JP2004358530A - Rocker arm and method for manufacturing the same - Google Patents

Rocker arm and method for manufacturing the same Download PDF

Info

Publication number
JP2004358530A
JP2004358530A JP2003161583A JP2003161583A JP2004358530A JP 2004358530 A JP2004358530 A JP 2004358530A JP 2003161583 A JP2003161583 A JP 2003161583A JP 2003161583 A JP2003161583 A JP 2003161583A JP 2004358530 A JP2004358530 A JP 2004358530A
Authority
JP
Japan
Prior art keywords
rocker arm
roller
side walls
intermediate material
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003161583A
Other languages
Japanese (ja)
Other versions
JP3659961B2 (en
Inventor
Shoichi Abe
正一 阿部
Kiyoshi Okubo
潔 大久保
Yasushi Watanabe
靖 渡辺
Takanori Oshima
崇徳 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
NSK Steering Systems Co Ltd
Original Assignee
NSK Ltd
NSK Steering Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd, NSK Steering Systems Co Ltd filed Critical NSK Ltd
Priority to JP2003161583A priority Critical patent/JP3659961B2/en
Priority to PCT/JP2004/007494 priority patent/WO2004109065A1/en
Priority to EP04745459A priority patent/EP1637705A4/en
Publication of JP2004358530A publication Critical patent/JP2004358530A/en
Application granted granted Critical
Publication of JP3659961B2 publication Critical patent/JP3659961B2/en
Priority to US11/294,671 priority patent/US7152320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/181Centre pivot rocking arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • B21K1/205Making machine elements valve parts rocker arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • F01L2303/01Tools for producing, mounting or adjusting, e.g. some part of the distribution

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rocker arm by performing cold forging of a stock formed of a metallic wire, and to enhance the performance of an engine with the rocker arm built therein. <P>SOLUTION: A second intermediate stock 34b having a pair of side wall parts 2a and a base part 39 to connect one end part to each other in the width direction of the side wall parts 2a respectively by performing cold forging on a stock obtained by cutting a metallic wire to the predetermined length. First and second connection parts are formed by blanking the base part 39 of the second intermediate stock 34b. When it is assumed that a roller 35 is disposed at the position corresponding to the position of arrangement of the roller in a rocker arm to be obtained on the inner side of the second intermediate stock 34b to be blanked, the roller 35 is not allowed to interfere with the base part 39. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、エンジンの動弁機構に組み込み、カムシャフトの回転を弁体(吸気弁及び排気弁)の往復運動に変換する為のカムフォロアを構成する、ロッカーアーム及びその製造方法に関する。
【0002】
【従来の技術】
レシプロエンジン(往復ピストンエンジン)には、一部の2サイクルエンジンを除き、クランクシャフトの回転と同期して開閉する吸気弁及び排気弁を設けている。この様なレシプロエンジンでは、上記クランクシャフトの回転と同期して(4サイクルエンジンの場合には1/2の回転速度で)回転するカムシャフトの動きを、ロッカーアームにより、上記吸気弁及び排気弁に伝達し、これら吸気弁及び排気弁をそれぞれの軸方向に往復運動させる場合がある。
【0003】
この様なエンジンの動弁機構に組み込むロッカーアームとして従来一般的には、鋳造品(鋳鉄品或はアルミニウムダイキャスト品)を使用していた。又、近年、鋼板等の金属板にプレス加工を施す事により上記ロッカーアームを造る事も考えられ、一部で実施されている。但し、この様な鋳造品のロッカーアームや、金属板製のロッカーアームの場合には、製造作業に要する時間が長くなったり、材料の無駄が多くなる事により、コストが嵩むと言った問題がある。
【0004】
これに対して、特許文献1に記載されている様に、金属線材を所定長さに切断して得た素材(ブランク)に冷間鍛造を施す事によりロッカーアームを製造する方法が提案されている。特許文献1によると、ロッカーアームを金属線材から成る素材に潤滑被膜層を形成して冷間鍛造を施す事により造る場合には、亀裂の発生がなく、高精度に製造でき、作業性を良好にできるとしている。又、ロッカーアームをこの様な冷間鍛造により造る場合には、熱間鍛造により造る場合に比べて、形状精度及び寸法精度を高くできる。図22〜28は、上記特許文献1に記載された、ロッカーアームの製造方法に関する発明を表している。尚、このロッカーアームの製造方法に就いては、上記特許文献1に詳しく記載されている為、ここでは簡単に説明する。ロッカーアーム1は、図22に示す様に、互いにほぼ平行な1対の側壁部2、2と、これら両側壁部2、2の長さ方向両端部同士を連結する第一の連結部3及び第二の連結部4とを有する。これら第一の連結部3及び第二の連結部4のうち、第一の連結部3は、弁体の基端部を突き当てる為の第一の係合部6を、第二の連結部4は、ラッシュアジャスタ等の揺動支持部材の先端部を突き当てる為の第二の係合部7を、それぞれ有する。
【0005】
又、特許文献1には記載されていないが、実際に使用するロッカーアームの場合には、上記両側壁部2、2の長さ方向中間部に1対の円孔を、互いに同心に形成し、これら両円孔に、カムと係合するローラを回転自在に支持する為の支持軸の両端部を支持自在とする。
【0006】
上述の様なロッカーアーム1を造る作業は、次の様にして行なう。先ず、図23に示す様に、回転支持装置8にコイル状に巻回した金属線材9の端部を、冷間鍛造成形機10に設けたローラ式線材供給機構11により引き出して、この冷間鍛造成形機10の内部に導入する。上記金属線材9は、断面が矩形状である。又、この金属線材9を予めリン酸亜鉛等の潤滑液槽に漬け込む事により、この金属線材9の外周面に潤滑皮膜層を形成しておく。そして、第一工程として、図24に示す様に、上記冷間鍛造成形機10に設けた切断機構12で、上記金属線材9を所定長さに切断する事により、直方体状の素材(ブランク)13を造る。尚、上記冷間鍛造成形機10は、横型多段式鍛造成形機と呼ばれるもので、内側に固設されたダイブロック14と、このダイブロック14に対し接近又は離隔(遠近動)する様に水平方向に往復運動するラム15とを備える。このうちのダイブロック14には、複数の固定型16a〜16dを、水平方向に互いに間隔をあけて配置している。又、上記ラム15の一部で、これら固定型16a〜16dと対向する位置に、複数の可動型17a〜17dを、それぞれ型ホルダ18a〜18dを介して配置している。そして、これら各固定型16a〜16dと各可動型17a〜17dとを配置した部分に、第一の鍛造ステーション19と第一の打ち抜きステーション20と第二の鍛造ステーション21と第二の打ち抜きステーション22とを、それぞれ設けている。上記第一工程により得られた直方体状の素材13は、上記冷間鍛造成形機10に設けた素材旋回供給機構23により、この素材13の向きを90度変えつつ、上記第一の鍛造ステーション19に供給する。
【0007】
この第一の鍛造ステーション19では、第二工程として、図25に詳示する様に、可動型17aにより固定型16aに、上記素材13を水平方向に打ち込む事で、この素材13に冷間鍛造を施して、ロッカーアーム1の大まかな形状及び寸法を有する第一中間素材24を造る。この第一中間素材24は、1対の側壁部2(図22)と、これら両側壁部2の幅方向中間部同士を連結する基部51とを備えた、断面H字形である。又、上記第一中間素材24の厚さ方向中間部外周面にバリ25が、全周に亙り形成される。この様な冷間鍛造を行なう上記素材13の外周面には予め潤滑皮膜層を形成している為、上記固定型16a及び可動型17aの内面と、この素材13の外面との間に作用する摩擦を小さく抑えられる。そして、この構成により、上記第一中間素材24の成形作業性及び形状精度を良好にできる。この様な第二工程により得られた第一中間素材24は、上記固定型16aと可動型17aとの間から取り出して、図26に詳示する様な、第一の打ち抜きステーション20に供給する。
【0008】
この第一の打ち抜きステーション20では、第三工程として、固定型16bの通孔26内に設けた筒状の押し出し部材27の先端面と、筒状の可動型17bの先端面との間で、上記第一中間素材24のうち、上記バリ25を除いた本体部分を挟持する。そして、上記通孔26内にこの本体部分を押し込む事により、このバリ25を、この通孔26の開口端周縁部で除去する。これと同時に、上記押し出し部材27の内側に設けた孔あけ用パンチ28により、上記第一中間素材24に設けた基部51(図25)の中間部を打ち抜いて、透孔29を有する第二中間素材30を造る。この透孔29を形成する事により、この第二中間素材30には、1対の側壁部2(図22)の長さ方向両端部同士を連結する第一、第二の両連結部3、4が形成される。この様な第三工程により得られた第二中間素材30は、上記固定型16bと可動型17bとの間から取り出して、図27に詳示する様な、第二の鍛造ステーション21に供給する。
【0009】
この第二の鍛造ステーション21では、第四工程として、可動型17cにより固定型16cに、上記第二中間素材30を水平方向に打ち込む事により、この第二中間素材30に冷間鍛造を施して、完成品に近い寸法及び形状を有する第三中間素材31を造る。この際、この第三中間素材31の厚さ方向中間部外周面と透孔29の内周面とに、それぞれバリ25a、25bが形成される。この様な冷間鍛造を行なう第二中間素材30の外面には、予め潤滑皮膜層を形成している為、上記固定型16c及び可動型17cの内面と、上記第二中間素材30の外面との間に作用する摩擦を小さく抑えられる。そして、この構成により、上記第三中間素材31の成形作業性及び形状精度を良好にできる。この様な、第四工程が終了したならば、上記固定型16cと可動型17cとの間から上記第三中間素材31を取り出して、この第三中間素材31を、図28に詳示する様な、第二の打ち抜きステーション22に供給する。
【0010】
この第二の打ち抜きステーション22では、第五工程として、前記第三工程の場合と同様にして、上記第三中間素材31の外周面に形成されたバリ25aを除去する。これと同時に、この第三中間素材31の透孔29の内周面に形成されたバリ25bも除去して、ロッカーアーム1の完成品とする。このロッカーアーム1は、上記第二の打ち抜きステーション22の固定型16dと可動型17dとの間から、例えば図示しない取り出し用チャックにより所定位置に取り出す。又、特許文献1には記載されていないが、実際に使用するロッカーアームの場合には、別の加工機械を用いて、各側壁部2(図22)の中間部で互いに整合する位置に1対の円孔を形成する為の孔あけ加工を行なう。
【0011】
上述の様に構成する特許文献1に記載されたロッカーアームの製造方法の様に、ロッカーアーム1を多段式の冷間鍛造機により製造すると、製造作業に要する時間を或る程度短縮でき、ロッカーアーム1のコストの低減を図り易くなる。
【0012】
【特許文献1】
特開平10−328778号公報
【0013】
【発明が解決しようとする課題】
上述した特許文献1に記載されたロッカーアーム1の場合には、次の▲1▼▲2▼の点で、ロッカーアームを組み込んだエンジンの性能を向上できる余地がある。
▲1▼ 第一、第二の連結部3、4を設ける為に第一中間素材24に打ち抜き加工を施す事により形成される透孔29が、1対の側壁部2の幅方向に関してほぼ中央部に位置している。又、この透孔29は、打ち抜き加工により形成される為、その内周面は粗い剪断面及び破断面となっている。この為、ロッカーアーム1にローラを組み付けてカムフォロアを構成した状態で、このローラの両端面と上記剪断面及び破断面とが接触する可能性がある。この様にローラの両端面と剪断面及び破断面とが接触した場合には、このローラを円滑に回転させる事が難しくなり、ロッカーアーム1を組み込んだエンジンの性能向上を妨げる原因となる。又、上記ローラの両端面と剪断面及び破断面とが接触した場合には、このローラの両端面が異常摩耗したり、当該接触部で摩耗により生じた摩耗粉がエンジンの構成部材同士の隙間に入り込んで、エンジンの性能低下を招く可能性もある。特許文献1に記載されたロッカーアーム1の場合には、この様な点で、ロッカーアームを組み込んだエンジンの性能を向上できる余地がある。
▲2▼ 軽量化を図る面から未だ改良の余地がある。即ち、特許文献1に記載されたロッカーアーム1の場合には、第一の連結部3の片面{図22(a)の左側面}での、各側壁部2、2の長さ方向一端縁(図22の下端縁)の立ち上がり位置Pが、ロッカーアーム1の長さ方向一端縁(図22の下端縁)付近となっている。この為、上記各側壁部2、2の長さ寸法が大きくなり、上記ロッカーアーム1の体積が不必要に嵩んで、上記ロッカーアーム1の重量が嵩む原因となっている。この様にロッカーアーム1の重量が嵩んだ場合には、このロッカーアーム1を組み込んだエンジンの出力性能等の性能の低下を招く原因となる。特許文献1に記載されたロッカーアーム1の場合には、この様な点でも、ロッカーアームを組み込んだエンジンの性能を向上できる余地がある。
本発明のロッカーアーム及びその製造方法は、この様な事情に鑑みて、金属線材製の素材に冷間鍛造を施す事により得るロッカーアームで、このロッカーアームを組み込んだエンジンの性能向上を図るベく発明したものである。
【0014】
【課題を解決するための手段】
本発明のロッカーアーム及びその製造方法のうちのロッカーアームは何れも、金属線材を所定長さに切断する事で得られた素材に冷間鍛造を施す事により造られ、互いに間隔をあけて設けられた1対の側壁部と、これら両側壁部の長さ方向両端寄り部分同士を連結する第一、第二の連結部と、これら両側壁部の互いに整合する位置に形成した1対の通孔とを備え、この第一の連結部が弁体と係合する第一の係合部を有するものであり、上記第二の連結部が揺動支持部材と係合する第二の係合部を有するものであり、上記各通孔に両端部を支持する支持軸の中間部にローラを支持する。
【0015】
特に、請求項1に記載したロッカーアームは、上記第一、第二の連結部を形成する為の打ち抜き加工により上記各側壁部の内面に形成される剪断面及び破断面の総てを、上記ローラの両端面に対向させない。尚、ローラの両端面と外周面との連続部には面取りを形成する場合もあるが、この場合での請求項1に記載した「ローラの両端面」は、この面取りを除いた(面取りの内周縁よりも中心寄りの)部分である。
【0016】
又、請求項4に記載したロッカーアームは、上記第一の係合部と反対側となる上記第一、第二の各連結部の片面に位置する上記各側壁部の長さ方向両端縁を、この長さ方向に関して、この第一の係合部のうちの上記弁体の基端面の中心を突き当てるべき部分から、上記第二の係合部のうちの上記揺動支持部材の先端面の中心を突き当てるべき部分又はこの揺動支持部材に設けた雄ねじ部を螺合する為のねじ孔の中心迄の間に位置させている。
【0017】
又、請求項2に記載したロッカーアームの製造方法は、上述の請求項1に記載したロッカーアームの製造方法であって、上記1対の側壁部とこれら両側壁部の一部同士を連結した基部とを備えた中間素材のこの基部に打ち抜き加工を施す事により、上記第一、第二の各連結部を形成する打ち抜き工程を備え、この打ち抜き加工を施すべき上記中間素材の内側で、得るべきロッカーアームでのローラの配置位置に対応する位置にこのローラを配置したと仮定した場合に、このローラと上記基部とが干渉しない様に、上記中間素材の形状及び寸法を規制する。
【0018】
【作用】
上述の様に構成される本発明のロッカーアーム及びその製造方法により得られたロッカーアームによれば、金属線材製の素材に冷間鍛造を施す事により得るロッカーアームで、このロッカーアームを組み込んだエンジンの性能向上を図れる。
即ち、請求項2に記載したロッカーアームの製造方法等により得られた請求項1に記載したロッカーアームの場合には、各側壁部の内面に打ち抜き加工により形成される剪断面及び破断面と、ローラの両端面とが接触する事を防止できる。この為、このローラを組み付けたロッカーアームで、このローラを円滑に回転させる事ができる。又、このローラの両端面に異常摩耗が発生する事を防止できると共に、当該接触部での摩耗に基づく摩耗粉の発生を抑える事ができる。従って、ロッカーアームを組み込んだエンジンの出力性能等の性能の向上を図れる。又、上記打ち抜き加工後の工程で、上記剪断面及び破断面を、面押し等により平滑化する面倒な作業を行なう必要がなくなる。
又、請求項3に記載したロッカーアームの場合には、各側壁部の容積を小さくできる為、ロッカーアーム全体の軽量化を図れる。この為、このロッカーアームを組み込んだエンジンの性能向上を図れる。
【0019】
【発明の実施の形態】
図1〜21は、本発明の実施の形態の1例を示している。尚、本例の特徴は、金属線材製の素材に冷間鍛造を施す事により得るロッカーアーム1aで、このロッカーアーム1aを組み込んだエンジンの性能向上を図るべく、第二中間素材34b(図11〜15)の一部を打ち抜く事により生じた剪断面及び破断面とローラ35との位置関係と、1対の側壁部2、2の長さ方向両端縁の位置とを、それぞれ規制した点にある。ロッカーアーム1aの製造装置に就いては、前述の図22〜28に示した製造装置とほぼ同様である為、重複する説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
【0020】
本例のロッカーアーム1aは、図1〜4に示す様に、互いにほぼ平行でそれぞれ略三角形に形成した1対の側壁部2a、2aと、これら両側壁部2a、2aの長さ方向(図1、2の上下方向)両端部同士を連結する第一の連結部3a及び第二の連結部4aとを有する。又、これら両側壁部2、2の長さ方向中間部に1対の円孔5、5を、互いに同心に形成し、これら両円孔5、5に、カムと係合するローラ35をその中間部に回転自在に支持する為の、支持軸(図示せず)の両端部を支持固定する様に構成している。
【0021】
又、弁体の基端部を突き当てる為、上記第一の連結部3aの片面(図1、3の右側面、図2の表側面)に、第一の係合部である第一の凹部36を形成している。又、ラッシュアジャスタの先端部を突き当てる為、上記第二の連結部4aの片面(図1の右側面、図2の表側面)に、第二の係合部である、半球面状の第二の凹部40を形成している。尚、本例の場合には、第二の係合部に揺動支持部材としてラッシュアジャスタの先端部を係合する例を示しているが、第二の連結部4aにねじ孔を形成し、このねじ孔部分にアジャストねじを螺着する構造に関しても、本発明を適用できる。
【0022】
又、本例の場合には、上記第一、第二の連結部3a、4aの他面(図1、3の左側面、図2の裏側面)に位置する、各側壁部2、2の長さ方向(図1〜2上下方向)両端縁を、この長さ方向に関して、上記第一の凹部36のうちの上記弁体の先端面の中心を突き当てるべき部分αから、上記第二の凹部40のうちの上記ラッシュアジャスタの先端面の中心部を突き当てるべき部分β迄の間に位置させている。更に、図2に示す様に、各側壁部2a、2aの幅方向にロッカーアーム1aを見た状態での、このロッカーアーム1aの外周縁の形状を、矩形の長さ方向両端に1対の台形を連続させると共に、互いに隣り合う1対の直線部56a〜56g同士を曲線部57a〜57hで滑らかに連続させた如き形状としている。そして、上記第一、第二の各連結部3a、4aを厚さ方向(図2と同方向)に見た場合での外形を、複数の直線部56a、56c〜56e、56g、56hを備えた、角を丸めた台形状としている。又、図4に示す様に、上記各側壁部2aに形成した、前記支持軸の両端を支持する為の円孔5の軸方向外側(図4の下側)の開口端周縁部に、母線が直線である、摺鉢状の面取り37を形成している。
【0023】
更に、本例のロッカーアーム1aの場合には、上記第一、第二の連結部3a、4aを形成する為の打ち抜き加工により、上記各側壁部2a、2aの幅方向一端寄り部分(図1、4の右端寄り部分)の内面に、図1に梨地で示す様に、剪断面及び破断面が形成されている。そして、この剪断面及び破断面の総てを、前記ローラ35の両端面と、この両端面と外周面との連続部に形成した面取り52(図2)との何れにも対向させない。但し、この面取り52部分は上記各側壁部2a、2aの内面と擦れ合う事はないので、この面取り52と上記剪断面及び破断面とが対向する事は、差し支えない。尚、図1ではローラ35を、2個の二点鎖線の同心円で示しているが、これら同心円のうちの外側の円はローラ35の外周面(面取り52の外周縁)を、内側の円はローラ35の端面(面取り52の内周縁)を、それぞれ表している(後述する図13、18で同じ)。又、本例の場合には、上記剪断面及び破断面のうちの上記ローラ35側(図1の左側)の端縁で、最も幅方向片側(図1の右側)に寄った部分(点Q)が、第一、第二の各連結部3a、4aの片面(図1の右側面)のうちの第一、第二の各凹部36、40から外れた部分よりも幅方向片側(図1の右側)に位置する様にしている。
【0024】
上述の様に構成する本例のロッカーアーム1aは、図5に示す様にして製造する。次に、このロッカーアーム1aの製造方法を詳しく説明する。先ず、回転支持装置8にコイル状に巻回した金属線材の端部を、冷間鍛造成形機10に設けたローラ式線材供給機構11(図23参照)等により、この冷間鍛造成形機10の内側に導入する。又、本例の場合には、上記金属線材の断面を円形としている。又、この金属線材は、予めリン酸亜鉛等の潤滑化成液槽に漬け込む事によりその外周面にリン酸亜鉛皮膜等の潤滑皮膜層を形成しておく。そして、第一工程として、上記冷間鍛造成形機10に設けた切断機構12(図24参照)で、上記金属線材を所定長さに切断する事により、図6に示す様な円柱状の素材(ブランク)32を造る。尚、本例でロッカーアームを製造する為に使用する冷間鍛造成形機10は、前述の図23〜28に示した、従来から知られているロッカーアームの製造方法で使用するものとほぼ同様である。この為、以下の説明では、上記冷間鍛造成形機10の具体的構造は省略若しくは簡略にする。又、本例で使用する冷間鍛造成形機10は、前述の図23〜28に示したものと異なり、ロッカーアーム1aの製造工程でバリを発生させない。
【0025】
上記第一工程で得られた円柱状の素材32は、上記冷間鍛造成形機10に設けた第一の鍛造ステーションに、向きを変える事なく移動する。そして、第二工程として、上記素材32を、可動型により固定型に、水平方向に打ち込んで、この素材32を軸方向に圧縮する、第一の冷間鍛造(予備成形)を施し、図7に示す様な形状を有する第一中間素材33を造る。この第一中間素材33は、直径が軸方向中間部で最大となった樽状の形状を有する。即ち、この第一中間素材33は、中間部に設けた、直径が最大となった最大直径部38から軸方向両端に向かう程、直径が小さくなっている。又、この第一中間素材33の軸方向両端面を、ほぼ平坦面としている。尚、上記最大直径部38の軸方向位置は、前記1対の側壁部2a、2aの位置に合わせて規制し、軸方向中間部であるが、必ずしも軸方向中央部ではない。
【0026】
上記第一中間素材33を形成したならば、続いて、上記冷間鍛造成形機10に設けた素材旋回供給装置23(図24参照)により、図8に示す様に、上記第一中間素材33の向きを90度変えつつ、この第一中間素材33を、上記第一の鍛造ステーションから第二の鍛造ステーションに供給する。
【0027】
次いで、第三工程として、この第二の鍛造ステーションの可動型により固定型に、上記第一中間素材33を水平方向に打ち込む事により、この第一中間素材33の径方向両側からこの第一中間素材33を圧縮加工する第二の冷間鍛造(第二の予備成形)を施す。そして、図9〜10に示す様な、ロッカーアーム1a(図1〜4)の大まかな形状及び寸法を有する第二中間素材34aを造る。この第二中間素材34aは、1対の側壁部2a、2aと、これら両側壁部2a、2aの幅方向一端縁{図9(a)、図10の右端縁}同士を連結する基部39とを備える。又、この基部39の長さ方向中間部を、上記各側壁部2a、2aと反対側{図9(a)、図10の右側}に少しだけ突出させている。又、本例の場合には、上記第一中間素材33の最大直径部38に対応する位置で、上記第二中間素材34aを構成する各側壁部2a、2aの幅方向{図9(a)、図10の左右方向}の寸法が最大となる様にしている。この様な第二の冷間鍛造を施す第一中間素材33の外周面には予め潤滑皮膜層を形成している為、上記固定型及び可動型の内面と、この第一中間素材33の外面との間で作用する摩擦を小さく抑えられる。そして、この構成により、第二中間素材34aの成形作業性及び形状精度を良好にする。この様な第三工程により得られた第二中間素材34aは、上記固定型と可動型との間から取り出して、第三の鍛造ステーションに供給する。
【0028】
次いで、第四工程として、この第三の鍛造ステーションの可動型44{図11(a)、図15}により固定型43(図15)に、上記第二中間素材34aを水平方向に打ち込む。そして、この第二中間素材34aに第三の冷間鍛造(本成形)を施して、図11〜15に示す様な、ロッカーアーム1aの完成品に少し近づいた形状及び寸法を有する、第二中間素材34bを造る。この第二中間素材34bは、前記基部39の長さ方向中間部を、各側壁部2a、2aと反対側に大きく突出させている。又、上記基部39の片面{図11(a)の右側面、図11(b)の表側面}の長さ方向両端部を、前記第一、第二の各凹部36、40の大まかな形状及び寸法に形成している。又、上記第三の冷間鍛造では、上記各側壁部2a、2aの形状及び寸法が完成品とほぼ同じになる様に調整する。
【0029】
更に、本例の場合には、上記基部39の長さ方向一端部(図11の下端部)の両側面で、弁体の先端部を突き当てる為の第一の凹部36から幅方向{図11(a)の表裏方向、図11(b)の左右方向、図15の上下方向}に外れた両端部を、上記第三の冷間鍛造を施す際の材料の逃げ部41、41として、これら各逃げ部41、41に固定型43及び可動型44が突き当たらない様にしている。この構成により、これら固定型43と可動型44とに過大な荷重を加わる事を防止でき、これら各型43、44の寿命向上を図れる。この為、ロッカーアーム1aの量産時での単品のコストを低減できる。又、本例の場合には、上記各逃げ部41、41を、上記基部39の長さ方向に関して上記第一の凹部36と同位置とし、この第一の凹部36の近くに設けている。この為、この第一の凹部36を形成する場合に、余肉部の逃げを円滑に行なわせ、この第一の凹部36を所定の形状及び寸法に精度良く加工し易くできる。
【0030】
更に、上記基部39の長さ方向他端部(図11の上端部)の他面{図11(a)の左側面、図11(b)の裏側面}で、ラッシュアジャスタの先端部を突き当てる為の第二の凹部40と反対側位置を、上記第三の冷間鍛造を施す際の材料の第二の逃げ部42としている。この構成により、上記固定型43と可動型44とに過大な荷重が加わる事を、より効果的に防止できる。又、上記基部39のうち、上記第二の凹部40と反対側位置を第二の逃げ部42としている為、この第二の凹部40を所定の形状及び寸法に精度良く加工し易くできる。
【0031】
更に、本例の場合には、この第二中間素材34bの内側で、得るべきロッカーアーム1a(図1〜4)でのローラ35の配置位置に対応する位置に、これら第二中間素材34bとロッカーアーム1aとを図示しない支持軸を介して組み合わせたと仮定した場合にも、上記ローラ35と上記基部39とが干渉しない様に、上記第二中間素材34bの形状及び寸法を規制している。具体的には、図14に詳示する様に、上記第二中間素材34bの内面の中間部を、前記各側壁部2aの内面である平滑な平面部53の奥端縁と、上記基部39の内面の中間部を構成する円筒面部54とが、曲面部55により連続した形状とする。そして、上記第二中間素材34bの内側に上記ローラ35を、上述の様に組み付けたと仮定した場合に、このローラ35が、上記平面部53と円筒面部54と曲面部55との何れにも干渉しない様に、上記第二中間素材34bの内面の形状及び寸法を規制する。又、上記ローラ35の前記面取り52を除く両端面が、上記各側壁部2aの内面を構成する平面部53の奥端縁(図14の点P)よりも外側(図14の左側)に位置する様にする。この様な第四工程により得られた第二中間素材34bは、上記第三の鍛造ステーションの固定型43と可動型44との間から取り出して、第一の打ち抜きステーションに供給する。
【0032】
次いで、この第一の打ち抜きステーションで行なう孔あけ工程である、第五工程として、固定型と可動型との間で、上記第二中間素材34bのうち、基部39の長さ方向中間部以外の部分を挟持しつつ、この固定型又は可動型の内側に設けた孔あけ用パンチにより、この中間部に打ち抜き加工を施す。好ましくはこの孔あけ用パンチを、前記両側壁部2a、2aの間側から挿入し、打ち抜き廃材(目抜き材)を、これら両側壁部2a、2aと反対側に排出する。この理由は、打ち抜き加工に伴って生じるバリが、上記ローラ35を配置する側に向かない様にする為である。そしてこの打ち抜き加工により、図16〜19に示す様な、厚さ方向に貫通する透孔45をその中間部に形成した、第三中間素材46を造る。又、この透孔45の形成により、各側壁部2a、2aの長さ方向両端部同士を連結する第一、第二の両連結部3a、4aが形成される。更に、上記第五工程では、上記打ち抜き加工と同時に、上記各側壁部2a、2aの幅方向一端部{図16(a)、図17の右端部、図16(b)の表側端部}の形状及び寸法を調整する為の鍛造加工を施す。尚、図17では、上記第三中間素材46と共に、上記打ち抜き加工により上記基部39を打ち抜く事により生じた小片(目抜き材)50を合わせて示している。
【0033】
又、上記透孔45を形成する事により、上記各側壁部2a、2aの幅方向一端寄り部分{図16(a)、図14、17〜19の右端寄り部分}を含む、上記透孔45の内周面で上記小片50の外周縁と連続していた部分(図16、18に梨地で示す部分、図19に矢印aでその範囲を示す部分)に剪断面及び破断面が形成される。この様な第五工程により得られた第三中間素材46は、上記第一の打ち抜きステーションの可動型と固定型との間から取り出して、第四の鍛造ステーションに供給する。
【0034】
この第四の鍛造ステーションでは、第六工程として、図20〜21に示す様に、可動型48により固定型47に、上記第三中間素材46を水平方向に打ち込む事により、この第三中間素材46に第四の冷間鍛造(サイジング)を施し、第一、第二の各凹部36、40を所定の形状及び寸法に精度良く調整した、図20〜21に示す様な、第四中間素材49を造る。この様な第四の冷間鍛造の場合も、前記第三の冷間鍛造の場合と同様に、第一連結部3aの両側面で、上記第一の凹部36から幅方向{図20(a)の表裏方向、図20(b)の左右方向、図21の上下方向}に外れた両端部を、上記第四の冷間鍛造を施す際の材料の逃げ部41、41として、これら各逃げ部41、41に固定型47及び可動型48が突き当たらない様にしている。そして、この構成により、これら各型47、48の寿命向上を図ると共に、上記第一の凹部36を所定の形状及び寸法に精度良く加工し易くしている。
【0035】
更に、第二の連結部4aの他面{図20(a)の左側面、図20(b)の裏側面}で、第二の凹部40と反対側位置を、上記第四の冷間鍛造を施す際の材料の第二の逃げ部42としている。そして、この構成により、上記各型47、48の寿命向上を図ると共に、上記第二の凹部40を所定の形状及び寸法に精度良く加工し易くしている。
【0036】
尚、上記第四の鍛造ステーションでは、可動型48により固定型47に、上記第三中間素材46を水平方向に打ち込む工程を、必要に応じて繰り返す事により、上記第一、第二の各凹部36、40の形状及び寸法を調整するのと同時に、上記各側壁部2a、2aの平行度の調整や、これら各側壁部2a、2aの内側面同士の間隔及び外側面同士の間隔の調整を行なう事もできる。又、これら各側壁部2a、2aの幅方向一端部にかえりが生じた場合に、若干の面押しを行なう事で、このかえりを低減、若しくは解消する事もできる。この様な第六工程が終了したならば、上記第四の鍛造ステーションの固定型47と可動型48との間から上記第四中間素材49を取り出して、この第四中間素材49を第二の打ち抜きステーションに供給する。
【0037】
この第二の打ち抜きステーションでは、第七工程として、上記第四中間素材49の各側壁部2a、2aの一部に第二の打ち抜き加工を施して、前述の図1〜4に示したロッカーアーム1aの完成品を造る。本例の場合には、この第二の打ち抜き加工を、前記冷間鍛造成形機10の内部で行なう。この為の方法の一つとして、第四の鍛造ステーションから第二の打ち抜きステーションに上記第四中間素材49を供給する際に、この第二の打ち抜きステーションの固定型及び可動型の先端面と上記各側壁部2a、2aの外側面とが対向する様に、上記第四中間素材49の向きを90度変える方法が考えられる。そして、上記第二の打ち抜きステーションの固定型と可動型との間で、上記第四中間素材49を挟持すると共に、この固定型又は可動型の内側に設けた孔あけ用パンチにより前記各円孔5、5を形成する。又、別の方法として、第四の鍛造ステーションから第二の打ち抜きステーションに上記第四中間素材49を、向きを変更する事なくそのまま供給し、第一〜第四の鍛造ステーションの各可動型44、48を往復移動させる為の駆動機構(スライド機構)の動きを、両側に設けたカム型によりこの往復移動方向と90度異なる方向に変換し、このカム型に取り付けた孔あけ用パンチにより上記各円孔5、5を形成する方法もある。又、本例の場合には、これら各円孔5の軸方向外側の開口端周縁部に面取り37(図4)を、これら各円孔5の孔あけ加工と同時に、鍛造加工により形成する。この様にして得られたロッカーアーム1aの完成品は、上記第二の打ち抜きステーションから取り出し用チャックにより、所定位置に取り出す。
【0038】
上述の様に構成する本例のロッカーアームの製造方法の場合には、第一、第二の連結部3a、4aを形成する為の打ち抜き加工により各側壁部2a、2aの内面に形成された剪断面及び破断面の総てがローラ35の両端面に対向しない、ロッカーアーム1aを造れる。そして、この様にして得られたロッカーアーム1aによれば、上記剪断面及び破断面と、ローラ35の両端面とが接触する事を防止できる。この為、ローラ35を組み付けたロッカーアーム1aで、このローラ35を円滑に回転させる事ができる。又、このローラ35の両端面に異常摩耗が発生する事を防止できると共に、当該接触部での摩耗に基づく摩耗粉の発生を抑える事ができる。従って、本例のロッカーアーム1aを組み込んだエンジンの出力性能等の性能の向上を図れる。又、上記打ち抜き加工後の工程で、上記剪断面を面押し等により平滑化する面倒な作業を行なう必要がなくなる。
【0039】
又、本例のロッカーアームの場合には、第一、第二の連結部3a、4aの他面(図1、3の左側面、図2の裏側面)に位置する、上記各側壁部2、2の長さ方向両端縁を、この長さ方向に関して、第一の凹部36のうちの弁体の先端面の中心を突き当てるべき部分αから、第二の凹部40のうちのラッシュアジャスタの先端面の中心部を突き当てるべき部分β迄の間に位置させている。この為、上記各側壁部2a、2aの長さ方向寸法を短くでき、これら各側壁部2a、2aの容積を小さくできて、ロッカーアーム1a全体の軽量化を図れる。この為、このロッカーアーム1aを組み込んだエンジンの性能を、より向上できる。更に、本例の場合には、上記第一、第二の各連結部3a、4aを厚さ方向に見た場合での外形を、複数の直線部56a、56c〜56e、56f、56gを備えた台形状としている。この為、この外形を、これら各直線部56a、56c〜56e、56f、56g部分の中間部を外側に膨らませた円弧形とする場合に比べて、上記第一、第二の各連結部3a、4aの容積を小さくでき、ロッカーアーム1a全体を、より軽量にできる。
【0040】
尚、本例のロッカーアームの場合と異なり、第二の連結部4aに第二の凹部40を形成しない代わりに、この第二の連結部4aにねじ孔を形成し、このねじ孔部分にアジャストねじを螺着する構造に、請求項3に係る本発明を適用する事もできる。この場合には、例えば、第一の凹部36と反対側となる第一、第二の各連結部3a、4aの片面に位置する各側壁部2a、2aの長さ方向両端縁を、この長さ方向に関して、上記第一の凹部36のうちの弁体の基端面の中心を突き当てるべき部分から、上記ねじ孔の中心迄の間に位置させる。この様な構造の場合も、本例の場合と同様に、上記各側壁部2a、2aの容積を小さくできる為、ロッカーアーム全体の軽量化を図れる。
【0041】
又、本例の場合には、各側壁部2a、2aに設ける各円孔5、5を打ち抜き加工により形成しているが、本発明では、これら各円孔5、5を、この打ち抜き加工の代わりに、シェービング加工や、切削加工により形成する事もできる。但し、このうちの切削加工を採用する場合には、ロッカーアーム1aのコストが上昇する原因となる。この為、このロッカーアーム1aのコストの低減を図る面からは、上記各円孔5、5を、打ち抜き加工又はシェービング加工により形成する事が好ましく、より好ましくは、このうちの打ち抜き加工により上記各円孔5、5を形成する。又、冷間鍛造成形機10から取り出した中間素材を別のプレス加工機に搬送して、この別のプレス加工機で上記各円孔5、5の打ち抜き加工を行なう事もできる。
【0042】
又、本例の場合には、金属線材に予めリン酸亜鉛皮膜等の潤滑皮膜層を形成している。但し、冷間鍛造成形機10の金型の内面に潤滑剤を塗布したり、冷間鍛造成形機10の内部に潤滑油を供給する等により、素材32及び第一〜第四中間素材33、34a、34b、46、49の外面と金型の内面との間での摩擦を抑える事もできる。
【0043】
又、本例の場合には、各側壁部2a、2aの内面に形成される剪断面及び破断面の総てがローラ35の両端面に対向しないロッカーアーム1aを造る為に、第二中間素材34aに第三の冷間鍛造を施して第二中間素材34b(図11〜15)を造る第四工程として、この第二中間素材34bの内側で、得るべきロッカーアーム1aでのローラ35の配置位置に対応する位置にこのローラ35を配置したと仮定した場合でも、このローラ35と基部39とが干渉しない様に、上記第二中間素材34bの形状及び寸法を規制している。但し、上述の様な各側壁部2a、2aの内面に形成される剪断面及び破断面の総てがローラ35の両端面に対向しない、ロッカーアーム1aを得る為の製造方法は、本例の方法に限定するものではない。例えば、このロッカーアーム1aを得る為の別の製造方法の第1例として、第二中間素材34bの基部39に打ち抜き加工を施して第三中間素材46(図16〜19)を造る第五行程の後に、図29に示す様に、この打ち抜き加工により各側壁部2a、2aの幅方向一端部(図29の右端部)で内面に剪断面及び破断面(図29にaで示す部分)が形成された部分を、同図に矢印で示す様にこれら各側壁部2a、2aの側方(図29の上下方向)に向け折り曲げる冷間鍛造を施す事もできる。
【0044】
又、上記ロッカーアーム1aを得る為の別の製造方法の第2例として、第二中間素材34bの基部39に打ち抜き加工を施して第三中間素材46を造る第五行程の後に、図30に示す様に、この打ち抜き加工により各側壁部2a、2aの幅方向一端部(図30の右端部)で内面に剪断面及び破断面(図30にaで示す部分)が形成された部分を、同図に矢印で示す様にこれら各側壁部2a、2aの幅方向(図30の左右方向)に向く様に、バーリング加工等により塑性変形させる冷間鍛造を施す事もできる。この様な、図29、30に示すロッカーアームの製造方法によれば、上記第四工程で得られた、打ち抜き加工を施すべき第二中間素材34bの内側で、得るべきロッカーアーム1aでのローラ35の配置位置に対応する位置にこのローラ35を配置したと仮定した場合に、このローラ35と基部39とが干渉するとしても、剪断面及び破断面の総てがローラ35の両端面に対向しない、ロッカーアーム1aを造る事ができる。
【0045】
【発明の効果】
本発明は、以上に述べた通り構成され作用するので、ロッカーアームを組み込んだエンジンの性能向上を図れる。
【図面の簡単な説明】
【図1】本発明の実施の形態の1例のロッカーアームの完成品を、一部を省略して示す断面図。
【図2】図1の右方から見た図。
【図3】図1のA−A断面図。
【図4】同B−B断面図。
【図5】ロッカーアームの製造方法を示すフローチャート。
【図6】同製造方法の第一工程により得られる素材を示しており、(a)は正面図、(b)は(a)の側方から見た図。
【図7】第二工程により得られる第一中間素材を示しており、(a)は正面図、(b)は(a)のC−C断面図。
【図8】第一の鍛造ステーションから第二の鍛造ステーションへ第一中間素材を移動する際にこの第一中間素材の向きを90度変える状態を示す図。
【図9】第三工程により得られる第二中間素材を示しており、(a)は断面図、(b)は(a)の右方から見た図。
【図10】図9(a)のD−D断面図。
【図11】第四工程により得られる第二中間素材を示しており、(a)は断面図、(b)は(a)の右方から見た図。
【図12】図11(a)のE−E断面図。
【図13】図11(a)の部分拡大図。
【図14】図12のF部拡大断面図。
【図15】第四工程の鍛造作業の途中の状態を、図11(a)のG−G断面部分で示す図。
【図16】第五工程により得られる第三中間素材を示しており、(a)は断面図、(b)は(a)の右方から見た図。
【図17】同第三中間素材と、第五工程の打ち抜き加工時に生じた小片とを、図16(a)のH−H断面部分で示す図。
【図18】図16(a)の部分拡大断面図。
【図19】図17のI部拡大断面図。
【図20】第六工程により得られる第四中間素材を示しており、(a)は断面図、(b)は(a)の右方から見た図。
【図21】第六工程の鍛造作業の途中の状態を、図20(a)のJ−J断面部分で示す図。
【図22】従来から知られたロッカーアームの製造方法により得られたロッカーアームを示しており、(a)は正面図、(b)は(a)の左方から見た図。
【図23】従来から知られたロッカーアームの製造方法によりロッカーアームを製造する状態を示す略斜視図。
【図24】同製造方法に使用する冷間鍛造成形機の部分断面図。
【図25】冷間鍛造成形機の第一の鍛造ステーションを示す、図24の部分拡大断面図。
【図26】同第一の打ち抜きステーションを示す、図24の部分拡大断面図。
【図27】同第二の鍛造ステーションを示す、図24の部分拡大断面図。
【図28】同第二の打ち抜きステーションを示す、図24の部分拡大断面図。
【図29】剪断面及び破断面がローラの両端面に対向しないロッカーアームを得る為の別の製造方法の第1例を、図16のH−H断面部分で示す図。
【図30】同第2例を、図16のH−H断面部分で示す図。
【符号の説明】
1、1a ロッカーアーム
2、2a 側壁部
3、3a 第一の連結部
4、4a 第二の連結部
5 円孔
6 第一の係合部
7 第二の係合部
8 回転支持装置
9 金属線材
10 冷間鍛造成形機
11 ローラ式線材供給機構
12 切断機構
13 素材
14 ダイブロック
15 ラム
16a〜16d 固定型
17a〜17d 可動型
18a〜18d 型ホルダ
19 第一の鍛造ステーション
20 第一の打ち抜きステーション
21 第二の鍛造ステーション
22 第二の打ち抜きステーション
23 素材旋回供給機構
24 第一中間素材
25、25a、25b バリ
26 通孔
27 押し出し部材
28 孔あけ用パンチ
29 透孔
30 第二中間素材
31 第三中間素材
32 素材
33 第一中間素材
34a、34b 第二中間素材
35 ローラ
36 第一の凹部
37 面取り
38 最大直径部
39 基部
40 第二の凹部
41 逃げ部
42 第二の逃げ部
43 固定型
44 可動型
45 透孔
46 第三中間素材
47 固定型
48 可動型
49 第四中間素材
50 小片
51 基部
52 面取り
53 平面部
54 円筒面部
55 曲面部
56a〜56g 直線部
57a〜57h 曲線部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rocker arm and a method of manufacturing the same, which are incorporated in a valve mechanism of an engine and constitute a cam follower for converting rotation of a camshaft into reciprocating motion of a valve body (an intake valve and an exhaust valve).
[0002]
[Prior art]
The reciprocating engine (reciprocating piston engine) is provided with an intake valve and an exhaust valve that open and close in synchronization with the rotation of the crankshaft, except for some two-stroke engines. In such a reciprocating engine, the movement of the camshaft rotating in synchronization with the rotation of the crankshaft (at a rotation speed of 1/2 in the case of a four-cycle engine) is controlled by the rocker arm to the intake valve and the exhaust valve. And the intake and exhaust valves may reciprocate in their respective axial directions.
[0003]
Conventionally, a cast product (a cast iron product or an aluminum die-cast product) has been generally used as a rocker arm to be incorporated in such a valve operating mechanism of an engine. In recent years, it has been considered that the rocker arm is made by pressing a metal plate such as a steel plate. However, in the case of such a rocker arm made of a cast product or a rocker arm made of a metal plate, there is a problem that the cost is increased due to an increase in the time required for the manufacturing operation and an increase in waste of material. is there.
[0004]
On the other hand, as described in Patent Document 1, there has been proposed a method of manufacturing a rocker arm by cold forging a material (blank) obtained by cutting a metal wire into a predetermined length. I have. According to Patent Literature 1, when a rocker arm is formed by forming a lubricating coating layer on a material made of a metal wire and performing cold forging, it can be manufactured without cracks, can be manufactured with high precision, and has good workability. It can be done. In addition, when the rocker arm is manufactured by such cold forging, the shape accuracy and the dimensional accuracy can be increased as compared with the case where the rocker arm is manufactured by hot forging. 22 to 28 show an invention relating to a method of manufacturing a rocker arm described in Patent Document 1 described above. The method of manufacturing the rocker arm is described in detail in Patent Document 1 described above, and will be briefly described here. As shown in FIG. 22, the rocker arm 1 has a pair of side walls 2 and 2 which are substantially parallel to each other, and a first connecting portion 3 which connects these two side walls 2 and 2 at both ends in the longitudinal direction. And a second connecting portion 4. Among these first connection part 3 and second connection part 4, the first connection part 3 is provided with a first engagement part 6 for abutting the base end of the valve body, and a second connection part. 4 has a second engagement portion 7 for abutting a tip end of a swing support member such as a lash adjuster.
[0005]
Although not described in Patent Document 1, in the case of a rocker arm that is actually used, a pair of circular holes are formed concentrically with each other at the longitudinally intermediate portions of the side walls 2 and 2. Both ends of a support shaft for rotatably supporting a roller engaged with a cam are freely supported in these circular holes.
[0006]
The operation of manufacturing the rocker arm 1 as described above is performed as follows. First, as shown in FIG. 23, the end of the metal wire 9 wound in a coil shape around the rotation supporting device 8 is pulled out by a roller type wire feeding mechanism 11 provided in a cold forging machine 10, and this cold It is introduced into the forging machine 10. The metal wire 9 has a rectangular cross section. The metal wire 9 is previously immersed in a lubricating liquid tank such as zinc phosphate to form a lubricating film layer on the outer peripheral surface of the metal wire 9. Then, as a first step, as shown in FIG. 24, the metal wire 9 is cut into a predetermined length by a cutting mechanism 12 provided in the cold forging machine 10, thereby forming a rectangular parallelepiped material (blank). Build 13. The cold forging machine 10 is a so-called horizontal multi-stage forging machine. The cold forging machine 10 is provided with a die block 14 fixed inside and a horizontal so as to approach or separate from the die block 14 (moving far and near). And a ram 15 reciprocating in the direction. In the die block 14, a plurality of fixed dies 16a to 16d are arranged at intervals in the horizontal direction. In addition, a plurality of movable dies 17a to 17d are arranged at portions of the ram 15 facing the fixed dies 16a to 16d via mold holders 18a to 18d, respectively. The first forging station 19, the first punching station 20, the second forging station 21, and the second punching station 22 are provided at portions where the fixed dies 16 a to 16 d and the movable dies 17 a to 17 d are arranged. Are provided respectively. The cuboid material 13 obtained in the first step is turned 90 degrees by the material turning supply mechanism 23 provided in the cold forging machine 10 while the first forging station 19 is turned. To supply.
[0007]
In this first forging station 19, as shown in detail in FIG. 25, the material 13 is horizontally driven into a fixed die 16a by a movable die 17a, as shown in FIG. To produce the first intermediate material 24 having the approximate shape and dimensions of the rocker arm 1. The first intermediate material 24 has an H-shaped cross section including a pair of side walls 2 (FIG. 22) and a base 51 connecting the widthwise intermediate portions of the side walls 2. A burr 25 is formed on the outer peripheral surface of the intermediate portion in the thickness direction of the first intermediate material 24 over the entire circumference. Since a lubricating film layer is previously formed on the outer peripheral surface of the material 13 to be subjected to such cold forging, it acts between the inner surfaces of the fixed mold 16a and the movable mold 17a and the outer surface of the material 13. Friction can be kept small. With this configuration, the workability and the shape accuracy of the first intermediate material 24 can be improved. The first intermediate material 24 obtained in such a second step is taken out from between the fixed die 16a and the movable die 17a and supplied to a first punching station 20 as shown in detail in FIG. .
[0008]
In the first punching station 20, as a third step, between the distal end surface of the cylindrical extrusion member 27 provided in the through hole 26 of the fixed die 16b and the distal end surface of the cylindrical movable die 17b, The main body portion of the first intermediate material 24 excluding the burr 25 is sandwiched. Then, by pushing the main body portion into the through hole 26, the burr 25 is removed at the peripheral edge of the opening end of the through hole 26. At the same time, the intermediate portion of the base 51 (FIG. 25) provided on the first intermediate material 24 is punched out by the punch 28 for punching provided inside the pushing member 27, and the second intermediate portion having the through-hole 29 is punched out. The material 30 is made. By forming the through holes 29, the second intermediate material 30 includes first and second connecting portions 3 that connect both ends of the pair of side walls 2 (FIG. 22) in the length direction. 4 are formed. The second intermediate material 30 obtained in the third step is taken out from between the fixed die 16b and the movable die 17b and supplied to the second forging station 21 as shown in detail in FIG. .
[0009]
In the second forging station 21, as a fourth step, the second intermediate material 30 is cold forged by horizontally driving the second intermediate material 30 into the fixed die 16c by the movable die 17c. Then, a third intermediate material 31 having a size and a shape close to a finished product is manufactured. At this time, burrs 25a and 25b are formed on the outer peripheral surface in the thickness direction intermediate portion of the third intermediate material 31 and the inner peripheral surface of the through hole 29, respectively. Since the lubricating film layer is formed in advance on the outer surface of the second intermediate material 30 that performs such cold forging, the inner surface of the fixed die 16c and the movable die 17c and the outer surface of the second intermediate material 30 The friction acting between them can be kept small. With this configuration, the workability and shape accuracy of the third intermediate material 31 can be improved. When the fourth step is completed, the third intermediate material 31 is taken out from between the fixed die 16c and the movable die 17c, and the third intermediate material 31 is shown in detail in FIG. Then, it is supplied to the second punching station 22.
[0010]
In the second punching station 22, as a fifth step, burrs 25a formed on the outer peripheral surface of the third intermediate material 31 are removed in the same manner as in the third step. At the same time, the burr 25b formed on the inner peripheral surface of the through hole 29 of the third intermediate material 31 is also removed to obtain a completed rocker arm 1. The rocker arm 1 is taken out from between the fixed die 16d and the movable die 17d of the second punching station 22 to a predetermined position by, for example, a take-out chuck (not shown). Although not described in Patent Literature 1, in the case of a rocker arm that is actually used, another processing machine is used to position the rocker arm at a position where it is aligned with each other at an intermediate portion of each side wall 2 (FIG. 22). Drilling is performed to form a pair of circular holes.
[0011]
When the rocker arm 1 is manufactured by a multi-stage cold forging machine as in the manufacturing method of the rocker arm described in Patent Document 1 configured as described above, the time required for the manufacturing operation can be reduced to some extent. The cost of the arm 1 can be easily reduced.
[0012]
[Patent Document 1]
JP-A-10-328778
[0013]
[Problems to be solved by the invention]
In the case of the rocker arm 1 described in Patent Document 1 described above, there is room for improving the performance of the engine incorporating the rocker arm in the following points (1) and (2).
{Circle around (1)} The through hole 29 formed by punching the first intermediate material 24 to provide the first and second connecting portions 3 and 4 is substantially centered in the width direction of the pair of side wall portions 2. Located in the department. Further, since the through hole 29 is formed by punching, the inner peripheral surface has a rough shear surface and a broken surface. For this reason, in a state where a roller is assembled to the rocker arm 1 to form a cam follower, there is a possibility that both end surfaces of the roller come into contact with the sheared surface and the fractured surface. When the both end surfaces of the roller and the sheared surface and the broken surface come into contact in this manner, it becomes difficult to rotate the roller smoothly, which hinders an improvement in the performance of the engine incorporating the rocker arm 1. Further, when both end surfaces of the roller come into contact with the sheared surface and the broken surface, the both end surfaces of the roller are abnormally worn, or the abrasion powder generated by the abrasion at the contact portion causes a gap between engine components. There is also a possibility that the engine may get into the engine and degrade the performance of the engine. In the case of the rocker arm 1 described in Patent Literature 1, there is room for improving the performance of an engine incorporating the rocker arm in such a point.
(2) There is still room for improvement in terms of weight reduction. That is, in the case of the rocker arm 1 described in Patent Literature 1, one side edge of each of the side walls 2 and 2 on one side of the first connecting portion 3 (the left side in FIG. 22A). The rising position P (the lower edge in FIG. 22) is near one edge in the length direction of the rocker arm 1 (the lower edge in FIG. 22). For this reason, the length of each of the side wall portions 2 and 2 is increased, and the volume of the rocker arm 1 is unnecessarily increased, which causes the rocker arm 1 to increase in weight. When the weight of the rocker arm 1 is increased in this manner, it causes a decrease in performance such as the output performance of an engine incorporating the rocker arm 1. In the case of the rocker arm 1 described in Patent Literature 1, there is still room for improving the performance of an engine incorporating the rocker arm in such a point.
In view of such circumstances, a rocker arm and a method of manufacturing the same according to the present invention provide a rocker arm obtained by subjecting a metal wire material to cold forging and improving the performance of an engine incorporating the rocker arm. It was invented well.
[0014]
[Means for Solving the Problems]
Each of the rocker arms of the present invention and the method of manufacturing the same is manufactured by performing cold forging on a material obtained by cutting a metal wire into a predetermined length, and is provided at an interval from each other. A pair of side walls, a first and a second connecting part connecting the both side wall parts near both ends in the longitudinal direction, and a pair of through-holes formed at positions where these side wall parts are aligned with each other. And a second engagement portion in which the first connection portion has a first engagement portion that engages with the valve body, and the second connection portion engages with the swing support member. A roller is supported at an intermediate portion of a support shaft that supports both ends of each through hole.
[0015]
In particular, in the rocker arm described in claim 1, all of the shear surface and the fracture surface formed on the inner surface of each of the side wall portions by the punching process for forming the first and second connection portions are described. Do not face both ends of the roller. In some cases, a chamfer is formed at a continuous portion between the both end surfaces and the outer peripheral surface of the roller. In this case, the “both end surfaces of the roller” described in claim 1 excludes this chamfer (see FIG. This is a part closer to the center than the inner periphery.
[0016]
Further, the rocker arm according to claim 4 is configured such that both side edges of the side walls located on one surface of the first and second connecting portions opposite to the first engaging portion are arranged in the longitudinal direction. In the length direction, from the portion of the first engagement portion where the center of the base end surface of the valve body is to be abutted, the distal end surface of the swing support member of the second engagement portion The center of the screw hole for screwing the part to be abutted or the male screw part provided on the swing support member.
[0017]
A method for manufacturing a rocker arm according to a second aspect is the method for manufacturing a rocker arm according to the first aspect, wherein the pair of side walls and a part of these side walls are connected to each other. By performing a punching process on the base portion of the intermediate material having the base portion, a punching step of forming the first and second connection portions is provided, and the punching process is performed inside the intermediate material to be subjected to the punching process. When it is assumed that the roller is disposed at a position corresponding to the position of the roller on the power rocker arm, the shape and dimensions of the intermediate material are regulated so that the roller does not interfere with the base.
[0018]
[Action]
According to the rocker arm of the present invention configured as described above and the rocker arm obtained by the method of manufacturing the same, the rocker arm is obtained by cold forging a metal wire material, and the rocker arm is incorporated. The engine performance can be improved.
That is, in the case of the rocker arm according to claim 1 obtained by the method of manufacturing a rocker arm according to claim 2, a shear surface and a fracture surface formed by punching an inner surface of each side wall portion; Contact with both end surfaces of the roller can be prevented. Therefore, the roller can be smoothly rotated by the rocker arm having the roller assembled. In addition, it is possible to prevent the occurrence of abnormal wear on both end surfaces of the roller, and to suppress the generation of wear powder due to the wear at the contact portion. Therefore, the performance such as the output performance of the engine incorporating the rocker arm can be improved. Further, in the step after the punching process, it is not necessary to perform a troublesome operation of smoothing the sheared surface and the fractured surface by pressing the surface.
Further, in the case of the rocker arm described in claim 3, since the volume of each side wall can be reduced, the weight of the entire rocker arm can be reduced. Therefore, the performance of the engine incorporating the rocker arm can be improved.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 21 show an example of an embodiment of the present invention. The feature of this example is a rocker arm 1a obtained by subjecting a metal wire material to cold forging. In order to improve the performance of an engine incorporating the rocker arm 1a, a second intermediate material 34b (FIG. 11) is used. To 15), the positional relationship between the shear surface and the fracture surface generated by punching out a part of the roller 35 and the roller 35, and the positions of the longitudinal ends of the pair of side walls 2 and 2, respectively, are regulated. is there. The manufacturing device of the rocker arm 1a is substantially the same as the manufacturing device shown in FIGS. 22 to 28, and thus the duplicated description will be omitted or simplified, and the following description will focus on the features of this example. .
[0020]
As shown in FIGS. 1 to 4, the rocker arm 1a according to the present embodiment has a pair of side walls 2a, 2a substantially parallel to each other and formed in a substantially triangular shape, and a longitudinal direction of the side walls 2a, 2a. It has a first connecting portion 3a and a second connecting portion 4a for connecting both end portions (up and down directions of 1, 2). Further, a pair of circular holes 5, 5 are formed concentrically with each other at the longitudinally intermediate portions of the side walls 2, 2, and a roller 35 engaging with a cam is formed in each of the circular holes 5, 5. Both ends of a support shaft (not shown) for rotatably supporting the intermediate portion are supported and fixed.
[0021]
Also, in order to abut the base end of the valve body, a first engagement portion, which is a first engagement portion, is provided on one surface (the right side surface in FIGS. 1 and 3 and the front side surface in FIG. 2) of the first connection portion 3a. A recess 36 is formed. Further, in order to abut the tip of the lash adjuster, a hemispherical second engaging portion, which is a second engaging portion, is provided on one surface (the right side surface in FIG. 1 and the front side surface in FIG. 2) of the second connecting portion 4a. Two concave portions 40 are formed. Note that, in the case of this example, an example is shown in which the tip of the lash adjuster is engaged as a swing support member with the second engagement portion, but a screw hole is formed in the second connection portion 4a, The present invention can be applied to a structure in which an adjusting screw is screwed into the screw hole.
[0022]
Further, in the case of this example, each of the side wall portions 2 and 2 located on the other surface (the left side surface in FIGS. 1 and 3 and the back side surface in FIG. 2) of the first and second connecting portions 3a and 4a. With respect to the longitudinal direction, the both ends of the longitudinal direction (the vertical direction in FIGS. 1 and 2) from the portion α of the first concave portion 36 to which the center of the distal end face of the valve body is to be abutted with respect to the longitudinal direction. The central portion of the tip end surface of the lash adjuster in the concave portion 40 is located between the portion β to be abutted. Further, as shown in FIG. 2, when the rocker arm 1a is viewed in the width direction of each of the side walls 2a, 2a, the shape of the outer peripheral edge of the rocker arm 1a is formed by a pair of both ends in the longitudinal direction of the rectangle. The trapezoid is made continuous, and a pair of linear portions 56a to 56g adjacent to each other are smoothly connected by curved portions 57a to 57h. The outer shape of the first and second connecting portions 3a and 4a when viewed in the thickness direction (the same direction as FIG. 2) includes a plurality of linear portions 56a, 56c to 56e, 56g, and 56h. It has a trapezoidal shape with rounded corners. As shown in FIG. 4, a bus bar is formed at the periphery of the opening end on the axial side (lower side in FIG. 4) of the circular hole 5 for supporting both ends of the support shaft, which is formed on each side wall 2a. Are straight, and form a chamfer 37 in the shape of a bowl.
[0023]
Further, in the case of the rocker arm 1a of the present example, by punching to form the first and second connecting portions 3a, 4a, the portions of the side walls 2a, 2a near one end in the width direction (FIG. 1). 4, a shear surface and a fracture surface are formed on the inner surface of the inner surface (the portion near the right end of FIG. 4). Then, all of the sheared surface and the fractured surface are not opposed to either of the both end surfaces of the roller 35 and the chamfer 52 (FIG. 2) formed at a continuous portion between the both end surfaces and the outer peripheral surface. However, since the chamfer 52 does not rub against the inner surfaces of the side walls 2a, 2a, the chamfer 52 may face the sheared surface and the fractured surface. In FIG. 1, the roller 35 is indicated by two concentric circles of two-dot chain lines. The outer circle of these concentric circles indicates the outer peripheral surface of the roller 35 (the outer peripheral edge of the chamfer 52), and the inner circle indicates the inner circle. The end surface of the roller 35 (the inner peripheral edge of the chamfer 52) is shown (the same applies to FIGS. 13 and 18 described later). In the case of this example, a portion (point Q) of the edge of the sheared surface and the broken surface on the roller 35 side (left side in FIG. 1) which is closest to one side in the width direction (right side in FIG. 1). ) Is one side in the width direction (FIG. 1) of a portion of one side (the right side surface in FIG. 1) of each of the first and second connecting portions 3 a, 4 a which is separated from the first and second concave portions 36 and 40. To the right).
[0024]
The rocker arm 1a of the present embodiment configured as described above is manufactured as shown in FIG. Next, a method of manufacturing the rocker arm 1a will be described in detail. First, the end of the metal wire wound in a coil shape around the rotation supporting device 8 is supplied to the cold forging machine 10 by a roller type wire supply mechanism 11 (see FIG. 23) provided in the cold forging machine 10. Introduce inside. In the case of this example, the cross section of the metal wire is circular. Further, this metal wire is previously immersed in a lubricating solution bath such as zinc phosphate to form a lubricating film layer such as a zinc phosphate film on the outer peripheral surface thereof. Then, as a first step, the metal wire is cut into a predetermined length by a cutting mechanism 12 (see FIG. 24) provided in the cold forging machine 10, thereby forming a columnar material as shown in FIG. (Blank) 32 is made. The cold forging machine 10 used for manufacturing the rocker arm in this example is substantially the same as that used in the conventionally known rocker arm manufacturing method shown in FIGS. It is. Therefore, in the following description, the specific structure of the cold forging machine 10 is omitted or simplified. Further, the cold forging machine 10 used in this example does not generate burrs in the manufacturing process of the rocker arm 1a, unlike the one shown in FIGS.
[0025]
The columnar material 32 obtained in the first step moves to the first forging station provided in the cold forging machine 10 without changing its direction. Then, as a second step, the raw material 32 is horizontally driven into a fixed die by a movable die, and the raw material 32 is subjected to a first cold forging (preliminary molding) to compress the raw material 32 in an axial direction. A first intermediate material 33 having a shape as shown in FIG. The first intermediate material 33 has a barrel-like shape whose diameter is maximum at the axially intermediate portion. That is, the diameter of the first intermediate material 33 becomes smaller toward the both ends in the axial direction from the maximum diameter portion 38 provided at the intermediate portion and having the largest diameter. The axially opposite end surfaces of the first intermediate material 33 are substantially flat surfaces. The position of the maximum diameter portion 38 in the axial direction is regulated in accordance with the position of the pair of side walls 2a, 2a, and is an intermediate portion in the axial direction, but not necessarily a central portion in the axial direction.
[0026]
After the first intermediate material 33 is formed, as shown in FIG. 8, the first intermediate material 33 is formed by the material turning supply device 23 (see FIG. 24) provided in the cold forging machine 10. The first intermediate material 33 is supplied from the first forging station to the second forging station while changing the direction of the first intermediate material 33 by 90 degrees.
[0027]
Next, as a third step, the first intermediate material 33 is horizontally driven into the fixed die by the movable die of the second forging station, so that the first intermediate material 33 is disposed on both sides in the radial direction of the first intermediate material 33. A second cold forging (second preforming) for compressing the material 33 is performed. Then, a second intermediate material 34a having a rough shape and dimensions of the rocker arm 1a (FIGS. 1 to 4) as shown in FIGS. The second intermediate material 34a includes a pair of side walls 2a, 2a, and a base 39 that connects one end in the width direction of these side walls 2a, 2a {right end in FIGS. 9A and 10}. Is provided. The lengthwise intermediate portion of the base 39 is slightly protruded from the side opposite to the side walls 2a, 2a (the right side in FIGS. 9A and 10). In the case of the present example, the width direction of each of the side walls 2a and 2a constituting the second intermediate material 34a at a position corresponding to the maximum diameter portion 38 of the first intermediate material 33 (FIG. 9A) 10, the dimension in the left-right direction} is maximized. Since the lubricating film layer is previously formed on the outer peripheral surface of the first intermediate material 33 subjected to such second cold forging, the inner surfaces of the fixed and movable dies and the outer surface of the first intermediate material 33 are formed. And the friction acting between them can be kept small. And with this configuration, the molding workability and the shape accuracy of the second intermediate material 34a are improved. The second intermediate material 34a obtained in the third step is taken out from between the fixed mold and the movable mold and supplied to the third forging station.
[0028]
Next, as a fourth step, the second intermediate material 34a is horizontally driven into a movable mold 44 (FIG. 11A, FIG. 15) and a fixed mold 43 (FIG. 15) of the third forging station. Then, a third cold forging (final molding) is applied to the second intermediate material 34a, and the second intermediate material 34a has a shape and dimensions slightly closer to the finished product of the rocker arm 1a as shown in FIGS. The intermediate material 34b is made. The second intermediate material 34b has a lengthwise intermediate portion of the base 39 protruding largely to the side opposite to the side walls 2a, 2a. Also, one side of the base 39 (the right side in FIG. 11A, the front side in FIG. 11B) is formed by forming both ends in the longitudinal direction of the first and second concave portions 36 and 40 into a rough shape. And dimensions. In the third cold forging, the shapes and dimensions of the side walls 2a, 2a are adjusted to be substantially the same as the finished product.
[0029]
Further, in the case of this example, the first concave portion 36 for abutting the distal end portion of the valve body on both side surfaces of one longitudinal end portion (lower end portion in FIG. 11) of the base portion 39 in the width direction. 11 (a), the left and right directions in FIG. 11 (b), and the both ends deviated in the vertical direction の in FIG. 15 are used as the escape portions 41, 41 of the material when performing the third cold forging. The fixed mold 43 and the movable mold 44 are prevented from abutting on these escape portions 41, 41. With this configuration, it is possible to prevent an excessive load from being applied to the fixed mold 43 and the movable mold 44, and to improve the life of each of the molds 43 and 44. For this reason, the cost of the rocker arm 1a at the time of mass production can be reduced. Further, in the case of the present example, the relief portions 41 are located at the same position as the first concave portion 36 in the longitudinal direction of the base portion 39 and are provided near the first concave portion 36. For this reason, when forming the first concave portion 36, the escape of the excess portion is smoothly performed, and the first concave portion 36 can be easily processed into a predetermined shape and size with high accuracy.
[0030]
Further, the other end of the base portion 39 in the longitudinal direction (the upper end portion in FIG. 11) (the left side surface in FIG. 11A, the back side surface in FIG. 11B) pushes the tip end of the lash adjuster. A position opposite to the second concave portion 40 to be applied is a second escape portion 42 of a material when the third cold forging is performed. With this configuration, it is possible to more effectively prevent an excessive load from being applied to the fixed die 43 and the movable die 44. In addition, since the position of the base 39 opposite to the second recess 40 is defined as the second escape portion 42, the second recess 40 can be easily processed into a predetermined shape and size with high precision.
[0031]
Further, in the case of the present example, the second intermediate material 34b and the second intermediate material 34b are positioned inside the second intermediate material 34b at a position corresponding to the position of the roller 35 on the rocker arm 1a to be obtained (FIGS. 1-4). Even when it is assumed that the rocker arm 1a and the rocker arm 1a are combined via a support shaft (not shown), the shape and size of the second intermediate material 34b are regulated so that the roller 35 and the base 39 do not interfere with each other. Specifically, as shown in detail in FIG. 14, the middle part of the inner surface of the second intermediate material 34 b is connected to the inner peripheral edge of the smooth flat part 53, which is the inner surface of each side wall part 2 a, by the base part 39. And a cylindrical surface portion 54 that constitutes an intermediate portion of the inner surface of the solid-state imaging device. Then, assuming that the roller 35 is assembled inside the second intermediate material 34b as described above, the roller 35 interferes with any of the flat portion 53, the cylindrical surface portion 54, and the curved surface portion 55. The shape and dimensions of the inner surface of the second intermediate material 34b are regulated so as not to cause the problem. Also, both end surfaces of the roller 35 except for the chamfer 52 are located outside (the left side in FIG. 14) the deep end edge (point P in FIG. 14) of the flat portion 53 constituting the inner surface of each side wall 2a. I will do it. The second intermediate material 34b obtained in such a fourth step is taken out from between the fixed die 43 and the movable die 44 of the third forging station and supplied to the first punching station.
[0032]
Next, as a fifth step, which is a hole punching step performed in the first punching station, between the fixed mold and the movable mold, the second intermediate material 34b, except for the longitudinal direction intermediate portion of the base 39, of the second intermediate material 34b. The intermediate portion is punched by a punch for punching provided inside the fixed or movable die while holding the portion. Preferably, the punch for punching is inserted from the side between the side walls 2a, 2a, and the punched waste material (cutout material) is discharged to the side opposite to the side walls 2a, 2a. The reason for this is to prevent burrs generated during the punching process from facing the side where the roller 35 is arranged. Then, as shown in FIGS. 16 to 19, a third intermediate material 46 having a through hole 45 penetrating in the thickness direction formed at an intermediate portion thereof is manufactured by the punching process. In addition, the formation of the through hole 45 forms first and second connecting portions 3a and 4a for connecting both longitudinal end portions of the side walls 2a and 2a. Further, in the fifth step, simultaneously with the punching, one end in the width direction of each of the side walls 2a and 2a {the right end in FIGS. 16A and 17 and the front end in FIG. 16B}. Forging to adjust the shape and dimensions. In FIG. 17, together with the third intermediate material 46, a small piece (cutout material) 50 generated by punching the base 39 by the punching process is also shown.
[0033]
Further, by forming the through-hole 45, the through-hole 45 including a portion near one end in the width direction of each of the side wall portions 2a, 2a (a portion near the right end in FIGS. 16 (a), 14 and 17 to 19). A shear surface and a fracture surface are formed on the inner peripheral surface of the portion that is continuous with the outer peripheral edge of the small piece 50 (the portion indicated by a satin finish in FIGS. 16 and 18 and the portion indicated by an arrow a in FIG. 19). . The third intermediate material 46 obtained in the fifth step is taken out from between the movable die and the fixed die of the first punching station and supplied to the fourth forging station.
[0034]
In the fourth forging station, as a sixth step, as shown in FIGS. 20 to 21, the third intermediate material 46 is driven horizontally by a movable die 48 into a fixed die 47, thereby forming the third intermediate material 46. A fourth intermediate material as shown in FIGS. 20 to 21 in which a fourth cold forging (sizing) is applied to 46 and the first and second concave portions 36 and 40 are precisely adjusted to predetermined shapes and dimensions. Build 49. In the case of such a fourth cold forging, similarly to the case of the third cold forging, on both sides of the first connecting portion 3a, the width direction from the first concave portion 36 shown in FIG. ), The left and right directions in FIG. 20B and the vertical direction} in FIG. 21 are used as the escape portions 41 of the material at the time of performing the fourth cold forging. The fixed mold 47 and the movable mold 48 are prevented from abutting on the parts 41, 41. With this configuration, the life of each of the dies 47 and 48 is improved, and the first concave portion 36 is easily processed into a predetermined shape and size with high accuracy.
[0035]
Further, on the other surface of the second connecting portion 4a (the left side surface in FIG. 20 (a), the back side surface in FIG. 20 (b)), the position opposite to the second concave portion 40 is set to the fourth cold forging. Is used as the second escape portion 42 of the material. With this configuration, the life of each of the dies 47 and 48 is improved, and the second recess 40 is easily processed into a predetermined shape and size with high accuracy.
[0036]
In the fourth forging station, the step of horizontally driving the third intermediate material 46 into the fixed mold 47 by the movable mold 48 is repeated as necessary, so that the first and second concave portions are formed. At the same time as adjusting the shapes and dimensions of 36 and 40, adjustment of the parallelism of the side walls 2a and 2a, and adjustment of the space between the inner surfaces and the space between the outer surfaces of the side walls 2a and 2a are performed. You can do it. Further, when a burr occurs at one end in the width direction of each of the side walls 2a, 2a, the burr can be reduced or eliminated by slightly pressing the surface. When the sixth step is completed, the fourth intermediate material 49 is taken out from between the fixed die 47 and the movable die 48 of the fourth forging station, and the fourth intermediate material 49 is placed in the second forging station. Supply to the punching station.
[0037]
In the second punching station, as a seventh step, a second punching process is performed on a part of each of the side walls 2a, 2a of the fourth intermediate material 49, and the rocker arm shown in FIGS. Build the finished product of 1a. In the case of this example, the second punching is performed inside the cold forging machine 10. As one of the methods for this, when supplying the fourth intermediate material 49 from the fourth forging station to the second punching station, the leading end surfaces of the fixed and movable dies of the second punching station and the A method of changing the direction of the fourth intermediate material 49 by 90 degrees so that the outer surfaces of the side walls 2a and 2a face each other is considered. Then, the fourth intermediate material 49 is sandwiched between the fixed die and the movable die of the second punching station, and each of the circular holes is formed by a punch for punching provided inside the fixed die or the movable die. 5 and 5 are formed. As another method, the fourth intermediate material 49 is supplied from the fourth forging station to the second punching station as it is without changing the direction, and each movable mold 44 of the first to fourth forging stations is supplied. , 48 for reciprocating movement of the drive mechanism (slide mechanism) is converted into a direction different from the reciprocating movement direction by 90 degrees by cam dies provided on both sides, and the above-mentioned hole is punched by the punch for punching attached to the cam type. There is also a method of forming the respective circular holes 5,5. Further, in the case of the present example, a chamfer 37 (FIG. 4) is formed by forging at the same time as the drilling of each of the circular holes 5 at the peripheral edge of the opening end on the outside in the axial direction of each of the circular holes 5. The finished product of the rocker arm 1a thus obtained is taken out from the second punching station to a predetermined position by a takeout chuck.
[0038]
In the case of the method of manufacturing the rocker arm according to the present embodiment configured as described above, the first and second connecting portions 3a and 4a are formed on the inner surfaces of the side walls 2a and 2a by punching. The rocker arm 1a in which all of the shear surface and the fracture surface do not face both end surfaces of the roller 35 can be manufactured. According to the rocker arm 1a obtained in this manner, it is possible to prevent the sheared surface and the broken surface from coming into contact with both end surfaces of the roller 35. Therefore, the roller 35 can be smoothly rotated by the rocker arm 1a on which the roller 35 is assembled. In addition, it is possible to prevent occurrence of abnormal wear on both end surfaces of the roller 35 and to suppress generation of wear powder due to wear at the contact portion. Therefore, the performance such as the output performance of the engine incorporating the rocker arm 1a of the present embodiment can be improved. Further, in the step after the punching, it is not necessary to perform a troublesome operation of smoothing the sheared surface by pressing the surface.
[0039]
In the case of the rocker arm of the present embodiment, each of the side wall portions 2 located on the other surface (the left side surface in FIGS. 1 and 3 and the back side surface in FIG. 2) of the first and second connecting portions 3a and 4a. The lengthwise end edges of the lash adjuster of the second recess 40 from the portion α of the first recess 36 to which the center of the distal end face of the valve body should be abutted with respect to this length direction. The center of the tip surface is located between the part β to be abutted. For this reason, the lengthwise dimension of each of the side walls 2a, 2a can be shortened, the volume of each of the side walls 2a, 2a can be reduced, and the entire rocker arm 1a can be reduced in weight. Therefore, the performance of the engine incorporating the rocker arm 1a can be further improved. Further, in the case of the present example, the outer shape when the first and second connecting portions 3a and 4a are viewed in the thickness direction is provided with a plurality of linear portions 56a, 56c to 56e, 56f and 56g. It has a trapezoidal shape. For this reason, compared with the case where the outer shape is a circular arc shape in which the middle portion of each of the straight portions 56a, 56c to 56e, 56f, and 56g is expanded outward, the first and second connecting portions 3a are used. 4a, the volume of the rocker arm 1a can be made lighter.
[0040]
Unlike the rocker arm of the present embodiment, instead of not forming the second concave portion 40 in the second connecting portion 4a, a screw hole is formed in the second connecting portion 4a, and the adjusting hole is formed in the screw hole portion. The present invention according to claim 3 can be applied to a structure in which a screw is screwed. In this case, for example, the lengthwise end edges of the side walls 2a, 2a located on one surface of the first and second connecting portions 3a, 4a opposite to the first concave portion 36 are separated by this length. In the vertical direction, the first concave portion 36 is located between a portion to which the center of the base end face of the valve body is to be abutted and the center of the screw hole. Also in the case of such a structure, the volume of each of the side walls 2a, 2a can be reduced similarly to the case of this example, so that the weight of the entire rocker arm can be reduced.
[0041]
Further, in the case of the present example, the circular holes 5, 5 provided in the side walls 2a, 2a are formed by punching, but in the present invention, these circular holes 5, 5 are formed by the punching. Alternatively, it can be formed by shaving or cutting. However, when the cutting process is used, the cost of the rocker arm 1a increases. For this reason, from the viewpoint of reducing the cost of the rocker arm 1a, it is preferable that each of the circular holes 5, 5 is formed by a punching process or a shaving process. More preferably, each of the circular holes 5, 5 is formed by the punching process. The circular holes 5, 5 are formed. Further, the intermediate material taken out from the cold forging machine 10 can be conveyed to another press machine, and the above-mentioned circular holes 5, 5 can be punched by the other press machine.
[0042]
Further, in the case of this example, a lubricating film layer such as a zinc phosphate film is formed on the metal wire in advance. However, by applying a lubricant to the inner surface of the mold of the cold forging machine 10, or supplying lubricating oil to the inside of the cold forging machine 10, the material 32 and the first to fourth intermediate materials 33, Friction between the outer surfaces of the molds 34a, 34b, 46, and 49 and the inner surface of the mold can be suppressed.
[0043]
Further, in the case of this example, the second intermediate material is formed in order to manufacture the rocker arm 1a in which all of the sheared surface and the broken surface formed on the inner surface of each of the side walls 2a, 2a do not face both end surfaces of the roller 35. As a fourth step of performing the third cold forging on the first intermediate material 34a to produce the second intermediate material 34b (FIGS. 11 to 15), the arrangement of the roller 35 on the rocker arm 1a to be obtained inside the second intermediate material 34b Even when it is assumed that the roller 35 is disposed at a position corresponding to the position, the shape and size of the second intermediate material 34b are regulated so that the roller 35 and the base 39 do not interfere with each other. However, as described above, the manufacturing method for obtaining the rocker arm 1a in which all of the shear surface and the fracture surface formed on the inner surface of each of the side wall portions 2a and 2a do not face both end surfaces of the roller 35 is described in the present example. It is not limited to the method. For example, as a first example of another manufacturing method for obtaining the rocker arm 1a, a fifth process of punching the base 39 of the second intermediate material 34b to form the third intermediate material 46 (FIGS. 16 to 19). After this, as shown in FIG. 29, this punching process causes a shear surface and a fracture surface (portion indicated by a in FIG. 29) on the inner surface at one widthwise end (right end in FIG. 29) of each of the side walls 2a and 2a. The formed portion may be subjected to cold forging to bend toward the side of each of the side walls 2a, 2a (vertical direction in FIG. 29) as indicated by arrows in the same figure.
[0044]
As a second example of another manufacturing method for obtaining the rocker arm 1a, FIG. 30 shows a fifth process of punching the base portion 39 of the second intermediate material 34b to form the third intermediate material 46, As shown in the drawing, a portion in which a shear surface and a fracture surface (portion indicated by a in FIG. 30) are formed on the inner surface at one widthwise end portion (right end portion in FIG. 30) of each of the side wall portions 2a and 2a by the punching process. Cold forging for plastically deforming by burring or the like can also be performed so as to face in the width direction (the left-right direction in FIG. 30) of each of the side walls 2a, 2a as indicated by arrows in FIG. According to such a method of manufacturing the rocker arm shown in FIGS. 29 and 30, the roller with the rocker arm 1a to be obtained is obtained inside the second intermediate material 34b to be punched, obtained in the fourth step. When it is assumed that the roller 35 is arranged at a position corresponding to the arrangement position of the roller 35, even if the roller 35 and the base 39 interfere with each other, all of the shear surface and the fracture surface face the both end surfaces of the roller 35. No, the rocker arm 1a can be made.
[0045]
【The invention's effect】
Since the present invention is configured and operates as described above, the performance of the engine incorporating the rocker arm can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view partially illustrating a completed product of a rocker arm according to an embodiment of the present invention;
FIG. 2 is a view seen from the right side of FIG. 1;
FIG. 3 is a sectional view taken along line AA of FIG. 1;
FIG. 4 is a sectional view taken along the line BB in FIG.
FIG. 5 is a flowchart showing a method for manufacturing a rocker arm.
FIGS. 6A and 6B show a material obtained by a first step of the manufacturing method, wherein FIG. 6A is a front view and FIG.
7A and 7B show a first intermediate material obtained in a second step, wherein FIG. 7A is a front view, and FIG. 7B is a cross-sectional view taken along the line CC of FIG.
FIG. 8 is a view showing a state in which the direction of the first intermediate material is changed by 90 degrees when the first intermediate material is moved from the first forging station to the second forging station.
9A and 9B show a second intermediate material obtained in the third step, wherein FIG. 9A is a cross-sectional view and FIG. 9B is a view as seen from the right side of FIG.
FIG. 10 is a sectional view taken along line DD in FIG.
11A and 11B show a second intermediate material obtained by a fourth step, wherein FIG. 11A is a cross-sectional view, and FIG. 11B is a view seen from the right side of FIG.
FIG. 12 is a sectional view taken along line EE of FIG.
FIG. 13 is a partially enlarged view of FIG.
FIG. 14 is an enlarged sectional view of a portion F in FIG. 12;
FIG. 15 is a view showing a state in the middle of the forging operation in the fourth step, taken along the line GG in FIG. 11A.
16A and 16B show a third intermediate material obtained by the fifth step, wherein FIG. 16A is a cross-sectional view, and FIG. 16B is a view as seen from the right side of FIG.
FIG. 17 is a diagram showing the third intermediate material and small pieces generated during the punching process in the fifth step, taken along the line HH in FIG. 16 (a).
FIG. 18 is a partially enlarged sectional view of FIG.
FIG. 19 is an enlarged sectional view of a portion I in FIG. 17;
FIGS. 20A and 20B show a fourth intermediate material obtained by the sixth step, wherein FIG. 20A is a cross-sectional view and FIG. 20B is a view seen from the right side of FIG.
FIG. 21 is a view showing a state in the middle of the forging operation in the sixth step, taken along the line JJ in FIG. 20 (a).
22A and 22B show a rocker arm obtained by a conventionally known method of manufacturing a rocker arm, wherein FIG. 22A is a front view, and FIG. 22B is a diagram viewed from the left side of FIG.
FIG. 23 is a schematic perspective view showing a state where a rocker arm is manufactured by a conventionally known rocker arm manufacturing method.
FIG. 24 is a partial cross-sectional view of a cold forging machine used in the manufacturing method.
FIG. 25 is a partially enlarged sectional view of FIG. 24 showing a first forging station of the cold forging machine;
FIG. 26 is a partially enlarged sectional view of FIG. 24 showing the first punching station.
FIG. 27 is a partially enlarged sectional view of FIG. 24 showing the second forging station.
FIG. 28 is a partially enlarged sectional view of FIG. 24 showing the second punching station.
FIG. 29 is a diagram showing a first example of another manufacturing method for obtaining a rocker arm whose shear surface and fracture surface do not face the both end surfaces of the roller, taken along the line HH in FIG. 16;
FIG. 30 is a view showing the second example in a section taken along line HH in FIG. 16;
[Explanation of symbols]
1, 1a rocker arm
2, 2a Side wall
3, 3a First connection part
4, 4a Second connection part
5 circular holes
6 First engaging part
7 Second engaging part
8 Rotation support device
9 Metal wires
10 Cold forging machine
11 Roller type wire rod feeding mechanism
12 Cutting mechanism
13 materials
14 die block
15 ram
16a-16d fixed type
17a-17d movable type
18a-18d type holder
19 First Forging Station
20 First punching station
21 Second Forging Station
22 Second punching station
23 Material turning supply mechanism
24 First intermediate material
25, 25a, 25b Burr
26 through hole
27 Extruded member
28 Punch for drilling
29 through hole
30 Second intermediate material
31 Third intermediate material
32 materials
33 First intermediate material
34a, 34b Second intermediate material
35 rollers
36 First recess
37 chamfer
38 Maximum diameter part
39 base
40 Second recess
41 Escape
42 Second escape
43 fixed type
44 Movable type
45 through hole
46 Third intermediate material
47 fixed type
48 Movable type
49 Fourth intermediate material
50 pieces
51 base
52 chamfer
53 flat part
54 Cylindrical surface
55 Curved surface
56a to 56g Straight section
57a-57h Curved section

Claims (3)

金属線材を所定長さに切断する事で得られた素材に冷間鍛造を施す事により造られ、互いに間隔をあけて設けられた1対の側壁部と、これら両側壁部の長さ方向両端寄り部分同士を連結する第一、第二の連結部と、これら両側壁部の互いに整合する位置に形成した1対の通孔とを備え、この第一の連結部が弁体と係合する第一の係合部を有するものであり、上記第二の連結部が揺動支持部材と係合する第二の係合部を有するものであり、上記各通孔に両端部を支持する支持軸の中間部にローラを支持するロッカーアームであって、上記第一、第二の連結部を形成する為の打ち抜き加工により上記各側壁部の内面に形成される剪断面及び破断面の総てを、上記ローラの両端面に対向させないロッカーアーム。A pair of side walls, which are produced by subjecting a material obtained by cutting a metal wire to a predetermined length to cold forging and provided at intervals from each other, and both ends in the longitudinal direction of these side walls First and second connecting portions for connecting the deviating portions to each other, and a pair of through-holes formed at positions where these side walls are aligned with each other, and the first connecting portion is engaged with the valve body. A support having a first engagement portion, wherein the second connecting portion has a second engagement portion which engages with the swing support member, and a support for supporting both ends in each of the through holes. A rocker arm for supporting a roller at an intermediate portion of a shaft, wherein all of a shear surface and a fracture surface formed on an inner surface of each of the side wall portions by a punching process for forming the first and second connecting portions. Rocker arm that does not face both end faces of the roller. 請求項1に記載したロッカーアームの製造方法であって、1対の側壁部とこれら両側壁部の一部同士を連結した基部とを備えた中間素材のうちで、この基部に打ち抜き加工を施す事により、第一、第二の各連結部を形成する打ち抜き工程を備え、この打ち抜き加工を施すべき上記中間素材の内側で、得るべきロッカーアームでのローラの配置位置に対応する位置にこのローラを配置したと仮定した場合に、このローラと上記基部とが干渉しない様に、上記中間素材の形状及び寸法を規制するロッカーアームの製造方法。2. A method for manufacturing a rocker arm according to claim 1, wherein the base material is punched out of an intermediate material having a pair of side walls and a base connecting a part of these side walls. Accordingly, a punching step for forming the first and second connecting portions is provided, and the roller is located at a position corresponding to the position of the roller on the rocker arm to be obtained inside the intermediate material to be subjected to the punching process. And a method of manufacturing a rocker arm that regulates the shape and dimensions of the intermediate material so that the roller does not interfere with the base when the base is arranged. 金属線材を所定長さに切断する事で得られた素材に冷間鍛造を施す事により造られ、互いに間隔をあけて設けられた1対の側壁部と、これら両側壁部の長さ方向両端寄り部分同士を連結する第一、第二の連結部と、これら両側壁部の互いに整合する位置に形成した1対の通孔とを備え、この第一の連結部が弁体と係合する第一の係合部を有するものであり、上記第二の連結部が揺動支持部材と係合する第二の係合部を有するものであり、上記各通孔に両端部を支持する支持軸の中間部にローラを支持するロッカーアームであって、上記第一の係合部と反対側となる上記第一、第二の各連結部の片面に位置する上記各側壁部の長さ方向両端縁を、この長さ方向に関して、この第一の係合部のうちの上記弁体の基端面の中心を突き当てるべき部分から、上記第二の係合部のうちの上記揺動支持部材の先端面の中心を突き当てるべき部分又はこの揺動支持部材に設けた雄ねじ部を螺合する為のねじ孔の中心迄の間に位置させたロッカーアーム。A pair of side walls, which are produced by subjecting a material obtained by cutting a metal wire to a predetermined length to cold forging and provided at intervals from each other, and both ends in the longitudinal direction of these side walls First and second connecting portions for connecting the deviating portions to each other, and a pair of through-holes formed at positions where these side walls are aligned with each other, and the first connecting portion is engaged with the valve body. A support having a first engagement portion, wherein the second connecting portion has a second engagement portion which engages with the swing support member, and a support for supporting both ends in each of the through holes. A rocker arm that supports a roller at an intermediate portion of a shaft, and a length direction of each of the side wall portions located on one surface of each of the first and second coupling portions on the opposite side to the first engagement portion. A portion of the first engagement portion to which the center of the base end face of the valve body is to be abutted with respect to the longitudinal direction. A portion of the second engaging portion to which the center of the tip end surface of the swing support member is to be abutted or a center of a screw hole for screwing a male screw portion provided in the swing support member. Rocker arm located between.
JP2003161583A 2003-06-06 2003-06-06 Method for manufacturing rocker arm Expired - Fee Related JP3659961B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003161583A JP3659961B2 (en) 2003-06-06 2003-06-06 Method for manufacturing rocker arm
PCT/JP2004/007494 WO2004109065A1 (en) 2003-06-06 2004-05-31 Rocker arm and method of producing the arm
EP04745459A EP1637705A4 (en) 2003-06-06 2004-05-31 Rocker arm and method of producing the arm
US11/294,671 US7152320B2 (en) 2003-06-06 2005-12-05 Rocker arm and method of manufacturing the rocker arm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161583A JP3659961B2 (en) 2003-06-06 2003-06-06 Method for manufacturing rocker arm

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004349901A Division JP2005088084A (en) 2004-12-02 2004-12-02 Rocker arm and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2004358530A true JP2004358530A (en) 2004-12-24
JP3659961B2 JP3659961B2 (en) 2005-06-15

Family

ID=34053957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161583A Expired - Fee Related JP3659961B2 (en) 2003-06-06 2003-06-06 Method for manufacturing rocker arm

Country Status (1)

Country Link
JP (1) JP3659961B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1741503A1 (en) * 2005-07-04 2007-01-10 OTICS Corporation Method of manufacturing a rocker arm
JP2007085279A (en) * 2005-09-22 2007-04-05 Otics Corp Rocker arm
WO2013051111A1 (en) * 2011-10-04 2013-04-11 日鍛バルブ株式会社 Rocker arm for valve train

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1741503A1 (en) * 2005-07-04 2007-01-10 OTICS Corporation Method of manufacturing a rocker arm
US7360290B2 (en) 2005-07-04 2008-04-22 Otics Corporation Method of manufacturing rocker arm
JP2007085279A (en) * 2005-09-22 2007-04-05 Otics Corp Rocker arm
WO2013051111A1 (en) * 2011-10-04 2013-04-11 日鍛バルブ株式会社 Rocker arm for valve train

Also Published As

Publication number Publication date
JP3659961B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
JP4942650B2 (en) Molding set for cold forming machine
AU2001248792B2 (en) Metal plate rocker arm and method of manufacturing the metal plate rocker arm
JP6344485B2 (en) Manufacturing method of forged crankshaft
JP2004358538A (en) Rocker arm manufacturing method
WO2016009620A1 (en) Method for manufacturing cast crankshaft
WO2016147674A1 (en) Method for manufacturing forged crankshaft
JP6561576B2 (en) Manufacturing method of forged crankshaft
US7152320B2 (en) Rocker arm and method of manufacturing the rocker arm
JP6561577B2 (en) Manufacturing method of forged crankshaft
JP2004358530A (en) Rocker arm and method for manufacturing the same
US7000582B2 (en) Rocker arm
JP2016215227A (en) Manufacturing method of forged crank shaft
JP2005088084A (en) Rocker arm and its manufacturing method
JP2005088084A5 (en)
JP2005000960A (en) Rocker arm and its production method
JP4539381B2 (en) Sheet metal rocker arm manufacturing method
JP4127408B2 (en) Sheet metal rocker arm manufacturing method
JP4123252B2 (en) Sheet metal rocker arm manufacturing method
WO2019039199A1 (en) Method for manufacturing forged crankshaft
JP3709786B2 (en) Manufacturing method of hollow shaft with protrusion
JP4155995B2 (en) Sheet metal rocker arm manufacturing method
JP2000120411A (en) Sheet metal rocker arm and manufacture therefor
JP7248886B2 (en) Crankshaft manufacturing method
JP3684971B2 (en) Hollow shaft with protrusion and method of manufacturing the same
JP2016132005A (en) Manufacturing method of forging crankshaft

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees