each extending in the horizontal direction, and in which a refrigerant flows.
前記チューブ(210)の長手方向両端側に配設され、前記複数本のチューブ(210)と連通するヘッダタンク(220)とを有し、A header tank (220) disposed on both ends in the longitudinal direction of the tube (210) and communicating with the plurality of tubes (210);
前記ヘッダタンク(220)内の空間が複数の空間に仕切られていることによって、冷媒が前記放熱器(200)内を蛇行しながら下方側から上方側に向かって流通することを特徴とする請求項1に記載の放熱器の車両搭載構造。The space in the header tank (220) is partitioned into a plurality of spaces, so that the refrigerant flows from the lower side to the upper side while meandering in the radiator (200). Item 1. A radiator mounting structure for a radiator according to Item 1.
前記放熱器(200)は、水平方向に複数本並んだ状態で各々が上下方向に延び、かつ、冷媒が流通するチューブ(210)と、The radiator (200) has a plurality of tubes arranged in the horizontal direction, each extending vertically and a tube (210) through which a refrigerant flows,
前記チューブ(210)の長手方向両端側に配設され、前記複数本のチューブ(210)と連通するヘッダタンク(220)とを有し、A header tank (220) disposed on both ends in the longitudinal direction of the tube (210) and communicating with the plurality of tubes (210);
冷媒が前記放熱器(200)内を下側から上側に向かって流通することを特徴とする請求項1に記載の放熱器の車両搭載構造。The vehicle-mounted structure of a radiator according to claim 1, wherein the refrigerant flows through the radiator (200) from the lower side toward the upper side.
前記放熱器(200)は、前記冷媒流入口(230)から前記冷媒流出口(240)に至る1本または複数本のチューブ(210)を有し、The radiator (200) has one or more tubes (210) from the refrigerant inlet (230) to the refrigerant outlet (240),
前記1本または複数本のチューブ(210)は、蛇行しながら下方側から上方側に向かって延びていることを特徴とする請求項1に記載の放熱器の車両搭載構造。The vehicle mounting structure for a radiator according to claim 1, wherein the one or more tubes (210) extend from the lower side to the upper side while meandering.
JP27693499A 1999-09-29 1999-09-29 Radiator for supercritical vapor compression refrigeration cycle Expired - Fee Related JP4016544B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP27693499A JP4016544B2 (en) 1999-09-29 1999-09-29 Radiator for supercritical vapor compression refrigeration cycle
DE10043439A DE10043439A1 (en) 1999-09-29 2000-09-04 Cooler for supercritical steam compressor coolant circuit has heat exchanger core section with coolant passage for cooling coolant, and coolant inlet, for feeding coolant into passage
US10/280,961 US20030062152A1 (en) 1999-09-29 2002-10-25 Radiator for supercritical vapor compression type refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27693499A JP4016544B2 (en) 1999-09-29 1999-09-29 Radiator for supercritical vapor compression refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2001099522A JP2001099522A (en) 2001-04-13
JP4016544B2 true JP4016544B2 (en) 2007-12-05

Family

ID=17576454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27693499A Expired - Fee Related JP4016544B2 (en) 1999-09-29 1999-09-29 Radiator for supercritical vapor compression refrigeration cycle

Country Status (3)

Country Link
US (1) US20030062152A1 (en)
JP (1) JP4016544B2 (en)
DE (1) DE10043439A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786292B (en) * 2012-08-17 2014-02-26 杨建军 Fabrication process of nixing pottery with chain

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20005974D0 (en) * 2000-11-24 2000-11-24 Sinvent As Cooling or heat pump system with heat release when temperature changes
DE10229973A1 (en) * 2002-07-03 2004-01-29 Behr Gmbh & Co. Heat exchanger
EP1554528A4 (en) 2002-10-24 2014-04-30 Showa Denko Kk Refrigeration system, compressing and heat-releasing apparatus and heat-releasing device
JP4312039B2 (en) * 2003-12-05 2009-08-12 昭和電工株式会社 Vehicle air-conditioning technology with a supercritical refrigerant refrigeration cycle
DE102004018317A1 (en) * 2004-04-13 2005-11-03 Behr Gmbh & Co. Kg Heat exchanger for motor vehicles
JP2007155183A (en) 2005-12-02 2007-06-21 Showa Denko Kk Heat exchanger
JP2007263434A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Refrigerant cycle device
JP2007309549A (en) * 2006-05-16 2007-11-29 Japan Climate Systems Corp Heat exchanger
DE102007007233A1 (en) 2007-02-14 2008-09-25 Behr Gmbh & Co. Kg Motor vehicle i.e. car, has heat exchanger e.g. gas cooler, installed such that air inlet speed profile of air flow, which is passed through or against heat exchanger, is inhomogeneously formed
DE102007015185B4 (en) 2007-03-29 2022-12-29 Valeo Klimasysteme Gmbh Air conditioning for a motor vehicle
JP5799792B2 (en) * 2011-01-07 2015-10-28 株式会社デンソー Refrigerant radiator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4432272C2 (en) * 1994-09-09 1997-05-15 Daimler Benz Ag Method for operating a refrigeration system for air conditioning vehicles and a refrigeration system for performing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786292B (en) * 2012-08-17 2014-02-26 杨建军 Fabrication process of nixing pottery with chain

Also Published As

Publication number Publication date
DE10043439A1 (en) 2001-04-05
JP2001099522A (en) 2001-04-13
US20030062152A1 (en) 2003-04-03

Similar Documents

Publication Publication Date Title
CN102788452B (en) Condenser for vehicle and the air conditioning system for vehicle
JP4078766B2 (en) Heat exchanger
CN102486348B (en) For the condenser of vehicle
KR100227881B1 (en) High effective evaporator
US7587911B2 (en) Compact evaporator for chiller application
CN103162474B (en) Condenser for vehicle
US20180231280A1 (en) Condenser with tube support structure
JP4016544B2 (en) Radiator for supercritical vapor compression refrigeration cycle
CN101311647B (en) Composite type full-liquid type heat converter for refrigerant circulation system
TW200930586A (en) Condenser for use in vehicle
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
JP6593544B2 (en) Equipment temperature controller
US10919361B2 (en) Cooling module for vehicle
KR101274241B1 (en) Air conditioner system for vehicle
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
KR20140143650A (en) Cooling module for vehicle
JP3764904B2 (en) Refrigerating cycle and method for determining receiver volume of refrigeration cycle
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
KR20070102172A (en) Heat exchanger having condenser and oil cooler installed therein
JP4107148B2 (en) Refrigeration cycle and heat exchanger
CN108775825B (en) Heat exchange assembly and refrigerating system with same
CN219934755U (en) Dual-system heat exchanger and dryer
US20240044591A1 (en) Header tank of heat exchanger
JP4006821B2 (en) Condenser
JPH0834225A (en) Air conditioner for automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees