JP3709786B2 - Manufacturing method of hollow shaft with protrusion - Google Patents

Manufacturing method of hollow shaft with protrusion Download PDF

Info

Publication number
JP3709786B2
JP3709786B2 JP2000387431A JP2000387431A JP3709786B2 JP 3709786 B2 JP3709786 B2 JP 3709786B2 JP 2000387431 A JP2000387431 A JP 2000387431A JP 2000387431 A JP2000387431 A JP 2000387431A JP 3709786 B2 JP3709786 B2 JP 3709786B2
Authority
JP
Japan
Prior art keywords
mold
hollow
shaft
forming
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000387431A
Other languages
Japanese (ja)
Other versions
JP2002178051A (en
Inventor
憲二 森部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000387431A priority Critical patent/JP3709786B2/en
Publication of JP2002178051A publication Critical patent/JP2002178051A/en
Application granted granted Critical
Publication of JP3709786B2 publication Critical patent/JP3709786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、突起付き中空軸の製造方法に関し、例えば、4サイクルレシプロエンジンの吸気弁および排気弁を開閉するためのカム部材が取り付けられたカムシャフトのような突起付き中空軸の製造方法に関する。
【0002】
【従来の技術】
従来、例えば、4サイクルレシプロエンジンの吸気弁および排気弁を駆動させるためのカムを有する回転軸であるカムシャフトは、中実材料を鋳造や鍛造で粗形状に加工した後、機械加工により最終形状に仕上げられていた。しかし、上記の方法では、カムと回転軸とが一体に形成されるため、機械加工を行う部分が増加する。また、カムの硬度を高めて耐摩耗性を向上させるには、機械加工後に浸炭や熱処理等を行う必要が生じる他、材料費が嵩み、製造コストが高くなるという問題があった。さらに、この方法では、耐摩耗性が要求されるカムと強度が要求される回転軸とを、それぞれ最適な材料で製造できないだけでなく、重さが重いという問題があった。
【0003】
このため、耐摩耗性が要求されるカムを焼結合金により中空のカム部材として製造するとともに、軽量化を図るために回転軸を中空軸として製造し、これらを溶接、ろう付けまたは機械的固定によって一体化して組み立ててカムシャフトを製造する技術が開発された。しかし、溶接またはろう付けを行うには、カム部材および回転軸それぞれの材質が制限され最適な材料を用いることができない。また、機械的固定は、その固定操作をカム部材の設置数だけ繰り返し行う必要があり、生産性が低いという問題があった。
【0004】
このため、生産性の向上を図る方法として、上記焼結合金からなるカム部材の中空部に中空の回転軸を遊嵌合してバルジ加工型に収容し、中空の回転軸にバルジ加工を行うことによってカム部材を回転軸に嵌着させる方法が提案された(特公昭49−28298号公報)。しかし、この方法では、カム部材の内面形状が連続的に緩やかに変化する形状であるため、カム部材と回転軸の固定強度が充分ではなかった。
【0005】
そこで、カム部材と回転軸の固定強度を向上させる方法として、次のような方法が提案されている。焼結合金からなるカム部材の内面に固定用突起を設け、この固定用突起をバルジ加工される中空の回転軸の外面に噛み込ませる方法(特開昭59−144532号公報)。焼結合金からなるカム部材の内面に固定用溝を設け、この固定用溝内にバルジ加工される中空の回転軸の一部を膨出充満させる方法(特開昭60−257933号公報)。
【0006】
また、カム部材の固定位置精度を向上させる方法として、カムの位置決め機構を備えたバルジ加工型を用いる方法も提案されている(特開昭62−97722号公報)。
【0007】
【発明が解決しようとする課題】
上記従来の方法では、いずれも、カム部材は、次の理由から焼結合金である。すなわち、耐摩耗性に優れること。偏心したプロフィルを有するカム部材の外形を比較的低コストで大量生産できることである。しかし、焼結合金からなるカム部材は、塑性変形せずに割れてしまうので、バルジ加工による塑性変形を与えることができない。このため、上記従来の方法では、カム部材の最終的な寸法精度は焼結時の寸法精度により決定されるが、焼結時の寸法精度では所望の寸法精度が得られない。したがって、バルジ加工後に、焼結合金からなる高硬度のカム部材に切削加工等の機械加工を行わざるを得なくなる。また、カム部材に用いる焼結合金自体もコストが高い。このため、上記従来の方法では、カムシャフトを高い生産性で製造できるものの、製造コストが大幅に高くなる。
【0008】
また、上記従来の方法では、回転軸が中空であるので、軽量化の効果は得られるものの、カム部材は焼結合金からなる重量物であるので、高速回転時におけるカムシャフトのダイナミックバランスが悪かった。このため、カム部材の重さに起因したカムシャフトの高速回転性能の低下も否めなかった。
【0009】
本発明の目的は、バルジ加工後に寸法精度を確保するための機械加工を必要としないことから低コストでの製造が可能であり、高速回転時のダイナミックバランスに優れた、例えば、上記カムシャフト等の突起付き中空軸の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者は、上記の課題を解決するため、鋼管のバルジ加工について鋭意検討を重ねた結果、以下に列記する知見(a) 〜(d) を得た。
(a) バルジ加工は、加工後の形状を決定するバルジ加工型の中に鋼管を収容し、鋼管の内部に高圧流体を導入して張出し成形を行うことにより、鋼管を型に張り付かせて所定の形状に成形するものである。このため、塑性加工を行うことができる鋼管であれば、単管に限らず二重管以上の複層管や複合部材であっても、バルジ加工を行うことができる。したがって、部分的に二重管以上の複層管または複合部材からなる鋼管にバルジ加工を行えば、突起付き中空軸を容易に成形することができる。
(b) 二重管以上の複層管部または複合部材部を部分的に有する鋼管にバルジ加工を行うことにより、外径が大きく変化する突起付き中空軸を、低い拡管率および高精度で成形することができる。
(c) バルジ加工は、鋼管の内面側には工具を用いずに張出し成形を行うため、鋼管の内面形状を自由に変化させることが可能であり、また、バルジ加工型の型形状を適宜設定することにより、鋼管の張出し方向を自在に設定することができる。このため、内側の鋼管と外側の鋼管とが偏心して配置された二重管であっても、充分に成形できる。
(d) ただし、突起部の偏心量が極端に大きい場合には、内側の鋼管に破断が発生しやすくなって成形が困難になる。その対策として、バルジ加工型として、突起部となる外側の鋼管を所定の形状に成形する型部分と、この型部分の両側に位置する型部分のうちの一方の型部分を、それぞれ別々に、収容される鋼管の長手方向に位置移動可能なように分割したバルジ加工型を用いる。そして、突起部に対応する内側の鋼管部分を、得るべき突起部の幅よりも広く予め予備成形し、しかる後に所定の幅に拡管膨出成形する。それによって、内側の鋼管に破断が生じなくなり、突起部の偏心量が大きな突起付き中空軸でも成形することができる。
【0011】
上記の知見に基づく本発明の要旨は、次の突起付き中空軸の製造方法にある。
【0012】
塑性変形可能な材料からなる中空体の内側に挿入された中空素管をバルジ加工型内に収容し、この中空素管にバルジ加工を行うことによって、中空体の外形をバルジ加工型の内面形状に成形するとともに、中空素管と中空体とを嵌着させるに当たり、下記(1) 〜(4) の工程を経る突起付き中空軸の製造方法。
【0013】
(1) バルジ加工型として、中空体の外形を所定の形状に成形する突起部成形用可動型と、この突起部成形用可動型の一方側に位置する軸部成形用可動型と他方側に位置する軸部成形用固定型に分割されており、突起部成形用可動型と軸部成形用可動型とが軸部成形用固定型に対して別々に接近離反可能なバルジ加工型を準備する工程、
(2) 準備したバルジ加工型の軸部成形用固定型、突起部成形用可動型および軸部成形用可動型の各型に所定の間隔が在するように突起部成形用可動型と軸部成形用可動型をセットし、このセット後のバルジ加工型内に、塑性変形可能な材料からなる中空体の内側に隙間を設けて挿入された中空素管を収容する工程、
(3) バルジ加工型内に収容された中空素管をバルジ加工し、中空体の内面と中空素管の外面とを接触させる工程、
(4) 軸部成形用固定型の方向に軸部成形用可動型を押圧してバルジ加工を継続し、中空体を3つの型で画成される中空体成形バルジ加工型部の内面に張り付かせて中空体の外形を所定の形状に成形するとともに、中空素管と中空体とを嵌着させる工程。
【0014】
【発明の実施の形態】
以下、本発明の突起付き中空軸の製造方法の実施の形態を、添付図面を参照しながら、詳細に説明する。なお、以降の実施の形態の説明では、突起付き中空軸が、4サイクルレシプロエンジン用のカムシャフトである場合を例にとる。
【0015】
図1は、本発明の方法に用いるバルジ加工型1と、このバルジ加工型に収容されたバルジ加工の前の中空素管を示す模式的縦断面図である。また、図2は、第1のバルジ加工後の状態を示す模式的縦断面図であり、図3は第2のバルジ加工後の状態を示す模式的縦断面図である。さらに、図4は、図1におけるイ−イ矢視横断面図であり、図5は、図3におけるロ−ロ矢視横断面図である。
【0016】
図1〜図3に示すように、本実施形態では、上型2と下型3とに分割されたバルジ加工型1を用いる。このバルジ加工型1を構成する上型2と下型3の内面には、それぞれ、製造すべきカムシャフト9の最終仕上げ形状と同じ形状の孔型が刻設されている。
【0017】
そして、上型2と下型3は、いずれも、中空軸となる内側の中空素管4の長手方向の中央部を成形する軸部成形用固定型2a、3aと、外側の中空素管のうちのカム部材10a、10bとなる中空体5a、5bを所定の外形形状に成形する突起部成形用可動型2b、3bおよび2c、3cと、中空素管4の両端端部を所定の形状に成形する軸部成形用可動型2d、3dおよび2e、3eとに分割されている。
【0018】
また、突起部成形用可動型2b、3bおよび2c、3cと、軸部成形用可動型2d、3dおよび2e、3eは、それぞれ、軸部成形用固定型2a、3aに対して、例えば、蟻溝機構等の適宜な手段により、図中の左右方向に摺動可能ように装着されている。
【0019】
上記のように構成された上型2と下型3は、いずれも、バルジ加工時の内圧による分割力に耐えるために、上下から図示を省略したプレス機構により押さえられており、このプレス機構の上下動によって上型1と下型2も上下動し、これにより、カム部材10a、10bとなる中空体5a、5b、およびジャーナル部11a、11bとなる中空体6a、6bが外嵌挿入された中空素管4の型内への搬入と、加工終了後のカムシャフト9の型外への搬出とが行われる。
【0020】
さらに、上型2と下型3の間には、中空素管4の両端部を気密保持し、バルジ加工時の中空素管4またはカムシャフト9を、上型2と下型3の内部の所定の位置に支持する管端拘束治具7a、7bが配置されている。
【0021】
また更に、上型2と下型3の間には、突起部成形用可動型2b、3bおよび2c、3cと、軸部成形用可動型2d、3dおよび2e、3eとを、それぞれ、同時に、軸部成形用固定型2a、3a側に向けて移動させるとともに、必要に応じて所定の位置に固定支持する、例えば、油圧シリンダ等の適宜な押圧機構からなる型移動用治具8a、8bが配置されている。
【0022】
本発明の方法においては、上記のように構成された上型2と下型3とを、プレス機構を作動させて開き、突起部成形用可動型2b、3bおよび2c、3cと、中空軸の両端端部を所定の形状に成形する軸部成形用可動型2d、3dおよび2e、3eとは、図1に示すように、それぞれ、軸部成形用固定型2a、3aに対して所定の間隔を隔てて初期セットされる。
【0023】
次いで、外嵌挿入されたカム部材10a、10bとなる中空体5a、5bが、突起部成形用可動型2b、3bおよび2c、3cの中央部に位置し、ジャーナル部11a、11bとなる中空体6a、6bが、軸部成形用可動型2d、3dおよび2e、3eに刻設されたジャーナル型部の中央部に位置するように中空素管4をバルジ加工型1内に装入し、上型2と下型3とを閉じる。
【0024】
上記の操作により、中空素管4は、図1に示すように、中空孔を有するカム部材10a、10bとなる中空体5a、5b、およびジャーナル部11a、11bとなる中空体6a、6bの内側に、それぞれ隙間を設けた状態で、バルジ加工型1の内部に収容される。
【0025】
中空素管4は、製品であるカムシャフト9の回転軸をなすため、充分な強度が要求される。本実施形態では、中空素管4には、一般的なJIS規格に規定されるSTKM13Aの鋼管を用いた。
【0026】
さらに、本実施形態では、中空体5a、5bは、いずれも、突起部成形用可動型2b、3bおよび2c、3cの部分に配置するために、図4に示すように、最終形状であるカム部材10a、10bに類似した形状に、予め偏心してプレス成形される。なお、この中空体5a、5bの外周面と突起部成形用可動型2b、3bおよび2c、3cの内周面との間、およびジャーナル部11a、11bとなる中空体6a、6bの外周面と軸部成形用可動型2d、3dおよび2e、3eに刻設されたジャーナル成形孔型部の内周面との間には、それぞれ、図1に示すように、バルジ加工時の張出し量に応じた隙間が存在する。
【0027】
また、中空体5a、5bおよび6a、6bには、塑性加工可能な材料として、軸受用鋼管を用いた。すなわち、前述した従来方法では、耐摩耗性に優れるためだけでなく、偏心したプロフィルを有するカム部材の外形を比較的低コストで大量生産できることから、カム部材に焼結合金を用いる。これに対し、本実施形態では、耐摩耗性の要求性能を満たすことができ、かつ所定の外形を有するカム部材10a、10bを、後述するバルジ加工により容易に成形することができる塑性加工可能な材料を用いる。このため、本実施形態では、中空体5a、5bおよび6a、6bには、軸受用鋼管を用いた。
【0028】
次に、本発明では、中空体5a、5bおよび6a、6bの内側にそれぞれ隙間を設けて内嵌挿入された中空素管4に、以下に述べる第1工程のバルジ加工と第2工程のバルジ加工を行う。
【0029】
すなわち、第1工程のバルジ加工では、突起部成形用可動型2b、3bおよび2c、3cと、軸部成形用可動型2d、3dおよび2e、3eの位置を、型移動用治具8a、8bによって図1に示す状態に固定保持する。そして、中空素管4の内部に、管端拘束治具7a、7bの軸心に設けられた管路7c、7dから高圧のバルジ加工用液体を注入して中空素管4を拡管膨出変形させ、図2に示すように、カム部材10a、10bとなる中空体5a、5bの内周面に中空素管4の外周面の軸方向の一部を接触させる。
【0030】
次いで、第2工程のバルジ加工では、型移動用治具8a、8bを作動させ、軸部成形用可動型2d、3dおよび2e、3eを、それぞれ、軸部成形用固定型2a、3aに向けて移動させながら、管端拘束治具7a、7bの軸心に設けられた管路7c、7dからの高圧バルジ加工用液体の注入を継続して中空素管4をさらに拡管膨出変形させ、図3に示す状態になった時点で、バルジ加工を終了する。
【0031】
具体的には、軸部成形用固定型2a、3aに対して突起部成形用可動型2b、3bおよび2c、3cが当接し、かつこの突起部成形用可動型2b、3bおよび2c、3cに対して軸部成形用可動型2d、3dおよび2e、3eが当接して一体となったバルジ加工型1の孔型内面に、中空体5a、5bおよび6a、bの外面全周が接触するとともに、これら中空体の内面全周に中空素管4の外面全周が接触した時点でバルジ加工を終了する。
【0032】
上記のように、中空体5a、5bおよび6a、6bが外嵌された中空素管4に対するバルジ加工を2段階に分けて行う場合には、第1のバルジ加工工程において、カム部材10a、10bとなる中空体5a、5bに対応する部分の中空素管4の管軸方向の拡管膨出領域が、上下に分割されただけの従来のバルジ加工型を用いる場合に比べて長くなる。また、中空素管4に付与する内圧が同じ場合、その膨出量と材料体積も大きくなる。
【0033】
そして、この管軸方向に長く、かつ膨出量と材料体積が大きくなった中空素管4の拡管膨出領域は、第2のバルジ加工工程における軸部成形用可動型2d、3dおよび2e、3eの移動に伴い、その両側部分に管軸方向の曲げ加工を受けながら拡管膨出変形し、型相互が接触して一体となったバルジ加工型1の突起部成形用可動型2b、3bおよび2c、3cの内周面に中空体5a、5bの外周面が全面接触するとともに、中空体6a、6bについてもその外周面が軸部成形用可動型2d、3dおよび2e、3eに刻設されたジャーナル成形孔型部の内周面に全面接触し、バルジ加工を終了する。この時、中空体5a、5bおよび6a、6bの内周面は、当然のことながら、中空素管4の外周面と全面接触する。
【0034】
このように、中空素管4のバルジ加工時に、管軸方向の曲げ加工を付与しなが中空素管4を拡管膨出変形させる場合には、拡管膨出変形が円滑に進行し、中空素管4に破断が生じることがない。このため、偏心量が大きいカム部材10a、10bを有するカムシャフト9でも成形可能となる。
【0035】
ここで、第1のバルジ加工時における軸部成形用固定型2a、3aと突起部成形用可動型2b、3bおよび2c、3cとの間、並びに突起部成形用可動型2b、3bおよび2c、3cと軸部成形用可動型2d、3dおよび2e、3eとの間の初期セット間隔と中空素管4の内部に付与する内圧は、要求されるカム部材10a、10bの偏心量に応じて決定され、このうち、初期セット間隔は、通常、偏心量が大きいほど大きくされる。
【0036】
また、第2のバルジ加工時に中空素管4の内部に付与する内圧は、カム部材10a、10bの外形形状や第1のバルジ加工後の中空素管4の拡管膨出部の張出部の形状等により決定されるが、第2のバルジ加工においては付与する内圧が高ければ高いほど成形後の形状は良好になる。このため、第2のバルジ加工において中空素管4の内部に付与する内圧はできるだけ高くするのがよい。
【0037】
なお、第2のバルジ加工時、拡管膨出領域の両側部分に管軸方向の曲げ加工が付与されるのは、次の理由による。すなわち、この第2のバルジ加工時、突起部成形用可動型2b、2cおよび3b、3cは、中空素管4と中空体5a、5bが、中空素管4の内部に注入された高圧バルジ加工用液体の圧力により高い面圧で押し付けられていて管軸方向にずれることがなく、突起部成形用可動型2b、3bおよび2c、3cに対する軸部成形用可動型2d、3dおよび2e、3eの接近量と同じ量だけ、突起部成形用可動型2b、3bおよび2c、3cが軸部成形用固定型2a、3aに接近するからである。
【0038】
本実施形態では、上記のようにして、中空体5a、5bおよび6a、6bの外面を、バルジ加工型1に刻設された孔型に張り付かせることにより、中空体5a、5bおよび6a、6bの外形が、それぞれ、製造すべきカムシャフト9のカム部材10a、10bおよびジャーナル部11a、11bの最終仕上げ形状通りに成形される。
【0039】
また、本実施形態では、上記2段階のバルジ加工によって中空素管4を拡管膨出変形させることにより、中空素管4を中空体5a、5bおよび6a、6bの内面に高い面圧で接触させて密着させることができる。これにより、中空素管4と中空体5a、5bおよび6a、6bとは、実用上充分な固定強度(静許容トルク)で嵌着される。
【0040】
このようにして、図3に示すように、中空の回転軸12と、この回転軸12の外周面にバルジ加工により嵌着されたカム部材10a、10bと、カムシャフト9を、搭載されるエンジンのシリンダヘッドに設けられたベアリングにより軸支するためのジャーナル部11a、11bとを有し、カム部材10a、10bの外形がバルジ加工により成形されたカムシャフト9が提供される。つまり、本実施形態では、カム部材10a、10bとジャーナル部11a、11bとが、いずれも、本発明における突起に相当する。
【0041】
そして、第2のバルジ加工終了後、プレスを作動させて上型2と下型3を開き、バルジ加工されたカムシャフト9をバルジ加工型1外に搬出する。
【0042】
なお、バルジ加工型1外に搬出したカムシャフト9に対して、カム部材10a、10bおよびジャーナル部11a、11bそれぞれの表面を、高周波で焼入れすることが望ましい。これにより、所望の硬度が与えられるとともに、バルジ加工による嵌着部であるカム部材10a、10bおよびジャーナル部11a、11bが熱膨張で緩むことが、いずれも防止される。
【0043】
また、ジャーナル部11a、11bには、カム部材10a、10bに比べ、大きなトルクが作用せず、また、大きな拡管率も要求されない。このため、ジャーナル部11a、11bに対するバルジ加工は、カム部材10a、10bに対するバルジ加工よりも容易である。
【0044】
さらに、本実施形態では、ジャーナル部11a、11bもバルジ加工により成形したが、前述したように、ジャーナル部11a、11bには大きなトルクが作用しないため、バルジ加工により成形するのではなく、カム部材10a、10bのみのバルジ加工後に、ジャーナル部11a、11bをなす別部品を、例えば、溶接、ろう付けまたは機械的固定等の適宜な手段により、固定してもよい。
【0045】
この本実施形態では、カム部材10a、10bおよびジャーナル部11a、11bは、いずれも、充分な寸法精度を有するため、バルジ加工後に切削加工する必要がない。また、カム部材10a、10bおよびジャーナル部11a、11bに用いる軸受用鋼管は、焼結合金よりも安価である。このため、本実施形態によれば、カムシャフト9が、偏心量の大きなカム部材10a、10bを有するものでも、高い生産効率で、かつ低コストで製造することができる。
【0046】
また、本実施形態では、カム部材10a、10bは、軸受用鋼管である中空体5a、5bを膨出させて塑性変形させることにより製造されるため、従来の焼結合金からなる事実上中実のカム部材に比べ、軽量である。このため、高速回転時のカムシャフトのダイナミックバランスが良好となり、カムシャフトの最大許容回転数を従来よりも多くすることもできる。これにより、4サイクルレシプロエンジンの回転数を引き上げることもできる。
【0047】
図6〜図10は、他の実施形態を示す模式的横断面図であり、図6と図7に示す実施形態による場合には、偏心量のより大きなカム部材10a、10bを有するカムシャフト9が製造でき、図8〜図10に示す実施形態による場合には、中空素管4と中空体5a、5bおよび6a、6bとの嵌着強度がより強固で、静許容トルクのより高いカムシャフト9を製造することができる。以下、これらについて詳細に説明する。
【0048】
図6に示すように、本実施形態では、中空素管4には、横断面がほぼ円形のものを用いるとともに、第1のバルジ加工を行う前に、この横断面がほぼ円形の中空素管4と中空体5a、5bとの間の隙間に、偏心部成形部材13を配置しておく。偏心部成形部材13は、中空素管4の膨出変形量を低く抑えた状態で中空体5a、5bの膨出変形量を充分に確保するために配置される。
【0049】
偏心部成形部材13は、中空素管4と中空体5a、5bとの間の隙間を埋めるために、中空素管4の膨出変形により容易に変形するものが望ましく、また、軽量化を図るために軽量のものが望ましい。
【0050】
偏心部成形部材13の材質は、これらの要求、加工工程での扱いやすさ、さらにはコスト等を勘案して適宜設定すればよく、例えば、純アルミニウムやその合金等を用いるのが望ましい。
【0051】
また、偏心部成形部材13の形状や寸法等は、中空素管4と中空体5a、5bとの間の隙間に挿入可能であってカム部材10a、10bを成形可能な体積を有していればよく、何ら限定を要さない。すなわち、偏心部成形部材13は、中空素管4と中空体5a、5bとの間の少なくとも一部に配置されていればよく、その形状は、図に示す中実体に限らず、中空体であってもよい。
【0052】
図6に示すように、中空素管4と中空体5a、5bとの間の隙間に、偏心部成形部材13を配置してバルジ加工を行うと、図7に示すように、中空素管4および偏心部成形部材13がともに、中空体5a、5bの内周面に当接して、中空体5a、5bを膨出変形させる。この時、偏心部成形部材13は、前述したように、純アルミニウムやその合金からなるため、中空素管4と中空体5a、5bとの間の隙間を埋めるように変形し、中空素管4の局部的な膨出変形を抑制する。このため、中空素管4の拡管率が小さくても、大きな偏心量を得ることができ、かつ、中空素管4が破断するのを防止できる。
【0053】
また、図8に示すように、本実施形態では、中空素管4に第1のバルジ加工を行う前に、中空素管4と中空体5a、5bとを固定するための固定部材14が配置される。この固定部材14は、後述するように、中空素管4および中空体5a、5bの双方にめり込ませる必要があるため、高硬度の部材を用いるのが好ましく、例えば、横断面が円形や多角形のCrMo鋼線材等を用いるのが望ましい。
【0054】
すなわち、予成形として、図9に示すように、中子16と中空体5a、5bとの間に固定部材14を配置して、上型15aと下型15bからなるプレス型15により、中空体5a、5bを縮径させる方向にプレスする。これにより、固定部材14は、中空体5a、5bの当接部近傍を塑性変形させ、中空体5a、5bにめり込む。なお、固定部材14は、後続して行われる第1のバルジ加工および第2のバルジ加工により中空素管4にもめり込ませる必要があるため、このプレスでは、固定部材14の直径の半分程度の深さだけ、中空体5a、5bにめり込ませることが望ましい。
【0055】
そして、この予成形を行った後、図1に示す状態に初期セットされたバルジ加工型1内に中空素管4を収容し、第1のバルジ加工と第2のバルジ加工を行う。この実施形態によれば、図10に示すように、中空体5a、5bにめり込まされた固定部材14が、中空素管4の膨出変形に伴って中空素管4の当接部近傍を塑性変形させ、中空素管4にめり込む。
【0056】
このため、固定部材14は、中空素管4と中空体5a、5bとの間でキーと同様の固定作用を奏し、バルジ加工による中空素管4および中空体5a、5bの間における高い面圧での接触と相まって、極めて高い静許容トルクを確保することができる。
【0057】
なお、固定部材14は、ジャーナル部11a、11bに対して配置してもよいことは勿論である。
【0058】
【実施例】
図1〜図5に示す実施形態により4サイクルレシプロエンジン用のカムシャフトを製造した場合を実施例とし、前述した特開昭60−257933号公報により提案された方法により4サイクルレシプロエンジン用のカムシャフトを製造した場合を比較例として、それぞれにより得られたカムシャフトの静許容トルク、カム形状の自由度および製造コストを評価した。
【0059】
なお、実施例では、中空体5a、5bには球状化焼鈍を行った高炭素Cr軸受鋼からなる短尺鋼管を用い、この短尺鋼管の軸方向長さは必要カム幅に一致させた。また、中空素管4には、一般的なSTKM13Aの鋼管を用いた。
【0060】
さらに、実施例の第1のバルジ加工は、軸部成形用固定型2a、3aと突起部成形用可動型2b、3bおよび2c、3cとの間の初期セット間隔を6mm、突起部成形用可動型2b、3bおよび2c、3cと軸部成形用可動型2d、3dおよび2e、3eとの間の初期セット間隔を4mmに設定して行った。
【0061】
これは、第2のバルジ加工における可動型の移動が外側から行われるために、第1のバルジ加工で成形された膨出部分の曲げ加工を伴う膨出変形量が、軸部成形用固定型2a、3a側に比べて軸部成形用可動型2d、3dおよび2e、3e側の方が多いためであり、この設定により、カム部材10a、10b部分の中空素管4の拡管膨出変形は、突起部成形用可動型2b、3bおよび2c、3cの幅方向の中心を対称軸としてほぼ軸対称に変形した。
【0062】
また更に、実施例の中空素管4に対する第1のバルジ加工と第2のバルジ加工は、いずれも、中空素管4に250MPaの内圧を付与して行った。
【0063】
実施例のバルジ加工後のカムシャフトには、カム部材10a、10bの表面に高周波焼入れを行って表面硬度を所望の値に調整した。
【0064】
製造条件および評価結果を、総合評価とともに、表1にまとめて示す。
【0065】
【表1】

Figure 0003709786
表1に示すように、実施例では、中空素管4に第1のバルジ加工と第2のバルジ加工を行うことにより、必要な寸法精度と実用上問題のない固定強度を有するカム部材10a、10bを設けることができた。
【0066】
なお、通常、カムシャフトに要求される静許容トルクは98N・mと言われているが、実施例はこの値を超えた良好な値を示しており、充分に実用化可能である。
【0067】
実施形態およびその他の実施形態の説明では、突起付き中空軸が4サイクルレシプロエンジン用のカムシャフトである場合を例にとった。しかし、本発明はカムシャフトには限定されず、中空の回転軸と、この回転軸の外周面にバルジ加工により嵌着された突起を有する突起付き中空軸であれば、等しく適用される。このような突起付き中空軸としては、4サイクルレシプロエンジン用のカムシャフト以外に、レシプロタイプのコンプレッサのカムシャフトやカム機構を有する機械部品のカムシャフト等が例示される。
【0068】
また、実施形態およびその他の実施形態の説明では、中空体が軸受用鋼からなる場合を例にとった。しかし、本発明における中空体は、軸受用鋼に限定されず、要求される硬度を満足するとともに塑性加工可能な材料であれば、等しく適用される。塑性加工可能な材料としては、軸受用鋼以外に、機械構造用炭素鋼や機械構造用合金鋼、さらにはチタン合金等も、同様に用いることができる。
【0069】
さらに、実施形態およびその他の実施形態の説明では、カムシャフトが2つのカム部材を有する場合を例にとった。しかし、本発明は、カム部材の数には何ら制限されず、カム部材の数が1つまたは3つ以上であっても、同様に適用される。
【0070】
【発明の効果】
以上、詳細に説明したように、本発明により、バルジ加工後の機械加工を必要としないことから低コストに製造することができ、しかもカム部材の重量を低減できることから高速回転時のダイナミックバランスにも優れた、偏心量の大きなカム部材を有する、例えばカムシャフト等の突起付き中空軸を高い生産効率で製造することが可能な製造方法を提供することができた。
【0071】
また、本発明では、カム部材を、焼結合金ではなく、塑性加工可能な材料により製造するため、この材料を適宜選定することにより、部品コストを低減でき、突起付き中空軸をさらに低コストで製造することができる。かかる効果を奏する本発明の意義は、極めて著しい。
【図面の簡単な説明】
【図1】実施形態の第1のバルジ加工前におけるバルジ加工型の初期セット状態と中空素管を示す模式的縦断面図である。
【図2】実施形態の第1のバルジ加工後における中空素管の状態を示す模式的縦断面図である。
【図3】実施形態の第2のバルジ加工後におけるバルジ加工型の状態とバルジ加工されたカムシャフトを示す模式的縦断面図である。
【図4】図1のイ−イ矢視によるバルジ加工型を省略した模式的横断面図である。
【図5】図3のロ−ロ矢視によるバルジ加工型を省略した模式的横断面図である。
【図6】他の実施形態の偏心部成形部材の配置態様を示す模式的横断面図である。
【図7】他の実施形態の偏心成形部材配置部分のバルジ加工後の形状を示す模式的横断面図である。
【図8】他の実施形態の固定部材の配置態様を示す模式的横断面図である。
【図9】他の実施形態の固定部材の配置部分の予成形状態を示す模式的横断面図である。
【図10】他の実施形態の固定部材の配置部分のバルジ加工後の形状を示す模式的横断面図である。
【符号の説明】
1:バルジ加工型、
2:上型、
3:下型、
2a、3a:軸部成形用固定型、
2b、2c、3b、3c:突起部成形用可動型、
2d、2e、3d、3e:軸部成形用可動型、
4:中空素管、
5a、5b、6a、6b:中空体、
7a、7b:管端拘束治具、
7c、7d:管路、
8a、8b:型移動用治具、
9:カムシャフト、
10a、10b:カム部材、
11a、11b:ジャーナル部、
12:回転軸、
13:偏心部成形部材、
14:固定部材、
15:予成形用のプレス型、
15a:予成形用のプレス型を構成する上型、
15b:予成形用のプレス型を構成する下型、
16:中子。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a hollow shaft with protrusions, and relates to a method of manufacturing a hollow shaft with protrusions such as a camshaft to which a cam member for opening and closing an intake valve and an exhaust valve of a four-cycle reciprocating engine is attached.
[0002]
[Prior art]
Conventionally, for example, a camshaft, which is a rotating shaft having cams for driving intake valves and exhaust valves of a 4-cycle reciprocating engine, is processed into a rough shape by casting or forging, and then processed into a final shape by machining. It was finished. However, in the above method, since the cam and the rotating shaft are integrally formed, the number of parts to be machined increases. In addition, in order to increase the hardness of the cam and improve the wear resistance, there is a need to perform carburization, heat treatment and the like after machining, and there are problems that material costs increase and manufacturing costs increase. Furthermore, this method has a problem that not only the cams that require wear resistance and the rotating shafts that require strength can be manufactured using optimum materials, but also the weight is heavy.
[0003]
For this reason, cams that require wear resistance are manufactured as a hollow cam member using a sintered alloy, and the rotating shaft is manufactured as a hollow shaft to reduce weight, and these are welded, brazed, or mechanically fixed. Developed a technology to manufacture camshafts by integrating and assembling them. However, in order to perform welding or brazing, the materials of the cam member and the rotating shaft are limited, and an optimal material cannot be used. In addition, the mechanical fixing needs to be repeatedly performed as many times as the number of cam members, and there is a problem that productivity is low.
[0004]
For this reason, as a method for improving productivity, a hollow rotary shaft is loosely fitted in the hollow portion of the cam member made of the sintered alloy and accommodated in a bulge processing die, and bulging is performed on the hollow rotary shaft. Thus, a method for fitting the cam member to the rotating shaft has been proposed (Japanese Patent Publication No. 49-28298). However, in this method, since the shape of the inner surface of the cam member changes continuously and gently, the fixing strength between the cam member and the rotating shaft is not sufficient.
[0005]
Thus, the following method has been proposed as a method for improving the fixing strength between the cam member and the rotating shaft. A method in which a fixing protrusion is provided on the inner surface of a cam member made of a sintered alloy, and this fixing protrusion is engaged with the outer surface of a hollow rotating shaft to be bulged (Japanese Patent Laid-Open No. 59-144532). A method of providing a fixing groove on the inner surface of a cam member made of a sintered alloy and bulging and filling a part of a hollow rotating shaft to be bulged in the fixing groove (Japanese Patent Laid-Open No. 60-257933).
[0006]
In addition, as a method for improving the fixed position accuracy of the cam member, a method using a bulge processing die provided with a cam positioning mechanism has also been proposed (Japanese Patent Laid-Open No. 62-97722).
[0007]
[Problems to be solved by the invention]
In any of the above conventional methods, the cam member is a sintered alloy for the following reason. That is, it has excellent wear resistance. The outer shape of the cam member having the eccentric profile can be mass-produced at a relatively low cost. However, since the cam member made of a sintered alloy breaks without plastic deformation, it cannot be plastically deformed by bulging. For this reason, in the conventional method, the final dimensional accuracy of the cam member is determined by the dimensional accuracy during sintering, but the desired dimensional accuracy cannot be obtained with the dimensional accuracy during sintering. Therefore, after the bulge processing, machining such as cutting must be performed on the high hardness cam member made of the sintered alloy. Further, the sintered alloy itself used for the cam member is also expensive. For this reason, in the conventional method, the camshaft can be manufactured with high productivity, but the manufacturing cost is significantly increased.
[0008]
Further, in the above conventional method, since the rotating shaft is hollow, an effect of weight reduction can be obtained. However, since the cam member is a heavy material made of a sintered alloy, the dynamic balance of the camshaft during high-speed rotation is poor. It was. For this reason, the reduction in the high-speed rotation performance of the camshaft due to the weight of the cam member cannot be denied.
[0009]
The object of the present invention is that it does not require machining to ensure dimensional accuracy after bulge processing, and thus can be manufactured at low cost, and has excellent dynamic balance during high-speed rotation, such as the camshaft described above. It is in providing the manufacturing method of the hollow shaft with a protrusion.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor has made extensive studies on bulging of a steel pipe, and as a result, has obtained the findings (a) to (d) listed below.
(a) In bulging, a steel pipe is accommodated in a bulging die that determines the shape after machining, and a high-pressure fluid is introduced into the steel pipe to perform extension forming, thereby sticking the steel pipe to the die. It is formed into a predetermined shape. For this reason, if it is a steel pipe which can perform plastic working, not only a single pipe but a multilayer pipe or a composite member more than a double pipe can perform bulge processing. Therefore, if a bulge process is performed on a steel pipe made of a multi-layer pipe or a composite member that is partially a double pipe or more, a hollow shaft with protrusions can be easily formed.
(b) Forming a hollow shaft with a protrusion with a large change in outer diameter with low tube expansion rate and high accuracy by bulging a steel pipe partially having a double-pipe or more multi-layer pipe part or composite part. can do.
(c) Since bulging is performed without using a tool on the inner surface of the steel pipe, the inner shape of the steel pipe can be freely changed, and the shape of the bulging die can be set appropriately. By doing so, the extending direction of the steel pipe can be freely set. For this reason, even a double pipe in which an inner steel pipe and an outer steel pipe are arranged eccentrically can be sufficiently formed.
(d) However, if the amount of eccentricity of the protrusion is extremely large, the inner steel pipe is likely to break, making it difficult to form. As a countermeasure, as a bulge processing mold, a mold part that molds the outer steel pipe to be a protrusion into a predetermined shape, and one of the mold parts located on both sides of this mold part, separately, A bulging die that is divided so as to be movable in the longitudinal direction of the steel pipe to be accommodated is used. Then, the inner steel pipe portion corresponding to the protruding portion is preformed in advance wider than the width of the protruding portion to be obtained, and then expanded and expanded to a predetermined width. Thereby, the inner steel pipe is not broken, and even a hollow shaft with a projection having a large eccentricity of the projection can be formed.
[0011]
The gist of the present invention based on the above knowledge resides in the following method for producing a hollow shaft with protrusions.
[0012]
The hollow shell inserted inside the hollow body made of a plastically deformable material is accommodated in the bulge processing mold, and the hollow body is bulged to form the outer shape of the hollow body. A method for producing a hollow shaft with protrusions that undergoes the following steps (1) to (4) when the hollow shell and the hollow body are fitted together.
[0013]
(1) As a bulge processing mold, a protruding part forming movable mold for forming the outer shape of the hollow body into a predetermined shape, a shaft part forming movable mold located on one side of the protruding part forming movable mold, and the other side Prepared is a bulging die that is divided into a fixed shaft forming mold and that is movable separately from the protruding mold forming mold and the shaft forming movable mold. Process,
(2) Protruding part forming movable mold and shaft part such that the prepared bulge processing mold shaft part forming fixed mold, protrusion part forming movable mold and shaft part forming movable mold have a predetermined interval. A step of setting a movable mold for molding, and housing a hollow shell inserted with a gap inside a hollow body made of a plastically deformable material in the bulge processing mold after the setting,
(3) bulging the hollow shell accommodated in the bulging mold and bringing the inner surface of the hollow body into contact with the outer surface of the hollow shell;
(4) The bulging process is continued by pressing the movable mold for shaft molding in the direction of the fixed mold for molding the shaft, and the hollow body is stretched on the inner surface of the hollow body molding bulge mold defined by three molds. A step of forming the outer shape of the hollow body into a predetermined shape and fitting the hollow shell and the hollow body.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a method for producing a hollow shaft with projections according to the present invention will be described below in detail with reference to the accompanying drawings. In the following description of the embodiments, the case where the hollow shaft with protrusions is a camshaft for a 4-cycle reciprocating engine is taken as an example.
[0015]
FIG. 1 is a schematic longitudinal sectional view showing a bulge forming die 1 used in the method of the present invention and a hollow shell before the bulge processing accommodated in the bulge processing die. 2 is a schematic longitudinal sectional view showing a state after the first bulge processing, and FIG. 3 is a schematic longitudinal sectional view showing a state after the second bulge processing. Further, FIG. 4 is a cross-sectional view taken along arrow II in FIG. 1, and FIG. 5 is a cross-sectional view taken along arrow II in FIG.
[0016]
As shown in FIGS. 1 to 3, in this embodiment, a bulge processing die 1 divided into an upper die 2 and a lower die 3 is used. On the inner surfaces of the upper mold 2 and the lower mold 3 constituting the bulge processing mold 1, hole molds having the same shape as the final finished shape of the camshaft 9 to be manufactured are respectively engraved.
[0017]
Each of the upper mold 2 and the lower mold 3 includes a shaft-forming fixed mold 2a, 3a that molds the central portion in the longitudinal direction of the inner hollow shell 4 serving as a hollow shaft, and an outer hollow shell. Protruding part forming movable molds 2b, 3b and 2c, 3c for forming the hollow bodies 5a, 5b to be the cam members 10a, 10b into a predetermined outer shape, and both end portions of the hollow shell 4 to a predetermined shape It is divided into movable parts 2d, 3d and 2e, 3e for forming the shaft part.
[0018]
Further, the protruding portion forming movable molds 2b, 3b and 2c, 3c and the shaft portion forming movable molds 2d, 3d, 2e, and 3e are, for example, different from the shaft portion forming fixed molds 2a and 3a. It is mounted so as to be slidable in the left-right direction in the drawing by appropriate means such as a groove mechanism.
[0019]
Both the upper mold 2 and the lower mold 3 configured as described above are pressed by a press mechanism (not shown) from above and below in order to withstand a splitting force caused by internal pressure during bulge processing. The upper mold 1 and the lower mold 2 are also moved up and down by the vertical movement, whereby the hollow bodies 5a and 5b to be the cam members 10a and 10b and the hollow bodies 6a and 6b to be the journal portions 11a and 11b are externally inserted. Carrying in the hollow shell 4 into the mold and carrying out the camshaft 9 out of the mold after completion of processing are performed.
[0020]
Furthermore, between the upper mold 2 and the lower mold 3, both ends of the hollow shell 4 are airtightly held, and the hollow shell 4 or the camshaft 9 at the time of bulging is connected to the inside of the upper mold 2 and the lower mold 3. Tube end restraining jigs 7a and 7b are arranged to be supported at predetermined positions.
[0021]
Furthermore, between the upper mold 2 and the lower mold 3, the protruding part forming movable molds 2b, 3b and 2c, 3c and the shaft part forming movable molds 2d, 3d and 2e, 3e, respectively, For example, mold moving jigs 8a and 8b composed of an appropriate pressing mechanism such as a hydraulic cylinder, which are moved toward the shaft-forming fixed molds 2a and 3a, and are fixedly supported at predetermined positions as necessary. Has been placed.
[0022]
In the method of the present invention, the upper mold 2 and the lower mold 3 configured as described above are opened by operating the press mechanism, and the protrusion forming movable molds 2b, 3b and 2c, 3c, and the hollow shaft As shown in FIG. 1, the shaft-forming movable dies 2d, 3d and 2e, 3e for forming both end portions into a predetermined shape are respectively spaced apart from the shaft-forming fixed dies 2a, 3a. It is initially set across.
[0023]
Next, the hollow bodies 5a and 5b to be the cam members 10a and 10b that are externally inserted are located at the center of the protrusion forming movable molds 2b, 3b and 2c and 3c, and become the journal parts 11a and 11b. The hollow shell 4 is inserted into the bulge processing die 1 so that 6a and 6b are located in the central part of the journal die part engraved on the movable molds 2d, 3d and 2e and 3e for forming the shaft part. Close the mold 2 and the lower mold 3.
[0024]
Through the above operation, as shown in FIG. 1, the hollow shell 4 is formed inside the hollow bodies 5a and 5b that become the cam members 10a and 10b having the hollow holes and the hollow bodies 6a and 6b that become the journal portions 11a and 11b. The bulge processing mold 1 is housed in a state where gaps are provided.
[0025]
Since the hollow shell 4 forms the rotation axis of the camshaft 9, which is a product, sufficient strength is required. In this embodiment, the hollow shell 4 is a STKM13A steel pipe defined in a general JIS standard.
[0026]
Further, in the present embodiment, the hollow bodies 5a and 5b are cams having a final shape as shown in FIG. 4 in order to arrange the hollow bodies 5a and 5b in the protrusion forming movable molds 2b, 3b and 2c, 3c. It is preliminarily eccentrically formed into a shape similar to the members 10a and 10b. In addition, between the outer peripheral surface of the hollow bodies 5a and 5b and the inner peripheral surface of the protrusion forming movable molds 2b, 3b and 2c and 3c, and the outer peripheral surface of the hollow bodies 6a and 6b to be the journal portions 11a and 11b As shown in FIG. 1, according to the overhang amount at the time of bulge processing, between the inner peripheral surfaces of the journal forming hole molds engraved in the movable molds 2d, 3d and 2e, 3e for the shaft forming There is a gap.
[0027]
Further, for the hollow bodies 5a, 5b and 6a, 6b, bearing steel pipes were used as materials that can be plastically processed. That is, in the above-described conventional method, not only is the wear resistance excellent, but the outer shape of the cam member having an eccentric profile can be mass-produced at a relatively low cost. Therefore, a sintered alloy is used for the cam member. On the other hand, in the present embodiment, the cam members 10a and 10b that can satisfy the required performance of wear resistance and have a predetermined outer shape can be plastically processed by being easily formed by bulge processing described later. Use materials. For this reason, in this embodiment, the steel pipe for bearings was used for hollow body 5a, 5b and 6a, 6b.
[0028]
Next, in the present invention, a bulge process in the first step and a bulge in the second step described below are inserted into the hollow shell 4 inserted into the hollow bodies 5a, 5b and 6a, 6b with a gap between them. Processing.
[0029]
That is, in the bulge processing in the first step, the positions of the protruding portion forming movable molds 2b, 3b and 2c, 3c and the shaft portion forming movable molds 2d, 3d, 2e, 3e are set to the mold moving jigs 8a, 8b. To fix and hold in the state shown in FIG. Then, high-pressure bulge processing liquid is injected into the hollow shell 4 from the pipes 7c and 7d provided at the shaft centers of the tube end restraining jigs 7a and 7b, and the hollow shell 4 is expanded and expanded. Then, as shown in FIG. 2, a part of the outer peripheral surface of the hollow shell 4 in the axial direction is brought into contact with the inner peripheral surfaces of the hollow bodies 5a and 5b to be the cam members 10a and 10b.
[0030]
Next, in the bulge processing of the second step, the mold moving jigs 8a and 8b are operated, and the shaft part forming movable molds 2d, 3d and 2e and 3e are directed to the shaft part forming fixed molds 2a and 3a, respectively. While continuing to inject the liquid for high-pressure bulge processing from the conduits 7c and 7d provided at the axial centers of the tube end restraining jigs 7a and 7b, further expanding and deforming the hollow shell 4 to expand and deform, When the state shown in FIG. 3 is reached, the bulge processing is finished.
[0031]
Specifically, the protrusion-forming movable molds 2b, 3b, 2c, and 3c are in contact with the shaft-forming fixed molds 2a and 3a, and the protrusion-forming movable molds 2b, 3b, 2c, and 3c are in contact with each other. On the other hand, the outer peripheries of the hollow bodies 5a, 5b and 6a, b are in contact with the inner surface of the hole of the bulge forming die 1 in which the movable molds 2d, 3d and 2e, 3e come into contact with each other. The bulging process is terminated when the entire outer surface of the hollow shell 4 comes into contact with the entire inner surface of these hollow bodies.
[0032]
As described above, when the bulging process is performed in two stages on the hollow shell 4 to which the hollow bodies 5a, 5b and 6a, 6b are fitted, the cam members 10a, 10b in the first bulging process. The expanded tube bulge area in the tube axis direction of the hollow shell 4 corresponding to the hollow bodies 5a and 5b becomes longer than that in the case of using a conventional bulge processing die that is only divided vertically. Further, when the internal pressure applied to the hollow shell 4 is the same, the bulge amount and the material volume also increase.
[0033]
The expanded tube bulge region of the hollow shell 4 which is long in the tube axis direction and has a large bulge amount and material volume is the movable part 2d, 3d and 2e for forming the shaft part in the second bulge processing step, With the movement of 3e, the pipes bulge and deform while undergoing bending in the tube axis direction on both side portions thereof, and the protruding mold forming movable molds 2b, 3b of the bulge mold 1 in which the molds come into contact with each other, and The outer peripheral surfaces of the hollow bodies 5a and 5b are in full contact with the inner peripheral surfaces of 2c and 3c, and the outer peripheral surfaces of the hollow bodies 6a and 6b are also engraved on the movable molds 2d, 3d and 2e and 3e for forming the shaft portion. The entire surface contacts the inner peripheral surface of the journal forming hole mold portion, and the bulge processing is completed. At this time, the inner peripheral surfaces of the hollow bodies 5a, 5b and 6a, 6b naturally contact the outer peripheral surface of the hollow shell 4 as a matter of course.
[0034]
As described above, when the hollow shell 4 is expanded and deformed without bending in the tube axis direction during the bulge processing of the hollow shell 4, the expanded tube bulge deformation proceeds smoothly, The tube 4 is not broken. Therefore, the camshaft 9 having the cam members 10a and 10b having a large eccentricity can be molded.
[0035]
Here, between the shaft-forming fixed molds 2a and 3a and the protrusion-forming movable molds 2b, 3b and 2c and 3c, and the protrusion-forming movable molds 2b, 3b and 2c at the time of the first bulge processing, The initial set interval between the movable molds 2d, 3d and 2e, 3e and the internal pressure applied to the inside of the hollow shell 4 is determined according to the required eccentric amount of the cam members 10a, 10b. Of these, the initial set interval is usually increased as the amount of eccentricity increases.
[0036]
Further, the internal pressure applied to the inside of the hollow shell 4 at the time of the second bulge processing is the outer shape of the cam members 10a, 10b and the extension portion of the expanded portion of the hollow shell 4 after the first bulge processing. Although determined by the shape and the like, in the second bulge processing, the higher the internal pressure applied, the better the shape after molding. For this reason, the internal pressure applied to the inside of the hollow shell 4 in the second bulge processing should be as high as possible.
[0037]
In addition, at the time of the 2nd bulge process, it is based on the following reason that the bending process of a pipe-axis direction is provided to the both-sides part of a pipe expansion area. That is, at the time of the second bulge processing, the protrusion forming movable molds 2b, 2c and 3b, 3c are the high pressure bulge processing in which the hollow shell 4 and the hollow bodies 5a, 5b are injected into the hollow shell 4. Of the movable portion 2d, 3d and 2e, 3e for forming the shaft portion with respect to the protruding portion forming movable molds 2b, 3b and 2c, 3c without being displaced in the tube axis direction. This is because the protrusion forming movable molds 2b, 3b and 2c, 3c approach the shaft forming fixed molds 2a, 3a by the same amount as the approaching amount.
[0038]
In the present embodiment, as described above, the outer surfaces of the hollow bodies 5a, 5b and 6a, 6b are attached to the hole molds engraved in the bulge processing mold 1, thereby allowing the hollow bodies 5a, 5b and 6a, The outer shapes of 6b are respectively formed according to the final finished shapes of the cam members 10a and 10b and the journal portions 11a and 11b of the camshaft 9 to be manufactured.
[0039]
In this embodiment, the hollow shell 4 is expanded and deformed by the above-described two-stage bulge processing so that the hollow shell 4 is brought into contact with the inner surfaces of the hollow bodies 5a, 5b and 6a, 6b with a high surface pressure. Can be brought into close contact with each other. Thereby, the hollow shell 4 and the hollow bodies 5a, 5b and 6a, 6b are fitted with a practically sufficient fixing strength (static permissible torque).
[0040]
Thus, as shown in FIG. 3, the engine on which the hollow rotating shaft 12, the cam members 10 a and 10 b fitted on the outer peripheral surface of the rotating shaft 12 by bulge processing, and the camshaft 9 are mounted. There is provided a camshaft 9 having journal portions 11a and 11b for pivotal support by bearings provided in the cylinder head, and the outer shapes of the cam members 10a and 10b are formed by bulging. That is, in this embodiment, the cam members 10a and 10b and the journal portions 11a and 11b all correspond to the protrusions in the present invention.
[0041]
Then, after completion of the second bulge processing, the press is operated to open the upper mold 2 and the lower mold 3, and the bulged camshaft 9 is carried out of the bulge processing mold 1.
[0042]
In addition, it is desirable to quench the surface of each of the cam members 10a and 10b and the journal portions 11a and 11b with a high frequency with respect to the camshaft 9 carried out of the bulge processing die 1. Thereby, while giving desired hardness, all are prevented that the cam members 10a and 10b and the journal parts 11a and 11b which are fitting parts by bulge processing loosen by thermal expansion.
[0043]
Further, compared to the cam members 10a and 10b, a large torque does not act on the journal portions 11a and 11b, and a large pipe expansion rate is not required. For this reason, bulging for the journal portions 11a and 11b is easier than bulging for the cam members 10a and 10b.
[0044]
Further, in the present embodiment, the journal portions 11a and 11b are also formed by bulge processing. However, as described above, since a large torque does not act on the journal portions 11a and 11b, the cam members are not formed by bulge processing. After the bulging of only 10a and 10b, the separate parts forming the journal portions 11a and 11b may be fixed by appropriate means such as welding, brazing, or mechanical fixing.
[0045]
In this embodiment, the cam members 10a and 10b and the journal portions 11a and 11b all have sufficient dimensional accuracy, and therefore need not be cut after bulging. Moreover, the steel pipe for bearings used for cam member 10a, 10b and journal part 11a, 11b is cheaper than a sintered alloy. For this reason, according to this embodiment, even if the camshaft 9 has the cam members 10a and 10b with large eccentricity, it can be manufactured with high production efficiency and at low cost.
[0046]
In the present embodiment, the cam members 10a and 10b are manufactured by expanding and hollowly deforming the hollow bodies 5a and 5b, which are bearing steel pipes, and are practically solid made of a conventional sintered alloy. It is lighter than the cam member. For this reason, the dynamic balance of the camshaft during high-speed rotation becomes good, and the maximum allowable rotational speed of the camshaft can be increased as compared with the conventional one. Thereby, the rotation speed of a 4-cycle reciprocating engine can also be raised.
[0047]
FIGS. 6 to 10 are schematic cross-sectional views showing other embodiments. In the case of the embodiment shown in FIGS. 6 and 7, the camshaft 9 having cam members 10a and 10b having larger eccentric amounts. 8 to 10, the camshaft has a stronger fitting strength between the hollow shell 4 and the hollow bodies 5a, 5b and 6a, 6b and a higher static permissible torque. 9 can be manufactured. Hereinafter, these will be described in detail.
[0048]
As shown in FIG. 6, in this embodiment, the hollow shell 4 has a substantially circular cross section, and before the first bulge processing, the hollow shell 4 has a substantially circular cross section. An eccentric portion forming member 13 is disposed in the gap between the hollow body 5 and the hollow bodies 5a and 5b. The eccentric portion forming member 13 is disposed in order to sufficiently secure the bulging deformation amount of the hollow bodies 5a and 5b in a state where the bulging deformation amount of the hollow shell 4 is kept low.
[0049]
The eccentric part forming member 13 is preferably easily deformed by the bulging deformation of the hollow shell 4 in order to fill the gap between the hollow shell 4 and the hollow bodies 5a and 5b, and is also reduced in weight. Therefore, a lightweight one is desirable.
[0050]
The material of the eccentric part forming member 13 may be set as appropriate in consideration of these requirements, ease of handling in the processing step, and further, for example, cost. For example, it is desirable to use pure aluminum or an alloy thereof.
[0051]
In addition, the shape, size, etc. of the eccentric portion forming member 13 can be inserted into the gap between the hollow shell 4 and the hollow bodies 5a, 5b and have a volume capable of forming the cam members 10a, 10b. It doesn't need any limitation. In other words, the eccentric part forming member 13 may be disposed at least in a part between the hollow shell 4 and the hollow bodies 5a and 5b, and the shape thereof is not limited to the solid body shown in the figure, and is a hollow body. There may be.
[0052]
As shown in FIG. 6, when the eccentric part forming member 13 is disposed in the gap between the hollow shell 4 and the hollow bodies 5a and 5b and bulging is performed, as shown in FIG. And the eccentric part shaping | molding member 13 contact | abuts to the internal peripheral surface of hollow body 5a, 5b, and bulges and deforms hollow body 5a, 5b. At this time, since the eccentric portion forming member 13 is made of pure aluminum or an alloy thereof as described above, the eccentric portion forming member 13 is deformed so as to fill the gap between the hollow shell 4 and the hollow bodies 5a and 5b. Suppresses local bulging deformation. For this reason, even if the expansion ratio of the hollow shell 4 is small, a large amount of eccentricity can be obtained, and the hollow shell 4 can be prevented from breaking.
[0053]
Further, as shown in FIG. 8, in this embodiment, before the first bulge processing is performed on the hollow shell 4, a fixing member 14 for fixing the hollow shell 4 and the hollow bodies 5a and 5b is disposed. Is done. As will be described later, since the fixing member 14 needs to be recessed into both the hollow shell 4 and the hollow bodies 5a and 5b, it is preferable to use a high-hardness member. It is desirable to use a polygonal CrMo steel wire or the like.
[0054]
That is, as shown in FIG. 9, as a pre-molding, the fixing member 14 is disposed between the core 16 and the hollow bodies 5a and 5b, and the press body 15 including the upper mold 15a and the lower mold 15b is used to form the hollow body. Press in a direction to reduce the diameter of 5a and 5b. As a result, the fixing member 14 plastically deforms the vicinity of the abutting portion of the hollow bodies 5a and 5b and sinks into the hollow bodies 5a and 5b. Since the fixing member 14 needs to be recessed into the hollow shell 4 by the first bulge processing and the second bulge processing performed subsequently, in this press, about half the diameter of the fixing member 14 is required. It is desirable that the hollow bodies 5a and 5b are recessed by the depth of.
[0055]
And after performing this preforming, the hollow shell 4 is accommodated in the bulge processing mold 1 initially set in the state shown in FIG. 1, and the first bulge processing and the second bulge processing are performed. According to this embodiment, as shown in FIG. 10, the fixing member 14 fitted into the hollow bodies 5 a and 5 b is in the vicinity of the contact portion of the hollow shell 4 as the hollow shell 4 bulges and deforms. Is plastically deformed and embedded in the hollow shell 4.
[0056]
For this reason, the fixing member 14 has the same fixing action as the key between the hollow shell 4 and the hollow bodies 5a and 5b, and a high surface pressure between the hollow shell 4 and the hollow bodies 5a and 5b by bulge processing. Combined with the contact at, extremely high static permissible torque can be secured.
[0057]
It goes without saying that the fixing member 14 may be disposed with respect to the journal portions 11a and 11b.
[0058]
【Example】
A camshaft for a four-cycle reciprocating engine is manufactured by the method proposed in Japanese Patent Application Laid-Open No. 60-257933 described above, in which a camshaft for a four-cycle reciprocating engine is manufactured according to the embodiment shown in FIGS. Taking the case where the shaft was manufactured as a comparative example, the static permissible torque, the degree of freedom of the cam shape and the manufacturing cost of the camshaft obtained by each were evaluated.
[0059]
In the example, a short steel pipe made of high carbon Cr bearing steel subjected to spheroidizing annealing was used for the hollow bodies 5a and 5b, and the axial length of the short steel pipe was matched with the required cam width. The hollow shell 4 was a general STKM 13A steel pipe.
[0060]
Further, in the first bulge processing of the example, the initial set interval between the fixed molds 2a and 3a for forming the shaft part and the movable molds 2b, 3b and 2c and 3c for forming the protruding part is 6 mm, and the movable part for forming the protruding part The initial set interval between the molds 2b, 3b and 2c, 3c and the shaft forming movable molds 2d, 3d and 2e, 3e was set to 4 mm.
[0061]
This is because the movement of the movable mold in the second bulge processing is performed from the outside, so that the amount of bulging deformation accompanying bending of the bulged portion formed by the first bulge processing is fixed to the shaft portion molding fixed mold. This is because the shaft forming movable molds 2d, 3d and 2e, 3e side are more in number than the 2a, 3a side. With this setting, the expansion expansion of the hollow shell 4 in the cam members 10a, 10b is prevented. The protrusion-forming movable molds 2b, 3b and 2c, 3c were deformed almost symmetrically with the center in the width direction as the axis of symmetry.
[0062]
Furthermore, both the first bulge processing and the second bulge processing for the hollow shell 4 of the example were performed by applying an internal pressure of 250 MPa to the hollow shell 4.
[0063]
The camshaft after the bulge processing of the example was subjected to induction hardening on the surfaces of the cam members 10a and 10b to adjust the surface hardness to a desired value.
[0064]
The production conditions and evaluation results are shown together with the comprehensive evaluation in Table 1.
[0065]
[Table 1]
Figure 0003709786
As shown in Table 1, in the embodiment, by performing the first bulge processing and the second bulge processing on the hollow shell 4, the cam member 10a having a necessary dimensional accuracy and a fixing strength with no practical problem, 10b could be provided.
[0066]
Normally, the static permissible torque required for the camshaft is said to be 98 N · m, but the example shows a good value exceeding this value and can be sufficiently put into practical use.
[0067]
In the description of the embodiments and other embodiments, the case where the hollow shaft with protrusions is a camshaft for a 4-cycle reciprocating engine has been taken as an example. However, the present invention is not limited to a camshaft, and can be equally applied to a hollow shaft with a protrusion having a hollow rotating shaft and a protrusion fitted on the outer peripheral surface of the rotating shaft by bulging. Examples of such a hollow shaft with a projection include a camshaft for a reciprocating compressor, a camshaft for a machine part having a cam mechanism, and the like in addition to a camshaft for a four-cycle reciprocating engine.
[0068]
In the description of the embodiments and other embodiments, the case where the hollow body is made of bearing steel is taken as an example. However, the hollow body in the present invention is not limited to bearing steel, and can be equally applied as long as it satisfies the required hardness and can be plastically processed. As materials that can be plastically processed, carbon steel for machine structure, alloy steel for machine structure, titanium alloy, and the like can be used in the same manner in addition to bearing steel.
[0069]
Furthermore, in the description of the embodiments and other embodiments, the case where the camshaft has two cam members is taken as an example. However, the present invention is not limited to the number of cam members, and is similarly applied even when the number of cam members is one or three or more.
[0070]
【The invention's effect】
As described above in detail, according to the present invention, since machining after bulge processing is not required, it can be manufactured at low cost, and the weight of the cam member can be reduced, so that dynamic balance during high-speed rotation can be achieved. In addition, it was possible to provide a manufacturing method capable of manufacturing a hollow shaft with a projection such as a cam shaft having high eccentricity with high production efficiency.
[0071]
Further, in the present invention, the cam member is manufactured not by a sintered alloy but by a material that can be plastically processed. By appropriately selecting this material, the cost of parts can be reduced, and the hollow shaft with protrusions can be further reduced. Can be manufactured. The significance of the present invention having such an effect is extremely remarkable.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing an initial set state of a bulge processing mold and a hollow shell before first bulge processing according to an embodiment.
FIG. 2 is a schematic longitudinal sectional view showing a state of the hollow shell after the first bulge processing of the embodiment.
FIG. 3 is a schematic longitudinal sectional view showing a state of a bulge processing die and a bulged cam shaft after the second bulge processing of the embodiment.
4 is a schematic cross-sectional view in which a bulge processing die as viewed in the direction of arrows in FIG. 1 is omitted.
FIG. 5 is a schematic cross-sectional view in which a bulge processing die as viewed in the direction of arrows in FIG. 3 is omitted.
FIG. 6 is a schematic cross-sectional view showing an arrangement mode of an eccentric portion molding member according to another embodiment.
FIG. 7 is a schematic cross-sectional view showing a shape after bulging of an eccentric molded member arrangement portion according to another embodiment.
FIG. 8 is a schematic cross-sectional view showing an arrangement mode of fixing members according to another embodiment.
FIG. 9 is a schematic cross-sectional view showing a pre-formed state of an arrangement portion of a fixing member according to another embodiment.
FIG. 10 is a schematic cross-sectional view showing a shape after bulging of an arrangement portion of a fixing member according to another embodiment.
[Explanation of symbols]
1: Bulge processing mold,
2: Upper mold,
3: Lower mold,
2a, 3a: Shaft part forming fixed mold,
2b, 2c, 3b, 3c: movable mold for forming projections,
2d, 2e, 3d, 3e: movable mold for forming the shaft part,
4: hollow shell,
5a, 5b, 6a, 6b: hollow body,
7a, 7b: tube end restraining jig,
7c, 7d: pipeline,
8a, 8b: Mold moving jig,
9: Camshaft
10a, 10b: cam members,
11a, 11b: Journal part
12: rotating shaft,
13: Eccentric part molding member,
14: fixing member,
15: Press mold for preforming,
15a: upper mold constituting a press mold for preforming,
15b: lower mold constituting a press mold for preforming,
16: Core.

Claims (1)

塑性変形可能な材料からなる中空体の内側に挿入された中空素管をバルジ加工型内に収容し、この中空素管にバルジ加工を行うことによって、中空体の外形をバルジ加工型の内面形状に成形するとともに、中空素管と中空体とを嵌着させるに当たり、下記(1) 〜(4) の工程を経る突起付き中空軸の製造方法。
(1) バルジ加工型として、中空体の外形を所定の形状に成形する突起部成形用可動型と、この突起部成形用可動型の一方側に位置する軸部成形用可動型と他方側に位置する軸部成形用固定型に分割されており、突起部成形用可動型と軸部成形用可動型とが軸部成形用固定型に対して別々に接近離反可能なバルジ加工型を準備する工程、
(2) 準備したバルジ加工型の軸部成形用固定型、突起部成形用可動型および軸部成形用可動型の各型に所定の間隔が在するように突起部成形用可動型と軸部成形用可動型をセットし、このセット後のバルジ加工型内に、塑性変形可能な材料からなる中空体の内側に隙間を設けて挿入された中空素管を収容する工程、
(3) バルジ加工型内に収容された中空素管をバルジ加工し、中空体の内面と中空素管の外面とを接触させる工程、
(4) 軸部成形用固定型の方向に軸部成形用可動型を押圧してバルジ加工を継続し、中空体を3つの型で画成される中空体成形バルジ加工型部の内面に張り付かせて中空体の外形を所定の形状に成形するとともに、中空素管と中空体とを嵌着させる工程。
The hollow shell inserted inside the hollow body made of a plastically deformable material is accommodated in the bulge processing mold, and the hollow body is bulged to form the outer shape of the hollow body. A method for producing a hollow shaft with protrusions that undergoes the following steps (1) to (4) when the hollow shell and the hollow body are fitted together.
(1) As a bulge processing mold, a protruding part forming movable mold for forming the outer shape of the hollow body into a predetermined shape, a shaft part forming movable mold located on one side of the protruding part forming movable mold, and the other side Prepared is a bulging die that is divided into a fixed shaft forming mold and that is movable separately from the protruding mold forming mold and the shaft forming movable mold. Process,
(2) Protruding part forming movable mold and shaft part such that the prepared bulge processing mold shaft part forming fixed mold, protrusion part forming movable mold and shaft part forming movable mold have a predetermined interval. A step of setting a movable mold for molding, and housing a hollow shell inserted with a gap inside a hollow body made of a plastically deformable material in the bulge processing mold after the setting,
(3) bulging the hollow shell accommodated in the bulging mold and bringing the inner surface of the hollow body into contact with the outer surface of the hollow shell;
(4) The bulging process is continued by pressing the movable mold for shaft molding in the direction of the fixed mold for molding the shaft, and the hollow body is stretched on the inner surface of the hollow body molding bulge mold defined by three molds. A step of forming the outer shape of the hollow body into a predetermined shape and fitting the hollow shell and the hollow body.
JP2000387431A 2000-12-20 2000-12-20 Manufacturing method of hollow shaft with protrusion Expired - Fee Related JP3709786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000387431A JP3709786B2 (en) 2000-12-20 2000-12-20 Manufacturing method of hollow shaft with protrusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000387431A JP3709786B2 (en) 2000-12-20 2000-12-20 Manufacturing method of hollow shaft with protrusion

Publications (2)

Publication Number Publication Date
JP2002178051A JP2002178051A (en) 2002-06-25
JP3709786B2 true JP3709786B2 (en) 2005-10-26

Family

ID=18854362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000387431A Expired - Fee Related JP3709786B2 (en) 2000-12-20 2000-12-20 Manufacturing method of hollow shaft with protrusion

Country Status (1)

Country Link
JP (1) JP3709786B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605325A (en) * 2019-07-31 2019-12-24 梁东 Manufacturing method of novel spherical bead metal piece

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565540B2 (en) * 2003-08-25 2010-10-20 武蔵精密工業株式会社 Camshaft
CN113732156B (en) * 2021-09-13 2024-04-05 哈尔滨奔马液压成型零部件有限公司 Forming die and method for large expansion ratio variable diameter thin-wall pipe with self-locking mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605325A (en) * 2019-07-31 2019-12-24 梁东 Manufacturing method of novel spherical bead metal piece

Also Published As

Publication number Publication date
JP2002178051A (en) 2002-06-25

Similar Documents

Publication Publication Date Title
US6959676B2 (en) Sheet metal rocker arm, manufacturing method thereof, cam follower with said rocker arm, and assembling method thereof
US6932040B2 (en) Metal plate rocker arm and method of manufacturing the metal plate rocker arm
WO2013114989A1 (en) Method for producing a hollow engine valve
JPH0520182B2 (en)
US20200173318A1 (en) Cavity valve with optimized shaft interior geometry, and method for producing same
JPH0472613B2 (en)
US20180104776A1 (en) Precision forming method of high-efficiency and near-net hollow valve blank of engine
JP2020525695A (en) Hollow valve manufacturing method
JP2014084725A (en) Engine valve and method of manufacturing the same
JP3709786B2 (en) Manufacturing method of hollow shaft with protrusion
JP6561575B2 (en) Manufacturing method of forged crankshaft
JP2016215234A (en) Manufacturing method of forged crank shaft
US8006533B2 (en) Flanged housing member, forming method and forming device
JP3684971B2 (en) Hollow shaft with protrusion and method of manufacturing the same
KR20030080982A (en) Method of manufacturing a poppet valve
JPH09276976A (en) Production of cam piece for assembled cam shaft and hot-forging die used for the production
JP3832695B2 (en) Hollow camshaft manufacturing method and hollow camshaft
JP3405372B2 (en) Manufacturing method of cam lobe for assembly
JP2004017107A (en) Die and method for forming hollow shaft with projection
JP3820882B2 (en) Manufacturing method of hollow shaft with protrusion
JP4384336B2 (en) Piston pin manufacturing method
JP3659961B2 (en) Method for manufacturing rocker arm
JP4060723B2 (en) Hydraulic bulge processing apparatus and hydraulic bulge processing method
JP3585208B2 (en) Manufacturing method of hollow integrated camshaft
JPH08303216A (en) Manufacture of tappet for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees