JP2004363146A - Inspection chip for evaluating joined quality of electronic component to circuit board and tool and method therefor using the chip - Google Patents

Inspection chip for evaluating joined quality of electronic component to circuit board and tool and method therefor using the chip Download PDF

Info

Publication number
JP2004363146A
JP2004363146A JP2003156379A JP2003156379A JP2004363146A JP 2004363146 A JP2004363146 A JP 2004363146A JP 2003156379 A JP2003156379 A JP 2003156379A JP 2003156379 A JP2003156379 A JP 2003156379A JP 2004363146 A JP2004363146 A JP 2004363146A
Authority
JP
Japan
Prior art keywords
circuit board
circuit
bonding
electronic component
bump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003156379A
Other languages
Japanese (ja)
Inventor
Kazuto Nakajima
和人 中島
Hideo Kanzawa
英雄 神澤
Eizo Kubo
栄蔵 久保
Takao Inoue
孝夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003156379A priority Critical patent/JP2004363146A/en
Publication of JP2004363146A publication Critical patent/JP2004363146A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1701Structure
    • H01L2224/1703Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1705Shape
    • H01L2224/17051Bump connectors having different shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection chip with which the joined state of an electronic component bump-joined to a circuit board to the circuit board can be evaluated, and to provide a tool and method for evaluating the joined quality of the electronic component to the circuit board using the chip. <P>SOLUTION: On the inspection chip 1, a conductor pattern which insulates the closed circuit of circuit patterns 5 formed on the circuit board 4 and conducts the opened circuit of the patterns 5 is formed. At the time of evaluating the joined state of the electronic component to the circuit board 4, the chip 1 is formed into an evaluating tool 53 by mounting the chip 1 on the surface of the circuit board 4 instead of the electronic component, in a state which is equal to the mounted state of the component and the joined state is evaluated by measuring the resistance value between the circuit patterns 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、回路基板にバンプ接合した電子部品の接合品質を評価する接合品質評価用の検査チップとそれを用いた接合品質の評価ツール及び評価方法に関するものである。
【0002】
【従来の技術】
集積回路部品等の電子部品を回路基板に接合する一手段として、電子部品に形成されたバンプ電極を回路基板に形成された回路パターンにバンプ接合するフリップチップ接合が適用されている。バンプ接合による接合部は直接観察が不可能な位置にあるため、その接合状態を検査するために非破壊検査することができない。そのため、接合状態の良否を検査するためにX線透視画像検査や赤外線透過検査などが用いられている。しかし、X線検査装置は高価であり、位置関係等の状態は検出できるものの接合状態が適正であるか否かは実質的には判定不可能である。
【0003】
X線検査に代わる接合状態の検査方法として赤外線を用いた検査方法が知られている。例えば、電子部品であるチップとそれをバンプ接合する回路基板のいずれか一方を加熱し、チップのバンプを回路基板に接触させた状態でバンプ周辺の温度変化を検出することにより、チップと回路基板との間の接合状態を判断する検査装置及び検査方法が知られている(特許文献1参照)。
【0004】
また、直接観察が不可能な位置にある回路基板にバンプ接合された電子部品の接合状態の良否を判定するために、電子部品に赤外線を透過させ、電極との界面から反射した赤外線を検出することにより、接合部分の金属化合物の生成状態を評価する検査方法が知られている(特許文献2参照)。
【0005】
しかし、上記先願技術はいずれも赤外線の検出によって接合状態の良否を判定しているため、配線電極等の赤外線を透過しない部分が介在していると、正確な検査ができない問題点があった。そこで、接合部の抵抗値を測定して、微抵抗値変動から接合品質を評価する手法を用いると、簡単な装置で接合状態を評価することができる。
【0006】
図5は、コアカメラの品質を接合状態から評価する構成を示すものである。図5(b)に示すように、CCDやCMOSなどの撮像素子12が回路基板4の一方面にAuバンプ16により接合され、この回路基板4の他方面にDSP(Digital Signal Processing)10がAuバンプ6により接合され、回路基板4にはフレキシブル基板13がハンダ17により接合されてカメラモジュール15が形成されている。このカメラモジュール15に機器筐体(図示せず)に保持された光学レンズ18を装着してコアカメラが構成される。
【0007】
上記コアカメラの初期品質や市場での品質信頼性を確認する手段として、図5(a)に示すように、カメラモジュール15の回路基板4に形成された電極5と、この電極5に接合点19で接合されたフレキシブル基板13に形成された電極20とを1回路として、任意の接続点を選択して4端子ケーブル8を用いた抵抗測定器9により回路抵抗値を測定し、電極5と電極20との間の接合状態の良否を検出し、接合品質を評価している。コアカメラとしての良否判定は、カメラモジュール15に光学レンズ18を装着した後、画質検査により判定される。
【0008】
【発明が解決しようとする課題】
上記従来技術における抵抗値を測定する検査方法において、図6に示す基板反りデータのように、回路基板4の各接合ポイント毎に反り量が異なることが観測されている。従って、各Auバンプ6による接合が同一条件下で実施されても、バンプ接合された各接合ポイントにおいて、図7に示すようなオープン〜ショートの接合状態が分布することが容易に想像できる。また、図8に示す接合状態Oのような接合不良が回路基板4の図6に示すA,B,Cポイントのうち、反りの大きいB,Cポイントで顕著に発生する。このような接合状態を非破壊検査でデジタルに検出する方法は、その議論はあるものの未だ有効な手段は見つかっていない。
【0009】
また、従来のカメラモジュール15を一括して検査する方法では、1回路上に複数の接合点19が存在することや、特にDSPが半導体であることなどから、図7に示すような接合状態をモジュール単位で評価することは困難である。更に、従来の検査方法では、オープン気味やショート気味の接合状態を個別に検出して評価することは極めて困難であることから、市場での品質トラブルの危険があった。また、接合の最適条件を導出し、それを非破壊検査でデジタルに評価する有効な手段がなかった。
【0010】
本発明が目的とするところは、個別モジュールの接合品質及び接合部の最適条件を非破壊検査で且つデジタルに評価するための接合品質評価用の検査チップとそれを用いた評価ツール及び評価方法を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するための本願第1発明は、多数のバンプ電極が形成された電子部品が回路基板に形成された回路パターンの所定接合部にバンプ接合して実装された回路基板の前記回路パターン間の抵抗値測定により電子部品の接合品質を評価するための接合品質評価用の検査チップであって、前記電子部品に代えて回路基板に実装され、前記回路基板に形成された回路パターンの閉回路間を絶縁し、開回路間を導通させる導体パターンが形成されてなることを特徴とする。
【0012】
上記構成になる検査チップを電子部品に代えて回路基板にバンプ接合すると、回路基板に形成された回路パターンの閉回路間は絶縁され、開回路間は導通されるので、バンプ接合された回路パターン間の抵抗値を測定すると、バンプ接合による電子部品の接合状態が微抵抗値の変動から評価できる。
【0013】
上記検査チップは、シリコン基板に導電性薄膜を形成した後、導電性薄膜に閉回路間を絶縁し、開回路間を導通させるトリミングを形成し、導電性薄膜に接合して電子部品と同一位置にバンプ電極を形成することにより、電子部品に代えて回路基板に接合され、接合状態の評価を電子部品が実装されている状態と同等の状態にして実施することができる。
【0014】
また、本願第2発明は、多数のバンプ電極が形成された電子部品が回路基板に形成された回路パターンの所定接合部にバンプ接合して実装された回路基板の前記回路パターン間の抵抗値測定により電子部品の接合品質を評価するための接合品質評価用の評価ツールであって、前記回路基板に形成された回路パターンの閉回路間を絶縁し、開回路間を導通させる導体パターンが形成され、前記電子部品と同一位置にバンプ電極が形成された検査チップが、前記バンプ電極を回路パターンにバンプ接合して電子部品に代えて回路基板に実装されてなることを特徴とする。
【0015】
上記構成になる接合品質評価用の評価ツールは、電子部品のダミーとする検査チップが電子部品の実装状態と同等の状態に実装されて構成されるので、この評価ツールを高温あるいは低温の環境下に曝して、そのときのバンプ接合部分の状態を回路パターン間の抵抗値測定から評価することができる。
【0016】
また、本願第3発明は、多数のバンプ電極が形成された電子部品を回路基板に形成された回路パターンの所定接合部にバンプ接合して実装された回路基板の前記回路パターン間の抵抗値測定により電子部品の接合品質を評価する接合品質評価方法であって、前記回路基板に形成された回路パターンの閉回路間を絶縁し、開回路間を導通させる導体パターンが形成された接合品質評価用検査チップを前記電子部品に代えて回路基板に実装して評価ツールを作成し、この評価ツールを所定環境下に曝して前記検査チップによって導通された回路パターン間の微抵抗値変動を測定して、バンプ接合位置個々の接合品質を評価することを特徴とする。
【0017】
上記評価方法によれば、電子部品と同等の接合状態が得られる検査チップを回路基板にバンプ接合すると、回路基板に形成された回路パターンの閉回路が絶縁し、開回路を導通された状態が得られるので、回路パターン間の抵抗値測定からバンプ接合の接合品質を求めることができる。前記検査チップを回路基板に実装した評価ツールは、それを所定の環境下に曝すことにより、回路基板の反り等による接合ポイントの変化を検出することができ、電子部品を回路基板に実装した実際回路の接合品質を評価することができる。
【0018】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態について説明し、本発明の理解に供する。尚、本実施の形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、従来技術の構成と共通する構成要素には同一の符号を付している。
【0019】
本実施形態は、従来技術において示したと同様のコアカメラを構成するカメラモジュール15における回路基板4に対するDSP(電子部品)10の接合状態から品質を評価するための接合品質評価用の検査チップ1及びそれを用いた評価ツール及び評価方法について示すものである。
【0020】
図1は、接合品質評価用の評価ツール53の構成を示すもので、回路基板4にDSP10のダミーとなる接合品質評価用の検査チップ1がAuバンプ6によってバンプ接合されている。検査チップ1の回路基板4に対する接合は、DSP10を回路基板4に接合する実生産の状態と同一にすることが望ましい。前記検査チップ1は、図2に示す作成プロセスによって形成されたものである。
【0021】
図2(a)に示すように、DSP10の母材と同等とするため、外形寸法5mm角、厚さ0.3mm、絶縁抵抗値100kΩ以上で両面研磨したSiチップ50を準備する。
【0022】
次に、図2(b)に示すように、Siチップ50の一方面にAl−Cu−Tiなどを段階的に1μm前後の厚さに物理メッキした後、更に高分子保護膜を1μm程度の厚さに施した導電膜2を形成する。この導電膜2は、抵抗値をできる限り均一にするための厚みの制御と、Siチップ50への物理メッキの密着性の向上を図って形成される。また、前記高分子膜は絶縁材であるため、バンプ接合ポイントには設けない方が好ましい。但し、高分子膜による導電膜の酸化防止効果が薄れると、バンプ接合ポイントの抵抗値上昇が懸念されるため、保管時の湿度管理への配慮が必要である。
【0023】
次いで、図2(c)に示すように、導電膜2に回路基板4に形成された回路パターンに対応する導体パターンが形成されるように、導電膜2を所定領域に分割するトリミングを実施する。ここでは、回路基板4に、図3(b)に示すように、回路パターン5が形成されている場合のトリミングについて説明する。図3(b)に示す回路基板4の破線で示す位置に、図3(a)に示す検査チップ1に形成されたAuバンプ6を回路パターン5の各接合ポイントに接合して実装する。回路パターン5は、a−p回路、b−c回路、d−e回路、f−g回路、h−i回路、l−m回路が閉回路であり、j回路、k回路、n回路、o回路が開回路であり、各Auバンプ6と各回路パターン5との接合状態を回路抵抗から検出するために、検査チップ1の導電膜2には、回路パターン5の閉回路を絶縁し、開回路を導通させるような導体パターンが形成されるようにトリミング3が形成される。具体的には、a−b回路、c−d回路、e−f回路、g−h回路、i−j−k−l回路、m−n−o−p回路を導通させるようにトリミング3を形成する。
【0024】
トリミング3の幅は、回路パターン5のAuバンプ6のパターンピッチ100μm以下であることが要求され、トリミング3の深さは、導電膜2の厚さ2μmの1.5〜2倍程度として、Siチップ50への加工負荷を抑えるようにする。加工方法は特に限定されるものではないが、トリミング3による導体パターン間の絶縁抵抗値が検出予測抵抗値の約100,000倍以上が確保できることを優先する。
【0025】
次に、図2(d)に示すように、導電膜2の所定位置にAuバンプ51を形成する。Auバンプ51の高さ寸法と形成位置は、接合品質を左右する重要な要素であるので、均一に形成されるような条件設定がなされる。
【0026】
次いで、図2(e)に示すように、形成されたAuバンプ51に界面結合剤52を塗布して検査チップ1に形成した後、図2(f)に示すように、回路基板4上に位置決めして装着し、図示G方向から検査チップ1に均等加圧を加えて検査チップ1を回路基板4に面実装する。このときの界面結合剤52の塗布量や加圧力に影響される回路基板4の上面と検査チップ1との対向面間の間隙量、Auバンプ51の潰れ量、界面結合剤52の広がり量は、接合品質を左右する重要な要素となるため、均一に形成されるような条件設定がなされる。
【0027】
次に、図2(g)に示すように、界面結合剤52を硬化させた後、樹脂封止剤7を施し、コアカメラ評価用の評価ツール53に形成する。この評価ツール53を、図2(h)に示すように、ヒートサイクル試験機54に投入して、例えば−20℃、+80℃設定の環境に曝した後、a−b回路、c−d回路、e−f回路、g−h回路、i−j−k−l回路、m−n−o−p回路の抵抗値を、図1に示すように、4端子ケーブル8を用いた抵抗測定器9により検出する。
【0028】
ヒートサイクル試験機54に投入する前の初期抵抗絶対真値は、接合後の回路抵抗値から各電極間抵抗値を除した値で求められるが、ヒートサイクル投入前後の抵抗値変化量のみで接合の良否を評価してもよい。また、ヒートサイクル毎に抵抗値変化量を検出し、そのデータの推移を統計処理することから接合点の信頼性を高精度に予測することができる。尚、前記電極間抵抗値Rは、R=低効率ρ×配線長さ/配線幅×配線厚さ、の計算式で表され、一事例での電極間抵抗算出値は約800mΩとなった。
【0029】
図4は、本実施形態に係る評価ツール53を用いた評価方法により実施したヒートサイクル投入前n=3の実験結果を示すものである。縦軸に抵抗値(Ω)、横軸に電極測定位置を示している。本データから特定のnにおいて接合ショート状態とオープン傾向が検出された。また、図示(ウ)点において、n=3について同一傾向が検出され、回路基板要因の特異点が存在することが明らかになった。
【0030】
【発明の効果】
以上の説明の通り本発明によれば、バンプ接合による面実装の接合状態を電極間の微抵抗値変動から検出可能であり、コアカメラなどの電子部品の接合品質を個別モジュール毎に安価に評価することができる。また、接合品質を抵抗値変化として定量把握することができるので、データ処理による傾向管理が容易となる。従って、これらのデータを接合条件の検証、生産設備のバラツキの検証、品質不良の早期発見とその対策の高速化、接合状態に起因する市場不良の推定等に応用展開することができる。
【図面の簡単な説明】
【図1】実施形態に係る評価ツールの構成を示す(a)は平面図、(b)は側面図。
【図2】実施形態に係る検査チップの作成手順を示す工程図。
【図3】検査チップの導体パターン例(a)とそれに対応する回路基板の回路パターン例(b)を示す平面図。
【図4】評価ツールを用いた接合状態の実験結果を示すグラフ。
【図5】従来技術に係る接合状態評価の構成を示す(a)は平面図、(b)は側面図。
【図6】回路基板の反り状態を検出したグラフ。
【図7】バンプ接合の状態を示す模式図。
【図8】回路基板の反りに伴う接続不良の例を示す模式図。
【符号の説明】
1 検査チップ
2 導電膜
3 トリミング
4 回路基板
5 回路パターン
6 Auバンプ
8 4端子ケーブル
9 抵抗測定器
10 DSP(電子部品)
15 カメラモジュール
53 評価ツール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bonding quality evaluation inspection chip for evaluating the bonding quality of an electronic component bump-bonded to a circuit board, and a bonding quality evaluation tool and evaluation method using the inspection chip.
[0002]
[Prior art]
As one means for bonding electronic components such as integrated circuit components to a circuit board, flip-chip bonding is applied in which bump electrodes formed on the electronic component are bump bonded to a circuit pattern formed on the circuit board. Since the joint portion by bump bonding is in a position where direct observation is impossible, non-destructive inspection cannot be performed in order to inspect the bonding state. Therefore, X-ray fluoroscopic image inspection, infrared transmission inspection, and the like are used for inspecting the quality of the bonded state. However, the X-ray inspection apparatus is expensive, and although it is possible to detect the state such as the positional relationship, it is virtually impossible to determine whether or not the joining state is appropriate.
[0003]
An inspection method using infrared rays is known as a bonding state inspection method instead of the X-ray inspection. For example, by heating one of the electronic component chip and the circuit board to which it is bump-bonded, and detecting the temperature change around the bump while the chip bump is in contact with the circuit board, the chip and the circuit board are detected. An inspection apparatus and an inspection method for determining a joining state between the two are known (see Patent Document 1).
[0004]
In addition, in order to determine whether the electronic component bump-bonded to the circuit board at a position where direct observation is impossible, the infrared ray is transmitted through the electronic component and the infrared ray reflected from the interface with the electrode is detected. Thus, an inspection method for evaluating the generation state of the metal compound in the joint portion is known (see Patent Document 2).
[0005]
However, since all of the above prior art technologies determine the quality of the bonded state by detecting infrared rays, there is a problem that accurate inspection cannot be performed if there are portions that do not transmit infrared rays such as wiring electrodes. . Therefore, if the method of measuring the resistance value of the joint portion and evaluating the joint quality from the slight resistance value variation, the joint state can be evaluated with a simple device.
[0006]
FIG. 5 shows a configuration for evaluating the quality of the core camera from the joined state. As shown in FIG. 5B, an image pickup device 12 such as a CCD or CMOS is joined to one surface of a circuit board 4 by Au bumps 16, and a DSP (Digital Signal Processing) 10 is Au on the other side of the circuit board 4. Bonded by the bumps 6, the flexible substrate 13 is bonded to the circuit board 4 by solder 17 to form a camera module 15. A core camera is configured by mounting an optical lens 18 held in an equipment housing (not shown) on the camera module 15.
[0007]
As means for confirming the initial quality of the core camera and the quality reliability in the market, as shown in FIG. 5A, an electrode 5 formed on the circuit board 4 of the camera module 15 and a junction point to the electrode 5 The electrode 20 formed on the flexible substrate 13 bonded at 19 is set as one circuit, an arbitrary connection point is selected, and a circuit resistance value is measured by the resistance measuring device 9 using the four-terminal cable 8. The quality of the joint state with the electrode 20 is detected and the joint quality is evaluated. Whether the core camera is good or bad is determined by an image quality inspection after the optical lens 18 is attached to the camera module 15.
[0008]
[Problems to be solved by the invention]
In the inspection method for measuring the resistance value in the above-described prior art, it has been observed that the amount of warpage differs for each bonding point of the circuit board 4 as in the substrate warpage data shown in FIG. Therefore, even if the bonding by the Au bumps 6 is performed under the same conditions, it can be easily imagined that an open-short bonding state as shown in FIG. 7 is distributed at each bonding point where the bumps are bonded. Further, a bonding failure such as a bonding state O shown in FIG. 8 occurs remarkably at the B, C points where the warpage is large among the A, B, C points shown in FIG. Although such a method for digitally detecting the bonding state by nondestructive inspection has been discussed, no effective means has been found yet.
[0009]
Further, in the method of collectively inspecting the conventional camera module 15, since there are a plurality of junction points 19 on one circuit, especially because the DSP is a semiconductor, the junction state as shown in FIG. 7 is obtained. It is difficult to evaluate on a module basis. Furthermore, with the conventional inspection method, it is extremely difficult to individually detect and evaluate the joining state of openness or shortness, and there is a risk of quality trouble in the market. In addition, there was no effective means for deriving optimum bonding conditions and evaluating them digitally by nondestructive inspection.
[0010]
An object of the present invention is to provide an inspection chip for evaluation of bonding quality and an evaluation tool and an evaluation method using the same for non-destructive inspection and digital evaluation of the bonding quality of individual modules and the optimum condition of the bonding portion. It is to provide.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the first invention of the present application is directed to the circuit pattern of a circuit board in which an electronic component on which a large number of bump electrodes are formed is bump bonded to a predetermined bonding portion of the circuit pattern formed on the circuit board. An inspection chip for bonding quality evaluation for evaluating bonding quality of an electronic component by measuring a resistance value between the electronic components, mounted on a circuit board instead of the electronic component, and closing a circuit pattern formed on the circuit board A conductive pattern is formed to insulate between the circuits and conduct between the open circuits.
[0012]
When the test chip having the above configuration is bump bonded to a circuit board instead of an electronic component, the closed circuit of the circuit pattern formed on the circuit board is insulated and the open circuit is conducted, so the bump bonded circuit pattern When the resistance value between them is measured, the bonding state of the electronic component by the bump bonding can be evaluated from the fluctuation of the minute resistance value.
[0013]
The test chip forms a conductive thin film on the silicon substrate, then forms a trimming that insulates the closed circuit between the closed circuits and conducts between the open circuits, and joins the conductive thin film to the same position as the electronic component. By forming the bump electrode on the substrate, it is bonded to the circuit board instead of the electronic component, and the evaluation of the bonded state can be performed in a state equivalent to the state where the electronic component is mounted.
[0014]
Further, the second invention of the present application is to measure the resistance value between the circuit patterns of the circuit board in which an electronic component on which a large number of bump electrodes are formed is bump bonded to a predetermined bonding portion of the circuit pattern formed on the circuit board. Is a bonding quality evaluation tool for evaluating the bonding quality of electronic components, and a conductor pattern is formed that insulates between closed circuits of the circuit pattern formed on the circuit board and conducts between open circuits. An inspection chip having a bump electrode formed at the same position as the electronic component is mounted on a circuit board instead of the electronic component by bump-bonding the bump electrode to a circuit pattern.
[0015]
The evaluation tool for bonding quality evaluation having the above configuration is configured by mounting an inspection chip as a dummy of an electronic component in a state equivalent to the mounting state of the electronic component. The state of the bump bonding portion at that time can be evaluated from the resistance value measurement between circuit patterns.
[0016]
Further, the third invention of the present application measures the resistance value between the circuit patterns of the circuit board mounted by bump-bonding an electronic component on which a large number of bump electrodes are formed to a predetermined joint portion of the circuit pattern formed on the circuit board. A bonding quality evaluation method for evaluating the bonding quality of an electronic component by using the bonding pattern evaluation method in which a conductor pattern that insulates between closed circuits of a circuit pattern formed on the circuit board and conducts between open circuits is formed. An inspection tool is mounted on a circuit board instead of the electronic component to create an evaluation tool, and the evaluation tool is exposed to a predetermined environment to measure a minute resistance value variation between circuit patterns conducted by the inspection chip. It is characterized by evaluating the bonding quality of each bump bonding position.
[0017]
According to the above evaluation method, when a test chip capable of obtaining a bonding state equivalent to an electronic component is bump bonded to a circuit board, the closed circuit of the circuit pattern formed on the circuit board is insulated and the open circuit is conducted. Since it is obtained, the bonding quality of the bump bonding can be obtained from the resistance value measurement between the circuit patterns. The evaluation tool in which the inspection chip is mounted on the circuit board can detect a change in the bonding point due to the warp of the circuit board, etc. by exposing it to a predetermined environment. The junction quality of the circuit can be evaluated.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. The present embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention. In addition, the same reference numerals are given to the components common to the configuration of the prior art.
[0019]
In this embodiment, the inspection chip 1 for joint quality evaluation for evaluating the quality from the joint state of the DSP (electronic component) 10 to the circuit board 4 in the camera module 15 constituting the same core camera as shown in the prior art, and It shows about the evaluation tool and the evaluation method using it.
[0020]
FIG. 1 shows a configuration of an evaluation tool 53 for evaluating bonding quality. A bonding quality evaluation test chip 1 which is a dummy of the DSP 10 is bump-bonded to a circuit board 4 by Au bumps 6. The bonding of the inspection chip 1 to the circuit board 4 is preferably the same as the actual production state where the DSP 10 is bonded to the circuit board 4. The inspection chip 1 is formed by the production process shown in FIG.
[0021]
As shown in FIG. 2A, in order to make it equivalent to the base material of the DSP 10, a Si chip 50 having both sides polished with an outer dimension of 5 mm square, a thickness of 0.3 mm, and an insulation resistance value of 100 kΩ or more is prepared.
[0022]
Next, as shown in FIG. 2B, after physically plating Al—Cu—Ti or the like on one surface of the Si chip 50 to a thickness of about 1 μm stepwise, a polymer protective film is further formed to a thickness of about 1 μm. A conductive film 2 having a thickness is formed. The conductive film 2 is formed in order to control the thickness to make the resistance value as uniform as possible and to improve the adhesion of physical plating to the Si chip 50. Further, since the polymer film is an insulating material, it is preferable not to provide it at the bump bonding point. However, if the effect of preventing the oxidation of the conductive film by the polymer film is weakened, there is a concern about an increase in the resistance value of the bump bonding point, so it is necessary to consider humidity management during storage.
[0023]
Next, as shown in FIG. 2C, trimming is performed to divide the conductive film 2 into predetermined regions so that a conductive pattern corresponding to the circuit pattern formed on the circuit board 4 is formed on the conductive film 2. . Here, trimming in the case where the circuit pattern 5 is formed on the circuit board 4 as shown in FIG. 3B will be described. The Au bumps 6 formed on the inspection chip 1 shown in FIG. 3A are bonded and mounted at the bonding points of the circuit pattern 5 at positions indicated by broken lines of the circuit board 4 shown in FIG. In the circuit pattern 5, the a-p circuit, the bc circuit, the de-circuit, the f-g circuit, the hi circuit, and the lm circuit are closed circuits, and the j circuit, k circuit, n circuit, o The circuit is an open circuit, and in order to detect the bonding state between each Au bump 6 and each circuit pattern 5 from the circuit resistance, the conductive circuit 2 of the test chip 1 is insulated from the closed circuit of the circuit pattern 5 and opened. The trimming 3 is formed so as to form a conductor pattern that makes the circuit conductive. Specifically, the trimming 3 is performed so that the ab circuit, the cd circuit, the ef circuit, the gh circuit, the ijkl circuit, and the mnop circuit are made conductive. Form.
[0024]
The width of the trimming 3 is required to be 100 μm or less of the pattern pitch of the Au bump 6 of the circuit pattern 5, and the depth of the trimming 3 is about 1.5 to 2 times the thickness 2 μm of the conductive film 2. The processing load on the chip 50 is suppressed. The processing method is not particularly limited, but priority is given to ensuring that the insulation resistance value between the conductor patterns by trimming 3 can be about 100,000 times or more the predicted detection resistance value.
[0025]
Next, as shown in FIG. 2D, Au bumps 51 are formed at predetermined positions of the conductive film 2. Since the height dimension and the formation position of the Au bump 51 are important factors that affect the bonding quality, conditions are set so that they are uniformly formed.
[0026]
Next, as shown in FIG. 2E, an interfacial binder 52 is applied to the formed Au bump 51 to form the inspection chip 1, and then on the circuit board 4 as shown in FIG. 2F. After positioning and mounting, the test chip 1 is surface-mounted on the circuit board 4 by applying uniform pressure to the test chip 1 from the G direction in the figure. At this time, the amount of the gap between the upper surface of the circuit board 4 and the facing surface of the inspection chip 1 affected by the coating amount of the interface binder 52 and the applied pressure, the amount of crushing of the Au bumps 51, and the amount of spread of the interface binder 52 are as follows. Since it becomes an important factor affecting the bonding quality, the condition is set so that it is uniformly formed.
[0027]
Next, as shown in FIG. 2G, after the interface binder 52 is cured, the resin sealant 7 is applied to form an evaluation tool 53 for core camera evaluation. As shown in FIG. 2 (h), the evaluation tool 53 is put into a heat cycle tester 54 and exposed to an environment set at, for example, −20 ° C. and + 80 ° C., and then an ab circuit and a cd circuit. , Ef circuit, gh circuit, ijk-l circuit, mn-op circuit resistance values using a four-terminal cable 8 as shown in FIG. 9 to detect.
[0028]
The absolute absolute value of the initial resistance before being put into the heat cycle tester 54 can be obtained by dividing the resistance value between the electrodes from the circuit resistance value after joining. You may evaluate the quality of. Further, since the resistance value change amount is detected for each heat cycle and the transition of the data is statistically processed, the reliability of the joint point can be predicted with high accuracy. The inter-electrode resistance value R is expressed by the following formula: R = low efficiency ρ × wiring length / wiring width × wiring thickness, and the inter-electrode resistance calculation value in one example is about 800 mΩ.
[0029]
FIG. 4 shows the experimental results of n = 3 before the heat cycle input performed by the evaluation method using the evaluation tool 53 according to the present embodiment. The vertical axis represents the resistance value (Ω), and the horizontal axis represents the electrode measurement position. From this data, a junction short-circuit state and an open tendency were detected at a specific n. Further, at the point (c) in the figure, the same tendency was detected for n = 3, and it became clear that there was a singular point of the circuit board factor.
[0030]
【The invention's effect】
As described above, according to the present invention, it is possible to detect the bonding state of the surface mounting by the bump bonding from the minute resistance value variation between the electrodes, and evaluate the bonding quality of the electronic component such as the core camera at a low cost for each individual module. can do. In addition, since the bonding quality can be quantitatively grasped as a change in resistance value, trend management by data processing becomes easy. Therefore, these data can be applied and expanded to verification of joining conditions, verification of variations in production facilities, early detection of quality defects and speeding up of countermeasures thereof, estimation of market defects caused by bonding conditions, and the like.
[Brief description of the drawings]
1A is a plan view and FIG. 1B is a side view showing a configuration of an evaluation tool according to an embodiment.
FIG. 2 is a process diagram showing a procedure for creating an inspection chip according to the embodiment.
FIG. 3 is a plan view showing a conductor pattern example (a) of an inspection chip and a circuit pattern example (b) of a circuit board corresponding thereto.
FIG. 4 is a graph showing experimental results of a bonding state using an evaluation tool.
FIG. 5A is a plan view and FIG. 5B is a side view showing a configuration of a bonding state evaluation according to a conventional technique.
FIG. 6 is a graph for detecting a warped state of a circuit board.
FIG. 7 is a schematic diagram showing a state of bump bonding.
FIG. 8 is a schematic diagram showing an example of connection failure caused by warping of a circuit board.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inspection chip 2 Conductive film 3 Trimming 4 Circuit board 5 Circuit pattern 6 Au bump 8 4 terminal cable 9 Resistance measuring device 10 DSP (electronic component)
15 Camera module 53 Evaluation tool

Claims (4)

多数のバンプ電極が形成された電子部品が回路基板に形成された回路パターンの所定接合部にバンプ接合して実装された回路基板の前記回路パターン間の抵抗値測定により電子部品の接合品質を評価するための接合品質評価用の検査チップであって、前記電子部品に代えて回路基板に実装され、前記回路基板に形成された回路パターンの閉回路間を絶縁し、開回路間を導通させる導体パターンが形成されてなることを特徴とする検査チップ。Evaluate the bonding quality of electronic components by measuring the resistance value between the circuit patterns of the circuit board mounted by bump bonding the electronic components with many bump electrodes formed on the predetermined joints of the circuit pattern formed on the circuit board. An inspection chip for evaluating bonding quality for mounting, wherein the conductor is mounted on a circuit board instead of the electronic component, insulates between closed circuits of a circuit pattern formed on the circuit board, and conducts between open circuits An inspection chip having a pattern formed thereon. シリコン基板に導電性薄膜を形成した後、導電性薄膜に閉回路間を絶縁し、開回路間を導通させるトリミングを形成し、導電性薄膜に接合して電子部品と同一位置にバンプ電極が形成されてなる請求項1に記載の検査チップ。After a conductive thin film is formed on a silicon substrate, a trim is formed on the conductive thin film that insulates the closed circuit and conducts between the open circuits, and the bump electrode is formed at the same position as the electronic component by bonding to the conductive thin film The inspection chip according to claim 1. 多数のバンプ電極が形成された電子部品が回路基板に形成された回路パターンの所定接合部にバンプ接合して実装された回路基板の前記回路パターン間の抵抗値測定により電子部品の接合品質を評価するための接合品質評価用の評価ツールであって、前記回路基板に形成された回路パターンの閉回路間を絶縁し、開回路間を導通させる導体パターンが形成され、前記電子部品と同一位置にバンプ電極が形成された検査チップが、前記バンプ電極を回路パターンにバンプ接合して電子部品に代えて回路基板に実装されてなることを特徴とする接合品質評価用の評価ツール。Evaluate the bonding quality of electronic components by measuring the resistance value between the circuit patterns of the circuit board mounted by bump bonding the electronic components with many bump electrodes formed on the predetermined joints of the circuit pattern formed on the circuit board. An evaluation tool for bonding quality evaluation for forming a conductor pattern that insulates between closed circuits of circuit patterns formed on the circuit board and conducts between open circuits, and is located at the same position as the electronic component. An inspection tool for evaluating bonding quality, wherein an inspection chip on which bump electrodes are formed is bump-bonded to a circuit pattern and mounted on a circuit board instead of an electronic component. 多数のバンプ電極が形成された電子部品を回路基板に形成された回路パターンの所定接合部にバンプ接合して実装された回路基板の前記回路パターン間の抵抗値測定により電子部品の接合品質を評価する接合品質評価方法であって、前記回路基板に形成された回路パターンの閉回路間を絶縁し、開回路間を導通させる導体パターンが形成された接合品質評価用検査チップを前記電子部品に代えて回路基板に実装して評価ツールを作成し、この評価ツールを所定環境下に曝して前記検査チップによって導通された回路パターン間の微抵抗値変動を測定して、バンプ接合位置個々の接合品質を評価することを特徴とする接合品質の評価方法。Evaluate the bonding quality of electronic components by measuring the resistance value between the circuit patterns of the circuit board mounted by bump bonding electronic components with a large number of bump electrodes to the predetermined joints of the circuit patterns formed on the circuit board. A bonding quality evaluation method for replacing the electronic component with an inspection chip for bonding quality evaluation in which a conductive pattern that insulates between closed circuits of circuit patterns formed on the circuit board and conducts between open circuits is formed. An evaluation tool is created by mounting it on a circuit board, and this evaluation tool is exposed to a predetermined environment to measure a minute resistance value variation between circuit patterns conducted by the inspection chip. A method for evaluating bonding quality, characterized in that:
JP2003156379A 2003-06-02 2003-06-02 Inspection chip for evaluating joined quality of electronic component to circuit board and tool and method therefor using the chip Pending JP2004363146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156379A JP2004363146A (en) 2003-06-02 2003-06-02 Inspection chip for evaluating joined quality of electronic component to circuit board and tool and method therefor using the chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156379A JP2004363146A (en) 2003-06-02 2003-06-02 Inspection chip for evaluating joined quality of electronic component to circuit board and tool and method therefor using the chip

Publications (1)

Publication Number Publication Date
JP2004363146A true JP2004363146A (en) 2004-12-24

Family

ID=34050480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156379A Pending JP2004363146A (en) 2003-06-02 2003-06-02 Inspection chip for evaluating joined quality of electronic component to circuit board and tool and method therefor using the chip

Country Status (1)

Country Link
JP (1) JP2004363146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025863A1 (en) * 2010-07-27 2012-02-02 Eric Ochs Solder joint inspection
CN110416203A (en) * 2019-06-20 2019-11-05 北京聚睿众邦科技有限公司 A kind of ic core sheet resistance and its manufacturing process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025863A1 (en) * 2010-07-27 2012-02-02 Eric Ochs Solder joint inspection
US8810252B2 (en) * 2010-07-27 2014-08-19 Robert Bosch Gmbh Solder joint inspection
CN110416203A (en) * 2019-06-20 2019-11-05 北京聚睿众邦科技有限公司 A kind of ic core sheet resistance and its manufacturing process

Similar Documents

Publication Publication Date Title
US7637413B2 (en) X-ray inspection device and X-ray inspection method
CN100358122C (en) Apparatus and method for testing conductive bumps
US9502378B1 (en) Printed circuit boards having blind vias, method of testing electric current flowing through blind via thereof and method of manufacturing semiconductor packages including the same
JP2004363146A (en) Inspection chip for evaluating joined quality of electronic component to circuit board and tool and method therefor using the chip
US7195935B2 (en) Selective packaging of tested semiconductor devices
CN113030706B (en) Failure analysis sample manufacturing method and failure analysis sample
Albrecht et al. Impact of warpage effects on quality and reliability of solder joints
US8338828B2 (en) Semiconductor package and method of testing same
JP5097046B2 (en) Semiconductor device reliability evaluation method and semiconductor device reliability evaluation apparatus
JP2010118472A (en) Method of testing connecting conditions of electronic device
JP4934170B2 (en) Circuit board inspection method
JP2000304801A (en) Electronic part reliability evaluation device and electronic part reliability evaluation method
JP3415413B2 (en) Method for manufacturing semiconductor device
JP2006005163A (en) Semiconductor device, and mounting inspecting method thereof
KR101112567B1 (en) Method of forming sensing element for warpage in the electronic package board and electronic package board comprising the sensing element
KR20130016765A (en) Electric connecting apparatus for testing electric characteristic of a semiconductor device having thin film resistor and manufacturing method thereof
JP4877465B2 (en) Semiconductor device, semiconductor device inspection method, semiconductor wafer
JP2006165325A (en) Wiring structure of board mounting ic package and method for inspecting defective electric connection
US6496559B1 (en) Sample preparation for inspection of ball contacts and internal vias
JPH10335900A (en) Device for inspecting mounted electronic component
US11906574B2 (en) Hybrid socket warp indicator
TWI305273B (en) A test assembly for testing a ball grid array package device
JP5495303B2 (en) Semiconductor module and semiconductor module inspection method
Koscielski et al. The influence of corner bonding and underfilling techniques on the reliability of 3D TMV PoP structures in SMT assembly
JP2852976B2 (en) Method of using inspection circuit board for semiconductor device