JP2004512067A - ボールまたは球体の外被 - Google Patents

ボールまたは球体の外被 Download PDF

Info

Publication number
JP2004512067A
JP2004512067A JP2002533959A JP2002533959A JP2004512067A JP 2004512067 A JP2004512067 A JP 2004512067A JP 2002533959 A JP2002533959 A JP 2002533959A JP 2002533959 A JP2002533959 A JP 2002533959A JP 2004512067 A JP2004512067 A JP 2004512067A
Authority
JP
Japan
Prior art keywords
square
sphere
squares
gears
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002533959A
Other languages
English (en)
Other versions
JP2004512067A5 (ja
Inventor
パチエコ,フランシスコ
Original Assignee
パチエコ,フランシスコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パチエコ,フランシスコ filed Critical パチエコ,フランシスコ
Publication of JP2004512067A publication Critical patent/JP2004512067A/ja
Publication of JP2004512067A5 publication Critical patent/JP2004512067A5/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B41/00Hollow inflatable balls
    • A63B41/08Ball covers; Closures therefor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2243/00Specific ball sports not provided for in A63B2102/00 - A63B2102/38
    • A63B2243/0025Football

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Toys (AREA)

Abstract

18個の正方形の編成および8個の正三角形の調節により形成される球体。三角形の中心からコーナまでの距離が、正方形とその対角線との間に存在する距離の差に等しいときに、理想的な調節測定が得られる。c=31/2*(d−圧力)かつd=1/8Cであるときに球形となる。本願で使用する数学的用語では、平方根2と平方根3との間には非常に特殊な関係がある。これらの2つの平方根は、正方形および三角形の成長および各段階で正方形を倍化しかつ三角形を3倍化するスパイラルの形成を定義することにより特徴付けられる。成長に関し、対角線(d)は辺(a)に関して41.4%成長する。平方根3は73.2%の成長に等しい。41.2%の成長が73.2%の成長に供されると、71.74%の全成長を得ることができる。

Description

【0001】
技術分野
本発明の分野は、一群の多角形の配置を通しての球面の構造に関する。スポーツボール工業は、その製品のための球形スキームの設計に最も関心のある技術分野の1つである。より詳しくは、サッカーは、プレーヤのボールの蹴り方に従ってボールが反応することをプレーヤが確信できるように、高度の真球度を有しかつバランスの良いボールを必要とする。サッカーの歴史は、ボールの設計に一定の改善をもたらしている。最初、ボールは12個のパネルを使用しており、これらのパネルは、時間の経過および使用につれて最終的には変形する。次に、現在のボールには、13個の半規則的多面体(semi regular polyhedrons)の1つとしてアルキメデス(Arquemedes)により説明されている32ピース(12個の五角形および20個の六角形)が導入された。最近では、マーケットに6〜42ピースからなるボールが出現しており、これらの2つは、伝統的な設計のバランスおよび真球度を凌いでいるため際立って優れている(EP0383 714およびWO 94/03239参照)。
【0002】
アルキメデスの歴史的解決法以来、フラードーム(geodesic dome)およびゴルフボールの現代的計算に至るまで、球面を支配するための一定の試みがなされている。我々人類が、原子で始まり星から更に遠ざかる我々の宇宙がこの魅惑的な形象に関連していることに気付くならば、この人類の関心は自然のものである。これは、球体構造およびその真の性質を説明する簡単なスキームがあらゆる分野で広く使用されていることがその理由である。
発明の説明
正方形および三角形が球体を形成する。すなわち、6本のストリングを周囲Cと同じ長さに切断し;全部で48個のセグメントを得るため6本のストリングを2倍、3倍に分割し;36個のセグメントを分け、残りの12個を2つに分割して24個のセグメントにし;36ピースが18個のクロス(crosses)を形成しかつ24ピースが8個の三角形を形成し;18個のクロスが各8個のクロスからなる3個の挟在リング(interbedded ring)を作り;6個のクロスが2つのリングのインターセクション(intersections)でありかつ他の12個のクロスはこれらの端部の2つが自由であり;自由でかつ互いに隣接している3つの端部からなるの8つの群は、そのコーナにより、8個の正三角形を保持しなければならない。
【0003】
球体の分解は正確な解決法ではないと思われる。非対称スキームでは、周囲の測定値を調節すべく多角形において行なわれる修正は、一方向の計算の解を与えるが、同時に、他方向の計算には影響を与える。対称的提案では、この問題は、真球度を改善すべくピースサイズの縮小のための徹底方法(exhaustive method)を使用しなければならないため、或る点までは解決できる。この方法はパイ()と比較され、ここで、精度は、取扱うことを望む10進数に基いて定まる。
【0004】
本発明は、球面の構造の簡単で正確な解決法を提供する。本発明のスキームは対称的であるが、ピース数が少ないため、徹底方法は解を見つける必要はない。図面は、内包(comprehension)を考慮に入れかつピタゴラスの定理の計算を減らすことができる要素的幾何学形状(正方形および正三角形)の基本形象で形成される。
【0005】
18個の正方形の編成および8個の正三角形の調節が、球状単一体を形成する。正方形が固定されかつ正三角形が調節を行なうので、三角形(c)の測定値は不定変数を構成する。解は、周囲(C)に対し、c=6.44%からc=6.25%までとなる。
【0006】
最も簡単なスキームは、それ自身がc=1/2d=6.25%Cであるときに生じる。なぜならば、2で割る方法を知るだけで、殆ど完全な球体を作ることができるからである。また、このことは、冒頭で述べたストリングの場合にも当てはまる。他のより正確なスキームおよび該スキームの計算方法を以下に説明する。
スキームC1=C2
球体の構造的ベースは立方体である。ここで、立方体の辺を(A)とし、立方体の対角線を(C)として、3つの周囲長さすなわち周囲を決定する。すなわち、
C1:辺上で測定した最短の周長で、4Aに等しい。
【0007】
C2:対角線上で引いた最長の周長で、2A+2Dに等しい。
【0008】
C3:立方体を2分しかつ立方体の全ての面を通る波状ストリップで、その測定値は3Dである(詳細に後述する)。
【0009】
測定値C1には3つの値があり、C2には6つの値がある(図1)。目的は、球体が形成されるまで立方体のコーナを減少させることであり、これは、最大距離C2を最小周長C1に切断することに等しい。
【0010】
このスキームにとって重要なことは、立方体上に正方形を描く方法である。ここで、立方体の面を大きい正方形と呼び、小さい正方形を、面内に描かれた正方形と呼ぶことにする。大きい正方形(A)内の小さい正方形(a)の配置は下記のように説明される。すなわち、5つ全ての小さい正方形はクロスを形成し、4つの小さい1/2正方形はクロスを非正八角形に変え、4つの小さい1/4正方形はクロスの端部に付加されて、大きい正方形にその形状を与える。
【0011】
小さい対角線(d)は大きい辺(A)の測定に使用され、小さい辺(a)は大きい対角線(D)を測定するのに使用される。
最初の公式の要約
Figure 2004512067
正立方体は、48個の小さい正方形、すなわち18個の黒い正方形および30個の白い正方形(24個は面内にあり、6個はコーナにある)で形成されている。ここで、各面の中央の正方形を(X)と呼び、該正方形(X)を包囲する残余の黒い正方形を(H)と呼ぶことにする。また、コーナの白い正方形の1/4とこれに隣接する白い正方形とを結合するセグメントを(c)と呼び、立方体のコーナを(Y)と名付けることにする。
【0012】
球体の不変表面として黒いピースを考え、修正を受ける空スペースとして白いピースを考えることにする。C1は、その3つの方向の8個の黒いピース(4Xおよび4H)で形成される。C2は、黒いピースと、白い挟在ピースとで形成される。C2を、白いピースのみを修正するC1に減少させる方法を見出さなくてはならない。
【0013】
この解決法は(c)のサイズを縮小することである。第一に、(c)に沿って立方体の8個のコーナを除去し、かつ8個の新しい面を立方体に形成しなければならない(今や、全表面は、6個の非正八角形および8個の正三角形で形成されたことになる)。切除したコーナ(Y)は、今や、正三角形(c)の中心に位置している。差し当たりc=aであるが、球体を形成するには、(c)はほぼC=1/2dとなるように縮小すべきことを想起されたい。
【0014】
正三角形(c)の説明。高さ(h)は、h=(cc−(1/2c)*(1/2c))1/2=(3/4cc)1/2=1/2c*31/2として計算される。頂点(T)は(c)の端部にあり、(B)は(c)を二分し、(Y)は三角形の中心にあるため、BY=1/3hおよびYT=2/3hとなる。(c)を縮小すると、この三角形に隣接する白い正方形は、3つの辺(a)、1つの辺(c)および1つの高さ(b)で形成される不等辺四角形となる。この新しい形象は、a−c=2eであるため、三角形(bc)および2つの三角形(abe)として説明される。不等辺四角形および正三角形の導入により、周長についての新しい公式C2=2a+4b+4h+2dが確立される。
【0015】
ボールおよび任意の球面の提案された外被を形成するパネルの配置は次のように、すなわち18個の小さい正方形(a)と、8個の正三角形(c)と、24個の不等辺四角形(長方形(ab)および2つの三角形(abe)により形成される)とにより説明される。隣り合うピースの結合により、カットが、42個のパネル、すなわち18個の正方形(a)と、長方形(ab)、2つの三角形(abe)および1/3正三角形(c)により形成された24個の尖り不等辺四角形とに減少される。これは、26個のパネルに簡単化できる。すなわち、3個の尖り不等辺四角形が3個のクロス・ヘリックスを形成し、18個の正方形および8個のヘリックスを得る。他の変更例は、24個の同一パネルを形成すべく、ピースを配置し直すこと、すなわち、不等辺四角形の3つの辺(a)の正方形の1/4および辺(c)の正三角形の!/#を備えた不等辺四角形を結合して凧(kite:図7)を形成することからなる。正方形(X)内に5つの凧を結合すると、立方体の各面に6個の同様なピースが得られる(図8)。
【0016】
図2には、全ての異なる図形が示されている。上の2つの列には、着色されまたは着色されていない26個および42個のパネルバージョンが示されている。第一列は立方体の大きい正方形を示し、第二列は立方体の頂点の1つの形状を示し、第三列はバイポーラモデルを示す(球体を任意のC1で切断し、黒い正方形を移動できる)。縦列Aでは、(n)は単一パネルを異なる角度で示し、縦列Bでは、破線は3つの周囲C1を示している。
付加公式の要約
Figure 2004512067
最初の公式から、d=1/8C1およびa=d21/2であり、および新しい公式から、(h)、(e)および(b)が(c)に基いて定まることが理解されよう。これにより、(a)および(d)は、変数(c)と一緒に、C=6.43604307…%であるときにC2がC1に等しくなることを決定でき、またはベースに対して不等辺四角形の脚(a)がガンマ角g(=82.18°)を形成できるようにする。
【0017】
スキームの対称性を考慮すると、9つ(C1について3つおよびC2について6つ)の異なる方向に、等式C1=C2が得られ、これにより、形象の真球度の良い測定が確保される。それにもかかわらず、周長C3の導入により、より良い調節を見込むことができる。
スキームC3=C1=C2
C3は、3D(12a=3D)を測定する波状ストリップであることは前述した。立方体には4つのこれらのリングがあり、各リングは立方体の6つの面を通って、正方形(X)およびコーナ(Y)を除く全ての表面を覆う。各リングを形成するストリップは、12個の正方形(a)の長さおよび(a)の幅を有している。
【0018】
(c)を縮小すると、不等辺四角形は、リングを、一種の蛇すなわち二重「s」に変え、これを黄道と呼ぶことにする。黄道は、2k=6b+3+3cの長さおよびb+eの幅を有している(図3)。
【0019】
測定値C3は、ストリップの1/2の対角線を2倍したものすなわち、C3=2*(k*k+(b+e)*(b+e))1/2として計算される。この計算は、黄道が周囲を2度通るという事実による。4つの黄道の繋絡複素数(intertwined complex)が、その形状に球体を与える。
【0020】
黄道は正方形(b+e)およびを描きかつ内部に正方形(a)を描くので(図5)、ピタゴラスの定理についての一種のバスカラ論証(Bhaskara proof)を与える。興味あることは、C3=C1であるためには、不等辺四角形のベースに対する傾斜(d)が3/4に接近しかつe=0.000125%C1である点の近くで、(b)と(e)との間に充分な調和が与えられることである。この傾斜はm=(b−e)/(b+e)として説明され、かつc=6.3388%C1(g=81.86°)のときに3/4に接近し、c=6.322424%C1のときにC3=C1となる。換言すれば、この傾斜は、3/4について、36.38°ではなく、36.81°の角度を形成する。
【0021】
前述のように、c=6.32%C1(g=81.81°)であるときはC1=C2となることを計算した。これは、等式C1=C2=C3は不可能であることを示しているように見える。しかしながら、1つの解決法があり、このためには黄道の幅および長さ維持しかつ曲線を円滑にしなければならない。正方形を菱形に変えかつ対角線(d)の傾斜を緩和することなく短縮(c)する僅かな修正を行なうことによりこれを達成できる(図4および図5)。
【0022】
短縮(c)すると正方形(H)の対角線(d2)が引っ張られ、かつ正方形(H)の他の対角線(d)が固定され、菱形を形成する。対角線(d2)の成長により、(e)および(b)の異なる態様での成長が決定される。なぜならば、黄道が固定されている場合には36.81°の傾斜が固定されているからである。この菱形では、セグメント(d)、(c)、(b)、(h)および(a)が(d2)、(c2)、(b2)、(h2)および(a2)になるからである(図6)。
【0023】
C2では、4bおよび2dの増加の方が4hでの減少より大きいので、上記作業はうまくいく。C3=C1であることを留意すると、それ自体に対して等しくなるためにC2が受けるべき増大は、0.043%より小さい。それにもかかわらず、この最小変化により、その前の測定値(c)に関して(c2)において12%の変化が生じる。等しくなる点は、c=5.521399%C1であり、同時にガマ(gama)がg=81.18°に固定された状態に維持されるときに与えられる((d2)での増大によりガマに無限小変化が生じる場合にも当てはまる)。
スキームc=3 1/2 (d−a)
前の解決法では、菱形は、C2とC3とが等しくなることを回避する6.43…%と6.32…%との間のギャップを解決する。それにもかかわらず、ここに提案する変更形態は、前記ギャップの長所を得ることを望むものである。
【0024】
ここで、特殊な場合c=31/2*(d−a)、ここでh=1/2c*31/2=3/2(d−a)について説明する。C1=8dおよびC2=2a+4b+4h+2dであるならば、6d=2a+4b+4hであることは判明している。a=bであるとすると、公式は、h=3/2(d−a)を簡単化して、6d=6a+4hと読むことができる。それにもかかわらず、この想定は不可能であることが分る。なぜならば、このことは立方体a=bの場合にのみいえるからであり、従って、不等辺四角形を形成すべくcを短縮した瞬間から、bの測定値はaより小さくなるであろう。
【0025】
上記推論は、差(C1−C2)と、(d−a)と、(a−b)との間に密接した関係があることを示唆しており、これらの全ては球体への立方体の変形に関係している。このことに留意してC1およびC2についての公式(ここで、h=3/2(d−a)およびd=a*21/2)に戻ると、次のことを決定できる。すなわち、
C2=2a+4b+4h+2a*21/2、C1=8a*21/2、および4h=6a*21/2である場合には、
C1−C2=4(a+b)となる。
【0026】
これにより、前述の特殊な場合のc=31/2(d−a)(g=81.87°)であるときは、差C1−C2は、差a−bの正確に4倍であり、差C3−C1は最小(ほぼ0.06%)となり、かつ係数c/C=6.3413…%C1はギャップ内にある。
【0027】
ジレンマを解決できることは正三角形内にあることを全てのものが示唆する。なぜならば、正方形または差(a−b)を修正することを望まないからである。正三角形では、BY=1/3hおよびYT=2/3hであり、この特定の場合には、BY=1/2(d−a)およびYT=(d−a)であることを想起されたい。C2におけるように、(4h)が存在し、かつ周長の差は4(a−b)であるときは、(h)の増大は(a−b)でなくてはならないと結論付けることができる。しかしながら、その他の変更を望まないならば、この増大は三角形(Y)の中心から生じて、一種の真空である、外部すなわち本発明者がバミューダ三角形(Bermuda Triangle)と呼ぶ裂け目に向かう渦巻きを発生する。
【0028】
8つの位置(Y)から3つの方向Tに出現する増加(a−b)が見られたことを想定するならば、(2/3h)の増加によりdに同様な増加が生じ、YT=(d−a)であるとすると、球体に一般的な増加を引起すので、18個の正方形の対角線が直ちに増大する。
【0029】
成長ではなく真球度を追究する場合に重要なことはバランスである。これは一種のパルセーションとして説明でき、この場合には、4つの(Y)が中心に移動しかつ他の4つが外側に移動する。このパルセーションの中間点では、周長の全変化がゼロになるので球体はその最もバランスがとれた状態にある。
【0030】
どの(Y)も、他の隣接(Y)と協働する歯車であると考えることができる。N極のYの1回転により、N側の半球部分の他の3つの歯車に運動を生じさせかつN極の運動とは逆方向に赤道線を移動させる。S側の半球部分では、他の3つの歯車がN側の半球の歯車に繋絡され、赤道線を同方向に押しやる。S極の歯車はN極とは逆方向に移動するように見えるが、像は鏡像関係にあるので、実際は同方向に押しやられる(これは、或る意味で、南米のバスルーム内の渦巻きの方向および北米のバスルームの他の渦巻き方向に似ている)。赤道は両極とは逆方向には移動せず、むしろ力が「s」を形成し、赤道近くの歯車は、逆の半球ではなく赤道においてもこれら自身の鏡像に関して分析されるべきであることを明瞭にしなければばらない。赤道(Equator)は4つの黄道(ecliptics)の1つに等しく、赤道線は黄道を形成する対角線とは正確には同じではないので複雑な概念である。赤道線は長さ(2k)を有し、この長さは平面内ではなく球体内においてC3に等しくなくてはならない。
【0031】
同じメカニズムは、1/2dの半径をもつ各正方形内に付加歯車を置いた26個の形象に構成でき、このメカニズムは、三角形の歯車の半径1/2d+(d−a)を(d−a)に短縮する。
【0032】
本発明のプラネットの場合には、歯車は磁気のように考えることができる。三角形(Y)は、これらの鏡像およびこれらの3つの隣接三角形(Y)に対して逆の変化をする。(H)および(X)の変化はC1で分割される。これは、(H)が1/2に分割され、(X)は1/4に分割されることによる。(H)の各1/2の変化は最も近くもの(Y)の変化とは逆であり、(X)の各1/4の変化は、不等辺四角形を通る最も近くもの(Y)の変化と同じである。これにより、正方形はこれらの間に結合され、三角形は3つの半部(H)に結合される(図9)。
【0033】
(Y)の変化は逆極の鏡像の変化とは逆である。球体を通る孔を穿けるならば、極の(Y)は、極のエネルギが球体と交差するときにスパイラルを形成することを示唆するように見えるダビドの星(Star of David)を形成する。三角形の極性を帯びた電荷は、三角形と他の球体との結合を見込むことができる。2つの球体の結合は、三角形と他の球体の鏡像との結合であり、スキームは、極(Y)の全ての方向(4方向)に反復されるが、同時に、立方体が空間を満たすのと同様にして空間を満たす。
【0034】
前述の正および負の電荷の配置は写真と同じであるが磁気流のリアリティは映画の形態をなしている。2つの群(4Y)が存在し、一方の群は正の電荷を有しかつ他方の群は負の電荷を有している。電荷が互いにクロスする球体の内部では電荷の交換が行なわれ、衝撃が発生する。これは一種の二重振り子であり、振り子の運動は中心で互いに交差し、一方の振り子はその電荷が減少し他方の振り子は電荷が増大する。
【0035】
プラネットのその軸線上での回転および星の輝きは、これらの磁気流の特定状態により分析され、或るものが他のものよりもバランスがとれているかが分る。球状構造が理解できたならば、多くの構造が考えられる。(Y)に作用する圧力は本発明のプラネットの極の平坦さと比べられ(1/298.257/C2/C1)、地球に他の6つの三角形が存在することを示唆し、かつ同時に、バンアレン帯および海流の起源を説明する。
【0036】
前段部で、完全にバランスのとれた球体を説明した。黄道を固定しかつ曲線を円滑化すると、8つのエネルギ点(Y)に近いものが得られる。これは、待機している種の一種に似たものである。公式c=31/2*(d−a)が意図することは、球体が軌道に容易に入ることができる態様で球体に生命および運動を与えることである。
【0037】
ゴールへのシュートは真に芸術的なストロ−クとして作られるため、この能力はサッカーには重要である。この解決法は、交差スレッドの鏡像を介して出現する、点(Y)からの交差スレッドからなり、4本のストリングは核内で互いに交差する。このメカニズムは、球体がヒットされるときの真球度を調節することができる。
【0038】
ストリングが(Y)を通って出現すると、ストリングは編組の形態になり、3つの近隣点(Y)を向き、かつ再び編組の形態に導かれる。外部の点(Y)には、圧力により表面に生じることがある引っ掻き傷を防止するアイレット孔を設けなくてはならない。ボールを膨張させるタイヤは、核を向いたダイヤモンドの形態をなすものを6個設けることができ、該タイヤは、各々(x)に弁を設けるか、核を向きかつ6つのタイヤ間に空気を分配する単一弁を設けることができる。電池を備えた内部チップの所定プログラムにより弁の圧力を制御し、ボールが空中を飛ぶときにドローイングを生じさせることもできる。
【0039】
42ピース(18個の正方形および24個の尖り不等辺四角形)の場合のボールのシームは、これらの各々が点(Y)に到達するときに、アイレット孔の回りに至り、スレッドもアイレット孔の回りに至るように構成するか、アイレット孔がスレッドの出発点となるように構成できる。この態様で、シームは、YからTまで4本のスレッドで出発し、およびここから各シームが、2つの正方形(H)および1つの(X)を通る最も遠いYの方向を向くように配置される。実施する場合にすべきことは、(Y)から(Y)まで2本のスレッドで出発し、次にTに至るまで同じシームを通り、その後(Y)が新しい方向をとるようにすることである。
【0040】
核に至るスレッドはスチール、ナイロンまたは任意の適当な材料で作ることができ、かつタイヤとのいかなる接触も防止する可撓性カバーを設けることもできる。外方部分で、スレッドは、ボールがタイヤの補強構造を有している場合には内部に配置し、同じパネルが圧力を支持する場合には外部に配置できる。
【0041】
より簡単な変更形態は、スパイラル形態の三角形を切断して、ボールのバランスをとるように構成することである。hに形成される曲線は、充分な視認性をもつまで誇張して示すことができる(図11)。この場合には、三角形のスパイラルは2方向でかつ歯車方向の充分な位置に縫合されなくてはならない。この形式のカットは、三角形が一層容易に引っ張られかつ収縮することを可能にする。同じ作業は正方形の対角線に行なわれ、このメカニズムが26個または8個の歯車と同じ結果を与える旨を前述したことを忘れないでいただきたい。
球体の3つの異なる斜視図
形象を観察するための3つの異なる形態がある。球体を異なる周囲C1、C2およびC3を通る2つの部分に切断するとき、極の形象は、それぞれ、(X)、(H)および(Y)となる。これらの3つの斜視図の興味ある部分は、図面が形成する厳正な意味を有しまたは信頼性のあるものである。すなわち、
1)クロス:周囲の前方に正方形(X)があるときは、線C1の1つである。これは立方体の面の1つで、正方形を形成している面の形象と同じである。クロスは、正方形の対角線および辺を向いた方向に形成される。
2)ダビドの星:周囲の前方に三角形(Y)があるときは、線C3の1つである。これは立方体のコーナの1つの形象と同じである。他の3つの三角形(Y)は周囲に僅かに見られる。ダビドの星と同様に互いに上下に重ねられた2つの三角形が観察される。三角形の1つは、表面の1/8に等しい球体の赤道であり、その辺は、各端の1つの対角線(H)および1/2対角線(X)で形成され、他の三角形は、サッカー移植片の三角形が形成する赤道から出現する正方形(H)の3つの半部で形成される。
3)イグ−ヤグ(Ying−Yang):前方に正方形(H)があるときは、周囲は、線C2の1つである。周囲の前方に三角形(Y)があるときは、線C3の1つである。これは黄道の形象と同じであり、円を2つの半部すなわちイグおよびヤグに分割する曲線を観察でき、各半径物質には三角形が設けられている。
【0042】
重要なことは、あらゆる厳正さは、種々の観点から唯一のこと、すなわち寿命自体をいうものであると確実に述べることである。多分、原点は3次元および時間を簡単化し、最も重要な次元を喪失するであろう。

Claims (20)

  1. 18個の正方形と、24個の不等辺四角形と、8個の正三角形とで形成された50個の相互連結された多角形で形成された表面を備えた球形を有する形象において、各不等辺四角形の最小経路(c)は、正三角形の辺に結合されかつ不等辺四角形の他の3つの辺(a)は3つの正方形の辺に結合されており、最小経路(c)の測定値は、正方形の対角線(d)と辺(a)との差(d−a)に√3(=31/2)を掛けた値に等しく、正方形の対角線(d)は形象の周長(C)の1/8に等しく、前記経路(c)はまた、特にc=31/2*(d−a)として上記した距離上のc=aからc=1/2dまでの範囲と、次の測定値a)、b)およびc)を有し、a):c=6.436%C(ここで、周長C1(対角線dを通る)は周長C2(不等辺四角形および三角形を通る)に等しい)、b):c=6.322%C(ここで、黄道C3の測定値は測定値C1に等しくかつ黄道を(c)に固定しかつ正方形(Y)を菱形に変える曲線を円滑化したときはC2に等しくなることを考慮に入れ、この場合の新しい値はc2=5.5213%Cとなる(図5および図6参照))、およびc):c=6.25%(ここで、c=1/2対角線でありかつストリングの球体の形成の場合には2で割る計算のみを考慮に入れる)であることを特徴とする形象。
  2. 隣接多角形の結合またはカットを簡単化および複雑化する隣接多角形の再配置のための42個のパネル(18個の正方形および24個の尖り不等辺四角形)と、26個のパネル(3つのクロスの8個のヘリックスおよび18個の正方形)と、同一凧(24個の不等辺四角形のピース。正方形の3/4−各辺(a)上に1つおよび辺(c)上に正三角形の1/3(図4参照))と、立方体の6個の面(4つの凧の結合(図8参照))と、24個のピース(8個の凹状正方形、8個の凸状正方形および8個の凸状三角形。不等辺四角形に形成された対角線上での結合(図7参照))と、5個のピース(4個のチャペル:2個の不等辺四角形+3個の正方形(H)および1つまたは幾つかの場所で分割された1つのパネル内の残部)と、10個のピース(2個のクロス:1個の正方形(x)+4個の三角形および8個の受容体:2個の不等辺四角形+3個の半菱形および2個の1/4正方形(X)。これは6ピースに減少できる(対称的態様では2つの受容体の結合))と、18個のピース(6個のクロス:1個の正方形(X)+4個の尖り不等辺四角形および12個の正方形(H))と、20個のピース(8個のヘリックス:3個の尖り不等辺四角形+正方形(X)の3・1/4および12個の正方形(H))と、バイポーラ(C1、C2またはC3での1つのカットおよび2つの半部は1位置で移動される)と、単一ピース(各方向に出現する2個の正方形の各々から、挟在態様で対角線で結合された8個の正方形。第一は正方形の全部および第二は正方形の1/4である。球体の測定値を知れば、バイポーラ態様または通常態様で、任意の方向好ましくは正方形の結合から(Y)までの四分円の線の距離を計算できる(図12参照))とを有していることを特徴とする請求項1記載の形象。
  3. 8個の球形凹状歯車を有し、該歯車の頂部上で半径1/2d=(d−a)の測定値をもつ点(Y)に中心が位置し、各歯車の頂部上の任意の測定値(より正確な計算のためにはYT=2/3(a−b))をもつ1つの正三角形は軸線(Y)に中心を有し、その初期位置は歯車の下に位置する三角形パネルに対して整合しておりかつ点Yの下を通るストリングのためのスペースを残して点Bにより歯車の表面に維持され、球体から直線的に離れるように移動する各三角形の点Tの下部に結合された3つのストリングと、移動歯車により引起されかつ三角形から外側に向かって出発するスパイラルを形成するストリングの8つの回転方向と、8個ではなく26個のピースを備えた同様な歯車を更に有し、該歯車は、正方形(H)、(X)の中心点に18個の凹状歯車を配置することにより形成され、1/2dの半径を有し、該半径は歯車の半径を(Y)から(d−a)に短縮し、正方形の形状ををなすがスレッドと同じ位置を有し、その運動は歯車(Y)の元の方向とは異なるがこれらにより補完されることを特徴とする請求項2記載の形象。
  4. 球体の表面と核との結合を形成するストリングの1つのインターレースを有し、該インターレースは次のように説明され、すなわち、核は外側歯車と内側歯車とを結合する3つのストリングからなる8個の群により球体の中心に維持され、ストリングの経路は最近点Tの間に付加され、核を球形立方体スキーム内に配置し、同じ作業が表面内で行なわれ、ストリングの12個のリングを必要とし、1つのリングは立方体の各頂点のためのものであり、各リングは、球体の両測定値についての測定値(d+4/3h)に球体間の半径差の2倍を加えた測定値を有し、スキームは修正されかつ結合されて球体の表面と出合うようにストリングのスパイラルを形成し、リングは等価ストリングに結合されるか、単一のストリングに全スキームの単一の結合を使用するように変更され、インターレースと、26ピースのスキームに与えられるインターレースとの種々の組合せを更に有することを特徴とする請求項3記載の形象。
  5. 第三の正三角形の頂部上でかつ正方形(X)の1/4の位置で、不等辺四角形の脚を通って引かれたストリップの形態をなす1つの図面すなわち装飾(図7右側:凧のピースは全球体を説明するのに充分なものである)と、正方形(H)の1/4および不等辺四角形の辺(C)を通って引かれた第二ストリップ(図7左側)とを有し、前記ストリップは、全ての幅およびスタイルを直線または波状に、全色でかつこれらのデザインおよび組合せで、一緒にまたは別々に引かれることを特徴とする請求項4記載の形象。
  6. 不等辺四角形の対角線のクロスの正方形パターンを形成し、上部(正三角形の+1/3)の不等辺四角形の1/4に、ベースの不等辺四角形の1/4を持出し、かつ脚の不等辺四角形の2つの1/4で形成される群と同じである1つの図面すなわち装飾を有し、正方形(X)は、第一群および第二群(図7)による正方形(H)と同じまたは同様に、全色で、陰影を付し、かつこれらのデザインおよび組合せで着色されることを特徴とする請求項5記載の形象。
  7. 点(Y)で出発しかつ0から2/3(d−a)+1/2dまでの半径をもつ8個の凹状歯車からなる図面すなわち装飾と、点(H)、(X)で出発しかつ0から1/2dの半径をもつする18個の歯車の図面とを有し、歯車は、半径、デザイン(円、スパイラル、星、ファイヤ)、色、パターンおよびこれらの組合せで分離されまたは結合することができることを特徴とする請求項6記載の形象。
  8. 結晶、金、銀、プラチナおよび宝石、他の同様なプラスチック、ガラス、石、コンクリート、鋼、鉄、油布、皮革、青銅を含む種々の材料およびこれらの組合せ材料で、サイズまたはスケールのあらゆる組合せで、完全な中実または中空で、かつ全ての可能性ある表面幅で作られ、全表面および孔には選択された装飾およびパネルが印されていることを特徴とする請求項7記載の形象。
  9. パネルのスケッチ時の宝石または他の材料からなる外被を有し、角錐状または截頭角錐状の形状を有し、かつこれらのあらゆる高さの組合せで形成されていることを特徴とする請求項8記載の形象。
  10. 図面の部分的カットで構成され、厳正なまたは簡単な含意により次の3つの異なる図面が描かれ、3つの図面とは、すなわち、A)クロス:この周囲は次のようにして、すなわち、(X)で結合され、球体の周囲から中心に向かって球体の表面の1/6を覆う4つの凧と、球体の中心まで表面の1/2を覆う、周長C1により描かれた1カットと、前の2つのカットの形象を全体的に完成する1カットとにより描かれ、B)ダビドの星:この周囲は次のようにして、すなわち、球体の四分円の1つの三角形の形態をなし、最初の四分円から出てかつ前記周囲から球体の中心に至る球体(Y)の3つの半部を通って形成する60°回転した他の三角形と組合された表面の1/8に等しいカットと、描かれた2つの三角形または四分円の1つからなる1カットと、黄道を形成しかつ球体の周囲から中心まで球体のの表面の1/2を覆うリングの中心を通って描かれた波状の1カットと、前記3つのカットの形象を全体的に完成する1カットとにより描かれ、C)イグ−ヤグ(Ying−Yang):この周囲は次のようにして、すなわち、球体の中心まで円の表面の1/2を覆う周囲C2を通って描かれたカットと、表面の幅の全ての半径における3点a、b、cと、球体の中心に対して対称的または非対称的な凹状または平らなカットとにより描かれることを特徴とする請求項9記載の形象。
  11. 競技用または他のあらゆるスポーツ、特にサッカー用ボールの構造を有し、好ましくは42パネルおよび26パネルのバージョンおよび前記他のカットおよび装飾の組合せを有することを特徴とする請求項9記載の形象。
  12. ボールの核に結合された6個のタイヤを内部に有し、核は、外部膨張用の主要弁と球形立方体の面内に配置された6個のタイヤに連通する12個の弁とにより形成され、注入用の逃し弁を有し、該逃し弁は最大および最小公差を有し、表面と核とを結合するストリングは内部および外部を通り、スクラッチを防止する補強体が点(Y)に設けられていることを特徴とする請求項11記載の形象。
  13. ダビドの星、クロス、イグ−ヤグおよび球体の形態をなす種々の宗教または信仰をほのめかすスロープ、イヤリングまたはブローチの構造を有し、これらの構造は、新しい凹状形状(3次元)を呈し、宝石に適した材料および他のあらゆる材料およびこれらの材料を組合せた材料に伝統的な平らな形状(2次元)が後面に形成されていることを特徴とする請求項10記載の形象。
  14. 装飾用または次の教義用の球体構造を有し、前記教義は、歯車の1つに位置しまたはこれから吊り下がっているか伝統的なアームを備えており、表面に機械的な歯車を備えているか否かを問わず手動または電気的な力により装飾としてのみ機械的に機能し、三角形は、世界地図とは無関係に、地球の極または磁極に基いて配置されていて、スキームのフレームの内側または外側から、または1)ハワイ、2)パスクワ島、3)中部大西洋、4)南アフリカ、5)チベット−インド、6)パプアニューギニア−クイーンズランド、7)南極、8)北極、およびカイロ、ハウストンおよび日本等の点(X)の近く8個の三角形の固定スキーム内で移動することを特徴とする請求項9記載の形象。
  15. 立方体の形状をなす最初の位置および電気または手動で伸縮(c)できる自動車のアンテナの形式の機構では、他のピースの可撓性により、立方体がc=31/2*(d−a)に到達すると球形になることを可能にし、正方形で反復される同様な機構と、コンピュータがその成長の測定値として電気アームを表示する同様な機構とを有し、正方形の対角線(d)はセグメントYT=2/3h=(d−a)が成長するのと同じ量で成長しなければならず、圧力を加えるばねおよび引っ張るばねを備えた基本形状の同じ機構を有し、これらの全ては、球形(Y)の中心を向いておりかつ1つずつまたは幾つか(X)が出現して作動し、教義の3次元ソフトウェアに表された同様な機構を更に有することを特徴とする請求項9記載の形象。
  16. 建築用ブロックまたは建築ゲーム用ブロックの構造を有し、点(Y)には磁石が配置され、各磁石の極性は鏡像点(Y)の極性とは逆であり、不等辺四角形および三角形は逆極性の第二球体をもつことを可能にする球面に対する沈下を形成し、リンクはダビドの星の形状をなし、この結合体またはリンクは7つの可能な方向(X極の3方向およびY極の4方向)に向かって実行され、前記装飾に対する偏見なくして球状立方体は黄色、青色、赤色および緑色に着色された8個の四分円を有し、ここで各四分円は鏡像関係の四分円の色と同様な色を有し、磁石が配置される点(Y)の深さは次のような態様で適応できなくてはならず、この態様とは、N極での(X)をもつ1つの球状立方体が北半球の4つの点(Y)上の4つの球体をダビドの星の形状に連結し、この位置では、これらの場所の球体の4つのS極は第一球体の赤道線内になくてはならず、このような調節は不等辺四角形および三角形(Y)を深くすることにより達成され、より複雑なスキームは、正方形(H)がこれらの電荷を2つに分割しかつ正方形(X)が前記電荷を4つの半部に分割するような態様で全ての正方形に磁石を配置でき、全ての様式を結合する方法は、雄−雌システムで定められる極性であるが多くの調節を要しないことを特徴とする請求項9記載の形象。
  17. 財布または球状バッグの形態をなす衣服用アクセサリの構造を有し、構造軸線C1または他の軸線に開口を有し、(X)に留め金またはロックを備えかつカットの端部にハンガーを備えた(3d)の適当な長さを有することを特徴とする請求項11記載の形象。
  18. モーターサイクル、自動車競技、サイクリング等に用いるヘルメットの構造を有し、上記構造的装飾および軸線は中空または中実であることを特徴とする請求項9記載の形象。
  19. 黄道帯の形状をなすブレスレットまたはリングの構造を有することを特徴とする請求項10記載の形象。
  20. 周囲のみによりワンピーススキームの図面を描くコンピュータプログラムの構造が装飾のオプションを呈しかつ印刷され、システムは迅速な態様で球体を装飾するのに有効であり、子供がスチロール発泡体ボール上に紙を接着できるようにするアイデアおよびインターネットを用いて子供たち自身のクリスマスボールを創出するクリップを有し、ピースは次のように構成され、すなわち、対角線により結合された8個の正方形が周囲C1を形成し、他の2つの周囲を形成する正方形は、組合された態様で正方形2、4、6、8から出現し、8の量ではなく第四番目に配置され、最初の周囲が回転すると、極の4つの部分を結合でき、2つの正方形が各方向に出現する態様で、第一の態様は正方形の全体であり、第二の態様は正方形の1/4であり、禁止がされていない場合には正方形間の結合のみがコーナに存在するので、正方形間の結合部では、引裂くことがなく安心のために充分な帯び幅を有し、球体の測定値は既知であるので、各四分円の正方形の結合部から2つの点(Y)に至る軌跡の距離を計算できこれは、球体を全体的に覆うことを可能にする(図12)ことを特徴とする請求項9記載の形象。
JP2002533959A 2000-10-10 2000-10-10 ボールまたは球体の外被 Pending JP2004512067A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CR2000/000003 WO2002030522A2 (es) 2000-10-10 2000-10-10 Cobertura para balon o esfera

Publications (2)

Publication Number Publication Date
JP2004512067A true JP2004512067A (ja) 2004-04-22
JP2004512067A5 JP2004512067A5 (ja) 2007-11-29

Family

ID=5331370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002533959A Pending JP2004512067A (ja) 2000-10-10 2000-10-10 ボールまたは球体の外被

Country Status (5)

Country Link
US (1) US6916263B1 (ja)
EP (1) EP1350542A1 (ja)
JP (1) JP2004512067A (ja)
AU (1) AU2000276405A1 (ja)
WO (1) WO2002030522A2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005079928A2 (es) 2004-02-19 2005-09-01 Francisco Pacheco Balon con esfericidad y redondez mejoradas
DE102004056951B4 (de) * 2004-11-25 2009-01-15 Uhlsport Gmbh Ballhülle, insbesondere für Fußbälle
US7935013B2 (en) * 2006-02-09 2011-05-03 Francisco Pacheco Comba ball with magnus effect
NL1033647C1 (nl) * 2007-04-05 2008-05-20 Pieter Huybers Een nieuw type voetbal met verbeterde ronding.
US7854671B2 (en) * 2007-04-26 2010-12-21 Haresh Lalvani Sports ball
WO2010043187A1 (en) * 2008-10-14 2010-04-22 Francisco Pacheco Teaching apparatus
PT105457B (pt) * 2010-12-27 2018-04-16 Inst Superior Tecnico Bola insuflável para actividades futebolísticas e recreativas
US20130109511A1 (en) * 2011-10-31 2013-05-02 Yevgeniy Galyuk Novel enhanced systems, processes, methods and apparatus for training high-skill athletes
USD771519S1 (en) * 2014-05-06 2016-11-15 Alpine Corporation American flag ball
US20150367183A1 (en) * 2014-06-23 2015-12-24 Tsung Ming Ou Method of Producing Sportsball with Sculptural Ball Surface
USD779002S1 (en) * 2015-10-06 2017-02-14 Ogosport Llc Toy ball
US10195492B2 (en) * 2016-04-06 2019-02-05 Under Armour, Inc. Sports ball
US20180169483A1 (en) * 2016-12-19 2018-06-21 Tsung Ming Ou Sportsball with Sculptural Ball Surface
USD814579S1 (en) 2017-02-17 2018-04-03 Ogosport Llc Toy ball
KR102271000B1 (ko) * 2019-12-24 2021-07-08 (유)임페리얼스포츠 4패널 축구공용 외피재, 이의 제조방법 및 이를 포함하는 4패널 축구공
US11759681B2 (en) * 2020-02-21 2023-09-19 Nike, Inc. Sports ball with staggered surface features

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122948U (ja) * 1973-02-20 1974-10-22
WO1994003239A1 (en) * 1992-07-30 1994-02-17 Schaper Hubertus Cornelis Jose Inflatable ball for ball games, in particular football
JPH10506307A (ja) * 1994-09-29 1998-06-23 モンテロ ホセ ボール外被

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1299092A (en) * 1916-12-02 1919-04-01 Jacob Abrahamson Hand-ball.
FR2442644A1 (fr) * 1977-12-20 1980-06-27 Ortiz Antoine Boule a 49 facettes numerotees de 1 a 49 permettant de jouer au loto

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122948U (ja) * 1973-02-20 1974-10-22
WO1994003239A1 (en) * 1992-07-30 1994-02-17 Schaper Hubertus Cornelis Jose Inflatable ball for ball games, in particular football
JPH10506307A (ja) * 1994-09-29 1998-06-23 モンテロ ホセ ボール外被

Also Published As

Publication number Publication date
AU2000276405A1 (en) 2002-04-22
WO2002030522A8 (es) 2003-08-28
US6916263B1 (en) 2005-07-12
WO2002030522A2 (es) 2002-04-18
EP1350542A1 (en) 2003-10-08

Similar Documents

Publication Publication Date Title
JP2004512067A (ja) ボールまたは球体の外被
US5743786A (en) Balloon face polyhedra
US6264199B1 (en) Folding puzzle/transformational toy with 24 linked tetrahedral elements
US6626732B1 (en) Character toy
US7935013B2 (en) Comba ball with magnus effect
US6564962B1 (en) Renovated structure of bowl with function of rotating and changeable patterns
US3902270A (en) First and second toy modules, each mateable with similar modules and with each other
US6672250B1 (en) Molded magnetic components for use in aquatic environments
CN105747735B (zh) 六边形分形陶瓷茶具
JP2004222935A (ja) ソフトビニル製大型可動人形の骨格構造および該骨格構造を有するソフトビニル製大型可動人形
CN200984441Y (zh) 多功能的立体拼图
US20080190470A1 (en) Golfing accessory
WO2000072929A1 (en) Spherical logic puzzle
CA1304764C (en) Toy set of elements for forming patterns or pictures
ES2391957B1 (es) Cubierta de balón de uso deportivo.
JP2003033445A (ja) 中空バンド
Turgunov Excavations of a Buddhist Temple at Dal'verzin-tepe
KR200348610Y1 (ko) 상패 겸용 장식구
KR200278948Y1 (ko) 축구공형상을 갖는 퍼즐모자
KR200291632Y1 (ko) 악세서리용 공
KR200171542Y1 (ko) 스톤 인 스톤
Wünsche Homo Sovieticus: The Athletic Motif in the Design of the Dynamo Metro Station
JP3083637U (ja) 中空バンド
JPH08168577A (ja) 組立式筒ブロック玩具
US20050136794A1 (en) Interconvertible soft articles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222